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The Need for Fairness Conditions: Intuition

Consider a public restroom. A standard access policy is “first come first served”
(e.g., a queue-based protocol).

Does this policy guarantee that everybody entering the queue will eventually access the
restroom?

No: in principle, somebody might remain in the restroom forever, hindering the access to
everybody else
In practice, it is considered reasonable to assume that everybody exits the restroom after a finite
amount of time

=⇒ It is reasonable enough to assume the protocol suitable under the condition that each user
is infinitely often outside the restroom
Such a condition is called fairness condition
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The Need for Fairness Conditions: An Example

Consider a variant of the mutual exclusion in which one process can stay permanently in the
critical zone
Do M |= G(T1 → FC1), M |= G(T2 → FC2) still hold?
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The Need for Fairness Conditions: An Example [cont.]

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G(T1 → FC1) M |= G(T2 → FC2)
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The need for fairness conditions: an example [cont.]
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M |= G(T1 → FC1)? M |= G(T2 → FC2)?

8 / 134



The need for fairness conditions: an example [cont.]

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

G(T1 → FC1)? G(T2 → FC2)?
NO: E.g., it can cycle forever in {C1,T2, turn = 1}

=⇒ Unfair protocol: one process might never be served
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Fairness Conditions

It is desirable that certain (typically Boolean) conditions φ’s hold infinitely often: GFφ
GFφ is called fairness condition
Intuitively, fairness conditions are used to eliminate behaviours in which a certain condition
φ never holds:
GFφ: “it is never reached a state from which φ is forever false”
Example: it is not desirable that, once a process is in the critical section, it never exits:
GF¬C1

A fair condition φi can be represented also by the set fi of states where φi holds
(fi := {s : π, s |= φi , for each π ∈ M})
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Fair Kripke models

A Fair Kripke model MF := ⟨S,R, I,AP,L,F ⟩
consists of:

a set of states S;
a set of initial states I ⊆ S;
a set of transitions R ⊆ S × S;
a set of atomic propositions AP;
a labeling function L : S 7−→ 2AP ;
a set of fairness conditions F = {f1, . . . , fn}, with fi ⊆ S.

E.g., {{2}} := {{s : L(s) = {q}}} = {GFq} is the set of fairness conditions of the Kripke
model above
Fair path π: at least one state for each fi occurs infinitely often in π
(φi holds infinitely often in π: π |= GFφi )

E.g., every path visiting infinitely often state 2 is a fair path.

Fair state: a state through which at least one fair path passes
E.g., all states 1,2,3,4 are fair states

Note: fair state ̸= state belonging to a fairness condition

p

q

1

2

3

4

p
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Computing an NBA AM from a Fair Kripke Model M

Transforming a fair K.S. M = ⟨S,S0,R,L,AP,FT ⟩, FT = {F1, ...,Fn}, into a generalized NBA
AM = ⟨Q,Σ, δ, I,FT ′⟩ s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1
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Computing a (Generalized) BA AM from a Fair Kripke Structure M:
Example

{p,q}

{p,q}

{p,q}

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

Generalized Buechi AutomatonFair Kripke Structure

=⇒ Substantially, add one initial state, move labels from states to incoming edges, set fair states
as accepting states
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CTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:
Mf |= φ iff π |= φ for every fair path π
Path quantifiers (from CTL) apply only to fair paths:

MF , s |= Aφ iff π, s |= φ for every fair path π s.t. s ∈ π
MF , s |= Eφ iff π, s |= φ for some fair path π s.t. s ∈ π

=⇒ a fair state s is a state in MF iff MF , s |= EGtrue.
We need a procedure to compute the set of fair states: Check_FairEG(true)

Example

Mf |= EGtrue? yes
Mf |= G(p → Fq)? yes
M |= G(p → Fq)? no

p

q

1

2

3

4

p
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Fair CTL Model Checking: Example

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

MF |= G(T1 → FC1)? MF |= G(T2 → FC2)? YES: every fair path satisfies the conditions
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CTL M.C. vs. LTL M.C. with Fair Kripke Models

Remark: fair CTL M.C.
When model checking a CTL formula ψ, fairness conditions cannot be encoded into the formula:

M{f1,...,fn} |= ψ ⇍⇒ M |= (
n∧

i=1

AGAFfi) → ψ.

M{f1,...,fn} |= ψ ⇍⇒ M |= (
n∧

i=1

EGEFfi) → ψ.

=⇒ We need specific procedures for Fair CTL Model Checking.

Remark: fair LTL M.C.
When model checking an LTL formula ψ, fairness conditions can be encoded into the formula:

M{f1,...,fn} |= ψ ⇐⇒ M |= (
n∧

i=1

GFfi) → ψ.

=⇒ There is no need for Fair LTL Model Checking procedures.
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Ex. CTL: M{f1,...,fn} |= ψ ⇍⇒ M |= (
∧n

i=1 AGAFfi) → ψ.

[Example provided by the student Davide Kirchner, 2014]

pq
s2

¬pq
s0

p¬q
s1

pq
s2

¬pq
s0

p¬q
s1

M

Mp

Mp ̸|= AGq
M |= (AGAFp) → AGq
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Ex. CTL: M{f1,...,fn} |= ψ ⇍⇒ M |= (
∧n

i=1 EGEFfi) → ψ.

[Example provided by the student Daniele Giuliani, 2019]

M

p¬q
s2

p¬q
s2

¬pq
s1

¬pq
s1

Mp

Mp ̸|= EFEGq
M |= (EGEFp) → EFEGq
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Ex. LTL (1): M{f1,...,fn} |= ψ ⇐⇒ M |= (
∧n

i=1 GFfi) → ψ.

pq
s2

¬pq
s0

p¬q
s1

pq
s2

¬pq
s0

p¬q
s1

M

Mp

Mp ̸|= Gq
M ̸|= (GFp) → Gq
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Ex. LTL (2): M{f1,...,fn} |= ψ ⇐⇒ M |= (
∧n

i=1 GFfi) → ψ.

¬pq
s2

¬p¬q
s0

pq
s1

¬pq
s2

¬p¬q
s0

pq
s1

M

Mp

Mp |= Gq
M |= (GFp) → Gq
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Fair CTL Model Checking

In order to solve the fair CTL model checking problem, we must be able to compute:
[φf ] s.t. φ Boolean (i.e. [φ] under fairness conditions f )
[Ef X(φ)] (i.e. [EXφ] under fairness conditions f )
[Ef (φUψ)] (i.e. [E(φUψ)] under fairness conditions f )
[Ef Gφ] (i.e. [EGφ] under fairness conditions f ).

Suppose we have a procedure Check_FairEG to compute [Ef Gφ].

Let fair def
= Ef Gtrue. (M, s |= Ef Gtrue if s is a fair state.)

if φ is Boolean, then Mf , s |= φ iff M, s |= (φ ∧ fair)
We can rewrite all the other fair operators:

Ef X(φ) ≡ EX(φ ∧ fair)
Ef (φUψ) ≡ E(φU(ψ ∧ fair))
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Fair CTL Model Checking

Ef X(φ) ≡ EX(φ ∧ fair):

fair

F

ϕ

Ef (φUψ) ≡ E(φU(ψ ∧ fair)):

ϕ
ϕ ϕ ϕ ϕ

ϕ

F

fairψ
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Language-Emptiness Checking for Fair Kripke Models

Fair_CheckEG

Given: a fair Kripke model MF := ⟨S,R, I,AP,L,F ⟩ and a CTL formula φ s.t. [φ] ⊆ S,
Fair_CheckEG(φ) returns the subset of the states s in [φ] from which at least one fair path π
entirely included in [φ] passes through

Fair_CheckEG(true) computes the set of fair states of Mf

=⇒ I ⊆ Fair_CheckEG(true) iff L(Mf ) ̸= ∅
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Ingredients (from CTL Model Checking)

Some primitive functions from CTL Model Checking:
Check_EX(ϕ): returns the set of states from which a path verifying Xϕ holds
(i.e., the preimage of the set of states where ϕ holds)
Check_EG(ϕ): returns the set of states from which a path verifying Gϕ holds
Check_EU(ϕ1, ϕ2): returns the set of states from which a path verifying ϕ1Uϕ2 holds
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SCC-based Check_FairEG

A Strongly Connected Component (SCC) of a directed graph is a maximal subgraph s.t. all its
nodes are reachable from each other.

Given a fair Kripke model M, a fair non-trivial SCC is an SCC with at least one edge that
contains at least one state for every fair condition
=⇒ all states in a fair (non-trivial) SCC are fair states

F3

F2

F1
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SCC-based Check_FairEG (cont.)

Check_FairEG([ϕ]):

(i) restrict the graph of M to [ϕ];
(ii) find all fair non-trivial SCCs Ci

(iii) build C := ∪iCi ;
(iv) compute the states that can reach C (Check_EU([ϕ],C)).

[ϕ]: set of states where ϕ holds (aka denotation of ϕ)
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Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1
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not C2

EG¬C1
Check_FairEG(¬C1): 1. compute [¬C1]
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C1, N2

T1, N2

N1, N2
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not C1
not C2

EG¬C1
Check_FairEG(¬C1): 2. restrict the graph to [¬C1]
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Example: Check_FairEG

F := {{ not C1},{not C2}}
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Check_FairEG(¬C1): 3. find all fair non-trivial SCC’s

29 / 134



Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1
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N1, T2
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EG¬C1
Check_FairEG(¬C1): 4. build the union C of all SCC’s
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Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1
Check_FairEG(¬C1): 5. compute the states which can reach it
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SCC-based Check_FairEG - Drawbacks

SCCs computation requires a linear (O(#nodes +#edges) ) DFS (Tarjan).
The DFS manipulates the states explicitly, storing information for every state.
A DFS is not suitable for symbolic model checking where we manipulate sets of states.

=⇒ We want an algorithm based on (symbolic) preimage computation.
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Emerson-Lei Algorithm

Fixpoint characterization of EG and fair EG

“[ϕ]” denotes the set of states where ϕ holds
Theorem (Emerson & Clarke): [EGϕ] = νZ .([ϕ] ∩ [EXZ ])
The greatest set Z s.t. every state z in Z satisfies ϕ and reaches another state in Z in one
step.

We can characterize fair EG (aka “Ef G") similarly:
Theorem (Emerson & Lei): [Ef Gϕ] = νZ .([ϕ] ∩

⋂
Fi∈FT [EX E(ZU(Z ∩ Fi))])

The greatest set Z s.t. every state z in Z satisfies ϕ and, for every set Fi ∈ FT, z reaches a
state in Fi ∩ Z by means of a non-trivial path that lies in Z.

[EG ]φ

Z [φ]

[E G  ]f φ
F1 F2

Fn

Z

F3

[φ]
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Emerson-Lei Algorithm

Recall: [Ef Gϕ] = νZ .([ϕ] ∩
⋂

Fi∈FT [EX E(ZU(Z ∩ Fi))])

state_set Check_FairEG( state_set [ϕ]) {
Z’:= [ϕ];

repeat
Z:= Z’;

for each Fi in FT
Y:= Check_EU(Z,Fi ∩ Z);
Z’:= Z’ ∩ PreImage(Y));

end for;
until (Z’ = Z);
return Z;

}

Implementation of the above formula
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Emerson-Lei Algorithm

Recall: [Ef Gϕ] = νZ .([ϕ] ∩
⋂

Fi∈FT [EX E(ZU(Z ∩ Fi))])

state_set Check_FairEG( state_set [ϕ]) {
Z’:= [ϕ];

repeat
Z:= Z’;

for each Fi in FT
Y:= Check_EU(Z’,Fi ∩ Z’);
Z’:= Z’ ∩ PreImage(Y));

end for;
until (Z’ = Z);
return Z;

}

Slight improvement: do not consider states in Z \ Z ′
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Example: Check_FairEG
F := { { not C1},{not C2}}

turn=1
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The Main Problem of M.C.: State Space Explosion

The bottleneck:
Exhaustive analysis may require to store all the states of the Kripke structure, and to explore
them one-by-one
The state space may be exponential in the number of components and variables

E.g., 300 Boolean vars =⇒ up to 2300 ≈ 10100 states!
State Space Explosion:

too much memory required
too much CPU time required to explore each state

A solution: Symbolic Model Checking
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Symbolic Model Checking

Symbolic representation:
manipulation of sets of states (rather than single states);
sets of states represented by formulae in propositional logic;

set cardinality not directly correlated to size

expansion of sets of transitions (rather than single transitions);
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Symbolic Model Checking [cont.]

Two main symbolic techniques:
Ordered Binary Decision Diagrams (OBDDs)
Propositional Satisfiability Checkers (SAT solvers)

Different model checking algorithms:
Fix-point Model Checking (historically, for CTL)
Fix-point Model Checking for LTL (conversion to fair CTL MC)
Bounded Model Checking (historically, for LTL)
Invariant Checking
...
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Symbolic Representation of Kripke Models

Symbolic representation:
sets of states as their characteristic function (Boolean formula)
provide logical representation and transformations of characteristic functions

Example:
three state variables x1, x2, x3:
{ 000, 001, 010, 011 } represented as “first bit false”: ¬x1

with five state variables x1, x2, x3, x4, x5:
{ 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,. . . , 01111 } still represented as
“first bit false”: ¬x1
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Kripke Models in Propositional Logic

Let M = (S, I,R,L,AF ) be a Kripke model
States s ∈ S are described by means of an array V of Boolean state variables.
A state is a truth assignment to each atomic proposition in V.

0100 is represented by the formula (¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4)
we call ξ(s) the formula representing the state s ∈ S
(Intuition: ξ(s) holds iff the system is in the state s)

A set of states Q ⊆ S can be represented by any formula which is logically equivalent to the
formula ξ(Q): ∨

s∈Q

ξ(s)

(Intuition: ξ(Q) holds iff the system is in one of the states s ∈ Q)
Bijection between models of ξ(Q) and states in Q
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Remark

Every propositional formula is a (typically very compact) representation of the set of
assignments satisfying it
Any formula equivalent to ξ(Q) is a representation of Q
=⇒ Typically Q can be encoded by much smaller formulas than

∨
s∈Q ξ(s)!

Example: Q ={ 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,. . . , 01111 }
represented as “first bit false”: ¬x1∨

s∈Q ξ(s) = (¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ x5) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5) ∨
...
(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5)

24disjuncts
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Symbolic Representation of Set Operators

One-to-one correspondence between sets and Boolean operators
Set of all the states: ξ(S) := ⊤
Empty set : ξ(∅) := ⊥
Union represented by disjunction:
ξ(P ∪ Q) := ξ(P) ∨ ξ(Q)

Intersection represented by conjunction:
ξ(P ∩ Q) := ξ(P) ∧ ξ(Q)

Complement represented by negation:
ξ(S/P) := ¬ξ(P)
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Symbolic Representation of Transition Relations

The transition relation R is a set of pairs of states: R ⊆ S × S
A transition is a pair of states (s, s′)

A new vector of variables V’ (the next state vector) represents the value of variables after the
transition has occurred
ξ(s, s′) defined as ξ(s) ∧ ξ(s′) (Intuition: ξ(s, s′) holds iff the system is in the state s and
moves to state s′ in next step)
The transition relation R can be represented by any formula equivalent to:∨

(s,s′)∈R

ξ(s, s′) =
∨

(s,s′)∈R

(ξ(s) ∧ ξ(s′))

Each formula equivalent to ξ(R) is a representation of R
=⇒ Typically R can be encoded by a much smaller formula than

∨
(s,s′)∈R ξ(s) ∧ ξ(s′)!
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Example: a simple counter

MODULE main
VAR

v0 : boolean;
v1 : boolean;
out : 0..3;

ASSIGN
init(v0) := 0;
next(v0) := !v0;

init(v1) := 0;
next(v1) := (v0 xor v1);

out := toint(v0) + 2*toint(v1);

v
0

v1

v1 v0 v ′
1 v ′

0
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10
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Example: a simple counter [cont.]

v
0

v1

v1 v0 v ′
1 v ′

0
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)∨
(s,s′)∈R ξ(s) ∧ ξ(s′) = (¬v1 ∧ ¬v0 ∧ ¬v ′

1 ∧ v ′
0) ∨

(¬v1 ∧ v0 ∧ v ′
1 ∧ ¬v ′

0) ∨
(v1 ∧ ¬v0 ∧ v ′

1 ∧ v ′
0) ∨

(v1 ∧ v0 ∧ ¬v ′
1 ∧ ¬v ′

0)
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Pre-Image

(Backward) pre-image of a set of states:
PPreImage(P)

Evaluate one-shot all transitions ending in the states of the set
Set theoretic view: PreImage(P,R) := {s | for some s′ ∈ P, (s, s′) ∈ R}
Logical view: ξ(PreImage(P,R)) := ∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′])

µ over V is s.t µ |= ∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) iff,
for some µ′ over V ′, we have: µ ∪ µ′ |= (ξ(P)[V ′] ∧ ξ(R)[V ,V ′]),
i.e., µ′ |= ξ(P)[V ′] and µ ∪ µ′ |= ξ(R)[V ,V ′])

Intuition: µ⇐⇒ s, µ′ ⇐⇒ s′, µ ∪ µ′ ⇐⇒ ⟨s, s′⟩
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Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v

′
0 ↔ v ′

1) ∧ (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)) =

(¬v0 ∧ v0

⊕
v1)︸ ︷︷ ︸

v ′
0=⊤,v ′

1=⊤

∨ ⊥︸︷︷︸
v ′

0=⊤,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=⊤

∨ (v0 ∧ ¬(v0

⊕
v1))︸ ︷︷ ︸

v ′
0=⊥,v ′

1=⊥

=

v1 (i .e., {10,11})
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Pre-Image [cont.]

v1

⊥ ⊤

v0

v1v1

⊥ ⊤

v0

v ′
0 v ′

0

⊥ ⊤

v1 v1

v ′
1 v ′

1

ξ(P) = v0 ↔ v1

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)

ξ(PreImage(P,R)) =
∃V ′.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

v1
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Forward Image

Forward image of a set:

P

Image(P)

Evaluate one-shot all transitions from the states of the set
Set theoretic view:

Image(P,R) := {s′| for some s ∈ P, (s, s′) ∈ R}

Logical Characterization:

ξ(Image(P,R)) := ∃V .(ξ(P)[V ] ∧ ξ(R)[V ,V ′])
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Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(Image(P,R)) = ∃V .(ξ(P)[V ] ∧ ξ(R)[V ,V ′])
= ∃V .((v0 ↔ v1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1))

= ...
= ¬v ′

1 (i .e., {00,01})
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Forward Image [cont.]

⊥ ⊤

v0

v1v1

⊥ ⊤

v0

v ′
0 v ′

0

⊥ ⊤

v1 v1

v ′
1 v ′

1

ξ(P) = v0 ↔ v1

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)

v ′
1

∃V .((v0 ↔ v1) ∧ (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)) =
ξ(Image(P,R)) =

¬v ′
1
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Application of the Transition Relation

Image and PreImage of a set of states S computed by means of quantified Boolean formulae
The whole set of transitions can be fired (either forward or backward) in one logical operation
The symbolic computation of PreImage and Image provide the primitives for symbolic
search of the state space of FSM’s

Notation Remark

Henceforth, for readability sake, we omit the “ξ()” notation in symbolic representations of
systems.

Kripke models represented as ⟨I(V ),R(V ,V ′)⟩
Fair Kripke models represented as ⟨I(V ),R(V ,V ′),F (V )⟩ s.t. F (V )

def
= {F1(V ), ..,Fk (V )}

54 / 134



Outline
1 CTL Model Checking with Fair Kripke Models

Fairness & Fair Kripke Models
Fair CTL Model Checking
SCC-Based Approach
Emerson-Lei Algorithm

2 CTL Symbolic Model Checking
Symbolic Representation of Systems
Symbolic CTL MC
Symbolic Fair CTL MC
A simple example

3 The Symbolic Approach to LTL Model Checking
General Ideas
Compute the Tableau Tψ
Compute the Product M × Tψ
Check the Emptiness of L(M × Tψ)

4 A Complete Example
5 Exercises

55 / 134



General CTL MC Procedure

STATE-SET Check(CTL_formula β) {

case β of
⊤: return S;
⊥: return ∅;
¬β1: return S\Check(β1);
β1 ∧ β2: return (Check(β1) ∩ Check(β2));
EXβ1: return PreImage(Check(β1));
EGβ1: return Check_EG(Check(β1));
E(β1Uβ2): return Check_EU(Check(β1),Check(β2));

}
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General Symbolic CTL MC Procedure

OBDD Check(CTL_formula β) {
if (In_OBDD_Hash(β)) return OBDD_Get_From_Hash(β);
case β of
⊤: return obdd_true;
⊥: return obdd_false;
¬β1: return ¬ Check(β1);
β1 ∧ β2: return (Check(β1) ∧ Check(β2));
EXβ1: return PreImage(Check(β1));
EGβ1: return Check_EG(Check(β1));
E(β1Uβ2): return Check_EU(Check(β1),Check(β2));

}
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Ingredients

Some primitive functions from CTL Model Checking:
Symbolic Check_EX(ϕ):
returns an OBDD representing the set of states from which a path verifying Xϕ begins
(i.e., the symbolic preimage of the set of states where ϕ holds)
Symbolic Check_EG(ϕ):
returns an OBDD representing the set of states from which a path verifying Gϕ begins
Symbolic Check_EU(ϕ1, ϕ2):
returns an OBDD representing the set of states from which a path verifying ϕ1Uϕ2 begins
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Check_EX

Explicit-state

State Set Check_EX(State Set X )
return {s | for some s′ ∈ X , (s, s′) ∈ R};

Symbolic

OBDD Check_EX(OBDD X )
return ∃V ′.( X [V ′] ∧ R[V ,V ′]);

Same as Pre-Image computation.
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Check_EG

Explicit-State

State Set Check_EG(State Set X )
Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∩ Check_EX (Y );

until (Y ′ = Y );
return Y ;

Symbolic

OBDD Check_EG(OBDD X )
Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∧ Check_EX (Y );

until (Y ′ ↔ Y );
return Y ;

Hint (tableaux rule): s |= EGϕ only if s |= ϕ ∧ EXEGϕ
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Check_EU

Explicit-State

State Set Check_EU(State Set X1,X2)
Y ′ := X2;
repeat

Y := Y ′;
Y ′ := Y ∪ (X1 ∩ Check_EX (Y ));

until (Y ′ = Y );
return Y ;

Symbolic

OBDD Check_EU(OBDD X1,X2)
Y ′ := X2;
repeat

Y := Y ′;
Y ′ := Y ∨ (X1 ∧ Check_EX (Y ));

until (Y ′ ↔ Y );
return Y ;

Hint (tableaux rule): s |= E(ϕ1Uϕ2) if s |= ϕ2 ∨ (ϕ1 ∧ EXE(ϕ1Uϕ2))
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Language-Emptiness Checking for Fair Kripke Models

Fair_CheckEG

Given: a fair Kripke model MF := ⟨S,R, I,AP,L,F ⟩ and a CTL formula φ s.t. [φ] ⊆ S,
Fair_CheckEG(φ) returns the subset of the states s in [φ] from which at least one fair path π
entirely included in [φ] passes through

Symbolic Fair_CheckEG

Given: the symbolic representation of a fair Kripke model MF := ⟨I,R,F ⟩
and a Boolean formula (OBDD) Ψ,
Fair_CheckEG(Ψ) returns a Boolean formula (OBDD) representing the subset of the states s in
Ψ from which at least one fair path π entirely included in Ψ passes through

Fair_CheckEG(true) computes (the symbolic representation of) the set of fair states of Mf

=⇒ I ⊆ Fair_CheckEG(true) iff L(Mf ) ̸= ∅
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Ingredients (from Symbolic CTL Model Checking)

Some primitive functions from CTL Model Checking:
Symbolic Check_EX(ϕ): returns an OBDD representing the set of states from which a path
verifying Xϕ begins
(i.e., the symbolic preimage of the set of states where ϕ holds)
Symbolic Check_EG(ϕ): returns an OBDD representing the set of states from which a path
verifying Gϕ begins
Symbolic Check_EU(ϕ1, ϕ2): returns an OBDD representing the set of states from which a
path verifying ϕ1Uϕ2 begins
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Emerson-Lei Algorithm

Recall: [Ef Gϕ] = νZ .([ϕ] ∩
⋂

Fi∈FT [EX E(ZU(Z ∩ Fi))])

state_set Check_FairEG( state_set [ϕ]) {
Z’:= [ϕ];

repeat
Z:= Z’;

for each Fi in FT
Y:= Check_EU(Z’,Fi ∩ Z’);
Z’:= Z’ ∩ PreImage(Y));

end for;
until (Z’ = Z);
return Z;

}

Slight improvement: do not consider states in Z \ Z ′
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Emerson-Lei Algorithm (symbolic version)

Recall: [Ef Gϕ] = νZ .([ϕ] ∩
⋂

Fi∈FT [EX E(ZU(Z ∧ Fi))])

Obdd Check_FairEG( Obdd ϕ) {
Z’:= ϕ;

repeat
Z:= Z’;

for each Fi in FT
Y:= Check_EU(Z’,Fi ∧ Z’);
Z’:= Z’ ∧ PreImage(Y));

end for;
until (Z’ ↔ Z);
return Z;

}

Symbolic version.
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A simple example

MODULE main
VAR
b0 : boolean;
b1 : boolean;
...

ASSIGN
init(b0) := 0;
next(b0) := case

b0 : 1;
!b0 : {0,1};

esac;
init(b1) := 0;
next(b1) := case

b1 : 1;
!b1 : {0,1};

esac;
...
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A simple example [cont.]

N Boolean variables b0,b1, ...
Initially, all variables set to 0
Each variable can pass from 0 to 1, but not vice-versa
2N states, all reachable
(Simplified) model of a student career behaviour.
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A simple example: FSM

(transitive transitons omitted)
2N STATES
O(2N) TRANSITIONS

. . . .

. . . .

. . . .

. . . .

. . . .

b1

b2

b0

b0,b1

b0,b2

b1,b2
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A simple example: OBDD(ξ(R))

2N + 2 NODES

. . . .

True False

b0

b0’

b1

b1’

b2
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A simple example: states vs. OBDD nodes [NuSMV.2]

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

VAR #

BDD NODES

0

10000

20000

30000

40000

50000

60000

70000

0 2 4 6 8 10 12 14 16

VAR #

STATES

BDD NODES
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A simple example: reaching K bits true

Property EF(b0 + b1 + ...+ b(N − 1) ≥ K ) (K ≤ N)
(it may be reached a state in which K bits are true)
E.g.: “it is reachable a state where K exams are passed”
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A simple example: FSM

(N
K

)
+
( N

K+1

)
+ ...+

(N
N

) . . . .

. . . .

. . . .

. . . .

. . . .

K=2

b1

b2

b0

b0,b1

b0,b2

b1,b2
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A simple example: OBDD(ξ(φ))

(N − K + 1) · K + 2 NODES

true

false

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

b1

b2

b0

True False

b1b1

b(K−1)

b(K)

b(K+1)

b(N−K)

b(N−K+1)

b(N−1)
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A simple example: states vs. OBDD nodes [NuSMV.2]
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Symbolic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

Let ψ be an LTL formula
|= ψ (LTL)

⇐⇒ ¬ψ unsat
⇐⇒ L(T¬ψ) = ∅
T¬ψ is a fair Kripke model (aka tableaux) which represents all and only the paths that satisfy
¬ψ (do not satisfy ψ)

LTL Entailment
Let φ,ψ be an LTL formula

φ |= ψ (LTL)
|= φ→ ψ (LTL)

⇐⇒ φ ∧ ¬ψ unsat
⇐⇒ L(Tφ∧¬ψ) = ∅
Tφ∧¬ψ is a fair Kripke model (aka tableaux) which represents all and only the paths that
satisfy φ ∧ ¬ψ (satisfy φ and do not satisfy ψ)
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Symbolic LTL Model Checking

LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= ψ (LTL)

⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(M) ∩ L(T¬ψ) = ∅
⇐⇒ L(M × T¬ψ) = ∅
T¬ψ is a fair Kripke model (aka tableaux) which represents all and only the paths that satisfy
¬ψ (do not satisfy ψ)

=⇒ M × T¬ψ represents all and only the paths appearing in M and not in ψ.
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Symbolic LTL Model Checking

Three steps

Let φ def
= ¬ψ:

(i) Compute Tφ
(ii) Compute the product M × Tφ

(iii) Check the emptiness of L(M × Tφ)
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The Set of States

Elementary subformulas of ψ: el(ψ)
el(p) := {p}
el(¬φ1) := el(φ1)
el(φ1 ∧ φ2) := el(φ1) ∪ el(φ2)
el(Xφ1) = {Xφ1} ∪ el(φ1)
el(φ1Uφ2) := {X(φ1Uφ2)} ∪ el(φ1) ∪ el(φ2)

Intuition: el(ψ) is the set of propositions and X-formulas occurring ψ′, ψ′ being the result of
applying recursively the tableau expansion rules to ψ
The set of states STψ of Tψ is given by 2el(ψ)

The labeling function LTψ of Tψ comes straightforwardly
(the label is the Boolean component of each state)
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Example: ψ := pUq

el(pUq) = el((q ∨ (p ∧ X(pUq))) = {p,q,X(pUq)}

=⇒ STψ = {
1 : {p,q,X(pUq)}, [pUq]
2 : {¬p,q,X(pUq)}, [pUq]
3 : {p,¬q,X(pUq)}, [pUq]
4 : {¬p,q,¬X(pUq)}, [pUq]
5 : {¬p,¬q,X(pUq)}, [¬pUq]
6 : {p,q,¬X(pUq)}, [pUq]
7 : {p,¬q,¬X(pUq)}, [¬pUq]
8 : {¬p,¬q,¬X(pUq)} [¬pUq]

}
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Example: ψ := pUq [cont.]

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp −p −qp

−p q −q−p qp

p −q −p −q

q
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sat()

Set of states in STψ satisfying φi : sat(φi)

sat(φ1) := {s | φ1 ∈ s}, φ1 ∈ el(ψ)
sat(¬φ1) := STψ/sat(φ1)
sat(φ1 ∧ φ2) := sat(φ1) ∩ sat(φ2)
sat(φ1Uφ2) := sat(φ2) ∪ (sat(φ1) ∩ sat(X(φ1Uφ2)))

intuition: sat() establishes in which states subformulas are true

Remark

Semantics of “φ1Uφ2” here induced by tableaux rule: φ1Uφ2
def
= φ2 ∨ (φ1 ∧ X(φ1Uφ2))

=⇒ weaker than standard semantics (aka “weak until”, “φ1Wφ2”):
a path where φ1 is always true and φ2 is always false satisfies it
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Example: ψ := pUq [cont.]

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp −p −qp

−p q −q−p qp

p −q −p −q

q

ψ ψ ψ

ψ −ψ ψ

−ψ −ψ
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Initial States and Transition Relation

Set of states in STψ satisfying φi : sat(φi)

sat(φ1) := {s | φ1 ∈ s}, φ1 ∈ el(ψ)
sat(¬φ1) := STψ/sat(φ1)
sat(φ1 ∧ φ2) := sat(φ1) ∩ sat(φ2)
sat(φ1Uφ2) := sat(φ2) ∪ (sat(φ1) ∩ sat(X(φ1Uφ2)))

Intuition: sat() establishes in which states subformulas are true
The set of initial states ITψ is defined as

ITψ = sat(ψ)

The transition relation RTψ is defined as

RTψ (s, s
′) =

⋂
Xφi∈el(ψ)

{(s, s′) | s ∈ sat(Xφi) ⇔ s′ ∈ sat(φi)}
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Example: ψ := pUq [cont.]

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ
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Problems with U-subformulas

RTψ does not guarantee that the U-subformulas are fulfilled
Example: state 3 {p,¬q,X(pUq)}:
although state 3 belongs to

sat(pUq) := sat(q) ∪ (sat(p) ∩ sat(X(pUq))),

the path which loops forever in state 3 does not satisfy pUq, as q never holds in that path.
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Tableaux Rules: a Quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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Fairness conditions for every U-subformula

It must never happen that we get into
a state s′ from which we can enter a path π′ in which φ1Uφ2 holds forever and φ2 never holds.

Uϕ1 ϕ2Uϕ1 ϕ2

−ϕ2

Uϕ1 ϕ2 Uϕ1 ϕ2

−ϕ2

.  .  .  .

−ϕ2 −ϕ2

=⇒ For every [positive] U-subformula φ1Uφ2 of ψ, we must add a fairness LTL condition
GF(¬(φ1Uφ2) ∨ φ2)
If no [positive] U-subformulas, then add one fairness condition GF⊤.

=⇒ We restrict the admissible paths of Tψ to those which verify the fairness condition:
Tψ := ⟨STψ , ITψ ,RTψ ,LTψ ,FTψ ⟩

FTψ := {sat(¬(φ1Uφ2) ∨ φ2)) s.t . (φ1Uφ2) occurs [positively ]in ψ}
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Example: ψ := pUq [cont.]

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ

Note: easily transformed into a generalized Büchi automaton
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Example: ψ := pUq [cont.]
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Symbolic Representation of Tψ

State variables: one Boolean variable for each formula in el(ψ)
EX: p, q and x and primed versions p′, q′ and x ′

[ x is a Boolean label for X(pUq) ]

sat(φi):
sat(p) := p, s.t. p Boolean state variable
sat(¬φ1) := ¬sat(φ1)
sat(φ1 ∧ φ2) := sat(φ1) ∧ sat(φ2)
sat(Xφi) := x[Xφi ], s.t. x[Xφi ] Boolean state variable
sat(φ1Uφ2) := sat(φ2) ∨ (sat(φ1) ∧ sat(X(φ1Uφ2)))

=⇒ sat(φ1Uφ2) := sat(φ2) ∨ (sat(φ1) ∧ x[Xφ1Uφ2])

...
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Symbolic Representation of Tψ [cont.]

...
Initial states: ITψ = sat(ψ)

EX: I(p, q, x) = q ∨ (p ∧ x)

Transition Relation: RTψ (s, s
′) =

⋂
Xφi∈el(ψ) {(s, s′) | s ∈ sat(Xφi) ⇔ s′ ∈ sat(φi)}

RTψ =
∧

Xφi∈el(ψ) (sat(Xφi) ↔ sat ′(φi))

where sat ′(φi) is sat(φi) on primed variables
EX: RTψ (p, q, x , p

′, q′, x ′) = x ↔ (q′ ∨ (p′ ∧ x ′))

Fairness Conditions: FTψ := {sat(¬(φ1Uφ2) ∨ φ2)) s.t . (φ1Uφ2) occurs [positively ]in ψ}
EX: FTψ (p, q, x) = ¬(q ∨ (p ∧ x)) ∨ q = ... = ¬p ∨ ¬x ∨ q
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Symbolic Representation of Tψ: Examples

ITψ (p,q, x) = q ∨ (p ∧ x)
1 : {p,q, x} |= ITψ
3 : {p,¬q, x} |= ITψ
̸ 5 : {¬p,¬q, x} ̸|= ITψ

RTψ (p,q, x ,p
′,q′, x ′) = x ↔ (q′ ∨ (p′ ∧ x ′))

1 ⇒ 1 : {p,q, x ,p′,q′, x ′} |= RTψ
6 ⇒ 7 : {p,q,¬x ,p′,¬q′,¬x ′} |= RTψ
6 ̸⇒ 1 : {p,q,¬x ,p′,q′, x ′} ̸|= RTψ

FTψ (p,q, x) = ¬p ∨ ¬x ∨ q
1 : {p,q, x} |= FTψ
5 : {¬p,¬q, x} |= FTψ
̸ 3 : {p,¬q, x} ̸|= FTψ

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ

96 / 134



Symbolic Representation of Tψ: Examples

ITψ (p,q, x) = q ∨ (p ∧ x)
1 : {p,q, x} |= ITψ
3 : {p,¬q, x} |= ITψ
̸ 5 : {¬p,¬q, x} ̸|= ITψ

RTψ (p,q, x ,p
′,q′, x ′) = x ↔ (q′ ∨ (p′ ∧ x ′))

1 ⇒ 1 : {p,q, x ,p′,q′, x ′} |= RTψ
6 ⇒ 7 : {p,q,¬x ,p′,¬q′,¬x ′} |= RTψ
6 ̸⇒ 1 : {p,q,¬x ,p′,q′, x ′} ̸|= RTψ

FTψ (p,q, x) = ¬p ∨ ¬x ∨ q
1 : {p,q, x} |= FTψ
5 : {¬p,¬q, x} |= FTψ
̸ 3 : {p,¬q, x} ̸|= FTψ

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ

96 / 134



Symbolic Representation of Tψ: Examples

ITψ (p,q, x) = q ∨ (p ∧ x)
1 : {p,q, x} |= ITψ
3 : {p,¬q, x} |= ITψ
̸ 5 : {¬p,¬q, x} ̸|= ITψ

RTψ (p,q, x ,p
′,q′, x ′) = x ↔ (q′ ∨ (p′ ∧ x ′))

1 ⇒ 1 : {p,q, x ,p′,q′, x ′} |= RTψ
6 ⇒ 7 : {p,q,¬x ,p′,¬q′,¬x ′} |= RTψ
6 ̸⇒ 1 : {p,q,¬x ,p′,q′, x ′} ̸|= RTψ

FTψ (p,q, x) = ¬p ∨ ¬x ∨ q
1 : {p,q, x} |= FTψ
5 : {¬p,¬q, x} |= FTψ
̸ 3 : {p,¬q, x} ̸|= FTψ

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ

96 / 134



Symbolic Representation of Tψ: Examples

ITψ (p,q, x) = q ∨ (p ∧ x)
1 : {p,q, x} |= ITψ
3 : {p,¬q, x} |= ITψ
̸ 5 : {¬p,¬q, x} ̸|= ITψ

RTψ (p,q, x ,p
′,q′, x ′) = x ↔ (q′ ∨ (p′ ∧ x ′))

1 ⇒ 1 : {p,q, x ,p′,q′, x ′} |= RTψ
6 ⇒ 7 : {p,q,¬x ,p′,¬q′,¬x ′} |= RTψ
6 ̸⇒ 1 : {p,q,¬x ,p′,q′, x ′} ̸|= RTψ

FTψ (p,q, x) = ¬p ∨ ¬x ∨ q
1 : {p,q, x} |= FTψ
5 : {¬p,¬q, x} |= FTψ
̸ 3 : {p,¬q, x} ̸|= FTψ

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ

96 / 134



Outline
1 CTL Model Checking with Fair Kripke Models

Fairness & Fair Kripke Models
Fair CTL Model Checking
SCC-Based Approach
Emerson-Lei Algorithm

2 CTL Symbolic Model Checking
Symbolic Representation of Systems
Symbolic CTL MC
Symbolic Fair CTL MC
A simple example

3 The Symbolic Approach to LTL Model Checking
General Ideas
Compute the Tableau Tψ
Compute the Product M × Tψ
Check the Emptiness of L(M × Tψ)

4 A Complete Example
5 Exercises

97 / 134



Computing the product P := Tψ × M

Given M := ⟨SM , IM ,RM ,LM⟩ and Tψ := ⟨STψ , ITψ ,RTψ ,LTψ ,FTψ ⟩, we compute the product
P := Tψ × M = ⟨S, I,R,L,F ⟩ as follows:

S := {(s, s′) | s ∈ STψ , s′ ∈ SM and LM(s′)|ψ = LTψ (s)}
I := {(s, s′) | s ∈ ITψ , s′ ∈ IM and LM(s′)|ψ = LTψ (s)}
Given (s, s′), (t , t ′) ∈ S, ((s, s′), (t , t ′)) ∈ R iff (s, t) ∈ RTψ and (s′, t ′) ∈ RM

L((s, s′)) = LTψ (s) ∪ LM(s′)

Extension of sat() and FTψ to P:
(s, s′) ∈ sat(ψ) ⇐⇒ s ∈ sat(ψ)
F := {sat(¬(φ1Uφ2) ∨ φ2) s.t . (φ1Uφ2) occurs [positively ]in ψ}
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Computing the product P := Tψ × M symbolically

Let V ,W be the array of Boolean state variables of Tψ and M respectively:
Initial states: I(V ∪ W ) = ITψ (V ) ∧ IM(W )

Transition Relation: R(V ∪ W ,V ′ ∪ W ′) = RTψ (V ,V
′) ∧ RM(W ,W ′)

Fairness conditions: {F1(V ∪ W ), ...,Fk (V ∪ W )} = {FTψ1(V ), ...,FTψk (V )}
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Main theorem [Clarke, Grumberg & Hamaguchi; 94]

Theorem

THEOREM: M.s′ |= Eψ iff there is a state s in Tψ s.t. (s, s′) ∈ sat(ψ) and
Tψ × M, (s, s′) |= EGtrue under the fairness conditions:

{sat(¬(φ1Uφ2) ∨ φ2)) s.t . (φ1Uφ2) occurs in ψ}.

=⇒ M |= Eψ iff Tψ × M |= Ef Gtrue
=⇒ M |= ¬ψ iff Tψ × M ̸|= Ef Gtrue

LTL M.C. reduced to Fair CTL M.C.!!!
Symbolic OBDD-based techniques apply.

Note
The transition relation R of Tψ × M may not be total.
=⇒ Check_FairEG does not consider states without successors, restricting R to the remaining
states.
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A microwave oven

4 state variables: start, close, heat, error
Actions (implicit): start_oven,open_door, close_door, reset, warmup, start_cooking, cook,
done
Error situation: if oven is started while the door is open
Represented as a Kripke structure (and hence as a OBDD’s)
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A microwave oven [cont.]

1

2
3

4

5 6 7
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done
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A microwave oven: symbolic representation

Initial states: IM(s, c,h,e) = ¬s ∧ ¬h ∧ ¬e
Transition relation: RM(s, c,h,e, s′, c′,h′,e′) = [a simplification of]

( ¬s∧¬c∧¬h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (close_door , no error)
( s∧¬c∧¬h∧ e∧ s′∧ c′∧¬h′∧ e′) ∨ (close_door , error)
( ¬s∧ c ∧¬e∧¬s′∧¬c′∧¬h′∧¬e′) ∨ (open_door , no error)
( s∧ c∧¬h∧ e∧ s′∧¬c′∧¬h′∧ e′) ∨ (open_door , error)
( ¬s∧ c∧¬h∧¬e∧ s′∧ c′∧¬h′∧¬e′) ∨ (start_oven, no error)
( ¬s∧¬c∧¬h∧¬e∧ s′∧¬c′∧¬h′∧ e′) ∨ (start_oven, error)
( s∧ c∧¬h∧ e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (reset)
( s∧ c∧¬h∧¬e∧ s′∧ c′∧ h′∧¬e′) ∨ (warmup)
( s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (start_cooking)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (cook)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) (done)

Note: the third row represents two transitions: 3 → 1 and 4 → 1.
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LTL Specification

“necessarily, the oven’s door eventually closes and, till there, the oven does not heat”:

M |= ¬heat U close,

i.e.,
M |= ¬E¬(¬heat U close)
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Tableau construction for ψ = ¬(¬heat U close)

φ := ¬ψ = (¬heat U close)
Tableaux expansion: ψ = ¬(¬heat U close) = ¬(close ∨ (¬heat ∧ X(¬heat U close)))
el(ψ) = el(φ) = {heat , close,Xφ} ({h, c,Xφ})
States:

1 := {¬h, c,Xφ}, 2 := {h, c,Xφ}, 3 := {¬h,¬c,Xφ},
4 := {h, c,¬Xφ}, 5 := {h,¬c,Xφ}, 6 := {¬h, c,¬Xφ},
7 := {¬h,¬c,¬Xφ}, 8 := {h,¬c,¬Xφ}
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

. .

..
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Tableau construction for ψ = ¬(¬heat U close)

...
States:

1 := {¬h, c,Xφ}, 2 := {h, c,Xφ}, 3 := {¬h,¬c,Xφ},
4 := {h, c,¬Xφ}, 5 := {h,¬c,Xφ}, 6 := {¬h, c,¬Xφ},
7 := {¬h,¬c,¬Xφ}, 8 := {h,¬c,¬Xφ}

sat():
sat(h) = {2,4,5,8} =⇒ sat(¬h) = {1,3,6,7},
sat(c) = {1,2,4,6} =⇒ sat(¬c) = {3,5,7,8},
sat(Xφ) = {1,2,3,5} =⇒ sat(¬Xφ) = {4,6,7,8},
sat(φ) = sat(c) ∪ (sat(¬h) ∩ sat(X(¬h U c))) = {1,2,3,4,6}
=⇒ sat(ψ) = sat(¬φ) = {5,7,8}
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

. .

..

sat(−h)

sat(−h)

sat(−h)

sat(h)
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

. .

..

sat(−h)

sat(−h)

sat(−h)

sat(h)

sat(c)

sat(c)
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

. .

..

sat(−h)

sat(−h)

sat(−h)

sat(h)

sat(c)

sat(c)

ϕsat(X    )
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

 sat(    )ϕ

 sat(    )−ϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

. .

..
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

...
sat():

sat(h) = {2,4,5,8} =⇒ sat(¬h) = {1,3,6,7},
sat(c) = {1,2,4,6} =⇒ sat(¬c) = {3,5,7,8},
sat(Xφ) = {1,2,3,5} =⇒ sat(¬Xφ) = {4,6,7,8},
sat(φ) = sat(c) ∪ (sat(¬h) ∩ sat(X(¬h U c))) = {1,2,3,4,6}

Initial states I: sat(ψ) = sat(¬φ) = {5,7,8}
Transition Relation R:

add an edge from every state in sat(Xφ) to every state in sat(φ)
add an edge from every state in sat(¬Xφ) to every state in sat(¬φ)

114 / 134



Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

sat(X      )ϕ
sat(      )ϕ

sat(      )−ϕ

sat(X      )−ϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8
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Symbolic representation of Tψ, s.t. ψ := ¬(¬hUc)

State variables: h, c and x and primed versions h′, c′ and x ′

[ x is a Boolean label for X(¬hUc) ]
Initial states: ITψ = sat(ψ)
=⇒ I(h, c, x) = ¬(c ∨ (¬h ∧ x))
Transition Relation: RTψ =

∧
Xφi∈el(ψ) (sat(Xφi) ↔ sat ′(φi))

=⇒ RTψ (h, c, x ,h
′, c′, x ′) = x ↔ (c′ ∨ (¬h′ ∧ x ′))

Fairness Property: (due to negative polarity of (¬h Uc) in ψ):
FTψ (h, c, x) = ⊤
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Product P = Tψ × M

1

2
3

4

5 6 7

−start

−close

−heat

−error

−close

−heat

−start

−heat

−error

−start

−error

−error

−heat

−error

−heat

start

error

close close

heat

start

close

error

start

close

start

close

heat

start_owen
open_door

close_door

open_door

open_door

close_door
reset start_owen start_cooking

warmup

done

cook

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

(6,5)

(6,6)

(6,3)

(4,4)

(4,7)

(7,1) (7,2)(3,1)

(3,2) (1,3) (2,4)

(1,5)
(1,6) (2,7)
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Product P = Tψ × M [cont.]

(6,5)

(6,6)

(6,3)

(4,4)

(4,7)

(7,1) (7,2)(3,1)

(3,2) (1,3) (2,4)

(1,5)
(1,6) (2,7)

P = Tψ × M (reachable states only)
compute [EGtrue] (e.g. by Emerson-Lei):
=⇒ states (4, 4), (4, 7), (6, 3), (6, 5), (6, 6), (7, 1), (7, 2) are not part of a (fair) infinite path
=⇒ no initial states in [EGtrue] ( (7.1) has been removed).
=⇒ Tψ × M ̸|= EGtrue
=⇒ Property verified!

N.B.: fairness condition ⊤ irrelevent here
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Product P = Tψ × M: symbolic representation

Initial states: I(s, c,h,e, x) = (¬s ∧ ¬h ∧ ¬e) ∧ ¬(c ∨ (¬h ∧ x)) = ¬s ∧ ¬h ∧ ¬e ∧ ¬c ∧ ¬x
Transition relation: R(s, c,h,e, x , s′, c′,h′,e′, x ′) = (an OBDD for)

(x ↔ (c′ ∨ (¬h′ ∧ x ′))) ∧ (
( ¬s∧¬c∧¬h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (close_door , no error)
( s∧¬c∧¬h∧ e∧ s′∧ c′∧¬h′∧ e′) ∨ (close_door , error)
( ¬s∧ c ∧¬e∧¬s′∧¬c′∧¬h′∧¬e′) ∨ (open_door , no error)
( s∧ c∧¬h∧ e∧ s′∧¬c′∧¬h′∧ e′) ∨ (open_door , error)
( ¬s∧ c∧¬h∧¬e∧ s′∧ c′∧¬h′∧¬e′) ∨ (start_oven, no error)
( ¬s∧¬c∧¬h∧¬e∧ s′∧¬c′∧¬h′∧ e′) ∨ (start_oven, error)
( s∧ c∧¬h∧ e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (reset)
( s∧ c∧¬h∧¬e∧ s′∧ c′∧ h′∧¬e′) ∨ (warmup)
( s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (start_cooking)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (cook)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) (done)
)
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[EGtrue]: symbolic representation

Emerson-Lei returns (an OBDD equivalent to):

EGtrue =
( ¬s∧¬c∧¬h∧¬e∧ x) ∨ (3,1)
( s∧¬c∧¬h∧ e∧ x) ∨ (3,2)
( ¬s∧ c∧¬h∧¬e∧ x) ∨ (1,3)
( ¬s∧ c∧ h∧¬e∧ x) ∨ (2,4)
( s∧ c∧¬h∧ e∧ x) ∨ (1,5)
( s∧ c∧¬h∧¬e∧ x) ∨ (1,5)
( s∧ c∧ h∧¬e∧ x) ∨ (2,7)

... (other unreachables states)

Initial states: I(s, c,h,e, x) = ¬s ∧ ¬h ∧ ¬e ∧ ¬c ∧ ¬x
=⇒ I(s, c,h,e, x) ̸|= EGtrue
=⇒ I ̸⊆ [EGtrue]
=⇒ Tψ × M ̸|= EGtrue
=⇒ Property verified!
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The property verified is...
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Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

MODULE main
VAR v1 : boolean; v2 : boolean;
INIT (!v1 & !v2)
TRANS (next(v1) <-> !v1) & (next(v2) <-> (v1<->v2))

and consider the property P def
= (v1 ∧ v2). Write:

the Boolean formulas I(v1, v2) and T (v1, v2, v ′
1, v

′
2) representing respectively the initial states and the transition

relation of M.
[ Solution: I(v1, v2) is (¬v1 ∧ ¬v2), T (v1, v2, v ′

1, v
′
2) is (v ′

1 ↔ ¬v1) ∧ (v ′
2 ↔ (v1 ↔ v2)) ]

the graph representing the FSM. (Assume the notation “v1v2” for labeling the states: e.g. “10” means
“v1 = 1, v2 = 0”.)
[ Solution:

00 11 01 10
]
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Ex: Symbolic CTL Model Checking (cont.)

the Boolean formula representing symbolically EXP. [The formula must be computed symbolically, not simply
inferred from the graph of the previous question!]
[ Solution:

EX(P) = ∃v ′
1, v

′
2.(T (v1, v2, v ′

1, v
′
2) ∧ P(v ′

1, v
′
2))

= ∃v ′
1, v

′
2.((v

′
1 ↔ ¬v1) ∧ (v ′

2 ↔ (v1 ↔ v2)) ∧ (v ′
1 ∧ v ′

2)︸ ︷︷ ︸
=⇒v′

1=⊤,v′
2=⊤

)

=

v′
1=⊤,v′

2=⊤︷ ︸︸ ︷
(¬v1 ∧ ¬v2)∨⊥ ∨ ⊥ ∨ ⊥

= (¬v1 ∧ ¬v2)

. ]
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Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

VAR v1 : boolean; v2 : boolean;
INIT init(v1) <-> init(v2)
TRANS (v1 <-> next(v2)) & (v2 <-> next(v1));

write:

the Boolean formulas I(v1, v2) and T (v1, v2, v ′
1, v

′
2) representing the initial states and the transition relation of M

respectively.
[ Solution: I(v1, v2) is (v1 ↔ v2), T (v1, v2, v ′

1, v
′
2) is (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1) ]

the graph representing the FSM. (Assume the notation “v1v2” for labeling the states. E.g., “10” means
“v1 = 1, v2 = 0”.)

[ Solution:
1100

]
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Ex: Symbolic CTL Model Checking (cont.)

the Boolean formula R1(v ′
1, v

′
2) representing the set of states which can be reached after exactly 1 step.

NOTE: this must be computed symbolically, not simply deduced from the graph of question b).
[ Solution:

R1(v ′
1, v

′
2) = ∃v1, v2.(I(v1, v2) ∧ T (v1, v2, v ′

1, v
′
2))

= ∃v1, v2.((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))
= ((v1 ↔ v2) ∧ (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1))[v1 = ⊥, v2 = ⊥] ∨

((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))[v1 = ⊥, v2 = ⊤] ∨
((v1 ↔ v2) ∧ (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1))[v1 = ⊤, v2 = ⊥] ∨

((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))[v1 = ⊤, v2 = ⊤]
= (¬v ′

1 ∧ ¬v ′
2) ∨ ⊥ ∨ ⊥ ∨ (v ′

1 ∧ v ′
2)

= (¬v ′
1 ∧ ¬v ′

2) ∨ (v ′
1 ∧ v ′

2)
= (v ′

1 ↔ v ′
2)

. ]
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Ex: Fair CTL Model Checking

Consider the following fair Kripke Model M:

F1 F2

¬pq
s2

p¬q
s1

pq
s0

For each of the following facts, say if it is true or false in CTL.

(a) M |= AF¬p
[ Solution: true ]

(b) M |= A(pU¬q)
[ Solution: true ]

(c) M |= AX¬q
[ Solution: false ]

(d) M |= AGAF¬p
[ Solution: true ]

128 / 134



Ex: Fair CTL Model Checking

Consider the following fair Kripke Model M:

F1

pq
s0

¬pq
s2

p¬q
s1

For each of the following facts, say if it is true or false in CTL.

(a) M |= EF(p ∧ q)
[ Solution: true ]

(b) M |= AGAFp
[ Solution: true ]

(c) M |= AF¬q
[ Solution: true ]

(d) M |= AG(¬p ∨ ¬q)
[ Solution: false ]
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Ex: Symbolic LTL Model Checking

Given the following LTL formula: φ def
= ¬((GFp ∧ GFq) → GFr)

(a) Compute the Negative Normal Form of φ (NNF (φ)).

[ Solution:

φ ⇐⇒ ¬((GFp ∧ GFq) → GFr)
⇐⇒ ¬(¬(GFp ∧ GFq) ∨ GFr)
⇐⇒ (GFp ∧ GFq ∧ ¬GFr)
⇐⇒ (GFp ∧ GFq ∧ FG¬r) ⇐⇒ NNF (φ)

]

(b) Compute the set of elementary subformulas of φ.
[ Solution: First write the formula in terms of X and U’s (write “Fψ" for “⊤Uψ”):

φ ⇐⇒ ¬((GFp ∧ GFq) → GFr)
⇐⇒ ¬((¬F¬Fp ∧ ¬F¬Fq) → ¬F¬Fr)

el(F¬Fp) = {XF¬Fp} ∪ el(¬Fp) = {XF¬Fp} ∪ {XFp} ∪ el(p) = {XF¬Fp,XFp, p}.
Hence: el(φ) = el(¬((¬F¬Fp ∧ ¬F¬Fq) → ¬F¬Fr))

= el(F¬Fp) ∪ el(F¬Fq) ∪ el(F¬Fr)
= {XF¬Fp,XFp, p,XF¬Fq,XFq, q,XF¬Fr ,XFr , r}

]

(c) What is the (maximum) number of states of a fair Kripke Model representing φ?
[ Solution: By definition it is 2|el(φ)| = 29 = 512. ]
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Ex: Symbolic LTL Model Checking

Given the following LTL formula ψ def
= ¬F¬p, compute and draw the tableau Tψ of ψ. [ Solution:

(i) The set of elementary subformulas of ψ is el(ψ) def
= {p,XF¬p}. Hence, the set of states is

{s1 : (p,¬XF¬p), s2 : (p,XF¬p), s3 : (¬p,¬XF¬p), s4 : (¬p,XF¬p)}

(ii) The set of initial states of Tψ is sat(ψ) def
= S \ (sat(¬p) ∪ sat(XF¬p)) = {s1}.

(iii) Since s1 is the only state in sat(¬F¬p), then s1 is the only successor of itself, so that the only relevant transition is a
self-loop over s1.
(One can also —un-necessarily— draw all transitions from states where ¬XF¬p holds into {s1} and from from states
where XF¬p holds into {s2, s3, s4}.)

(iv) There is one U-subformula, F¬p, so that there is one fairness condition defined as sat(¬F¬p ∨ ¬p) . Since F¬p is
false in s1, then s1 is part of the fairness condition. [Alternatively: there is no positive U-subformula, so that we must
add a AGAF⊤ fairness condition, which is equivalent to say that all states belong to the fairness condition. ]

]
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Ex: Symbolic LTL Model Checking (cont.)

[ Solution:

ps1 [¬XF¬p]
or, alternatively without simplifications:

non-reachable states

[¬XF¬p]
ps1

¬p
[¬XF¬p]

p
[¬¬XF¬p]

¬p
[¬¬XF¬p]s2

s3

s4

]
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Ex: Symbolic LTL Model Checking

Given the following LTL formula ψ def
= Gp, compute and draw the tableau Tψ of ψ. [Without converting anything into X,U].

[ Solution:

(i) The set of elementary subformulas of ψ is el(ψ) def
= {p,XGp}. Hence, the set of states is

{s1 : (p,XGp), s2 : (p,¬XGp), s3 : (¬p,XGp), s4 : (¬p,¬XGp)}

(ii) The set of initial states of Tψ is sat(ψ) def
= sat(p) ∩ sat(XGp) = {s1}.

(iii) Since s1 is the only state in sat(Gp), then s1 is the only successor of itself, so that the only relevant transition is a
self-loop over s1.
(One can also —un-necessarily— draw all transitions from states where XGp holds into {s1} and from from states
where ¬XGp holds into {s2, s3, s4}.)

(iv) Since there is no “U” subformula, we must add a AGAF⊤ fairness condition, which is equivalent to say that all states
belong to the fairness condition.

]
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Ex: Symbolic LTL Model Checking (cont.)

[ Solution:

[XGp]
ps1

or, alternatively without simplifications:

non-reachable states

[XGp]
ps1

¬p
[XGp]

p
[¬XGp]

¬p
[¬XGp]s2

s3

s4

]
134 / 134


	CTL Model Checking with Fair Kripke Models
	Fairness & Fair Kripke Models
	Fair CTL Model Checking
	SCC-Based Approach
	Emerson-Lei Algorithm

	CTL Symbolic Model Checking
	Symbolic Representation of Systems
	Symbolic CTL MC
	Symbolic Fair CTL MC
	A simple example

	The Symbolic Approach to LTL Model Checking
	General Ideas
	Compute the Tableau T
	Compute the Product MT
	Check the Emptiness of L (MT)

	A Complete Example
	Exercises

