
Course “An Introduction to SAT and SMT”
Chapter 2: Satisfiability Modulo Theories

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/

Int. Graduate School on ICT, University of Trento,
Academic year 2019-2020

last update: Friday 22nd May, 2020

Copyright notice: some material contained in these slides is courtesy of Alessandro Cimatti, Alberto Griggio and Marco
Roveri, who detain its copyright. All the other material is copyrighted by Roberto Sebastiani. Any commercial use of this

material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be
displayed in public without containing this copyright notice.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 1 / 130

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/


Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 2 / 130



Motivations and goals

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 3 / 130



Motivations and goals

Satisfiability Modulo Theories (SMT(T ))

Satisfiability Modulo Theories (SMT(T ))

The problem of deciding the satisfiability of (typically quantifier-free)
formulas in some decidable first-order theory T

T can also be a combination of theories
⋃

i Ti .
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Motivations and goals

SMT(T ): theories of interest
Some theories of interest (e.g., for formal verification)

Equality and Uninterpreted Functions (EUF):
((x = y) ∧ (y = f (z)))→ (g(x) = g(f (z)))

Difference logic (DL): ((x = y) ∧ (y − z ≤ 4))→ (x − z ≤ 6)

UTVPI (UT VPI): ((x = y) ∧ (y − z ≤ 4))→ (x + z ≤ 6)

Linear arithmetic over the rationals (LRA):
(Tδ → (s1 = s0 + 3.4 · t − 3.4 · t0)) ∧ (¬Tδ → (s1 = s0))

Linear arithmetic over the integers (LIA):
(x := xl + 216xh) ∧ (x ≥ 0) ∧ (x ≤ 216 − 1)

Arrays (AR): (i = j) ∨ read(write(a, i ,e), j) = read(a, j)
Bit vectors (BV):
x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0]

Non-Linear arithmetic over the reals (NLA(R)) :
((c = a · b) ∧ (a1 = a− 1) ∧ (b1 = b + 1))→ (c = a1 · b1 + 1)

...
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Motivations and goals

Satisfiability Modulo Theories (SMT(T )): Example

Example: SMT(LIA ∪ EUF ∪ AR)

ϕ
def
= (d ≥ 0) ∧ (d < 1)∧

((f (d) = f (0))→ (read(write(V , i , x), i + d) = x + 1))

involves arithmetical, arrays, and uninterpreted function/predicate
symbols, plus Boolean operators

Is it consistent?
No:

ϕ
=⇒LIA (d = 0)
=⇒EUF (f (d) = f (0))
=⇒Bool (read(write(V , i , x), i + d) = x + 1)
=⇒LIA (read(write(V , i , x), i) = x + 1)
=⇒LIA ¬(read(write(V , i , x), i) = x)
=⇒AR ⊥
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Motivations and goals

Some Motivating Applications

Interest in SMT triggered by some real-word applications

Verification of Hybrid & Timed Systems
Verification of RTL Circuit Designs & of Microcode
SW Verification
Planning with Resources
Temporal reasoning
Scheduling
Compiler optimization
...
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Motivations and goals

Verification of Timed Systems

T12

T21

x<=3

x>=1

x:=0

x <= 2

a

b

l1 l2

Bounded/inductive model checking of Timed Systems [6, 36, 58],
...
Timed Automata encoded into T -formulas:

discrete information (locations, transitions, events) with Boolean
vars.
timed information (clocks, elapsed time) with differences
(t3 − x3 ≤ 2), equalities (x4 = x3) and linear constraints
(t8 − x8 = t2 − x2) on Q

=⇒ SMT on DL(Q) or LRA required
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Motivations and goals

Verification of Hybrid Systems ...

w = 2
.

T12

Grow
Steady

cruise

Stable

w >=L

L <= w<= U

Bounded model checking of Hybrid Systems [5],...
Hybrid Automata encoded into L-formulas:

discrete information (locs, trans., events) with Boolean vars.
timed information (clocks, elapsed time) with differences
(t3 − x3 ≤ 2), equalities (x4 = x3) and linear constraints
(t8 − x8 = t2 − x2) on Q
Evolution of Physical Variables (e.g., speed, pressure) with linear
(ω4 = 2ω3) and non-linear constraints (P1V1 = 4T1) on Q

Undecidable under simple hypotheses!
=⇒ SMT on DL(Q), LRA or NLA(R) required
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Motivations and goals

Verification of HW circuit designs & microcode

CK

CK

CKB2

Adder
B3

B1

g = 2*f
f’ = itea+2*e

itea’ = ITE(B1;a;0) c

a

g
f
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e
e’ = ITE(B2;b;0)+2*ite(B3;c;0)

control

L−Shifter

L−Shifter

b

L−Shifter

Adder

data

1

0
1

1

0

0

SAT/SMT-based Model Checking & Equiv. Checking of RTL
designs, symbolic simulation of µ-code [25, 22, 42]
Control paths handled by Boolean reasoning
Data paths information abstracted into theory-specific terms

words (bit-vectors, integers, EUF vars, ... ): a[31 : 0], a
word operations: (BV, EUF , AR, LIA, NLA(Z) operators)
x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0],
(a = aL + 216aH ), (m1 = store(m0, l0, v0)), ...

Trades heavy Boolean reasoning (≈ 264 factors) with T -solving
=⇒ SMT on BV, EUF , AR, modulo-LIA [NLA(Z) ] required
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Motivations and goals

Verification of SW systems

...
i = 0;
acc = 0.0;
while (i<dim) {
acc += V[i];
i++;

}
...

.... ∧
(i0 = 0)∧
(acc0 = 0.0)∧
((i0 < dim)→ ( (acc1 = acc0 + read(V , i0))∧

(i1 = i0 + 1)))∧
(¬(i0 < dim)→ ( (acc1 = acc0) ∧ (i1 = i0)))∧
((i1 < dim)→ ( (acc2 = acc1 + read(V , i1))∧

(i2 = i1 + 1)))∧
(¬(i1 < dim)→ ( (acc2 = acc1) ∧ (i2 = i1)))∧
...

Verification of SW code

BMC, K-induction, Check of proof obligations, interpolation-based
model checking, symbolic simulation, concolic testing, ...

=⇒ SMT on BV, EUF , AR, (modulo-)LIA [NLA(Z) ] required
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Motivations and goals

Planning with Resources [82]

SAT-bases planning augmented with numerical constraints
Straightforward to encode into into SMT(LRA)

Example (sketch) [82]

(Deliver) ∧ // goal
(MaxLoad) ∧ // load constraint
(MaxFuel) ∧ // fuel constraint
(Move→ MinFuel) ∧ // move requires fuel
(Move→ Deliver) ∧ // move implies delivery
(GoodTrip → Deliver) ∧ // a good trip requires
(GoodTrip → AllLoaded) ∧ // a full delivery
(MaxLoad → (load ≤ 30)) ∧ // load limit
(MaxFuel → (fuel ≤ 15)) ∧ // fuel limit
(MinFuel → (fuel ≥ 7 + 0.5load)) ∧ // fuel constraint
(AllLoaded → (load = 45)) //
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Motivations and goals

(Disjunctive) Temporal Reasoning [79, 2]

Temporal reasoning problems encoded as disjunctions of
difference constraints

((x1 − x2 ≤ 6) ∨ (x3 − x4 ≤ −2)) ∧
((x2 − x3 ≤ −2) ∨ (x4 − x5 ≤ 5)) ∧
((x2 − x1 ≤ 4) ∨ (x3 − x7 ≤ −6)) ∧
...

Straightforward to encode into into SMT(DL)
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Motivations and goals

SMT and SMT solvers

Common fact about SMT problems from various applications
SMT requires capabilities for heavy Boolean reasoning combined with
capabilities for reasoning in expressive decidable F.O. theories

SAT alone not expressive enough
standard automated theorem proving inadequate (e.g., arithmetic)
may involve also numerical computation (e.g., simplex)

Modern SMT solvers
combine SAT solvers with decision procedures (theory solvers)

contributions from SAT, Automated Theorem Proving (ATP), formal
verification (FV) and operational research (OR)
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Motivations and goals

Goal

Provide an overview of standard “lazy” SMT:
foundations
SMT-solving techniques
beyond solving: advanced SMT functionalities
ongoing research

We do not cover related approaches like:
Eager SAT encodings
Rewrite-based approaches

We refer to [71, 10] for an overview and references.
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Motivations and goals

Notational remark (1): most/all examples in LRA

For better readability, in most/all the examples of this presentation we
will use the theory of linear arithmetic on rational numbers (LRA)
because of its intuitive semantics. E.g.:

(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

Nevertheless, analogous examples can be built with all other theories
of interest.
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Motivations and goals

Notational remark (2): “constants” vs. “variables”

Consider, e.g., the formula:
(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

How do we call A1,A2?:
(a) Boolean/propositional variables?
(b) uninterpreted 0-ary predicates?
How do we call x1, x2, x3?:
(a) domain variables?
(b) uninterpreted Skolem constants/0-ary uninterpreted functions?
Hint:
(a) typically used in SAT, CSP and OR communities
(b) typically used in logic & ATP communities

Hereafter we call A1,A2 “Boolean/propositional variables” and x1, x2, x3
"domain variables” (logic purists, please forgive me!)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 17 / 130



Motivations and goals

Notational remark (2): “constants” vs. “variables”

Consider, e.g., the formula:
(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

How do we call A1,A2?:
(a) Boolean/propositional variables?
(b) uninterpreted 0-ary predicates?
How do we call x1, x2, x3?:
(a) domain variables?
(b) uninterpreted Skolem constants/0-ary uninterpreted functions?
Hint:
(a) typically used in SAT, CSP and OR communities
(b) typically used in logic & ATP communities

Hereafter we call A1,A2 “Boolean/propositional variables” and x1, x2, x3
"domain variables” (logic purists, please forgive me!)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 17 / 130



Motivations and goals

Notational remark (2): “constants” vs. “variables”

Consider, e.g., the formula:
(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

How do we call A1,A2?:
(a) Boolean/propositional variables?
(b) uninterpreted 0-ary predicates?
How do we call x1, x2, x3?:
(a) domain variables?
(b) uninterpreted Skolem constants/0-ary uninterpreted functions?
Hint:
(a) typically used in SAT, CSP and OR communities
(b) typically used in logic & ATP communities

Hereafter we call A1,A2 “Boolean/propositional variables” and x1, x2, x3
"domain variables” (logic purists, please forgive me!)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 17 / 130



Efficient SMT solving
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Efficient SMT solving Combining SAT with Theory Solvers

Modern “lazy” SMT(T ) solvers

A prominent “lazy” approach [45, 2, 82, 3, 8, 36] (aka “DPLL(T )”)
a CDCL SAT solver is used to enumerate truth assignments µi for
(the Boolean abstraction of) the input formula ϕ
a theory-specific solver T -solver checks the T -consistency of the
set of T -literals corresponding to each assignment

Many techniques to maximize the benefits of integration [71, 10]
Many lazy SMT tools available
( Barcelogic, CVC4, MathSAT, OpenSMT, Yices, Z3, . . . )
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Efficient SMT solving Combining SAT with Theory Solvers

Basic schema: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),

¬(2v2 − v3 > 2),¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}

=⇒ inconsistent in LRA =⇒ backtrack
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Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning [50, 82, 3, 8, 36]

Similar to Boolean backjumping & learning
important property of T -solver:

extraction of T -conflict sets: if µ is T -unsatisfiable,
then T -solver (µ) returns the subset η of µ causing
the T -inconsistency of µ (T -conflict set)

If so, the T -conflict clause C := ¬η is used to drive
the backjumping & learning mechanism of the SAT
solver
=⇒ lots of search saved
the less redundant is η, the more search is saved

¬l1 ∨ ¬l2 ∨ ¬l3 ∨ ¬l4 ∨ l5

l4

l3

l2

l1

l5
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Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2),

¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}
η = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v1 − v5 ≤ 1)}
ηp = {¬B5,B8,B2}
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Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example (2)
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c′8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...
c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ B1

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

c8: theory conflicting clause︷ ︸︸ ︷
B5 ∨ ¬B8 ∨ ¬B2

c2︷ ︸︸ ︷
¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3︷ ︸︸ ︷
B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(¬A2)

cT︷ ︸︸ ︷
B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1︸ ︷︷ ︸
c′8: mixed Boolean+theory conflict clause

(B3)
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Efficient SMT solving Combining SAT with Theory Solvers

Early Pruning [45, 2, 82] I

Introduce a T -satisfiability test on intermediate assignments:
if T -solver returns UNSAT, the procedure backtracks.

benefit: prunes drastically the Boolean search
Drawback: possibly many useless calls to T -solver

SAT

SAT

SAT

SAT

SAT

SAT

SAT

SAT SAT

SAT SAT

SAT

SAT

SAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

Calls to T−Solve()

WITH  EARLY−PRUNING

WITHOUT  EARLY−PRUNING
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Efficient SMT solving Combining SAT with Theory Solvers

Early Pruning [45, 2, 82] II

Different strategies for interleaving Boolean search steps and
T -solver calls

Eager E.P. [82, 11, 80, 44]): invoke T -solver every time a new
T -atom is added to the assignment (unit propagations included)
Selective E.P.: Do not call T -solver if the have been added only
literals which hardly cause any T -conflict with the previous
assignment (e.g., Boolean literals, disequalities (x − y 6= 3),
T -literals introducing new variables (x − z = 3) )
Weakened E.P.: for intermediate checks only, use weaker but faster
versions of T -solver (e.g., check µ on R rather than on Z):
{(x − y ≤ 4), (z − x ≤ −6), (z = y), (3x + 2y − 3z = 4)}
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Efficient SMT solving Combining SAT with Theory Solvers

Early pruning: example

ϕ = {¬(2v2 − v3 > 2) ∨ A1} ∧
{¬A2 ∨ (2v1 − 4v5 > 3)} ∧
{(3v1 − 2v2 ≤ 3) ∨ A2} ∧
{¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1} ∧
{A1 ∨ (3v1 − 2v2 ≤ 3)} ∧
{(v1 − v5 ≤ 1) ∨ (v5 = 5− 3v4) ∨ ¬A1} ∧
{A1 ∨ (v3 = 3v5 + 4) ∨ A2}.

ϕp = {¬B1 ∨ A1} ∧
{¬A2 ∨ B2} ∧
{B3 ∨ A2} ∧
{¬B4 ∨ ¬B5 ∨ ¬A1} ∧
{A1 ∨ B3} ∧
{B6 ∨ B7 ∨ ¬A1} ∧
{A1 ∨ B8 ∨ A2}.

Suppose it is built the intermediate assignment:

µ′p = ¬B1 ∧ ¬A2 ∧ B3 ∧ ¬B5.

corresponding to the following set of T -literals

µ′ = ¬(2v2 − v3 > 2) ∧ ¬A2 ∧ (3v1 − 2v2 ≤ 3) ∧ ¬(3v1 − v3 ≤ 6).

If T -solver is invoked on µ′, then it returns UNSAT, and DPLL
backtracks without exploring any extension of µ′.
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Efficient SMT solving Combining SAT with Theory Solvers

Early pruning: remark

Incrementality & Backtrackability of T -solvers
With early pruning, lots of incremental calls to T -solver:
T -solver (µ1) ⇒ Sat Undo µ4, µ3, µ2
T -solver (µ1 ∪ µ2) ⇒ Sat T -solver (µ1 ∪ µ′

2) ⇒ Sat
T -solver (µ1 ∪ µ2 ∪ µ3) ⇒ Sat T -solver (µ1 ∪ µ′

2 ∪ µ′
3) ⇒ Sat

T -solver (µ1 ∪ µ2 ∪ µ3 ∪ µ4) ⇒ Unsat ...

=⇒ Desirable features of T -solvers:
incrementality: T -solver(µ1 ∪ µ2) reuses computation of
T -solver(µ1) without restarting from scratch
backtrackability (resettability): T -solver can efficiently undo steps
and return to a previous status on the stack

=⇒ T -solver requires a stack-based interface
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Efficient SMT solving Combining SAT with Theory Solvers

T -Propagation [2, 3, 44]

strictly related to early pruning
important property of T -solver:

T -deduction: when a partial assignment µ is T -satisfiable, T -solver
may be able to return also an assignment η to some unassigned
atom occurring in ϕ s.t. µ |=T η.

If so:
the literal η is then unit-propagated;
optionally, a T -deduction clause C := ¬µ′ ∨ η can be learned, µ′

being the subset of µ which caused the deduction (µ′ |=T η)
lazy explanation: compute C only if needed for conflict analysis

=⇒ may prune drastically the search

Both T -deduction clauses and T -conflict clauses are called T -lemmas
since they are valid in T
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Efficient SMT solving Combining SAT with Theory Solvers

T -propagation: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2)}

|=LRA ¬(3v1 − 2v2 ≤ 3)︸ ︷︷ ︸
¬B3

=⇒ propagate ¬B3 [and learn the deduction clause B5 ∨ B1 ∨ ¬B3]
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Efficient SMT solving Combining SAT with Theory Solvers

Pure-literal filtering [82, 3, 17]

Property
If we have non-Boolean T -atoms occurring only positively [negatively]
in the original formula ϕ (learned clauses are not considered), we can
drop every negative [positive] occurrence of them from the assignment
to be checked by T -solver (and from the T -deducible ones).

increases the chances of finding a model
reduces the effort for the T -solver
eliminates unnecessary “nasty” negated literals
(e.g. negative equalities like ¬(3v1 − 9v2 = 3) in LIA force
splitting: (3v1 − 9v2 > 3) ∨ (3v1 − 9v2 < 3)).
may weaken the effect of early pruning.
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Efficient SMT solving Combining SAT with Theory Solvers

Pure literal filtering: example

ϕ = {¬(2v2 − v3 > 2) ∨ A1} ∧
{¬A2 ∨ (2v1 − 4v5 > 3)} ∧
{(3v1 − 2v2 ≤ 3) ∨ A2} ∧
{¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1} ∧
{A1 ∨ (3v1 − 2v2 ≤ 3)} ∧
{(v1 − v5 ≤ 1) ∨ (v5 = 5− 3v4) ∨ ¬A1} ∧
{A1 ∨ (v3 = 3v5 + 4) ∨ A2} ∧
{(2v2 − v3 > 2) ∨ ¬(3v1 − 2v2 ≤ 3) ∨ (3v1 − v3 ≤ 6)} learned

µ′ = {¬(2v2 − v3 > 2),¬A2, (3v1 − 2v2 ≤ 3),¬A1, (v3 = 3v5 + 4), (3v1 − v3 ≤ 6)}.

=⇒ Sat: v1 = v2 = v3 = 0, v5 = −4/3 is a solution
N.B. (3v1 − v3 ≤ 6) “filtered out” from µ′ because it occurs only
negatively in the original formula ϕ
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Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms [45, 50, 4]

Source of inefficiency: semantically equivalent but syntactically
different atoms are not recognized to be identical [resp. one the
negation of the other]

=⇒ they may be assigned different [resp. identical] truth values.
=⇒ lots of redundant unsatisfiable assignment generated

Solution
Rewrite a priori trivially-equivalent atoms/literals into the same
atom/literal.
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Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms (cont.)

Sorting: (v1 + v2 ≤ v3 + 1), (v2 + v1 ≤ v3 + 1), (v1 + v2 − 1 ≤ v3)
=⇒ (v1 + v2 − v3 ≤ 1));
Rewriting dual operators:
(v1 < v2), (v1 ≥ v2) =⇒ (v1 < v2), ¬(v1 < v2)

Exploiting associativity:
(v1 + (v2 + v3) = 1), ((v1 + v2) + v3) = 1) =⇒ (v1 + v2 + v3 = 1);
Factoring (v1 + 2.0v2 ≤ 4.0), (−2.0v1 − 4.0v2 ≥ −8.0), =⇒
(0.25v1 + 0.5v2 ≤ 1.0);
Exploiting properties of T :
(v1 ≤ 3), (v1 < 4) =⇒ (v1 ≤ 3) if v1 ∈ Z;
...
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Efficient SMT solving Combining SAT with Theory Solvers

Static Learning [2, 4]

Often possible to quickly detect a priori short and “obviously
inconsistent” pairs or triplets of literals occurring in ϕ.

mutual exclusion {x = 0, x = 1},
congruence {(x1 = y1), (x2 = y2),¬(f (x1, x2) = f (y1, y2))},
transitivity {(x − y = 2), (y − z ≤ 4),¬(x − z ≤ 7)},
substitution {(x = y), (2x − 3z ≤ 3),¬(2y − 3z ≤ 3)}
...

Preprocessing step: detect these literals and add blocking clauses
to the input formula:
(e.g., ¬(x = 0) ∨ ¬(x = 1))

=⇒ No assignment including one such group of literals is ever
generated: as soon as all but one literals are assigned, the
remaining one is immediately assigned false by unit-propagation.
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Efficient SMT solving Combining SAT with Theory Solvers

Other optimization techniques

T -deduced-literal filtering
Ghost-literal filtering
T -solver layering
T -solver clustering
...

(see [71, 10] for an overview)
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Efficient SMT solving Combining SAT with Theory Solvers

Other SAT-solving techniques for SMT?

Frequently-asked question:
Are CDCL SAT solvers the only suitable Boolean Engines for SMT?

Some previous attempts:

Ordered Binary Decision Diagrams (OBDDs) [83, 60, 1]
Stochastic Local Search [49]

CDCL based currently much more efficient.
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Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p
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Efficient SMT solving Combining SAT with Theory Solvers

Example
ϕ :
c1 : {A1}
c2 : {¬A1 ∨ (x − z > 4)}
c3 : {¬A3 ∨ A1 ∨ (y ≥ 1)}
c4 : {¬A2 ∨ ¬(x − z > 4) ∨ ¬A1}
c5 : {(x − y ≤ 3) ∨ ¬A4 ∨ A5}
c6 : {¬(y − z ≤ 1) ∨ (x + y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x + y = 0) ∨ A2}
c8 : {¬A3 ∨ (z + y = 2)}
τ : (all possible T -lemmas on the T -atoms of ϕ)
c9 : {¬(x + y = 0) ∨ ¬(x + y = 1)}
c10 : {¬(x − z > 4) ∨ ¬(x − y ≤ 3) ∨ ¬(y − z ≤ 1)}
c11 : {(x − z > 4) ∨ (x − y ≤ 3) ∨ (y − z ≤ 1)}
c12 : {¬(x − z > 4) ∨ ¬(x + y = 1) ∨ ¬(z + y = 2)}
c13 : {¬(x − z > 4) ∨ ¬(x + y = 0) ∨ ¬(z + y = 2)}
... ...

ϕp :
c1 : {A1}
c2 : {¬A1 ∨ B1}
c3 : {¬A3 ∨ A1 ∨ B2}
c4 : {¬A2 ∨ ¬B1 ∨ ¬A1}
c5 : {B3 ∨ ¬A4 ∨ A5}
c6 : {¬B4 ∨ B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6 ∨ A2}
c8 : {¬A3 ∨ B7}
τ p :
c9 : {¬B6 ∨ ¬B5}
c10 : {¬B1 ∨ ¬B3 ∨ ¬B4}
c11 : {B1 ∨ B3 ∨ B4}
c12 : {¬B1 ∨ ¬B5 ∨ ¬B7}
c13 : {¬B1 ∨ ¬B6 ∨ ¬B7}
... ...

µp
1 : {A1,B1,¬A2,A3,¬A4,¬A5,¬B6,B5,B3,B4,B7,¬B2}
µ1 : {(x − z > 4),¬(x + y = 0), (x + y = 1), (x − y ≤ 3), (y − z ≤ 1), (z + y = 2),¬(y ≥ 1)}

satisfies ϕp, but violates both c10 and c12 in τ p.
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Efficient SMT solving Theory Solvers for theories of interest

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions
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Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Equality and Uninterpreted Functions
(EUF)

Typically used as a “core” T -solver
EUF polynomial: O(n · log(n))

Fully incremental and backtrackable (stack-based)
use a congruence closure data structures (E-Graphs) [40, 64, 35],
based on the Union-Find data-structure for equivalence classes
Supports efficient T -propagation

Exhaustive for positive equalities
Incomplete for disequalities

Supports Lazy explanations and conflict generation
However, minimality not guaranteed

Supports efficient extensions
(e.g., Integer offsets, Bit-vector slicing and concatenation)
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Efficient SMT solving Theory Solvers for theories of interest

T -solvers for EUF : Example

Idea (sketch): given the set of terms occurring in the formula
represented as nodes in a DAG (aka term bank),

if (t = s), then merge the eq. classes of t and s
if ∀i ∈ 1...k , ti and si pairwise belong to the same eq. classes,
then merge the the eq. classes of f (t1, ..., tk ) and f (s1, ..., sk )

if (t 6= s) and t and s belong to the same eq. class, then conflict

g

a

g

c

f

b

f f (a,b) = a
f (f (a,b),b) = c

g(a) 6= g(c)

Example borrowed from [40].
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T -solvers for EUF : Example

Idea (sketch): given the set of terms occurring in the formula
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T -solvers for Difference logic (DL)

DL polynomial: O(#vars ·#constraints)
variants of the Bellman-Ford shortest-path algorithm: a negative
cycle reveals a conflict [65, 34]
Ex:
{(x1 − x2 ≤ −1), (x1 − x4 ≤ −1), (x1 − x3 ≤ −2),
(x3 − x4 ≤ −2), (x3 − x2 ≤ −1), (x4 − x2 ≤ 3), (x4 − x3 ≤ 6)}

−1

−1

−1

−2

6

−2

0

0

0

0

3

x1

x0

x2

x4x3

[−4, x3]

[0, x0]

[0, x0]

[0, x0][−2, x4]

=⇒ Sat
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Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Linear arithmetic over the rationals
(LRA)

EX: {(s1 − s2 ≤ 5.2), (s1 = s0 + 3.4 · t − 3.4 · t0),¬(s1 = s0)}
LRA polynomial
variants of the simplex LP algorithm [41]
[41] allows for detecting conflict sets & performing T -propagation
strict inequalities t < 0 rewritten as t + ε ≤ 0, ε treated symbolically

B N
x1
...
xi
...

xN

 =


. . .A1j . . .

...
Ai1 . . .Aij . . .AiM

...
. . .ANj . . .




xN+1

...
xj
...

xN+M

 ;

Invariant: β(xj) ∈ [lj ,uj ] ∀xj ∈ N
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Efficient SMT solving Theory Solvers for theories of interest

Remark: infinite precision arithmetic

In order to avoid incorrect results due to numerical errors and to
overflows, all T -solvers for LRA, LIA and their subtheories which are
based on numerical algorithms must be implemented on top of
infinite-precision-arithmetic software packages.
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T -solvers for Linear arithmetic over the integers (LIA)

EX: {(x := xl + 216xh), (x ≥ 0), (x ≤ 216 − 1)}
LIA NP-complete
combination of many techniques: simplex, branch&bound, cutting
planes, ... [41, 47]

Internal
Branch and Bound

Branch and Bound
lemmas generator

LIA-solver

3

DPLL

21

2LRA-solver

3no conflict
trail simplifications

4 conflict
5

5

timeout

Branch and Bound-lemma

1
Diophantine

equations handler

4

1

conflict

LIA-conflict

no conflict
equality elimination

no conflict

LIA model

conflict

LIA model

SAT

Figure courtesy of A. Griggio [47]
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T -solvers for Arrays (AR)

EX: (write(A, i , v) = write(B, i ,w)) ∧ ¬(v = w)
NP-complete
congruence closure (EUF) plus on-the-fly instantiation of array’s
axioms:

∀a.∀i .∀e. (read(write(a, i ,e), i) = e), (1)
∀a.∀i .∀j .∀e. ((i 6= j)→ read(write(a, i ,e), j) = read(a, j)),(2)
∀a.∀b. (∀i .(read(a, i) = read(b, i))→ (a = b)). (3)

EX:
Input : (write(A, i , v) = write(B, i ,w)) ∧ ¬(v = w)
inst . (1) : (read(write(A, i , v), i) = v)

(read(write(B, i ,w), i) = w)
|=EUF (v = w)
|=Bool ⊥

many strategies discussed in the literature (e.g., [40, 46, 20, 39])Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 47 / 130



Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Bit vectors (BV)

Bit vectors (BV)

EX: {(x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[16][3 : 0]), ...}
NP-hard
involve complex word-level operations: word partition/concat,
modulo-2N arithmetic, shifts, bitwise-operations, multiplexers, ...
T -solving: combination of rewriting & simplification techniques
with either:

final encoding into LIA [19, 22]
final encoding into SAT (lazy bit-blasting) [25, 43, 21, 42]

Eager approach

Most solvers use an eager approach for BV (e.g., [21]):
Heavy preprocessing, based on rewriting rules
bit-blasting
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T -solvers for Bit vectors (BV) [cont.]

PREPROCESSOR SOLVER
Concat. Elimination (match)

LITERAL NORMALIZATION

Concat. elimination (no match)

Variable elimination

Deduction rules

TERM BANK

Evaluation of Ground Terms
Bit−mask Elimination Selection Propagation

Unconstrained variables

Control paths extraction

Bool/word1 encoding

Frontier propagation

ITE expansion

Formula Normalizer

Example borrowed from [22]
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Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Bit vectors (BV) [cont.]

Lazy bit-blasting

Two nested SAT solvers
bit-blast each BV atom ψi

=⇒ Φ
def
=
∧

i(Ai ↔ BB(ψi)),
Ai fresh variables labeling BV-atoms ψi in ϕ
=⇒ ϕ BV-satisfiable iff ϕp ∧ Φ satisfiable
Exploit SAT under assumptions

let µp an assignment for ϕp, s.t. µp def
= {[¬]A1, ..., [¬]An}

T -solver for BV: SATassumption(Φ, µp)
If UNSAT, generate the unsat core ηp ⊆ µp

=⇒ ¬ηp used as blocking clause
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Efficient SMT solving SMT for combinations of theories

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions
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Efficient SMT solving SMT for combinations of theories

SMT for combined theories: SMT (
⋃

i Ti)

Problem: Many problems can be expressed as SMT problems only in
combination of theories

⋃
i Ti — SMT (

⋃
i Ti)

Sub

h

f

f

=

h

0

v0 v1 v3 v2 v6

v4 v8 v7

EQ67

v5RESET5

LE01

GE01 ≥

≥

LIA : (GE01 ↔ (v0 ≥ v1)) ∧ (LE01 ↔ (v0 ≤ v1))∧
EUF : (v3 = h(v0)) ∧ (v4 = h(v1))∧
LIA : (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
EUF or LIA : (¬RESET5 → (v5 = v8))∧
EUF : (v6 = f (v2)) ∧ (v7 = f (v5))∧
EUF or LIA : (EQ67 ↔ (v6 = v7)) ∧ ....
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SMT for combined theories: SMT(T1 ∪ T2)

Standard approach for combining Ti -solver’s:
(deterministic) Nelson-Oppen/Shostak (N.O.) [61, 63, 77]

based on deduction and exchange of equalities on shared variables
combined Ti -solver’s integrated with a SAT tool

More-recent alternative approaches: Delayed Theory
Combination [15, 14] and Model-Based Theory Combination [37]

based on Boolean search on equalities on shared variables
Ti -solver’s integrated directly with a SAT tool

Problem:
N.O. approaches have some drawbacks and limitations when used
within a SMT framework
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Background: Pure Formulas

Consider two theories T1, T2 with equality and disjoint signatures
Σ1,Σ2

W.l.o.g. we assume all input formulas φ ∈ T1 ∪ T2 are pure.
A formula φ is pure iff every atom in φ is i-pure for some i ∈ {1,2}.
An atom/literal in φ is i-pure if only =, variables and symbols from
Σi can occur in φ

Purification:
maps a formula into an equisatisfiable pure formula by labeling terms
with fresh variables

(f (x + 3y︸ ︷︷ ︸
w

) = g(2x − y︸ ︷︷ ︸
t

)) [not pure]

⇓
(w = x + 3y) ∧ (t = 2x − y) ∧ (f (w) = g(t)) [pure]
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Background: Interface equalities
Interface variables & equalities

A variable v occurring in a pure formula φ is an interface variable
iff it occurs in both 1-pure and 2-pure atoms of φ.
An equality (vi = vj) is an interface equality for φ iff vi , vj are
interface variables for φ.
We denote the interface equality vi = vj by “eij ”

Example:

LIA : (GE01 ↔ (v0 ≥ v1)) ∧ (LE01 ↔ (v0 ≤ v1))∧
EUF : (v3 = h(v0)) ∧ (v4 = h(v1))∧
LIA : (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
EUF or LIA : (¬RESET5 → (v5 = v8))∧
EUF : (v6 = f (v2)) ∧ (v7 = f (v5))∧
EUF or LIA : (EQ67 ↔ (v6 = v7)) ∧ ....

v0, v1, v2, v3, v4, v5 are interface variables, v6, v7, v8 are not
=⇒ (v0 = v1) is an interface equality, (v0 = v6) is not.
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Background: Stably-infinite & Convex Theories
Stably-infinite Theories
A theory T is stably-infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T .

EUF , DL, LRA, LIA are stably-infinite
bit-vector theories typically are not stably-infinite

Convex Theories
A theory T is convex iff, for every collection l1, ..., lk , l ′, l ′′ of literals in T
s.t. l ′, l ′′ are in the form (x = y), x , y being variables, we have that:
{l1, ..., lk} |=T (l ′ ∨ l ′′) ⇐⇒ {l1, ..., lk} |=T l ′ or {l1, ..., lk} |=T l ′′

EUF , DL, LRA are convex
LIA is not convex:
{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} |= ((v = v0) ∨ (v = v1)),
{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} 6|= (v = v0)
{(v0 = 0), (v1 = 1), (v ≥ 0), (v ≤ v1)} 6|= (v = v1)
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Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via “classic” Nelson-Oppen

Main idea
Combine two or more Ti -solvers into one (

⋃
i Ti )-solver via

Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

based on the deduction and exchange of equalities between
shared variables/terms (interface equalities, eijs)
important improvements and evolutions [69, 7, 40]
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Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting
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disjunctions of literals (due to non-convexity) force case-splitting
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Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

∨(vi = vj)
T2-deduce

T2-satisfiable

T2-solverT1-solver
no(T1,T2)

T1-deduce

T1-satisfiable
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Efficient SMT solving SMT for combinations of theories

N.O.: example (convex theory)

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LRA : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

Branch 1 Branch 2

   

¬RESET5

v0 = v1

v2 = v5

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v3 = v4

¬(v6 = v7)

v0 ≥ v1

v5 = 0

v0 = v1

v2 = v5

v3 = v4

v2 = v3 − v4

v0 ≥ v1

v5 = v8

v0 ≤ v1

v0 = v1

v3 = v4

v2 = v3 − v4

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v0 = v1

v3 = v4

¬(v6 = v7)

v0 ≤ v1

LRA

EUF ∪ LRA-Satisfiable!

EUF EUF LRA

〈eij-deduction〉

〈eij-deduction〉 〈eij-deduction〉

〈eij-deduction〉〈eij-deduction〉

RESET5
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Efficient SMT solving SMT for combinations of theories

N.O.: example (convex theory) [cont.]

Branch 1 Branch 2

   

¬RESET5

v0 = v1

v2 = v5

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v3 = v4

¬(v6 = v7)

v0 ≥ v1

v5 = 0

v0 = v1

v2 = v5

v3 = v4

v2 = v3 − v4

v0 ≥ v1

v5 = v8

v0 ≤ v1

v0 = v1

v3 = v4

v2 = v3 − v4

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v0 = v1

v3 = v4

¬(v6 = v7)

v0 ≤ v1

LRA

EUF ∪ LRA-Satisfiable!

EUF EUF LRA

〈eij-deduction〉

〈eij-deduction〉 〈eij-deduction〉

〈eij-deduction〉〈eij-deduction〉

RESET5

EUF-conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v5))→ ⊥
LRA-deduction : ((v2 = v3 − v4) ∧ (v5 = 0) ∧ (v3 = v4))→ (v2 = v5)
EUF-deduction : ((v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 = v1))→ (v3 = v4)
LRA-deduction : ((v0 ≥ v1) ∧ (v0 ≤ v1))→ (v0 = v1)
=⇒
EUF ∪ LRA-conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v3 − v4)∧

(v5 = 0) ∧ (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 ≥ v1))→ ⊥.
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

   

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130



Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

   

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

   

v2 = v3

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

   

v2 = v4v2 = v3

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

   

v1 = v4
SAT!

v2 = v4v2 = v3

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

   

3 eij-deductions,

3 branches

v1 = v4
SAT!

v2 = v4v2 = v3

v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))
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Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via “classic” Nelson-Oppen

Main idea
Combine two or more Ti -solvers into one (

⋃
i Ti )-solver via

Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

based on the deduction and exchange of equalities between
shared variables/terms (interface equalities, eijs)
important improvements and evolutions [69, 7, 40]
drawbacks [23, 24]:

require (possibly expensive) deduction capabilities from Ti -solvers
[ with non-convex theories ] case-splits forced by the deduction of
disjunctions of eij ’s
generate (typically long) (

⋃
i Ti )-lemmas, without interface equalities

=⇒ no backjumping & learning from eij -reasoning
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Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via “classic” Nelson-Oppen

Main idea
Combine two or more Ti -solvers into one (

⋃
i Ti )-solver via

Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

based on the deduction and exchange of equalities between
shared variables/terms (interface equalities, eijs)
important improvements and evolutions [69, 7, 40]
drawbacks [23, 24]:

require (possibly expensive) deduction capabilities from Ti -solvers
[ with non-convex theories ] case-splits forced by the deduction of
disjunctions of eij ’s
generate (typically long) (

⋃
i Ti )-lemmas, without interface equalities

=⇒ no backjumping & learning from eij -reasoning
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Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via Delayed Theory Combination (DTC)

Main idea
Delegate to the CDCL SAT solver part/most of the (possibly very
expensive) reasoning effort on interface equalities previously due to
the Ti -solvers (eij -deduction, case-split). [15, 16, 24]

based on Boolean reasoning on interface equalities via CDCL
(plus T -propagation)
important improvements and evolutions [37, 9]
feature wrt N.O. [23, 24]

do not require (possibly expensive) deduction capabilities from
Ti -solvers
with non-convex theories, case-splits on eij ’s handled by SAT
generate Ti -lemmas with interface equalities
=⇒ backjumping & learning from eij -reasoning
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Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij
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Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

µ = µ1 ∪ µ2 ∪ µe, µe := {[¬](vi = vj)|vi , vj ∈ µ1 ∪ µ2}

The boolean solver assigns values not only to atoms in Atoms(φ),
but also to interface equalities {(vi = vj)}ij :

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij
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Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

• checks the Ti-satisfiability of µ′i

• receives µ′i := µi ∪ µe from Bool
Each Ti-solver interacts only with the boolean solver

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij
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Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

...until either:
• some µ propositionally satisfies φ and both µ′i := µi ∪ µe are Ti-consistent
=⇒ (φ is T1 ∪ T2-sat)

=⇒ (φ is T1 ∪ T2-unsat)
• no more assignment µ are available

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij
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Efficient SMT solving SMT for combinations of theories

DTC: enhanced schema

DPLL-based assignment enumeration on Atoms(φ) ∪ {eij}ij ,
=⇒ benefits of state-of-the-art SAT techniques
Early pruning: invoke the Ti -solver’s before every Boolean
decision
=⇒ total assignments generated only when strictly necessary
Branching: branching on eij ’s postponed
=⇒ Boolean search on eij ’s performed only when strictly
necessary
Theory-Backjumping & Learning: eij ’s are involved in conflicts
=⇒ eij ’s can be assigned by unit propagation
[ Theory-deduction & learning: Ti -solver deduces unassigned
literals l on Atoms(φ) ∪ {eij}ij

l is passed back to the Boolean solver, which unit-propagates it
the deduction µ′ |= l is learned as a clause µ′ → l (deduction
clause) ]

...
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

LIA-unsat, C13

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

EUF-unsat, C56

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

LIA-unsat, C23

C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

EUF-unsat, C24

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

EUF-unsat, C14

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130



Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

SAT!

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :
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Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

SAT! 6 branches

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
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¬(v1 = v3)
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v3 = 0
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
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Efficient SMT solving SMT for combinations of theories
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

SAT! 3 eij-deductions
3 branches
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Efficient SMT solving SMT for combinations of theories

DTC: example without T -propagation (convex theory)

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LRA : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

 

.... 

LRA-unsat
C01

C01 : (µ′LRA)→ (v0 = v1)
C34 : (µ′EUF ∧ (v0 = v1))→ (v3 = v4)
C25 : (µ′′LRA ∧ (v5 = 0) ∧ (v3 = v4))→ (v2 = v5)
C67 : (µ′′EUF ∧ (v2 = v5))→ (v6 = v7)

¬(v3 = v4)

¬(v2 = v5)

(v3 = v4)

(v2 = v5)

C67

C25

C34

¬e′ij

LRA-unsat

(v0 = v1)

(v5 = 0)

EUF-unsat

¬RESET5

(v5 = v8)

¬eij”

EUF-unsat

µEUF :
{(v3 = h(v0)), (v4 = h(v1)),¬(v6 = v7),
(v6 = f (v2)), (v7 = f (v5))}

Search for an assignment µ
propositionally satisfying ϕ

Search on eij’s:
check the T1 ∪ T2-
satisfiability of µ

RESET5

¬(v0 = v1)

µLRA :
{(v0 ≥ v1), (v0 ≤ v1),
(v2 = v3 − v4)}
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Efficient SMT solving SMT for combinations of theories

DTC: example with T -propagation (convex theory)

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LRA : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

SAT

 

(v0 = v1)

EUF-unsat
C67

LRA-deduce (v0 = v1)
learn C01

C34 : (µ′EUF ∧ (v0 = v1))→ (v3 = v4)
C01 : (µ′LRA)→ (v0 = v1)

C25 : (µ′′LRA ∧ (v5 = 0) ∧ (v3 = v4))→ (v2 = v5)
C67 : (µ′′EUF ∧ (v2 = v5))→ (v6 = v7)

(v2 = v5)

RESET5

µEUF :
{(v3 = h(v0)), (v4 = h(v1)),¬(v6 = v7),
(v6 = f (v2)), (v7 = f (v5))}

(v0 = v1)

(v3 = v4)

(v5 = v8)(v5 = 0)

(v3 = v4)

¬RESET5

EUF-deduce (v3 = v4)

LRA-deduce (v2 = v5)

µLRA :
{(v0 ≥ v1), (v0 ≤ v1),
(v2 = v3 − v4)}

learn C34

learn C25

LRA-deduce (v0 = v1)
learn C ′01

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 73 / 130



Efficient SMT solving SMT for combinations of theories

DTC + Model-based heuristic
(aka Model-Based Theory Combination) [37]

Initially, no interface equalities generated
When a model is found, check against all the possible interface
equalities

If T1 and T2 agree on the implied equalities, then return SAT
Otherwise, branch on equalities implied by T1-model but not by
T2-model

“Optimistic” approach, similar to axiom instantiation
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Beyond Solving: advanced SMT functionalities

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions
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Beyond Solving: advanced SMT functionalities

Beyond Solving: advanced SAT & SMT functionalities

Advanced SMT functionalities (very important in FV):

Building proofs of T -unsatisfiability
Extracting T -unsatisfiable Cores
Computing Craig interpolants
Performing All-SMT and Predicate Abstraction
Deciding/optimizing SMT problems with costs
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Building (Resolution) Proofs of T -Unsatisfiability

Resolution proof of T -unsatisfiability
Very similar to building proofs with plain SAT:

resolution proofs whose leaves are original clauses and T -lemmas
returned by the T -solver (i.e., T -conflict and T -deduction clauses)
built by backward traversal of implication graphs, as in CDCL SAT
Sub-proofs of T -lemmas can be built in some T -specific
deduction framework if requested

Important for:
certifying T -unsatisfiability results
computing unsatisfiable cores
computing interpolants
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Building Proofs of T -Unsatisfiability: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧
(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

(x = 1 ∨ x = 0 ∨ A2)

(x = 0 ∨ A1 ∨ A2)

(x = 0 ∨ ¬(x = 1) ∨ A1)

(y = 2 ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LIA

(A2 ∨ ¬(y < 0)) (¬A2 ∨ y = 1)

(¬(y < 0) ∨ y = 1)

(A1 ∨ A2)(¬A1 ∨ y = 2)

(¬(y = 1) ∨ ¬(y < 0))LIA

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LIA

(¬(x = 0) ∨ A2)

(x = 1 ∨ ¬(x = 0) ∨ A2)

relevant original clauses, irrelevant original clauses, T -lemmas
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Example: proof on non-strict LRA inequalities

A proof of unsatisfiability for a set of non-strict LRA inequalities
can be obtained by building a linear combination of such
inequalities, each time eliminating one or more variables, until you
get a contradictory inequality on constant values.
Example:

ϕ
def
= (0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2),(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3).

A proof of unsatisfiability P for ϕ is the following:
(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1) with coeffs 1 and 3
(0 ≤ x3 − 2x1 − 3) (0 ≤ 1− 2x3)

COMB (0 ≤ −4x1 − 5) with coeffs 2 and 1
COMB (0 ≤ −4) with coeffs 1 and 1

It is possible to produce such proof from an inconsistent tableau in
Simplex procedure for LRA [30, 32]
It is straightforward to produce such proof from a negative cycle in
the graph-based procedure for DL [30, 32]
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Extraction of T -unsatisfiable cores

The problem
Given a T -unsatisfiable set of clauses, extract from it a (possibly
small/minimal/minimum) T -unsatisfiable subset (T -unsatisfiable core)

wide literature in SAT
Some implementations, very few literature for SMT [29, 56]
We recognize three approaches:

Proof-based approach (CVClite, MathSAT):
byproduct of finding a resolution proof
Assumption-based approach (Yices):
use extra variables labeling clauses, as in the plain Boolean case
Lemma-Lifting approach [29] :
use an external (possibly-optimized) Boolean unsat-core extractor
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The proof-based approach to T -unsat cores

Idea (adapted from [84])
Unsatisfiable core of ϕ:

in SAT: the set of leaf clauses of a resolution proof of
unsatisfiability of ϕ
in SMT(T ): the set of leaf clauses of a resolution proof of
T -unsatisfiability of ϕ, minus the T -lemmas
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The proof-based approach to T -unsat cores: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧
(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

(x = 1 ∨ x = 0 ∨ A2)

(x = 0 ∨ A1 ∨ A2)

(x = 0 ∨ ¬(x = 1) ∨ A1)

(y = 2 ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LIA

(A2 ∨ ¬(y < 0)) (¬A2 ∨ y = 1)

(¬(y < 0) ∨ y = 1)

(A1 ∨ A2)(¬A1 ∨ y = 2)

(¬(y = 1) ∨ ¬(y < 0))LIA

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LIA

(¬(x = 0) ∨ A2)

(x = 1 ∨ ¬(x = 0) ∨ A2)
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The assumption-based approach to T -unsat cores

Let ϕ be
∧n

i=1 Ci s.t. ϕ inconsistent.

Idea (adapted from [57])
1 each clause Ci in ϕ is substituted by ¬Si ∨ Ci , s.t. Si fresh

“selector” variable
2 the resulting formula is checked for satisfiability under the

assumption of all Si ’s
3 final conflict clause at dec. level 0:

∨
j ¬Sj

=⇒{Cj}j is the unsat core

extends straightforwardly to SMT(T ).
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The assumption-based approach to T -unsat cores:
Example

(S1 → (x = 0 ∨ ¬(x = 1) ∨ A1)) ∧ (S2 → (x = 0 ∨ x = 1 ∨ A2)) ∧
(S3 → (¬(x = 0) ∨ x = 1 ∨ A2)) ∧ (S4 → (¬A2 ∨ y = 1)) ∧

(S5 → (¬A1 ∨ x + y > 3)) ∧ (S6 → y < 0) ∧
(S7 → (A2 ∨ x − y = 4)) ∧ (S8 → (y = 2 ∨ ¬A1)) ∧ (S9 → x ≥ 0)

Conflict analysis (Yices 1.0.6) returns:

¬S1 ∨ ¬S2 ∨ ¬S3 ∨ ¬S4 ∨ ¬S6 ∨ ¬S7 ∨ ¬S8,

corresponding to the unsat core in red.
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The lemma-lifting approach to T -unsat cores

Idea [29, 33]

(i) The T -lemmas Di are valid in T
(ii) The conjunction of ϕ with all the T -lemmas D1, . . . ,Dk is

propositionally unsatisfiable: T 2B(ϕ ∧
∧n

i=1 Di) |= ⊥.

Boolean unsat−core:

Refinement:Boolean abstraction:

Result:Input clauses:

Boolean_Unsat_Core_Extractor

T 2B({C1, . . . ,Cn,D1, . . . ,Dk})

Lazy_SMT_Solver

{D1, . . . ,Dk}
Stored T -Lemmas:

{D′1, . . . ,D
′
j }

T 2B({C′1, . . . ,C
′
m,D′1, . . . ,D

′
j })

T -valid clauses:

T 2B B2T

SAT/UNSAT{C1, . . . ,Cn}
T -unsat core:
{C′1, . . . ,C

′
m}

interfaces with an external Boolean Unsat-core Extractor
=⇒benefits for free of all state-of-the-art size-reduction techniques
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Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The lemma-lifting approach to T -unsat cores: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧
(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

1 The SMT solver generates the following set of LIA-lemmas:

{(¬(x = 1) ∨ ¬(x = 0)), (¬(y = 2) ∨ ¬(y < 0)), (¬(y = 1) ∨ ¬(y < 0))}.

2 The following formula is passed to the external Boolean core
extractor

(B0 ∨ ¬B1 ∨ A1) ∧ (B0 ∨ B1 ∨ A2) ∧ (¬B0 ∨ B1 ∨ A2)∧
(¬A2 ∨ B2) ∧ (¬A1 ∨ B3) ∧ B4 ∧ (A2 ∨ B5) ∧ (B6 ∨ ¬A1) ∧ B7∧

(¬B1 ∨ ¬B0) ∧ (¬B6 ∨ ¬B4) ∧ (¬B2 ∨ ¬B4)

which returns the unsat core in red.
3 The unsat-core is mapped back, the three T -lemmas are removed

=⇒ the final T -unsat core (in red above).
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Beyond Solving: advanced SMT functionalities Interpolants

Computing (Craig) Interpolants in SMT

Craig Interpolant

Given an ordered pair (A,B) of formulas such that A ∧ B |=T ⊥, a
Craig interpolant is a formula I s.t.:

a) A |=T I,
b) I ∧ B |=T ⊥,
c) I � A and I � B.

“I � A” meaning that all uninterpreted (in T ) symbols in I occur in A.

Very important in many FV applications
A few works presented for various theories:

EUF [59, 70], DL [30, 32], UT VPI [31, 32], LRA [59, 70, 30, 32],
LIA [51, 18, 48], BV [52], ...
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Beyond Solving: advanced SMT functionalities Interpolants

A General Algorithm

Algorithm: Interpolant generation for SMT(T ) [68, 59]

(i) Generate a resolution proof of T -unsatisfiability P for A ∧ B.
(ii) ...

(iii) For every original leaf clause C in P, set IC
def
= C ↓ B if C ∈ A, and IC

def
= > if C ∈ B.

(iv) For every inner node C of P obtained by resolution from C1
def
= p ∨ φ1 and

C2
def
= ¬p ∨ φ2, set IC

def
= IC1 ∨ IC2 if p does not occur in B, and IC

def
= IC1 ∧ IC2

otherwise.
(v) Output I⊥ as an interpolant for (A,B).

“η \B” [resp. “η ↓ B”] is the set of literals in η whose atoms do not [resp. do] occur in B.

row 2. only takes place where T comes in to play
=⇒ Reduced to the problem of finding an interpolant for two sets of

T -literals (Boolean and T -specific component decoupled)
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Beyond Solving: advanced SMT functionalities Interpolants

Computing Craig Interpolants in SMT: example

A def
= (B1 ∨ (0 ≤ x1 − 3x2 + 1)) ∧ (0 ≤ x1 + x2) ∧ (¬B2 ∨ ¬(0 ≤ x1 + x2))

B def
= (¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)) ∧ (¬B1 ∨ B2) ∧ (B1 ∨ (0 ≤ x3 − 2x1 − 3))

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨
¬(0 ≤ x3 − 2x1 − 3) ∨ ¬(0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2) ∨ B1

B1 ∨ (0 ≤ x1 − 3x2 + 1)

¬B1 ∨ B2

¬(0 ≤ x1 + x2) ∨ B2

¬(0 ≤ x1 + x2)(0 ≤ x1 + x2)

⊥

¬(0 ≤ x1 + x2) ∨ B1

¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨

¬B2 ∨ ¬(0 ≤ x1 + x2)

¬(0 ≤ x3 − 2x1 − 3) B1 ∨ (0 ≤ x3 − 2x1 − 3)

(0 ≤ 4x1 + 1)

>

>

B1 ∨ (0 ≤ 4x1 + 1)

(B1 ∨ (0 ≤ 4x1 + 1)) ∧ ¬B2⊥

(B1 ∨ (0 ≤ 4x1 + 1)) ∧ ¬B2

B1 ∨ (0 ≤ 4x1 + 1)

>

(0 ≤ 4x1 + 1)

(0 ≤ 4x1 + 1)

¬B2

B1

original proof interpolant proof
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Beyond Solving: advanced SMT functionalities Interpolants

McMillan’s algorithm for non-strict LRA inequalities

A def
= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2}

B def
= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3)}.

A proof of unsatisfiability P for A ∧ B is the following:

(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1) with coeffs 1 and 3
(0 ≤ x3 − 2x1 − 3) (0 ≤ 1− 2x3)

COMB (0 ≤ −4x1 − 5) with coeffs 2 and 1
COMB (0 ≤ −4) with coeffs 1 and 1

By replacing inequalities in B with (0 ≤ 0), we obtain the proof P ′:

(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1)
(0 ≤ 0) (0 ≤ 0)
COMB (0 ≤ 0)

COMB (0 ≤ 4x1 + 1)

Thus, the interpolant obtained is (0 ≤ 4x1 + 1).
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Beyond Solving: advanced SMT functionalities Interpolants

Example: interpolation algorithms for difference logic

An inference-based algorithm [59]

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)

COMB (0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)
COMB (0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

COMB (0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)
COMB (0 ≤ x1 − x3 + x4 − x5)

=⇒ Interpolant: (0 ≤ x1 − x3 + x4 − x5) (not in DL, and weaker).
A graph-based algorithm [30, 32]

A def
= {

Chord : (0≤x1−x3+1)︷ ︸︸ ︷
(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3), (0 ≤ x4 − x5 − 1)}

B def
= {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)}. −1

−10

1

0

1

A

B

x1 x5

x2

x3

x4

=⇒ Interpolant: (0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 − x5 − 1) (still in DL)
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Beyond Solving: advanced SMT functionalities All-SMT & Predicate Abstraction

All-SAT/All-SMT

All-SAT: enumerate all truth assignments satisfying ϕ
All-SMT: enumerate all T -satisfiable truth assignments
propositionally satisfying ϕ

All-SMT over an “important” subset of atoms P def
= {Pi}i :

enumerate all assignments over P which can be extended to
T -satisfiable truth assignments propositionally satisfying ϕ
=⇒can compute predicate abstraction
Algorithms:

BCLT [53]
each time a T -satisfiable assignment {l1, ..., ln} is found, perform
conflict-driven backjumping as if the restricted clause (

∨
i ¬li ) ↓ P

belonged to the clause set
MathSAT/NuSMV [26]
As above, plus the Boolean search of the SMT solver is driven by
an OBDD.
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Beyond Solving: advanced SMT functionalities All-SMT & Predicate Abstraction

Predicate Abstraction

Predicate abstraction

if ϕ(v) is a SMT formula over the domain variables v def
= {vj}j , {γi}i is a

set of “relevant” predicates over v, and P def
= {Pi}i a set of Boolean

labels, then:

PredAbsP(ϕ)
def
= ∃v.( ϕ(v) ∧

∧
i

Pi ↔ γi(v) )

=
∨{

µ | µ truth assignment on P
s.t. µ ∧ ϕ ∧

∧
i(Pi ↔ γi ) is T -satisfiable

}

projection of ϕ over (the Boolean abstraction of) the set {γi}i .
essential step in FV: extracts finite-state abstractions from a
infinite state space
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Beyond Solving: advanced SMT functionalities All-SMT & Predicate Abstraction

Predicate Abstraction: example

ϕ
def
= (v1 + v2 > 12)

γ1
def
= (v1 + v2 = 2)

γ2
def
= (v1 − v2 < 10)

⇓

PreAbs(ϕ){P1,P2}
def
= ∃ v1 v2 .

 (v1 + v2 > 12) ∧
(P1 ↔ (v1 + v2 = 2)) ∧
(P2 ↔ (v1 − v2 < 10))


= (¬P1 ∧ ¬P2) ∨ (¬P1 ∧ P2)

= ¬P1.
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

SMT with Pseudo-Boolean (PB) cost-minimization

The problem

SMT(T ) problem ϕ for some T , augmented with cost functions:
cost i =

∑N i

j=1 ite(P ij , c ij
1, c

ij
2), s.t. cost i ∈ (l i ,ui ], c ij

{1,2} > 0

Decision problem: is there a model complying with cost ranges?
Optimization problem: find model minimizing some cost i .

allows for encoding MaxSAT/MaxSMT and PseudoBoolean

Proposed solution: [66, 27]
SMT(T ∪ C), C is an ad-hoc “theory of costs”
a specialized very-fast theory-solver for C added to MathSAT

very fast & aggressive search pruning and theory-propagation

cost minimization handled by linear or binary search
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

SMT(T ∪ C): main ideas

A “theory of costs” C:
Cost variables cost i

“bound cost” BC(cost i , k): “cost i ≤ k"
“incur cost” IC(cost i , j , k i

j ): “the j th addend of cost i := k i
j

“cost i =
∑N i

j=1 ite(P i
j , k

i
j ,0), s.t . cost i ∈ (l i ,ui ]” encoded as

¬BC(cost i , l i ) ∧ BC(cost i ,ui ) ∧
∧N i

j=1(P i
j ↔ IC(cost i , j , k i

j ))

very-fast theory solver: C-solver
1. IC(cost i , j , k i

j ) = > =⇒ cost i = cost i + k i
j

2. cost i > ubi =⇒ conflict
3. cost i + {total cost of all unassigned IC′s} ≤ lbi =⇒ conflict
4. IC(cost i , j , k i

j ) = > causes 2. =⇒ C-propagate ¬IC(cost i , j , k i
j )

5. IC(cost i , j , k i
j ) = ⊥ causes 3. =⇒ C-propagate IC(cost i , j , k i

j )

no symbol shared with T
=⇒ independent theory solvers for T and C
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization Modulo Theories with LA costs I

Ingredients

an SMT formula ϕ on LA ∪ T
LA can be LRA, LIA or a combination of both
T def

=
⋃

i Ti , possibly empty
LA and Ti disjoint Nelson-Oppen theories

a LA variable [term] “cost” occurring in ϕ
(optionally) two constant numbers lb (lower bound) and ub (upper
bound) s.t. lb ≤ cost < ub (lb, ub may be ∓∞)

Optimization Modulo Theories with LA costs (OMT(LA ∪ T ) )

Find a model for ϕ whose value of cost is minimum.
maximization dual
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization Modulo Theories with LA costs II

We restrict to the case LA = LRA and
⋃

i Ti = {} (OMT(LRA)).

Basic idea [72]:
SMT(LRA) augmented with a LP optimization routine:

once each assignment µ is found LRA-satisfiable, an LP
optimization is invoked, finding the minimum min
(cost < min) is learned
the search proceeds, until UNSAT

=⇒ the latest value of min is returned
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization Modulo Theories with LA costs III

Extensions
both linear and binary search, and combination [72, 73]
cost minimization embedded inside the CDCL search [72, 73]
combination with other theories: OMT(LRA ∪ T ) via DTC [73]
extension to integers via ILP techniques: OMT(LIA ∪ T )
[13, 76, 54]
extension to multiple independent objectives [55, 13, 76]
incremental OMT [13, 76]
other combinations of objectives (min-max, lexicograpohic)
[13, 76]
OMT with Pareto fronts [13].
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ ( A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ ( A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =



A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ ( A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
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cost def
= x
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
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(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


=⇒ SAT, min = −0.2

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ ( A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ ( A2 ∨ (2x − y ≥ −6))
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= x
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
=⇒ SAT, min = −1.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)

(cost < −1.0)(cost < −0.2)

y

x
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(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


=⇒ SAT, min = −2.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 104 / 130



Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ ( A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ ( A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =



A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


=⇒ UNSAT,min = −2.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

OMT with Independent Objectives (aka Boxed OMT)
[55, 76]

The problem: 〈ϕ, {cost1, ..., costk}〉 [55]

Given 〈ϕ, C〉 s.t.:
ϕ is the input formula

C def
= {cost1, ..., costk} is a set of LA-terms on variables in ϕ,

〈ϕ, C〉 is the problem of finding a set of independent LA-models
M1, ...,Mk s.t. s.t. eachMi makes cost i minimum.

Notes
derives from SW verification problems [55]
equivalent to k independent problems 〈ϕ, cost1〉, ..., 〈ϕ, costk 〉
intuition: share search effort for the different objectives
generalizes to OMT(LA ∪ T ) straightforwardly
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

OMT with Multiple Objectives [55, 13, 76]

Solution
Intuition: when a T -consistent satisfying assignment µ is found,
foreach costi

mini := min{mini, T solver.minimize(µ,costi)};
learn

∨
i(costi < mini); // (costi < −∞) ≡ ⊥

proceed until UNSAT;
Notice:

for each µ, guaranteed improvement of at least one mini
in practice, for each µ, multiple cost i minima are improved

Implemented improvements:
(a) drop previous clauses

∨
i (cost i < mini )

(b) (cost i < mini ) pushed in µ first: if T -inconsistent, skip minimization
(c) learn ¬(cost i < mini ) ∨ (cost i < minold

i ), s.t. minold
i previous mini

=⇒ reuse previously-learned clauses like ¬(cost i < minold
i ) ∨ C
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Boxed OMT: Example [55, 76]

1 3 40

1

3

cost1

cost2

ϕ = (1 ≤ y) ∧ (y ≤ 3) ∧ (((1 ≤ x) ∧ (x ≤ 3)) ∨ (x ≥ 4))
∧ (cost1 = −y) ∧ (cost2 = −x − y)

µ1 = {(1 ≤ y), (y ≤ 3), (1 ≤ x), (x ≤ 3)} =⇒ SAT =⇒ [−3,−6]

=⇒ learn {(cost1 < −3) ∨ (cost2 < −6)}

µ2 = {(1 ≤ y), (y ≤ 3), (x ≥ 4)} =⇒ SAT =⇒ [−3,−∞]
=⇒ learn {(cost1 < −3)}
=⇒ UNSAT

µ2µ1
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

OMT with Lexicographic Combination of Objectives
[13]

The problem

Find one optimal modelM minimizing c def
= cost1, cost2, ..., costk

lexicographically.

Solution
Intuition:
{minimize cost1}
when UNSAT

{substitute unit clause (cost1 < min1) with (cost1 = min1)}
{minimize cost2}
...

improvement:
each time UNSAT is found, add

∧
i (cost i ≤Mi (cost i )) to ϕ
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization problems encoded into OMT(LA ∪ T ) I

SMT with Pseudo-Boolean Constraints & Weighted MaxSMT

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

MaxSMT : 〈ϕh,
∧

j ψj〉 s.t . ψj soft , wj = weight(ψj), wi > 0
⇓

minimize
∑

j xj , xj ,Aj fresh
ϕh ∧

∧
j(Aj ∨ ψj) ∧

∧
j(¬Aj ∨ (xj = wj)) ∧ (Aj ∨ (xj = 0)

∧(xj ≥ 0) ∧ (xj ≤ wj)
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the violation
of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search
same for weighted MaxSMT
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization problems encoded into OMT(LA ∪ T ) II

OMT with Min-Max [Max-Min] optimization

Given 〈ϕ, {cost1, ..., costk}〉, find a solution which minimizes the
maximum value among {cost1, ..., costk}. (Max-Min dual.)

Frequent in some applications (e.g. [74, 81])
=⇒ encode into OMT(LA ∪ T ) problem {ϕ ∧

∧
i(cost i ≤ cost), cost}

s.t. cost fresh.

OMT with linear combinations of costs
Given 〈ϕ, {cost1, ..., costk}〉 and a set of weights {w1, ...,wk}, find a
solution which minimizes

∑
i wi · cost i .

=⇒ encode into OMT(LA ∪ T ) problem
{ϕ ∧ (cost =

∑
i wi · cost i), cost} s.t. cost fresh.

These objectives can be composed with other OMT(LA) objectives.
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Other OMT Functionalities [hints]

Incremental interface [13, 76]
Allows for pushing/popping sub-formulas into a stack, and then run
OMT incrementally over them, reusing previous search.

useful in some applications (e.g., BMC with parametric systems)
straightforward variant of incremental SAT and SMT solvers

Pareto Fronts [13, 12]
Given cost1, cost2, computeM1, ...,Mi , ...,Mj , ... s.t.:

eitherMi (cost1) >Mj (cost1) orMi (cost2) >Mj (cost2) and
Mi (cost1) <Mj (cost1) orMi (cost2) <Mj (cost2)
for eachMi , noM′ dominatesMi

no objective can be improved without degrading some other one
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Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Some OMT tools

BCLT [66, 54]
http://www.cs.upc.edu/~oliveras/bclt-main.html

OPTIMATHSAT [72, 74, 76, 75], on top of MATHSAT [28]
http://optimathsat.disi.unitn.it

SYMBA [55], on top of Z3 [38]
https://bitbucket.org/arieg/symba/src

νZ [13, 12], on top of Z3 [38]
http://z3.codeplex.com

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 113 / 130

http://www.cs.upc.edu/~oliveras/bclt-main.html
http://optimathsat.disi.unitn.it
https://bitbucket.org/arieg/symba/src
http://z3.codeplex.com


Conclusions & current research directions

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions
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Conclusions & current research directions

Conclusions

SMT very popular, due to successful application in many domains
Combines techniques from SAT, ATP and operational research
Not only satisfiability, but also advanced functionalities
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Conclusions & current research directions

Open/ongoing research directions

Solving:
improve efficiency (e.g. BV, AR, LIA & their combinations)
“a never-ending fight against the search-space explosion problem
[E. Clarke, Turing-award winner 2007]”
develop efficient solvers for other theories (NLA(R), NLA(Z))
develop new theories & solvers (e.g., floating-point arithmetic)
...

Functionalities
Interpolation in some theories (LIA, BV) still very challenging
Predicate abstraction (AllSMT) still a bottleneck in SMT-based FV
SMT with costs/optimization still in very early stage
...

Combination of SMT solvers and ATP (SMT with quantifiers)
Integration & customization of SMT solvers with (FV) tools
See also [67]
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