
Automated Reasoning and Formal Verification
Module I: Automated Reasoning

Ch. 04: Automata-Theoretic LTL Reasoning

Roberto Sebastiani and Stefano Tonetta

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: https://disi.unitn.it/rseba/DIDATTICA/arfv2025/

Teaching assistant: Gabriele Masina – gabriele.masina@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems
Academic year 2024-2025

last update: Friday 21st February, 2025, 11:20

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and
S.Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by
the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the

authors. No copy of these slides can be displayed in public without containing this copyright notice.

1 / 69

roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba/DIDATTICA/arfv2025/
gabriele.masina@unitn.it

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

2 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

3 / 69

Infinite Word Languages

Modeling infinite computations of reactive systems

Given an Alphabet Σ (e.g. Σ def
= {a,b})

An ω-word α over Σ is an infinite sequence
a0, a1, a2

Formally, α : N → Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example: All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

4 / 69

Infinite Word Languages

Modeling infinite computations of reactive systems

Given an Alphabet Σ (e.g. Σ def
= {a,b})

An ω-word α over Σ is an infinite sequence
a0, a1, a2

Formally, α : N → Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example: All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

4 / 69

Infinite Word Languages

Modeling infinite computations of reactive systems

Given an Alphabet Σ (e.g. Σ def
= {a,b})

An ω-word α over Σ is an infinite sequence
a0, a1, a2

Formally, α : N → Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example: All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

4 / 69

Infinite Word Languages

Modeling infinite computations of reactive systems

Given an Alphabet Σ (e.g. Σ def
= {a,b})

An ω-word α over Σ is an infinite sequence
a0, a1, a2

Formally, α : N → Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example: All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

4 / 69

Infinite Word Languages

Modeling infinite computations of reactive systems

Given an Alphabet Σ (e.g. Σ def
= {a,b})

An ω-word α over Σ is an infinite sequence
a0, a1, a2

Formally, α : N → Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example: All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

4 / 69

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation: Let Q be the set of states. Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

5 / 69

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation: Let Q be the set of states. Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

5 / 69

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation: Let Q be the set of states. Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

5 / 69

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation: Let Q be the set of states. Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

5 / 69

Büchi Automata
Nondeterministic Büchi Automaton

A Nondeterministic Büchi Automaton (NBA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of accepting states.
δ ⊆ Q × Σ× Q transition relation (edges).

A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional:
δ : Q × Σ 7−→ Q

Runs and Language of NBAs

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence ρ = qo,q1,q2, . . . s.t. q0 ∈ I
and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F ̸= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

6 / 69

Büchi Automata
Nondeterministic Büchi Automaton

A Nondeterministic Büchi Automaton (NBA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of accepting states.
δ ⊆ Q × Σ× Q transition relation (edges).

A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional:
δ : Q × Σ 7−→ Q

Runs and Language of NBAs

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence ρ = qo,q1,q2, . . . s.t. q0 ∈ I
and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F ̸= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

6 / 69

Büchi Automata
Nondeterministic Büchi Automaton

A Nondeterministic Büchi Automaton (NBA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of accepting states.
δ ⊆ Q × Σ× Q transition relation (edges).

A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional:
δ : Q × Σ 7−→ Q

Runs and Language of NBAs

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence ρ = qo,q1,q2, . . . s.t. q0 ∈ I
and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F ̸= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

6 / 69

Büchi Automata
Nondeterministic Büchi Automaton

A Nondeterministic Büchi Automaton (NBA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of accepting states.
δ ⊆ Q × Σ× Q transition relation (edges).

A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional:
δ : Q × Σ 7−→ Q

Runs and Language of NBAs

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence ρ = qo,q1,q2, . . . s.t. q0 ∈ I
and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F ̸= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

6 / 69

Büchi Automata
Nondeterministic Büchi Automaton

A Nondeterministic Büchi Automaton (NBA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of accepting states.
δ ⊆ Q × Σ× Q transition relation (edges).

A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional:
δ : Q × Σ 7−→ Q

Runs and Language of NBAs

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence ρ = qo,q1,q2, . . . s.t. q0 ∈ I
and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F ̸= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

6 / 69

Büchi Automata
Nondeterministic Büchi Automaton

A Nondeterministic Büchi Automaton (NBA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of accepting states.
δ ⊆ Q × Σ× Q transition relation (edges).

A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional:
δ : Q × Σ 7−→ Q

Runs and Language of NBAs

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence ρ = qo,q1,q2, . . . s.t. q0 ∈ I
and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F ̸= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

6 / 69

Büchi Automaton: Example

Let Σ = {a,b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely many a’s.
With F = {s2} the automaton recognizes words with infinitely many b’s.

7 / 69

Büchi Automaton: Example

Let Σ = {a,b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely many a’s.
With F = {s2} the automaton recognizes words with infinitely many b’s.

7 / 69

Büchi Automaton: Example

Let Σ = {a,b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely many a’s.
With F = {s2} the automaton recognizes words with infinitely many b’s.

7 / 69

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A2 be

With F = {s2}, the automaton A2 recognizes words with finitely many a. Thus, L(A2) = L(A1).

8 / 69

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

Remark:
The subset construction of standard Final-State automata does not work!

Let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

9 / 69

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

Remark:
The subset construction of standard Final-State automata does not work!

Let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

9 / 69

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

Remark:
The subset construction of standard Final-State automata does not work!

Let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

9 / 69

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

Remark:
The subset construction of standard Final-State automata does not work!

Let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

9 / 69

Closure Properties

Theorem (union, intersection)

For the NBAs A1,A2 we can construct
the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1|+ |A2|
the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| ≤ |A1| · |A2| · 2.

10 / 69

Closure Properties

Theorem (union, intersection)

For the NBAs A1,A2 we can construct
the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1|+ |A2|
the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| ≤ |A1| · |A2| · 2.

10 / 69

Closure Properties

Theorem (union, intersection)

For the NBAs A1,A2 we can construct
the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1|+ |A2|
the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| ≤ |A1| · |A2| · 2.

10 / 69

Union of two NBAs

Definition: union of NBAs

Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪ Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem

L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

11 / 69

Union of two NBAs

Definition: union of NBAs

Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪ Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem

L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

11 / 69

Union of two NBAs

Definition: union of NBAs

Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪ Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem

L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

11 / 69

Union of two NBAs

Definition: union of NBAs

Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪ Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem

L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

11 / 69

Union of two NBAs

Definition: union of NBAs

Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪ Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem

L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

11 / 69

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F), where

Q = Q1 × Q2 × {1,2}.
I = I1 × I2 × {1}.
F = F1 × Q2 × {1}.

⟨p,q,1⟩ a−→ ⟨p′,q′,1⟩ iff p a−→ p′ and q a−→ q′ and p ̸∈ F1.
⟨p,q,1⟩ a−→ ⟨p′,q′,2⟩ iff p a−→ p′ and q a−→ q′ and p ∈ F1.
⟨p,q,2⟩ a−→ ⟨p′,q′,2⟩ iff p a−→ p′ and q a−→ q′ and q ̸∈ F2.
⟨p,q,2⟩ a−→ ⟨p′,q′,1⟩ iff p a−→ p′ and q a−→ q′ and q ∈ F2.

Theorem

L(A1 × A2) = L(A1) ∩ L(A2).
|A1 × A2| ≤ 2 · |A1| · |A2|.

12 / 69

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F), where

Q = Q1 × Q2 × {1,2}.
I = I1 × I2 × {1}.
F = F1 × Q2 × {1}.

⟨p,q,1⟩ a−→ ⟨p′,q′,1⟩ iff p a−→ p′ and q a−→ q′ and p ̸∈ F1.
⟨p,q,1⟩ a−→ ⟨p′,q′,2⟩ iff p a−→ p′ and q a−→ q′ and p ∈ F1.
⟨p,q,2⟩ a−→ ⟨p′,q′,2⟩ iff p a−→ p′ and q a−→ q′ and q ̸∈ F2.
⟨p,q,2⟩ a−→ ⟨p′,q′,1⟩ iff p a−→ p′ and q a−→ q′ and q ∈ F2.

Theorem

L(A1 × A2) = L(A1) ∩ L(A2).
|A1 × A2| ≤ 2 · |A1| · |A2|.

12 / 69

Synchronous Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA, and it points to one of the
two tracks
As soon as it goes through an accepting state of the current track, it switches to the other
track

=⇒ to visit infinitely often a state in F (i.e., F1), it must visit infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 × Q2.
I = I1 × I2.
F = F1 × Q2.

13 / 69

Synchronous Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA, and it points to one of the
two tracks
As soon as it goes through an accepting state of the current track, it switches to the other
track

=⇒ to visit infinitely often a state in F (i.e., F1), it must visit infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 × Q2.
I = I1 × I2.
F = F1 × Q2.

13 / 69

Synchronous Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA, and it points to one of the
two tracks
As soon as it goes through an accepting state of the current track, it switches to the other
track

=⇒ to visit infinitely often a state in F (i.e., F1), it must visit infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 × Q2.
I = I1 × I2.
F = F1 × Q2.

13 / 69

Synchronous Product of NBAs: Example

14 / 69

Synchronous Product of NBAs: Example

14 / 69

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A1 we can construct an NBA A2 such that L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton

(iii) convert the Rabin automaton into a Büchi automaton.

15 / 69

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A1 we can construct an NBA A2 such that L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton

(iii) convert the Rabin automaton into a Büchi automaton.

15 / 69

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A1 we can construct an NBA A2 such that L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton

(iii) convert the Rabin automaton into a Büchi automaton.

15 / 69

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A1 we can construct an NBA A2 such that L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton

(iii) convert the Rabin automaton into a Büchi automaton.

15 / 69

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A1 we can construct an NBA A2 such that L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton

(iii) convert the Rabin automaton into a Büchi automaton.

15 / 69

Generalized Büchi Automaton

Definition

A Generalized Büchi Automaton is a tuple A := (Q,Σ, δ, I,FT) where FT = ⟨F1,F2, . . . ,Fk ⟩
with Fi ⊆ Q.
A run ρ of A is accepting if Inf (ρ) ∩ Fi ̸= ∅ for each 1 ≤ i ≤ k .

Theorem
For every Generalized Büchi Automaton we can construct a language equivalent plain Büchi
Automaton.

Intuition

Let Q′ = Q × {1, . . . ,K}.
The automaton remains in phase i till it visits a state in Fi . Then, it moves to (i mod K) + 1 mode.

16 / 69

Generalized Büchi Automaton

Definition

A Generalized Büchi Automaton is a tuple A := (Q,Σ, δ, I,FT) where FT = ⟨F1,F2, . . . ,Fk ⟩
with Fi ⊆ Q.
A run ρ of A is accepting if Inf (ρ) ∩ Fi ̸= ∅ for each 1 ≤ i ≤ k .

Theorem
For every Generalized Büchi Automaton we can construct a language equivalent plain Büchi
Automaton.

Intuition

Let Q′ = Q × {1, . . . ,K}.
The automaton remains in phase i till it visits a state in Fi . Then, it moves to (i mod K) + 1 mode.

16 / 69

Generalized Büchi Automaton

Definition

A Generalized Büchi Automaton is a tuple A := (Q,Σ, δ, I,FT) where FT = ⟨F1,F2, . . . ,Fk ⟩
with Fi ⊆ Q.
A run ρ of A is accepting if Inf (ρ) ∩ Fi ̸= ∅ for each 1 ≤ i ≤ k .

Theorem
For every Generalized Büchi Automaton we can construct a language equivalent plain Büchi
Automaton.

Intuition

Let Q′ = Q × {1, . . . ,K}.
The automaton remains in phase i till it visits a state in Fi . Then, it moves to (i mod K) + 1 mode.

16 / 69

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let A def
= (Q,Σ, δ, I,FT) a generalized BA s.f. FT def

= {F1, ...,FK}.
Then a language-equivalent BA A′ def

= (Q′,Σ, δ′, I′,F ′) is built as follows
Q′ = Q1 × {1, ...,K}.
I′ = I × {1}.
F ′ = F1 × {1}.
δ′ is s.t., for every i ∈ [1, ...,K]:

⟨p, i⟩ a−→ ⟨q, i⟩ iff p a−→ q ∈ δ and p ̸∈ Fi .

⟨p, i⟩ a−→ ⟨q, (i mod K) + 1⟩ iff p a−→ q ∈ δ and p ∈ Fi .

Theorem

L(A′) = L(A).
|A′| ≤ K · |A|.

17 / 69

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let A def
= (Q,Σ, δ, I,FT) a generalized BA s.f. FT def

= {F1, ...,FK}.
Then a language-equivalent BA A′ def

= (Q′,Σ, δ′, I′,F ′) is built as follows
Q′ = Q1 × {1, ...,K}.
I′ = I × {1}.
F ′ = F1 × {1}.
δ′ is s.t., for every i ∈ [1, ...,K]:

⟨p, i⟩ a−→ ⟨q, i⟩ iff p a−→ q ∈ δ and p ̸∈ Fi .

⟨p, i⟩ a−→ ⟨q, (i mod K) + 1⟩ iff p a−→ q ∈ δ and p ∈ Fi .

Theorem

L(A′) = L(A).
|A′| ≤ K · |A|.

17 / 69

Degeneralizing a Büchi automaton: Example

18 / 69

Degeneralizing a Büchi automaton: Example

18 / 69

Omega-regular Expressions

Recall:
A finite-word language is called regular if it it is recognizable by some Finite-State-Automaton
(FSA).

Definition

An infinite-word language is called ω-regular if it has the form ∪n
i=1 Ui .(Vi)

ω where Ui ,Vi are
regular languages.

Theorem
A language L is ω-regular iff it is NBA-recognizable.

19 / 69

Omega-regular Expressions

Recall:
A finite-word language is called regular if it it is recognizable by some Finite-State-Automaton
(FSA).

Definition

An infinite-word language is called ω-regular if it has the form ∪n
i=1 Ui .(Vi)

ω where Ui ,Vi are
regular languages.

Theorem
A language L is ω-regular iff it is NBA-recognizable.

19 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

20 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

21 / 69

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

Let ψ be an LTL formula
|= ψ (LTL)

⇐⇒ ¬ψ unsat
⇐⇒ L(A¬ψ) = ∅
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

LTL Entailment
Let φ,ψ be an LTL formula

φ |= ψ (LTL)
|= φ→ ψ (LTL)

⇐⇒ φ ∧ ¬ψ unsat
⇐⇒ L(Aφ∧¬ψ) = ∅
Aφ∧¬ψ is a Büchi Automaton which represents all and only the paths that satisfy φ ∧ ¬ψ
(satisfy φ and do not satisfy ψ)

22 / 69

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

Let ψ be an LTL formula
|= ψ (LTL)

⇐⇒ ¬ψ unsat
⇐⇒ L(A¬ψ) = ∅
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

LTL Entailment
Let φ,ψ be an LTL formula

φ |= ψ (LTL)
|= φ→ ψ (LTL)

⇐⇒ φ ∧ ¬ψ unsat
⇐⇒ L(Aφ∧¬ψ) = ∅
Aφ∧¬ψ is a Büchi Automaton which represents all and only the paths that satisfy φ ∧ ¬ψ
(satisfy φ and do not satisfy ψ)

22 / 69

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

Let ψ be an LTL formula
|= ψ (LTL)

⇐⇒ ¬ψ unsat
⇐⇒ L(A¬ψ) = ∅
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

LTL Entailment
Let φ,ψ be an LTL formula

φ |= ψ (LTL)
|= φ→ ψ (LTL)

⇐⇒ φ ∧ ¬ψ unsat
⇐⇒ L(Aφ∧¬ψ) = ∅
Aφ∧¬ψ is a Büchi Automaton which represents all and only the paths that satisfy φ ∧ ¬ψ
(satisfy φ and do not satisfy ψ)

22 / 69

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

Let ψ be an LTL formula
|= ψ (LTL)

⇐⇒ ¬ψ unsat
⇐⇒ L(A¬ψ) = ∅
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

LTL Entailment
Let φ,ψ be an LTL formula

φ |= ψ (LTL)
|= φ→ ψ (LTL)

⇐⇒ φ ∧ ¬ψ unsat
⇐⇒ L(Aφ∧¬ψ) = ∅
Aφ∧¬ψ is a Büchi Automaton which represents all and only the paths that satisfy φ ∧ ¬ψ
(satisfy φ and do not satisfy ψ)

22 / 69

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

Let ψ be an LTL formula
|= ψ (LTL)

⇐⇒ ¬ψ unsat
⇐⇒ L(A¬ψ) = ∅
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

LTL Entailment
Let φ,ψ be an LTL formula

φ |= ψ (LTL)
|= φ→ ψ (LTL)

⇐⇒ φ ∧ ¬ψ unsat
⇐⇒ L(Aφ∧¬ψ) = ∅
Aφ∧¬ψ is a Büchi Automaton which represents all and only the paths that satisfy φ ∧ ¬ψ
(satisfy φ and do not satisfy ψ)

22 / 69

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

Let ψ be an LTL formula
|= ψ (LTL)

⇐⇒ ¬ψ unsat
⇐⇒ L(A¬ψ) = ∅
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

LTL Entailment
Let φ,ψ be an LTL formula

φ |= ψ (LTL)
|= φ→ ψ (LTL)

⇐⇒ φ ∧ ¬ψ unsat
⇐⇒ L(Aφ∧¬ψ) = ∅
Aφ∧¬ψ is a Büchi Automaton which represents all and only the paths that satisfy φ ∧ ¬ψ
(satisfy φ and do not satisfy ψ)

22 / 69

Automata-Theoretic LTL Satisfiability and Entailment

Two steps for checking |= ψ [resp. φ |= ψ]

(i) Compute A¬ψ [resp. Aφ∧¬ψ]
(ii) Check the emptiness of L(A¬ψ) [resp. L(Aφ∧¬ψ)]

23 / 69

Automata-Theoretic LTL Satisfiability and Entailment

Two steps for checking |= ψ [resp. φ |= ψ]

(i) Compute A¬ψ [resp. Aφ∧¬ψ]
(ii) Check the emptiness of L(A¬ψ) [resp. L(Aφ∧¬ψ)]

23 / 69

Automata-Theoretic LTL Satisfiability and Entailment

Two steps for checking |= ψ [resp. φ |= ψ]

(i) Compute A¬ψ [resp. Aφ∧¬ψ]
(ii) Check the emptiness of L(A¬ψ) [resp. L(Aφ∧¬ψ)]

23 / 69

Automata-Theoretic LTL Model Checking

LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= ψ (LTL)

⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(AM) ∩ L(A¬ψ) = ∅
⇐⇒ L(AM × A¬ψ) = ∅
AM is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and not in ψ.

24 / 69

Automata-Theoretic LTL Model Checking

LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= ψ (LTL)

⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(AM) ∩ L(A¬ψ) = ∅
⇐⇒ L(AM × A¬ψ) = ∅
AM is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and not in ψ.

24 / 69

Automata-Theoretic LTL Model Checking

LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= ψ (LTL)

⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(AM) ∩ L(A¬ψ) = ∅
⇐⇒ L(AM × A¬ψ) = ∅
AM is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
A¬ψ is a Büchi Automaton which represents all and only the paths that satisfy ¬ψ
(do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and not in ψ.

24 / 69

Automata-Theoretic LTL Model Checking

Four steps

Let φ def
= ¬ψ:

(i) Compute AM

(ii) Compute Aφ
(iii) Compute the product AM × Aφ
(iv) Check the emptiness of L(AM × Aφ)

25 / 69

Automata-Theoretic LTL Model Checking

Four steps

Let φ def
= ¬ψ:

(i) Compute AM

(ii) Compute Aφ
(iii) Compute the product AM × Aφ
(iv) Check the emptiness of L(AM × Aφ)

25 / 69

Automata-Theoretic LTL Model Checking

Four steps

Let φ def
= ¬ψ:

(i) Compute AM

(ii) Compute Aφ
(iii) Compute the product AM × Aφ
(iv) Check the emptiness of L(AM × Aφ)

25 / 69

Automata-Theoretic LTL Model Checking

Four steps

Let φ def
= ¬ψ:

(i) Compute AM

(ii) Compute Aφ
(iii) Compute the product AM × Aφ
(iv) Check the emptiness of L(AM × Aφ)

25 / 69

Automata-Theoretic LTL Model Checking

Four steps

Let φ def
= ¬ψ:

(i) Compute AM

(ii) Compute Aφ
(iii) Compute the product AM × Aφ
(iv) Check the emptiness of L(AM × Aφ)

25 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

26 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

NBA emptiness checking

Idea: find an accepting cycle reachable from an initial state
accepting cycle: a cycle containing some accepting state f

A naive algorithm (Naive Double Nested DFS algorithm):
(i) a DFS finds the accepting states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)

Complexity: O(n2)

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting

state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)
Drawbacks: it stores too much information and does not find directly a counterexample.

27 / 69

(Smart) Double Nested DFS algorithm
(Smart) Double Nested DFS

Two nested DFSs
DFS1 finds the accepting states f reachable from an initial state
for each f, DFS2 finds if it can reach f (i.e., if there exists a loop)

Two Hash tables:
T1: reachable states
T2: states reachable from a reachable accepting state

Two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from accepting state f

It stops as soon as it finds a counterexample.
The counterexample is given by

the stack of DFS2 (an accepting, preceded by cycle)
the stack of DFS1 (a path from an initial state to the cycle)

DFS1 invokes DFS2 on each fi only after popping it (postorder)
T2 passed by reference (or static) =⇒ is not reset at each call of DFS2 !

28 / 69

(Smart) Double Nested DFS algorithm
(Smart) Double Nested DFS

Two nested DFSs
DFS1 finds the accepting states f reachable from an initial state
for each f, DFS2 finds if it can reach f (i.e., if there exists a loop)

Two Hash tables:
T1: reachable states
T2: states reachable from a reachable accepting state

Two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from accepting state f

It stops as soon as it finds a counterexample.
The counterexample is given by

the stack of DFS2 (an accepting, preceded by cycle)
the stack of DFS1 (a path from an initial state to the cycle)

DFS1 invokes DFS2 on each fi only after popping it (postorder)
T2 passed by reference (or static) =⇒ is not reset at each call of DFS2 !

28 / 69

(Smart) Double Nested DFS algorithm
(Smart) Double Nested DFS

Two nested DFSs
DFS1 finds the accepting states f reachable from an initial state
for each f, DFS2 finds if it can reach f (i.e., if there exists a loop)

Two Hash tables:
T1: reachable states
T2: states reachable from a reachable accepting state

Two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from accepting state f

It stops as soon as it finds a counterexample.
The counterexample is given by

the stack of DFS2 (an accepting, preceded by cycle)
the stack of DFS1 (a path from an initial state to the cycle)

DFS1 invokes DFS2 on each fi only after popping it (postorder)
T2 passed by reference (or static) =⇒ is not reset at each call of DFS2 !

28 / 69

(Smart) Double Nested DFS algorithm
(Smart) Double Nested DFS

Two nested DFSs
DFS1 finds the accepting states f reachable from an initial state
for each f, DFS2 finds if it can reach f (i.e., if there exists a loop)

Two Hash tables:
T1: reachable states
T2: states reachable from a reachable accepting state

Two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from accepting state f

It stops as soon as it finds a counterexample.
The counterexample is given by

the stack of DFS2 (an accepting, preceded by cycle)
the stack of DFS1 (a path from an initial state to the cycle)

DFS1 invokes DFS2 on each fi only after popping it (postorder)
T2 passed by reference (or static) =⇒ is not reset at each call of DFS2 !

28 / 69

(Smart) Double Nested DFS algorithm
(Smart) Double Nested DFS

Two nested DFSs
DFS1 finds the accepting states f reachable from an initial state
for each f, DFS2 finds if it can reach f (i.e., if there exists a loop)

Two Hash tables:
T1: reachable states
T2: states reachable from a reachable accepting state

Two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from accepting state f

It stops as soon as it finds a counterexample.
The counterexample is given by

the stack of DFS2 (an accepting, preceded by cycle)
the stack of DFS1 (a path from an initial state to the cycle)

DFS1 invokes DFS2 on each fi only after popping it (postorder)
T2 passed by reference (or static) =⇒ is not reset at each call of DFS2 !

28 / 69

(Smart) Double Nested DFS algorithm
(Smart) Double Nested DFS

Two nested DFSs
DFS1 finds the accepting states f reachable from an initial state
for each f, DFS2 finds if it can reach f (i.e., if there exists a loop)

Two Hash tables:
T1: reachable states
T2: states reachable from a reachable accepting state

Two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from accepting state f

It stops as soon as it finds a counterexample.
The counterexample is given by

the stack of DFS2 (an accepting, preceded by cycle)
the stack of DFS1 (a path from an initial state to the cycle)

DFS1 invokes DFS2 on each fi only after popping it (postorder)
T2 passed by reference (or static) =⇒ is not reset at each call of DFS2 !

28 / 69

(Smart) Double Nested DFS - First DFS

// returns True if empty language, false otherwise
Bool DFS1(NBA A) {

stack S1=I; stack S2=∅;
Hashtable T1=I; Hashtable T2=∅;
while S1!=∅ {

v=top(S1);
if ∃w s.t. w∈ δ(v) && T1(w)==0 {

hash(w,T1);
push(w,S1);

} else {
pop(S1);
if (v∈F && !DFS2(v,S2,T2,A)) //test after popping!

return False;
} }
return True;

}

29 / 69

(Smart) Double Nested DFS - Second DFS

Bool DFS2(state f, stack & S, Hashtable & T, NBA A) {
hash(f,T);
S = {f}
while S!=∅ {

v=top(S);
if f∈ δ(v) return False;
if ∃w s.t. w∈ δ(v) && T(w)==0 {

hash(w);
push(w);

} else pop(S);
}
return True;

}

Remark: T passed by reference (or static) =⇒ is not reset at each call of DFS2 !

30 / 69

Double nested DFS: Intuition
DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):

suppose DFS2 is invoked on fj earlier than on fi
=⇒ fi not reachable from (any state s which is reachable from) fj

If during DFS2(fi , ...) it is encountered a state S which has already been explored by
DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ It is safe to backtrack!

31 / 69

Double nested DFS: Intuition
DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):

suppose DFS2 is invoked on fj earlier than on fi
=⇒ fi not reachable from (any state s which is reachable from) fj

If during DFS2(fi , ...) it is encountered a state S which has already been explored by
DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ It is safe to backtrack! fj

fi

S

31 / 69

Double nested DFS: Intuition
DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):

suppose DFS2 is invoked on fj earlier than on fi
=⇒ fi not reachable from (any state s which is reachable from) fj

If during DFS2(fi , ...) it is encountered a state S which has already been explored by
DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ It is safe to backtrack! fj

fi

S

31 / 69

Double nested DFS: Intuition
DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):

suppose DFS2 is invoked on fj earlier than on fi
=⇒ fi not reachable from (any state s which is reachable from) fj

If during DFS2(fi , ...) it is encountered a state S which has already been explored by
DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ It is safe to backtrack! fj

fi

S

31 / 69

Double nested DFS: Intuition
DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):

suppose DFS2 is invoked on fj earlier than on fi
=⇒ fi not reachable from (any state s which is reachable from) fj

If during DFS2(fi , ...) it is encountered a state S which has already been explored by
DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ It is safe to backtrack! fj

fi

S

???

31 / 69

Double nested DFS: Intuition
DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):

suppose DFS2 is invoked on fj earlier than on fi
=⇒ fi not reachable from (any state s which is reachable from) fj

If during DFS2(fi , ...) it is encountered a state S which has already been explored by
DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ It is safe to backtrack! fj

fi

S

31 / 69

Double nested DFS: Intuition
DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):

suppose DFS2 is invoked on fj earlier than on fi
=⇒ fi not reachable from (any state s which is reachable from) fj

If during DFS2(fi , ...) it is encountered a state S which has already been explored by
DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ It is safe to backtrack! fj

fi

S

31 / 69

(Smart) Double Nested DFS: example

T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

3

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

4

��

4
3

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

��

4
3

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

3

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

4

��

4
3

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

��

4
3

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

��

4

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

5

����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

6

����

6
5

����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

����

6
5

����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

2

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

6

��

6

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

(Smart) Double Nested DFS: example

1

��

1
6

��

6

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

32 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

33 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing an NBA AM from a Kripke Structure M

Transform a Kripke model M = ⟨S,S0,R,L,AP⟩ into an NBA AM = ⟨Q,Σ, δ, I,F ⟩ s.t.:
States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP (total truth-assignments as alphabet symbols!)
Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q, q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

34 / 69

Computing a NBA AM from a Kripke Structure M: Example

{p,q}

{p,q}

{p,q}

Kripke Structure Buechi Automaton

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

=⇒ Substantially:
1. add one initial state,
2. move labels from states to incoming edges,
3. set all states as accepting states

35 / 69

Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also
graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other propositions are false;
in a Büchi Automaton, it means that p is true and all other propositions are irrelevant (“don’t
care”), i.e. they can be either true or false.

36 / 69

Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also
graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other propositions are false;
in a Büchi Automaton, it means that p is true and all other propositions are irrelevant (“don’t
care”), i.e. they can be either true or false.

36 / 69

Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also
graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other propositions are false;
in a Büchi Automaton, it means that p is true and all other propositions are irrelevant (“don’t
care”), i.e. they can be either true or false.

36 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

37 / 69

Translation problem

Problem
Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

It is a fundamental problem in LTL validity/satisfiability/entailment and model checking
We translate an LTL formula into a Generalized Büchi Automata (GBA), then into an NBA

38 / 69

Translation problem

Problem
Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

It is a fundamental problem in LTL validity/satisfiability/entailment and model checking
We translate an LTL formula into a Generalized Büchi Automata (GBA), then into an NBA

38 / 69

Translation problem

Problem
Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

It is a fundamental problem in LTL validity/satisfiability/entailment and model checking
We translate an LTL formula into a Generalized Büchi Automata (GBA), then into an NBA

38 / 69

LTL Negative Normal Form (NNF)

Every LTL formula φ can be written into an equivalent formula φ′ using only the operators ∧,
∨, X, U, R on propositional literals.

Done by pushing negations down to literal level:

¬¬φ1 =⇒ φ1
¬(φ1 ∨ φ2) =⇒ (¬φ1 ∧ ¬φ2)
¬(φ1 ∧ φ2) =⇒ (¬φ1 ∨ ¬φ2)
¬Xφ1 =⇒ X¬φ1
¬(φ1Uφ2) =⇒ (¬φ1R¬φ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ The resulting formula is expressed in terms of ∨, ∧, X , U, R and literals
(Negative Normal Form, NNF).

the encoding is linear if a DAG representation is used

In the construction of Aφ we now assume that φ is in NNF.
=⇒ every non-atomic subformula occurs positively in φ
For convenience, we still use F’s and G’s as shortcuts: Fφ for ⊤Uφ and Gφ for ⊥Rφ

39 / 69

LTL Negative Normal Form (NNF)

Every LTL formula φ can be written into an equivalent formula φ′ using only the operators ∧,
∨, X, U, R on propositional literals.

Done by pushing negations down to literal level:

¬¬φ1 =⇒ φ1
¬(φ1 ∨ φ2) =⇒ (¬φ1 ∧ ¬φ2)
¬(φ1 ∧ φ2) =⇒ (¬φ1 ∨ ¬φ2)
¬Xφ1 =⇒ X¬φ1
¬(φ1Uφ2) =⇒ (¬φ1R¬φ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ The resulting formula is expressed in terms of ∨, ∧, X , U, R and literals
(Negative Normal Form, NNF).

the encoding is linear if a DAG representation is used

In the construction of Aφ we now assume that φ is in NNF.
=⇒ every non-atomic subformula occurs positively in φ
For convenience, we still use F’s and G’s as shortcuts: Fφ for ⊤Uφ and Gφ for ⊥Rφ

39 / 69

LTL Negative Normal Form (NNF)

Every LTL formula φ can be written into an equivalent formula φ′ using only the operators ∧,
∨, X, U, R on propositional literals.

Done by pushing negations down to literal level:

¬¬φ1 =⇒ φ1
¬(φ1 ∨ φ2) =⇒ (¬φ1 ∧ ¬φ2)
¬(φ1 ∧ φ2) =⇒ (¬φ1 ∨ ¬φ2)
¬Xφ1 =⇒ X¬φ1
¬(φ1Uφ2) =⇒ (¬φ1R¬φ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ The resulting formula is expressed in terms of ∨, ∧, X , U, R and literals
(Negative Normal Form, NNF).

the encoding is linear if a DAG representation is used

In the construction of Aφ we now assume that φ is in NNF.
=⇒ every non-atomic subformula occurs positively in φ
For convenience, we still use F’s and G’s as shortcuts: Fφ for ⊤Uφ and Gφ for ⊥Rφ

39 / 69

LTL Negative Normal Form (NNF)

Every LTL formula φ can be written into an equivalent formula φ′ using only the operators ∧,
∨, X, U, R on propositional literals.

Done by pushing negations down to literal level:

¬¬φ1 =⇒ φ1
¬(φ1 ∨ φ2) =⇒ (¬φ1 ∧ ¬φ2)
¬(φ1 ∧ φ2) =⇒ (¬φ1 ∨ ¬φ2)
¬Xφ1 =⇒ X¬φ1
¬(φ1Uφ2) =⇒ (¬φ1R¬φ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ The resulting formula is expressed in terms of ∨, ∧, X , U, R and literals
(Negative Normal Form, NNF).

the encoding is linear if a DAG representation is used

In the construction of Aφ we now assume that φ is in NNF.
=⇒ every non-atomic subformula occurs positively in φ
For convenience, we still use F’s and G’s as shortcuts: Fφ for ⊤Uφ and Gφ for ⊥Rφ

39 / 69

On-the-fly Construction of Aφ (Intuition)

(Implicitly) Apply recursively the following steps:

Step 1: Apply the tableau expansion rules to φ:
ψ1Uψ2 =⇒ ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)) [and Fψ =⇒ ψ ∨ XFψ]
ψ1Rψ2 =⇒ ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)) [and Gψ =⇒ ψ ∧ XGψ]
until we get a Boolean combination of elementary subformulas of φ
(An elementary formula is a proposition or a X-formula.)

40 / 69

Tableaux Rules: a Quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]

41 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, by:
(i) applying recursively the DeMorgan rule: φ1 ∧ (φ2 ∨ φ3) =⇒ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3), and then
(ii) pushing the conjunctions inside the next operator:

φ
(i)
=⇒

∨
i

(
∧

j

lij ∧
∧
k

Xψik)
(ii)
=⇒

∨
i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(φ) = {p, q, r}, p ∧ ¬q represents the two labels {p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X⊤ is implicitly assumed

42 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, by:
(i) applying recursively the DeMorgan rule: φ1 ∧ (φ2 ∨ φ3) =⇒ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3), and then
(ii) pushing the conjunctions inside the next operator:

φ
(i)
=⇒

∨
i

(
∧

j

lij ∧
∧
k

Xψik)
(ii)
=⇒

∨
i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(φ) = {p, q, r}, p ∧ ¬q represents the two labels {p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X⊤ is implicitly assumed

42 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, by:
(i) applying recursively the DeMorgan rule: φ1 ∧ (φ2 ∨ φ3) =⇒ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3), and then
(ii) pushing the conjunctions inside the next operator:

φ
(i)
=⇒

∨
i

(
∧

j

lij ∧
∧
k

Xψik)
(ii)
=⇒

∨
i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(φ) = {p, q, r}, p ∧ ¬q represents the two labels {p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X⊤ is implicitly assumed

42 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, by:
(i) applying recursively the DeMorgan rule: φ1 ∧ (φ2 ∨ φ3) =⇒ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3), and then
(ii) pushing the conjunctions inside the next operator:

φ
(i)
=⇒

∨
i

(
∧

j

lij ∧
∧
k

Xψik)
(ii)
=⇒

∨
i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(φ) = {p, q, r}, p ∧ ¬q represents the two labels {p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X⊤ is implicitly assumed

42 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, by:
(i) applying recursively the DeMorgan rule: φ1 ∧ (φ2 ∨ φ3) =⇒ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3), and then
(ii) pushing the conjunctions inside the next operator:

φ
(i)
=⇒

∨
i

(
∧

j

lij ∧
∧
k

Xψik)
(ii)
=⇒

∨
i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(φ) = {p, q, r}, p ∧ ¬q represents the two labels {p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X⊤ is implicitly assumed

42 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

φi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies φ

apply recursively steps 1-2-3 to φi
def
=

∧
k ψik ,

rewrite φi into
∨

i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if not already present) and label it

as satisfying φi
def
=

∧
k ψik

draw an edge from Si to all states Sii′ which satisfy
∧

k ψik

(if no next part occurs, X⊤ is implicitly assumed, so that an edge to a “true” node is drawn)

43 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

φi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies φ

apply recursively steps 1-2-3 to φi
def
=

∧
k ψik ,

rewrite φi into
∨

i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if not already present) and label it

as satisfying φi
def
=

∧
k ψik

draw an edge from Si to all states Sii′ which satisfy
∧

k ψik

(if no next part occurs, X⊤ is implicitly assumed, so that an edge to a “true” node is drawn)

43 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

φi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies φ

apply recursively steps 1-2-3 to φi
def
=

∧
k ψik ,

rewrite φi into
∨

i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if not already present) and label it

as satisfying φi
def
=

∧
k ψik

draw an edge from Si to all states Sii′ which satisfy
∧

k ψik

(if no next part occurs, X⊤ is implicitly assumed, so that an edge to a “true” node is drawn)

43 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

φi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies φ

apply recursively steps 1-2-3 to φi
def
=

∧
k ψik ,

rewrite φi into
∨

i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if not already present) and label it

as satisfying φi
def
=

∧
k ψik

draw an edge from Si to all states Sii′ which satisfy
∧

k ψik

(if no next part occurs, X⊤ is implicitly assumed, so that an edge to a “true” node is drawn)

43 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

φi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies φ

apply recursively steps 1-2-3 to φi
def
=

∧
k ψik ,

rewrite φi into
∨

i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if not already present) and label it

as satisfying φi
def
=

∧
k ψik

draw an edge from Si to all states Sii′ which satisfy
∧

k ψik

(if no next part occurs, X⊤ is implicitly assumed, so that an edge to a “true” node is drawn)

43 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

φ ??

44 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

∨
i (
∧

j lij ∧ X
∧

k ψik) !

44 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

(
∧

j l1j ∧ X
∧

k ψ1k)

(
∧

j l2j ∧ X
∧

k ψ2k)

(
∧

j lij ∧ X
∧

k ψik)

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

44 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

∧
j l1j [

∧
k ψ1k]

[
∧

k ψ2k]

∧
j l2j

[
∧

k ψik]

∧
j lij

(
∧

j l1j ∧ X
∧

k ψ1k)

(
∧

j l2j ∧ X
∧

k ψ2k)

(
∧

j lij ∧ X
∧

k ψik)

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

44 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

.
.

.
.

.
.

.
.

∧
k ψik ?

44 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

∧
j l ′1′j

∧
j l ′2′j

∧
j l ′i ′j [

∧
k ψ

′
ik]

[
∧

k ψ
′
2k]

[
∧

k ψ
′
1k]∨

i ′ (
∧

j l ′i ′j ∧ X
∧

k ψ
′
i ′k)

.
.

.
.

44 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

∧
j l1j

∧
j l2j

∧
j lij

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

∧
j l ′1′j

∧
j l ′2′j

∧
j l ′i ′j [

∧
k ψ

′
ik]

[
∧

k ψ
′
2k]

[
∧

k ψ
′
1k]

.
.

.
.

44 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

When the recursive applications of steps 1-3 has terminated and the automata graph has been
built, then apply the following:

Step 4: For every ψiUφi , for every state qj , mark qj with Fi iff (ψiUφi) /∈ qj or φi ∈ qj

(If there is no U-subformulas, then mark all states with F1 —i.e., FT def
= {Q}).

Remark
The fact that we initially converted the formula into NNF guarantees that only original positive
U/F-subformulas and negative R-/G-subformulas are considered in step 4

45 / 69

On-the-fly Construction of Aφ (Intuition) [cont.]

When the recursive applications of steps 1-3 has terminated and the automata graph has been
built, then apply the following:

Step 4: For every ψiUφi , for every state qj , mark qj with Fi iff (ψiUφi) /∈ qj or φi ∈ qj

(If there is no U-subformulas, then mark all states with F1 —i.e., FT def
= {Q}).

Remark
The fact that we initially converted the formula into NNF guarantees that only original positive
U/F-subformulas and negative R-/G-subformulas are considered in step 4

45 / 69

Dealing with U-subformulas: Intuition

Tableaux rules: φ1Uφ2 ⇐⇒ (φ2 ∨ (φ1 ∧ Xφ1Uφ2))
are a property, not a definition of U:
=⇒ they implicitly admit a “weaker” semantics of φ1Uφ2, in which φ1Uφ2 always holds and
φ2 never holds
It cannot happen that we get into a state s′ from which we can enter a path π′ in which
φ1Uφ2 holds forever and φ2 never holds.

Uϕ1 ϕ2Uϕ1 ϕ2

−ϕ2

Uϕ1 ϕ2 Uϕ1 ϕ2

−ϕ2

. . . .

−ϕ2 −ϕ2

=⇒ every legal path must touch infinitely often a state where ¬(φ1Uφ2) ∨ φ2) holds
In LTL: ¬FG((φ1Uφ2) ∧ ¬φ2), i.e., GF(¬(φ1Uφ2) ∨ φ2) (“avoid bad loops”)

46 / 69

Dealing with U-subformulas: Intuition

Tableaux rules: φ1Uφ2 ⇐⇒ (φ2 ∨ (φ1 ∧ Xφ1Uφ2))
are a property, not a definition of U:
=⇒ they implicitly admit a “weaker” semantics of φ1Uφ2, in which φ1Uφ2 always holds and
φ2 never holds
It cannot happen that we get into a state s′ from which we can enter a path π′ in which
φ1Uφ2 holds forever and φ2 never holds.

Uϕ1 ϕ2Uϕ1 ϕ2

−ϕ2

Uϕ1 ϕ2 Uϕ1 ϕ2

−ϕ2

. . . .

−ϕ2 −ϕ2

=⇒ every legal path must touch infinitely often a state where ¬(φ1Uφ2) ∨ φ2) holds
In LTL: ¬FG((φ1Uφ2) ∧ ¬φ2), i.e., GF(¬(φ1Uφ2) ∨ φ2) (“avoid bad loops”)

46 / 69

Dealing with U-subformulas: Intuition

Tableaux rules: φ1Uφ2 ⇐⇒ (φ2 ∨ (φ1 ∧ Xφ1Uφ2))
are a property, not a definition of U:
=⇒ they implicitly admit a “weaker” semantics of φ1Uφ2, in which φ1Uφ2 always holds and
φ2 never holds
It cannot happen that we get into a state s′ from which we can enter a path π′ in which
φ1Uφ2 holds forever and φ2 never holds.

Uϕ1 ϕ2Uϕ1 ϕ2

−ϕ2

Uϕ1 ϕ2 Uϕ1 ϕ2

−ϕ2

. . . .

−ϕ2 −ϕ2

=⇒ every legal path must touch infinitely often a state where ¬(φ1Uφ2) ∨ φ2) holds
In LTL: ¬FG((φ1Uφ2) ∧ ¬φ2), i.e., GF(¬(φ1Uφ2) ∨ φ2) (“avoid bad loops”)

46 / 69

Dealing with U-subformulas: Intuition

Tableaux rules: φ1Uφ2 ⇐⇒ (φ2 ∨ (φ1 ∧ Xφ1Uφ2))
are a property, not a definition of U:
=⇒ they implicitly admit a “weaker” semantics of φ1Uφ2, in which φ1Uφ2 always holds and
φ2 never holds
It cannot happen that we get into a state s′ from which we can enter a path π′ in which
φ1Uφ2 holds forever and φ2 never holds.

Uϕ1 ϕ2Uϕ1 ϕ2

−ϕ2

Uϕ1 ϕ2 Uϕ1 ϕ2

−ϕ2

. . . .

−ϕ2 −ϕ2

=⇒ every legal path must touch infinitely often a state where ¬(φ1Uφ2) ∨ φ2) holds
In LTL: ¬FG((φ1Uφ2) ∧ ¬φ2), i.e., GF(¬(φ1Uφ2) ∨ φ2) (“avoid bad loops”)

46 / 69

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := ⟨λ, χ, σ⟩ where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define Cover(Ψ)

def
= Expand(Ψ, ⟨∅, ∅, ∅⟩)

to be the set of initial states of the Buchi automaton representing
∧

j ψj .
Expand(Ψ, s) takes as input:

a set of LTL formulas Ψ
def
= {ψ1, ..., ψk} to be expanded

a state s def
= ⟨λ, χ, σ⟩ under construction

and returns a set of states {⟨λi , χi , σi⟩}i representing te expansion of Ψ
Combines steps 1. and 2. of previous slides

47 / 69

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := ⟨λ, χ, σ⟩ where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define Cover(Ψ)

def
= Expand(Ψ, ⟨∅, ∅, ∅⟩)

to be the set of initial states of the Buchi automaton representing
∧

j ψj .
Expand(Ψ, s) takes as input:

a set of LTL formulas Ψ
def
= {ψ1, ..., ψk} to be expanded

a state s def
= ⟨λ, χ, σ⟩ under construction

and returns a set of states {⟨λi , χi , σi⟩}i representing te expansion of Ψ
Combines steps 1. and 2. of previous slides

47 / 69

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := ⟨λ, χ, σ⟩ where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define Cover(Ψ)

def
= Expand(Ψ, ⟨∅, ∅, ∅⟩)

to be the set of initial states of the Buchi automaton representing
∧

j ψj .
Expand(Ψ, s) takes as input:

a set of LTL formulas Ψ
def
= {ψ1, ..., ψk} to be expanded

a state s def
= ⟨λ, χ, σ⟩ under construction

and returns a set of states {⟨λi , χi , σi⟩}i representing te expansion of Ψ
Combines steps 1. and 2. of previous slides

47 / 69

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := ⟨λ, χ, σ⟩ where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define Cover(Ψ)

def
= Expand(Ψ, ⟨∅, ∅, ∅⟩)

to be the set of initial states of the Buchi automaton representing
∧

j ψj .
Expand(Ψ, s) takes as input:

a set of LTL formulas Ψ
def
= {ψ1, ..., ψk} to be expanded

a state s def
= ⟨λ, χ, σ⟩ under construction

and returns a set of states {⟨λi , χi , σi⟩}i representing te expansion of Ψ
Combines steps 1. and 2. of previous slides

47 / 69

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := ⟨λ, χ, σ⟩ where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define Cover(Ψ)

def
= Expand(Ψ, ⟨∅, ∅, ∅⟩)

to be the set of initial states of the Buchi automaton representing
∧

j ψj .
Expand(Ψ, s) takes as input:

a set of LTL formulas Ψ
def
= {ψ1, ..., ψk} to be expanded

a state s def
= ⟨λ, χ, σ⟩ under construction

and returns a set of states {⟨λi , χi , σi⟩}i representing te expansion of Ψ
Combines steps 1. and 2. of previous slides

47 / 69

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := ⟨λ, χ, σ⟩ where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define Cover(Ψ)

def
= Expand(Ψ, ⟨∅, ∅, ∅⟩)

to be the set of initial states of the Buchi automaton representing
∧

j ψj .
Expand(Ψ, s) takes as input:

a set of LTL formulas Ψ
def
= {ψ1, ..., ψk} to be expanded

a state s def
= ⟨λ, χ, σ⟩ under construction

and returns a set of states {⟨λi , χi , σi⟩}i representing te expansion of Ψ
Combines steps 1. and 2. of previous slides

47 / 69

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := ⟨λ, χ, σ⟩ where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define Cover(Ψ)

def
= Expand(Ψ, ⟨∅, ∅, ∅⟩)

to be the set of initial states of the Buchi automaton representing
∧

j ψj .
Expand(Ψ, s) takes as input:

a set of LTL formulas Ψ
def
= {ψ1, ..., ψk} to be expanded

a state s def
= ⟨λ, χ, σ⟩ under construction

and returns a set of states {⟨λi , χi , σi⟩}i representing te expansion of Ψ
Combines steps 1. and 2. of previous slides

47 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
if Ψ = ∅, Expand(Ψ, s) = {s}
if ⊥ ∈ Ψ, Expand(Ψ, s) = ∅
if ⊤ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{⊤}, ⟨λ, χ, σ ∪ {⊤}⟩)
if l ∈ Ψ and s = ⟨λ, χ, σ⟩, l propositional literal
Expand(Ψ, s) = Expand(Ψ\{l}, ⟨λ ∪ {l}, χ, σ ∪ {l}⟩)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{Xψ}, ⟨λ, χ ∪ {ψ}, σ ∪ {Xψ}⟩)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∧ ψ2}⟩)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...

48 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
if Ψ = ∅, Expand(Ψ, s) = {s}
if ⊥ ∈ Ψ, Expand(Ψ, s) = ∅
if ⊤ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{⊤}, ⟨λ, χ, σ ∪ {⊤}⟩)
if l ∈ Ψ and s = ⟨λ, χ, σ⟩, l propositional literal
Expand(Ψ, s) = Expand(Ψ\{l}, ⟨λ ∪ {l}, χ, σ ∪ {l}⟩)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{Xψ}, ⟨λ, χ ∪ {ψ}, σ ∪ {Xψ}⟩)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∧ ψ2}⟩)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...

48 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
if Ψ = ∅, Expand(Ψ, s) = {s}
if ⊥ ∈ Ψ, Expand(Ψ, s) = ∅
if ⊤ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{⊤}, ⟨λ, χ, σ ∪ {⊤}⟩)
if l ∈ Ψ and s = ⟨λ, χ, σ⟩, l propositional literal
Expand(Ψ, s) = Expand(Ψ\{l}, ⟨λ ∪ {l}, χ, σ ∪ {l}⟩)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{Xψ}, ⟨λ, χ ∪ {ψ}, σ ∪ {Xψ}⟩)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∧ ψ2}⟩)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...

48 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
if Ψ = ∅, Expand(Ψ, s) = {s}
if ⊥ ∈ Ψ, Expand(Ψ, s) = ∅
if ⊤ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{⊤}, ⟨λ, χ, σ ∪ {⊤}⟩)
if l ∈ Ψ and s = ⟨λ, χ, σ⟩, l propositional literal
Expand(Ψ, s) = Expand(Ψ\{l}, ⟨λ ∪ {l}, χ, σ ∪ {l}⟩)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{Xψ}, ⟨λ, χ ∪ {ψ}, σ ∪ {Xψ}⟩)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∧ ψ2}⟩)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...

48 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
if Ψ = ∅, Expand(Ψ, s) = {s}
if ⊥ ∈ Ψ, Expand(Ψ, s) = ∅
if ⊤ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{⊤}, ⟨λ, χ, σ ∪ {⊤}⟩)
if l ∈ Ψ and s = ⟨λ, χ, σ⟩, l propositional literal
Expand(Ψ, s) = Expand(Ψ\{l}, ⟨λ ∪ {l}, χ, σ ∪ {l}⟩)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{Xψ}, ⟨λ, χ ∪ {ψ}, σ ∪ {Xψ}⟩)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∧ ψ2}⟩)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...

48 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
if Ψ = ∅, Expand(Ψ, s) = {s}
if ⊥ ∈ Ψ, Expand(Ψ, s) = ∅
if ⊤ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{⊤}, ⟨λ, χ, σ ∪ {⊤}⟩)
if l ∈ Ψ and s = ⟨λ, χ, σ⟩, l propositional literal
Expand(Ψ, s) = Expand(Ψ\{l}, ⟨λ ∪ {l}, χ, σ ∪ {l}⟩)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{Xψ}, ⟨λ, χ ∪ {ψ}, σ ∪ {Xψ}⟩)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∧ ψ2}⟩)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...

48 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
if Ψ = ∅, Expand(Ψ, s) = {s}
if ⊥ ∈ Ψ, Expand(Ψ, s) = ∅
if ⊤ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{⊤}, ⟨λ, χ, σ ∪ {⊤}⟩)
if l ∈ Ψ and s = ⟨λ, χ, σ⟩, l propositional literal
Expand(Ψ, s) = Expand(Ψ\{l}, ⟨λ ∪ {l}, χ, σ ∪ {l}⟩)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ\{Xψ}, ⟨λ, χ ∪ {ψ}, σ ∪ {Xψ}⟩)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∧ ψ2}⟩)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...

48 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
...
if ψ1 ∨ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1}\{ψ1 ∨ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∨ ψ2}⟩)

∪ Expand(Ψ ∪ {ψ2}\{ψ1 ∨ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∨ ψ2}⟩)
(split s into two copies, process ψ2 on the first, ψ1 on the second, add ψ1 ∨ ψ2 to σ)
if ψ1Uψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ ∪ {ψ1}\{ψ1Uψ2}, ⟨λ, χ ∪ {ψ1Uψ2}, σ ∪ {ψ1Uψ2}⟩)
∪ Expand(Ψ ∪ {ψ2}\{ψ1Uψ2}, ⟨λ, χ, σ ∪ {ψ1Uψ2}⟩)

(split s into two copies and process ψ1 on the first, ψ2 on the second, add ψ1Uψ2 to σ)
if ψ1Rψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ ∪ {ψ2}\{ψ1Rψ2}, ⟨λ, χ ∪ {ψ1Rψ2}, σ ∪ {ψ1Rψ2}⟩)
∪ Expand(Ψ ∪ {ψ1, ψ2}\{ψ1Rψ2}, ⟨λ, χ, σ ∪ {ψ1Rψ2}⟩)

(split s into two copies and process ψ1 on the first, ψ2 on the second, add ψ1Rψ2 to σ)

49 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
...
if ψ1 ∨ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1}\{ψ1 ∨ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∨ ψ2}⟩)

∪ Expand(Ψ ∪ {ψ2}\{ψ1 ∨ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∨ ψ2}⟩)
(split s into two copies, process ψ2 on the first, ψ1 on the second, add ψ1 ∨ ψ2 to σ)
if ψ1Uψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ ∪ {ψ1}\{ψ1Uψ2}, ⟨λ, χ ∪ {ψ1Uψ2}, σ ∪ {ψ1Uψ2}⟩)
∪ Expand(Ψ ∪ {ψ2}\{ψ1Uψ2}, ⟨λ, χ, σ ∪ {ψ1Uψ2}⟩)

(split s into two copies and process ψ1 on the first, ψ2 on the second, add ψ1Uψ2 to σ)
if ψ1Rψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ ∪ {ψ2}\{ψ1Rψ2}, ⟨λ, χ ∪ {ψ1Rψ2}, σ ∪ {ψ1Rψ2}⟩)
∪ Expand(Ψ ∪ {ψ1, ψ2}\{ψ1Rψ2}, ⟨λ, χ, σ ∪ {ψ1Rψ2}⟩)

(split s into two copies and process ψ1 on the first, ψ2 on the second, add ψ1Rψ2 to σ)

49 / 69

On-the-fly Construction of Aφ - Expand

Given Ψ
def
= {ψ1, ..., ψk} and s def

= ⟨λ, χ, σ⟩, we define Expand(Ψ, s) recursively as follows:
...
if ψ1 ∨ ψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ1}\{ψ1 ∨ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∨ ψ2}⟩)

∪ Expand(Ψ ∪ {ψ2}\{ψ1 ∨ ψ2}, ⟨λ, χ, σ ∪ {ψ1 ∨ ψ2}⟩)
(split s into two copies, process ψ2 on the first, ψ1 on the second, add ψ1 ∨ ψ2 to σ)
if ψ1Uψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ ∪ {ψ1}\{ψ1Uψ2}, ⟨λ, χ ∪ {ψ1Uψ2}, σ ∪ {ψ1Uψ2}⟩)
∪ Expand(Ψ ∪ {ψ2}\{ψ1Uψ2}, ⟨λ, χ, σ ∪ {ψ1Uψ2}⟩)

(split s into two copies and process ψ1 on the first, ψ2 on the second, add ψ1Uψ2 to σ)
if ψ1Rψ2 ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ ∪ {ψ2}\{ψ1Rψ2}, ⟨λ, χ ∪ {ψ1Rψ2}, σ ∪ {ψ1Rψ2}⟩)
∪ Expand(Ψ ∪ {ψ1, ψ2}\{ψ1Rψ2}, ⟨λ, χ, σ ∪ {ψ1Rψ2}⟩)

(split s into two copies and process ψ1 on the first, ψ2 on the second, add ψ1Rψ2 to σ)

49 / 69

On-the-fly Construction of Aφ - Expand

Two relevant subcases: Fψ def
= ⊤Uψ and Gψ def

= ⊥Rψ
if Fψ ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ\{Fψ}, ⟨λ, χ ∪ {Fψ}, σ ∪ {Fψ}⟩)
∪ Expand(Ψ ∪ {ψ}\{Fψ}, ⟨λ, χ, σ ∪ {Fψ}⟩)

if Gψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ}\{Gψ}, ⟨λ, χ ∪ {Gψ}, σ ∪ {Gψ}⟩)

(Note: Expand(Ψ ∪ {⊥, ψ}\{Gψ}, ...) = ∅.)

50 / 69

On-the-fly Construction of Aφ - Expand

Two relevant subcases: Fψ def
= ⊤Uψ and Gψ def

= ⊥Rψ
if Fψ ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ\{Fψ}, ⟨λ, χ ∪ {Fψ}, σ ∪ {Fψ}⟩)
∪ Expand(Ψ ∪ {ψ}\{Fψ}, ⟨λ, χ, σ ∪ {Fψ}⟩)

if Gψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ}\{Gψ}, ⟨λ, χ ∪ {Gψ}, σ ∪ {Gψ}⟩)

(Note: Expand(Ψ ∪ {⊥, ψ}\{Gψ}, ...) = ∅.)

50 / 69

On-the-fly Construction of Aφ - Expand

Two relevant subcases: Fψ def
= ⊤Uψ and Gψ def

= ⊥Rψ
if Fψ ∈ Ψ and s = ⟨λ, χ, σ⟩,

Expand(Ψ, s) = Expand(Ψ\{Fψ}, ⟨λ, χ ∪ {Fψ}, σ ∪ {Fψ}⟩)
∪ Expand(Ψ ∪ {ψ}\{Fψ}, ⟨λ, χ, σ ∪ {Fψ}⟩)

if Gψ ∈ Ψ and s = ⟨λ, χ, σ⟩,
Expand(Ψ, s) = Expand(Ψ ∪ {ψ}\{Gψ}, ⟨λ, χ ∪ {Gψ}, σ ∪ {Gψ}⟩)

(Note: Expand(Ψ ∪ {⊥, ψ}\{Gψ}, ...) = ∅.)

50 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Definition of Aφ

Given a set of LTL formulas Ψ, we define Cover(Ψ)
def
= Expand(Ψ, ⟨∅, ∅, ∅⟩).

For an LTL formula φ, we construct a Generalized NBA Aφ = (Q,Σ, δ, I,FT) as follows:
Σ = 3vars(φ) (v ∈ {⊤,⊥, ∗}, “∗” is “don’t care”)
Q is the smallest set such that

Cover({φ}) ⊆ Q
if ⟨λ, χ, σ⟩ ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).

s λ′

−→ s′ ∈ δ iff, s = ⟨λ, χ, σ⟩, s′ = ⟨λ′, χ′, σ′⟩ and s′ ∈ Cover(χ)
FT = ⟨F1,F2, ...,Fk ⟩ where, for all (ψiUφi) occurring positively in φ,
Fi = {⟨λ, χ, σ⟩ ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

51 / 69

Example: φ = FGp

Cover({FGp})
= Expand({FGp}, ⟨∅, ∅, ∅⟩)
= Expand(∅, ⟨∅, {FGp}, {FGp}⟩) ∪ Expand({Gp}, ⟨∅, ∅, {FGp}⟩)
= {⟨∅, {FGp}, {FGp}⟩} ∪ Expand({p}, ⟨∅, {Gp}, {FGp,Gp}⟩)
= {⟨∅, {FGp}, {FGp}⟩} ∪ Expand(∅, ⟨{p}, {Gp}, {FGp,Gp,p}⟩)
= {⟨∅, {FGp}, {FGp}⟩, ⟨{p}, {Gp}, {FGp,Gp,p}⟩}
Cover({Gp}) = Expand({Gp}, ⟨∅, ∅, ∅⟩)

= Expand({p}, ⟨∅, {Gp}, {Gp}⟩)
= Expand(∅, ⟨{p}, {Gp}, {Gp,p}⟩)
= {⟨{p}, {Gp}, {Gp,p}⟩}

Optimization:
merge ⟨{p}, {Gp}, {FGp,Gp,p}⟩ and ⟨{p}, {Gp}, {Gp,p}⟩

52 / 69

Example: φ = FGp

Call s1 = ⟨∅, {FGp}, {FGp}⟩, s2 = ⟨{p}, {Gp}, {FGp,Gp,p}⟩
Q = {s1, s2}
Q0 = {s1, s2}.
T : s1 → {s1, s2},

s2 → {s2}
FT = ⟨F1⟩ where F1 = {s2}.

[XGp] [XFGp]
p

p

p

53 / 69

Example: φ = pUq

Cover({pUq})
= Expand({pUq}, ⟨∅, ∅, ∅⟩)
= Expand({p}, ⟨∅, {pUq}, {pUq}⟩) ∪ Expand({q}, ⟨∅, ∅, {pUq}⟩)
= Expand(∅, ⟨{p}, {pUq}, {pUq,p}⟩) ∪ Expand(∅, ⟨{q}, ∅, {pUq,q}⟩)
= {⟨{p}, {pUq}, {pUq,p}⟩} ∪ {⟨{q}, {⊤}, {pUq,q}⟩}

Cover({⊤}) = {⟨∅, {⊤}, {⊤}⟩}

54 / 69

Example: φ = pUq

Let s1 =def ⟨{p}, {pUq}, {pUq,p}⟩, s2 =def ⟨{q}, {⊤}, {pUq,q}⟩, s3 =def ⟨∅, {⊤}, {⊤}⟩.
Q = {s1, s2, s3},
Q0 = {s1, s2},
T : s1 → {s1, s2},

s2 → {s3}
s3 → {s3}

FT = ⟨F1⟩ where F1 = {s2, s3}.

[XT] [XT] [X(pUq)]

q

q
p

p

55 / 69

Example: φ = GFp

Cover({GFp})
= Expand({GFp}, ⟨∅, ∅, ∅⟩)
= Expand({Fp}, ⟨∅, {GFp}, {GFp}⟩)
= Expand({}, ⟨∅, {GFp,Fp}, {GFp,Fp}⟩) ∪ Expand({p}, ⟨{}, {GFp}, {GFp,Fp}⟩)
= Expand({}, ⟨∅, {GFp,Fp}, {GFp,Fp}⟩) ∪ Expand({}, ⟨{p}, {GFp}, {GFp,Fp,p}⟩)
= {⟨∅, {GFp,Fp}, {GFp,Fp}⟩} ∪ {⟨{p}, {GFp}, {GFp,Fp,p}⟩}

Note: GFp ∧ Fp ⇐⇒ GFp, s.t. Cover(GFp ∧ Fp) = Cover(GFp)

56 / 69

Example: GFp

Let s1 =def ⟨{p}, {GFp}, {GFp,Fp,p}⟩, s2 =def ⟨∅, {GFp,Fp}, {GFp,Fp}⟩,
Q = {s1, s2},
Q0 = {s1, s2},
T : s1 → {s1, s2},

s2 → {s1, s2}
FT = ⟨F1⟩ where F1 = {s1}.

[XGFp] [XGFp]

p
p

p

57 / 69

NBAs of disjunctions of formulas

Remark

If φ def
= (φ1 ∨ φ2) and Aφ1 ,Aφ2 are NBAs encoding φ1 and φ2 resp., then L(φ) = L(φ1) ∪L(φ2), so

that Aφ
def
= Aφ1 ∪ Aφ2 is an NBA encoding φ

Aφ non necessarily the smallest/best NBA encoding φ

Example

Let φ def
= (GFp → GFq), i.e., φ ≡ (FG¬p ∨ GFq).

Then AFG¬p ∪ AGFq encodes φ:

¬p

¬p q

q

q

¬p

58 / 69

NBAs of disjunctions of formulas

Remark

If φ def
= (φ1 ∨ φ2) and Aφ1 ,Aφ2 are NBAs encoding φ1 and φ2 resp., then L(φ) = L(φ1) ∪L(φ2), so

that Aφ
def
= Aφ1 ∪ Aφ2 is an NBA encoding φ

Aφ non necessarily the smallest/best NBA encoding φ

Example

Let φ def
= (GFp → GFq), i.e., φ ≡ (FG¬p ∨ GFq).

Then AFG¬p ∪ AGFq encodes φ:

¬p

¬p q

q

q

¬p

58 / 69

Suggested Exercises:

Find an NBA encoding:
p
(p ∧ q) ∨ (¬p ∧ ¬q)
Fp
Gp
pRq
(GFp ∧ GFq) → Gr

59 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

60 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Automata-Theoretic LTL Model Checking: Complexity

Four steps:

(i) Compute AM :
|AM | = O(|M|)

(ii) Compute Aφ:
|Aφ| = O(2|φ|)

(iii) Compute the product AM × Aφ:
|AM × Aφ| = |AM | · |Aφ| = O(|M| · 2|φ|)

(iv) Check the emptiness of L(AM × Aφ):
O(|AM × Aφ|) = O(|M| · 2|φ|)

=⇒ The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

61 / 69

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒ some tools (e.g., Spin) allow specifications to be expressed directly as NBAs
=⇒ complementation of NBA relevanant in general

For every LTL formula, there are many possible equivalent NBAs
=⇒ lots of research for finding “the best” conversion algorithm

Performing the product and checking emptiness very relevant
=⇒ lots of techniques developed (e.g., partial order reduction)
=⇒ lots on ongoing research

62 / 69

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒ some tools (e.g., Spin) allow specifications to be expressed directly as NBAs
=⇒ complementation of NBA relevanant in general

For every LTL formula, there are many possible equivalent NBAs
=⇒ lots of research for finding “the best” conversion algorithm

Performing the product and checking emptiness very relevant
=⇒ lots of techniques developed (e.g., partial order reduction)
=⇒ lots on ongoing research

62 / 69

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒ some tools (e.g., Spin) allow specifications to be expressed directly as NBAs
=⇒ complementation of NBA relevanant in general

For every LTL formula, there are many possible equivalent NBAs
=⇒ lots of research for finding “the best” conversion algorithm

Performing the product and checking emptiness very relevant
=⇒ lots of techniques developed (e.g., partial order reduction)
=⇒ lots on ongoing research

62 / 69

Outline

1 Büchi Automata

2 The Automata-Theoretic Approach to LTL Reasoning
General Ideas
Language-Emptiness Checking of Büchi Automata
From Kripke Models to Büchi Automata
From LTL Formulas to Büchi Automata
Complexity

3 Exercises

63 / 69

Ex: Product of Büchi automata

Given the following two Büchi automata (doubly-circled states represent accepting states, a, b are labels):

s1

s2

t1 t2

BA1 BA2

a

a

a

a
b b b

b

Write the product Büchi automaton BA1 × BA2.

64 / 69

Ex: Product of Büchi automata

Given the following two Büchi automata (doubly-circled states represent accepting states, a, b are labels):

s1

s2

t1 t2

BA1 BA2

a

a

a

a
b b b

b

Write the product Büchi automaton BA1 × BA2.

64 / 69

Ex: Product of Büchi automata

[Solution: The product is:

s1

s2

t2

t2

s1

s2

t1

t1

s1

s2

t2

t2

s1

s2

t1

t1

track 1 track 2

a

b

a

b b

a

a

a

aa
b

bb
b

]

65 / 69

Ex: Product of Büchi automata

[Solution: The product is:

s1

s2

t2

t2

s1

s2

t1

t1

s1

s2

t2

t2

s1

s2

t1

t1

track 1 track 2

a

b

a

b b

a

a

a

aa
b

bb
b

]

65 / 69

Ex: De-generalization of Büchi Automata

Given the following generalized Büchi automaton A def
= ⟨Q,Σ, δ, I,FT ⟩, with two sets of accepting states FT def

= {F1,F2}
s.t. F1 def

= {s2},F2 def
= {s1}:

s1

s2

F2

F1

a

a

b b

convert it into an equivalent plain Büchi automaton.

66 / 69

Ex: De-generalization of Büchi Automata

[Solution: The result is:

s21

s11 s12

s22

a

b bb

a

a

b

a

]

67 / 69

Ex: De-generalization of Büchi Automata

[Solution: The result is:

s21

s11 s12

s22

a

b bb

a

a

b

a

]

67 / 69

Ex: Construction of Büchi Automata

Consider the LTL formula φ def
= (G¬p) → (pUq).

(a) rewrite φ into Negative Normal Form

[Solution: (G¬p) → (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and
the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which is already in disjunctive normal
form. This correspond to the following four initial states:

[⊤] [Fp] [⊤] [pUq]

p q p

]

68 / 69

Ex: Construction of Büchi Automata

Consider the LTL formula φ def
= (G¬p) → (pUq).

(a) rewrite φ into Negative Normal Form

[Solution: (G¬p) → (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]
(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and

the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which is already in disjunctive normal
form. This correspond to the following four initial states:

[⊤] [Fp] [⊤] [pUq]

p q p

]

68 / 69

Ex: Construction of Büchi Automata

Consider the LTL formula φ def
= (G¬p) → (pUq).

(a) rewrite φ into Negative Normal Form
[Solution: (G¬p) → (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and
the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which is already in disjunctive normal
form. This correspond to the following four initial states:

[⊤] [Fp] [⊤] [pUq]

p q p

]

68 / 69

Ex: Construction of Büchi Automata

Consider the LTL formula φ def
= (G¬p) → (pUq).

(a) rewrite φ into Negative Normal Form
[Solution: (G¬p) → (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and
the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which is already in disjunctive normal
form. This correspond to the following four initial states:

[⊤] [Fp] [⊤] [pUq]

p q p

]

68 / 69

Ex: Construction of Büchi Automata

Consider the LTL formula φ def
= (G¬p) → (pUq).

(a) rewrite φ into Negative Normal Form
[Solution: (G¬p) → (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and
the “next” section.)
[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which is already in disjunctive normal
form. This correspond to the following four initial states:

[⊤] [Fp] [⊤] [pUq]

p q p

]

68 / 69

Ex: Construction of Büchi Automata

Consider the LTL formula φ def
= (G¬p) → (pUq).

(a) rewrite φ into Negative Normal Form
[Solution: (G¬p) → (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and
the “next” section.)
[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which is already in disjunctive normal
form. This correspond to the following four initial states:

[⊤] [Fp] [⊤] [pUq]

p q p

]

68 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq.

[Solution: false]

(b) BA accepts all and only the paths verifying FGq.

[Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq.

[Solution: false]
(b) BA accepts all and only the paths verifying FGq.

[Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]

(b) BA accepts all and only the paths verifying FGq.

[Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq.

[Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

69 / 69

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them. [Solution: false]

69 / 69

	Büchi Automata
	The Automata-Theoretic Approach to LTL Reasoning
	General Ideas
	Language-Emptiness Checking of Büchi Automata
	From Kripke Models to Büchi Automata
	From LTL Formulas to Büchi Automata
	Complexity

	Exercises

