
Course “An Introduction to SAT and SMT”
Chapter 2: Satisfiability Modulo Theories

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/

Int. Graduate School on ICT, University of Trento,
Academic year 2019-2020

last update: Friday 22nd May, 2020

Copyright notice: some material contained in these slides is courtesy of Alessandro Cimatti, Alberto Griggio and Marco
Roveri, who detain its copyright. All the other material is copyrighted by Roberto Sebastiani. Any commercial use of this

material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be
displayed in public without containing this copyright notice.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 1 / 130

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 2 / 130

Motivations and goals

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 3 / 130

Motivations and goals

Satisfiability Modulo Theories (SMT(T))

Satisfiability Modulo Theories (SMT(T))

The problem of deciding the satisfiability of (typically quantifier-free)
formulas in some decidable first-order theory T

T can also be a combination of theories
⋃

i Ti .

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 4 / 130

Motivations and goals

SMT(T): theories of interest
Some theories of interest (e.g., for formal verification)

Equality and Uninterpreted Functions (EUF):
((x = y) ∧ (y = f (z)))→ (g(x) = g(f (z)))

Difference logic (DL): ((x = y) ∧ (y − z ≤ 4))→ (x − z ≤ 6)

UTVPI (UT VPI): ((x = y) ∧ (y − z ≤ 4))→ (x + z ≤ 6)

Linear arithmetic over the rationals (LRA):
(Tδ → (s1 = s0 + 3.4 · t − 3.4 · t0)) ∧ (¬Tδ → (s1 = s0))

Linear arithmetic over the integers (LIA):
(x := xl + 216xh) ∧ (x ≥ 0) ∧ (x ≤ 216 − 1)

Arrays (AR): (i = j) ∨ read(write(a, i ,e), j) = read(a, j)
Bit vectors (BV):
x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0]

Non-Linear arithmetic over the reals (NLA(R)) :
((c = a · b) ∧ (a1 = a− 1) ∧ (b1 = b + 1))→ (c = a1 · b1 + 1)

...
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 5 / 130

Motivations and goals

Satisfiability Modulo Theories (SMT(T)): Example

Example: SMT(LIA ∪ EUF ∪ AR)

ϕ
def
= (d ≥ 0) ∧ (d < 1)∧

((f (d) = f (0))→ (read(write(V , i , x), i + d) = x + 1))

involves arithmetical, arrays, and uninterpreted function/predicate
symbols, plus Boolean operators

Is it consistent?
No:

ϕ
=⇒LIA (d = 0)
=⇒EUF (f (d) = f (0))
=⇒Bool (read(write(V , i , x), i + d) = x + 1)
=⇒LIA (read(write(V , i , x), i) = x + 1)
=⇒LIA ¬(read(write(V , i , x), i) = x)
=⇒AR ⊥

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 6 / 130

Motivations and goals

Satisfiability Modulo Theories (SMT(T)): Example

Example: SMT(LIA ∪ EUF ∪ AR)

ϕ
def
= (d ≥ 0) ∧ (d < 1)∧

((f (d) = f (0))→ (read(write(V , i , x), i + d) = x + 1))

involves arithmetical, arrays, and uninterpreted function/predicate
symbols, plus Boolean operators

Is it consistent?
No:

ϕ
=⇒LIA (d = 0)
=⇒EUF (f (d) = f (0))
=⇒Bool (read(write(V , i , x), i + d) = x + 1)
=⇒LIA (read(write(V , i , x), i) = x + 1)
=⇒LIA ¬(read(write(V , i , x), i) = x)
=⇒AR ⊥

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 6 / 130

Motivations and goals

Satisfiability Modulo Theories (SMT(T)): Example

Example: SMT(LIA ∪ EUF ∪ AR)

ϕ
def
= (d ≥ 0) ∧ (d < 1)∧

((f (d) = f (0))→ (read(write(V , i , x), i + d) = x + 1))

involves arithmetical, arrays, and uninterpreted function/predicate
symbols, plus Boolean operators

Is it consistent?
No:

ϕ
=⇒LIA (d = 0)
=⇒EUF (f (d) = f (0))
=⇒Bool (read(write(V , i , x), i + d) = x + 1)
=⇒LIA (read(write(V , i , x), i) = x + 1)
=⇒LIA ¬(read(write(V , i , x), i) = x)
=⇒AR ⊥

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 6 / 130

Motivations and goals

Some Motivating Applications

Interest in SMT triggered by some real-word applications

Verification of Hybrid & Timed Systems
Verification of RTL Circuit Designs & of Microcode
SW Verification
Planning with Resources
Temporal reasoning
Scheduling
Compiler optimization
...

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 7 / 130

Motivations and goals

Verification of Timed Systems

T12

T21

x<=3

x>=1

x:=0

x <= 2

a

b

l1 l2

Bounded/inductive model checking of Timed Systems [6, 36, 58],
...
Timed Automata encoded into T -formulas:

discrete information (locations, transitions, events) with Boolean
vars.
timed information (clocks, elapsed time) with differences
(t3 − x3 ≤ 2), equalities (x4 = x3) and linear constraints
(t8 − x8 = t2 − x2) on Q

=⇒ SMT on DL(Q) or LRA required

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 8 / 130

Motivations and goals

Verification of Hybrid Systems ...

w = 2
.

T12

Grow
Steady

cruise

Stable

w >=L

L <= w<= U

Bounded model checking of Hybrid Systems [5],...
Hybrid Automata encoded into L-formulas:

discrete information (locs, trans., events) with Boolean vars.
timed information (clocks, elapsed time) with differences
(t3 − x3 ≤ 2), equalities (x4 = x3) and linear constraints
(t8 − x8 = t2 − x2) on Q
Evolution of Physical Variables (e.g., speed, pressure) with linear
(ω4 = 2ω3) and non-linear constraints (P1V1 = 4T1) on Q

Undecidable under simple hypotheses!
=⇒ SMT on DL(Q), LRA or NLA(R) required

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 9 / 130

Motivations and goals

Verification of HW circuit designs & microcode

CK

CK

CKB2

Adder
B3

B1

g = 2*f
f’ = itea+2*e

itea’ = ITE(B1;a;0) c

a

g
f

itea

e
e’ = ITE(B2;b;0)+2*ite(B3;c;0)

control

L−Shifter

L−Shifter

b

L−Shifter

Adder

data

1

0
1

1

0

0

SAT/SMT-based Model Checking & Equiv. Checking of RTL
designs, symbolic simulation of µ-code [25, 22, 42]
Control paths handled by Boolean reasoning
Data paths information abstracted into theory-specific terms

words (bit-vectors, integers, EUF vars, ...): a[31 : 0], a
word operations: (BV, EUF , AR, LIA, NLA(Z) operators)
x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0],
(a = aL + 216aH), (m1 = store(m0, l0, v0)), ...

Trades heavy Boolean reasoning (≈ 264 factors) with T -solving
=⇒ SMT on BV, EUF , AR, modulo-LIA [NLA(Z)] required

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 10 / 130

Motivations and goals

Verification of SW systems

...
i = 0;
acc = 0.0;
while (i<dim) {
acc += V[i];
i++;

}
...

.... ∧
(i0 = 0)∧
(acc0 = 0.0)∧
((i0 < dim)→ ((acc1 = acc0 + read(V , i0))∧

(i1 = i0 + 1)))∧
(¬(i0 < dim)→ ((acc1 = acc0) ∧ (i1 = i0)))∧
((i1 < dim)→ ((acc2 = acc1 + read(V , i1))∧

(i2 = i1 + 1)))∧
(¬(i1 < dim)→ ((acc2 = acc1) ∧ (i2 = i1)))∧
...

Verification of SW code

BMC, K-induction, Check of proof obligations, interpolation-based
model checking, symbolic simulation, concolic testing, ...

=⇒ SMT on BV, EUF , AR, (modulo-)LIA [NLA(Z)] required

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 11 / 130

Motivations and goals

Planning with Resources [82]

SAT-bases planning augmented with numerical constraints
Straightforward to encode into into SMT(LRA)

Example (sketch) [82]

(Deliver) ∧ // goal
(MaxLoad) ∧ // load constraint
(MaxFuel) ∧ // fuel constraint
(Move→ MinFuel) ∧ // move requires fuel
(Move→ Deliver) ∧ // move implies delivery
(GoodTrip → Deliver) ∧ // a good trip requires
(GoodTrip → AllLoaded) ∧ // a full delivery
(MaxLoad → (load ≤ 30)) ∧ // load limit
(MaxFuel → (fuel ≤ 15)) ∧ // fuel limit
(MinFuel → (fuel ≥ 7 + 0.5load)) ∧ // fuel constraint
(AllLoaded → (load = 45)) //

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 12 / 130

Motivations and goals

(Disjunctive) Temporal Reasoning [79, 2]

Temporal reasoning problems encoded as disjunctions of
difference constraints

((x1 − x2 ≤ 6) ∨ (x3 − x4 ≤ −2)) ∧
((x2 − x3 ≤ −2) ∨ (x4 − x5 ≤ 5)) ∧
((x2 − x1 ≤ 4) ∨ (x3 − x7 ≤ −6)) ∧
...

Straightforward to encode into into SMT(DL)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 13 / 130

Motivations and goals

SMT and SMT solvers

Common fact about SMT problems from various applications
SMT requires capabilities for heavy Boolean reasoning combined with
capabilities for reasoning in expressive decidable F.O. theories

SAT alone not expressive enough
standard automated theorem proving inadequate (e.g., arithmetic)
may involve also numerical computation (e.g., simplex)

Modern SMT solvers
combine SAT solvers with decision procedures (theory solvers)

contributions from SAT, Automated Theorem Proving (ATP), formal
verification (FV) and operational research (OR)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 14 / 130

Motivations and goals

SMT and SMT solvers

Common fact about SMT problems from various applications
SMT requires capabilities for heavy Boolean reasoning combined with
capabilities for reasoning in expressive decidable F.O. theories

SAT alone not expressive enough
standard automated theorem proving inadequate (e.g., arithmetic)
may involve also numerical computation (e.g., simplex)

Modern SMT solvers
combine SAT solvers with decision procedures (theory solvers)

contributions from SAT, Automated Theorem Proving (ATP), formal
verification (FV) and operational research (OR)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 14 / 130

Motivations and goals

SMT and SMT solvers

Common fact about SMT problems from various applications
SMT requires capabilities for heavy Boolean reasoning combined with
capabilities for reasoning in expressive decidable F.O. theories

SAT alone not expressive enough
standard automated theorem proving inadequate (e.g., arithmetic)
may involve also numerical computation (e.g., simplex)

Modern SMT solvers
combine SAT solvers with decision procedures (theory solvers)

contributions from SAT, Automated Theorem Proving (ATP), formal
verification (FV) and operational research (OR)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 14 / 130

Motivations and goals

SMT and SMT solvers

Common fact about SMT problems from various applications
SMT requires capabilities for heavy Boolean reasoning combined with
capabilities for reasoning in expressive decidable F.O. theories

SAT alone not expressive enough
standard automated theorem proving inadequate (e.g., arithmetic)
may involve also numerical computation (e.g., simplex)

Modern SMT solvers
combine SAT solvers with decision procedures (theory solvers)

contributions from SAT, Automated Theorem Proving (ATP), formal
verification (FV) and operational research (OR)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 14 / 130

Motivations and goals

SMT and SMT solvers

Common fact about SMT problems from various applications
SMT requires capabilities for heavy Boolean reasoning combined with
capabilities for reasoning in expressive decidable F.O. theories

SAT alone not expressive enough
standard automated theorem proving inadequate (e.g., arithmetic)
may involve also numerical computation (e.g., simplex)

Modern SMT solvers
combine SAT solvers with decision procedures (theory solvers)

contributions from SAT, Automated Theorem Proving (ATP), formal
verification (FV) and operational research (OR)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 14 / 130

Motivations and goals

Goal

Provide an overview of standard “lazy” SMT:
foundations
SMT-solving techniques
beyond solving: advanced SMT functionalities
ongoing research

We do not cover related approaches like:
Eager SAT encodings
Rewrite-based approaches

We refer to [71, 10] for an overview and references.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 15 / 130

Motivations and goals

Goal

Provide an overview of standard “lazy” SMT:
foundations
SMT-solving techniques
beyond solving: advanced SMT functionalities
ongoing research

We do not cover related approaches like:
Eager SAT encodings
Rewrite-based approaches

We refer to [71, 10] for an overview and references.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 15 / 130

Motivations and goals

Notational remark (1): most/all examples in LRA

For better readability, in most/all the examples of this presentation we
will use the theory of linear arithmetic on rational numbers (LRA)
because of its intuitive semantics. E.g.:

(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

Nevertheless, analogous examples can be built with all other theories
of interest.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 16 / 130

Motivations and goals

Notational remark (2): “constants” vs. “variables”

Consider, e.g., the formula:
(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

How do we call A1,A2?:
(a) Boolean/propositional variables?
(b) uninterpreted 0-ary predicates?
How do we call x1, x2, x3?:
(a) domain variables?
(b) uninterpreted Skolem constants/0-ary uninterpreted functions?
Hint:
(a) typically used in SAT, CSP and OR communities
(b) typically used in logic & ATP communities

Hereafter we call A1,A2 “Boolean/propositional variables” and x1, x2, x3
"domain variables” (logic purists, please forgive me!)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 17 / 130

Motivations and goals

Notational remark (2): “constants” vs. “variables”

Consider, e.g., the formula:
(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

How do we call A1,A2?:
(a) Boolean/propositional variables?
(b) uninterpreted 0-ary predicates?
How do we call x1, x2, x3?:
(a) domain variables?
(b) uninterpreted Skolem constants/0-ary uninterpreted functions?
Hint:
(a) typically used in SAT, CSP and OR communities
(b) typically used in logic & ATP communities

Hereafter we call A1,A2 “Boolean/propositional variables” and x1, x2, x3
"domain variables” (logic purists, please forgive me!)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 17 / 130

Motivations and goals

Notational remark (2): “constants” vs. “variables”

Consider, e.g., the formula:
(¬A1 ∨ (3x1 − 2x2 − 3 ≤ 5)) ∧ (A2 ∨ (−2x1 + 4x3 + 2 = 3))

How do we call A1,A2?:
(a) Boolean/propositional variables?
(b) uninterpreted 0-ary predicates?
How do we call x1, x2, x3?:
(a) domain variables?
(b) uninterpreted Skolem constants/0-ary uninterpreted functions?
Hint:
(a) typically used in SAT, CSP and OR communities
(b) typically used in logic & ATP communities

Hereafter we call A1,A2 “Boolean/propositional variables” and x1, x2, x3
"domain variables” (logic purists, please forgive me!)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 17 / 130

Efficient SMT solving

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 18 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 19 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Modern “lazy” SMT(T) solvers

A prominent “lazy” approach [45, 2, 82, 3, 8, 36] (aka “DPLL(T)”)
a CDCL SAT solver is used to enumerate truth assignments µi for
(the Boolean abstraction of) the input formula ϕ
a theory-specific solver T -solver checks the T -consistency of the
set of T -literals corresponding to each assignment

Many techniques to maximize the benefits of integration [71, 10]
Many lazy SMT tools available
(Barcelogic, CVC4, MathSAT, OpenSMT, Yices, Z3, . . .)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 20 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Basic schema: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),

¬(2v2 − v3 > 2),¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}

=⇒ inconsistent in LRA =⇒ backtrack

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 21 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Basic schema: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),

¬(2v2 − v3 > 2),¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}

=⇒ inconsistent in LRA =⇒ backtrack

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 21 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Basic schema: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),

¬(2v2 − v3 > 2),¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}

=⇒ inconsistent in LRA =⇒ backtrack

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 21 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Basic schema: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),

¬(2v2 − v3 > 2),¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}

=⇒ inconsistent in LRA =⇒ backtrack

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 21 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning [50, 82, 3, 8, 36]

Similar to Boolean backjumping & learning
important property of T -solver:

extraction of T -conflict sets: if µ is T -unsatisfiable,
then T -solver (µ) returns the subset η of µ causing
the T -inconsistency of µ (T -conflict set)

If so, the T -conflict clause C := ¬η is used to drive
the backjumping & learning mechanism of the SAT
solver
=⇒ lots of search saved
the less redundant is η, the more search is saved

¬l1 ∨ ¬l2 ∨ ¬l3 ∨ ¬l4 ∨ l5

l4

l3

l2

l1

l5

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 22 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2),

¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}
η = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v1 − v5 ≤ 1)}
ηp = {¬B5,B8,B2}

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 23 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2),

¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}
η = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v1 − v5 ≤ 1)}
ηp = {¬B5,B8,B2}

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 23 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

¬B2

¬A2

B3

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1,¬B3,A1,A2,B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2),

¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}
η = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v1 − v5 ≤ 1)}
ηp = {¬B5,B8,B2}

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 23 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example (2)
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c′8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...
c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ B1

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

c8: theory conflicting clause︷ ︸︸ ︷
B5 ∨ ¬B8 ∨ ¬B2

c2︷ ︸︸ ︷
¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3︷ ︸︸ ︷
B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(¬A2)

cT︷ ︸︸ ︷
B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1︸ ︷︷ ︸
c′8: mixed Boolean+theory conflict clause

(B3)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 24 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example (2)
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c′8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...
c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ B1

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

c′8 : B5 ∨ ¬B8 ∨ B1

A1

B1

c8: theory conflicting clause︷ ︸︸ ︷
B5 ∨ ¬B8 ∨ ¬B2

c2︷ ︸︸ ︷
¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3︷ ︸︸ ︷
B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(¬A2)

cT︷ ︸︸ ︷
B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1︸ ︷︷ ︸
c′8: mixed Boolean+theory conflict clause

(B3)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 24 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Backjumping & T -learning: example (2)
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c′8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...
c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ B1

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

B1

A1

c′8 : B5 ∨ ¬B8 ∨ B1

c8 : B5 ∨ ¬B8 ∨ ¬B2

¬B2

¬A2

B3

c8: theory conflicting clause︷ ︸︸ ︷
B5 ∨ ¬B8 ∨ ¬B2

c2︷ ︸︸ ︷
¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3︷ ︸︸ ︷
B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(¬A2)

cT︷ ︸︸ ︷
B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1︸ ︷︷ ︸
c′8: mixed Boolean+theory conflict clause

(B3)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 24 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Early Pruning [45, 2, 82] I

Introduce a T -satisfiability test on intermediate assignments:
if T -solver returns UNSAT, the procedure backtracks.

benefit: prunes drastically the Boolean search
Drawback: possibly many useless calls to T -solver

SAT

SAT

SAT

SAT

SAT

SAT

SAT

SAT SAT

SAT SAT

SAT

SAT

SAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

Calls to T−Solve()

WITH EARLY−PRUNING

WITHOUT EARLY−PRUNING

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 25 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Early Pruning [45, 2, 82] II

Different strategies for interleaving Boolean search steps and
T -solver calls

Eager E.P. [82, 11, 80, 44]): invoke T -solver every time a new
T -atom is added to the assignment (unit propagations included)
Selective E.P.: Do not call T -solver if the have been added only
literals which hardly cause any T -conflict with the previous
assignment (e.g., Boolean literals, disequalities (x − y 6= 3),
T -literals introducing new variables (x − z = 3))
Weakened E.P.: for intermediate checks only, use weaker but faster
versions of T -solver (e.g., check µ on R rather than on Z):
{(x − y ≤ 4), (z − x ≤ −6), (z = y), (3x + 2y − 3z = 4)}

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 26 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Early pruning: example

ϕ = {¬(2v2 − v3 > 2) ∨ A1} ∧
{¬A2 ∨ (2v1 − 4v5 > 3)} ∧
{(3v1 − 2v2 ≤ 3) ∨ A2} ∧
{¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1} ∧
{A1 ∨ (3v1 − 2v2 ≤ 3)} ∧
{(v1 − v5 ≤ 1) ∨ (v5 = 5− 3v4) ∨ ¬A1} ∧
{A1 ∨ (v3 = 3v5 + 4) ∨ A2}.

ϕp = {¬B1 ∨ A1} ∧
{¬A2 ∨ B2} ∧
{B3 ∨ A2} ∧
{¬B4 ∨ ¬B5 ∨ ¬A1} ∧
{A1 ∨ B3} ∧
{B6 ∨ B7 ∨ ¬A1} ∧
{A1 ∨ B8 ∨ A2}.

Suppose it is built the intermediate assignment:

µ′p = ¬B1 ∧ ¬A2 ∧ B3 ∧ ¬B5.

corresponding to the following set of T -literals

µ′ = ¬(2v2 − v3 > 2) ∧ ¬A2 ∧ (3v1 − 2v2 ≤ 3) ∧ ¬(3v1 − v3 ≤ 6).

If T -solver is invoked on µ′, then it returns UNSAT, and DPLL
backtracks without exploring any extension of µ′.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 27 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Early pruning: remark

Incrementality & Backtrackability of T -solvers
With early pruning, lots of incremental calls to T -solver:
T -solver (µ1) ⇒ Sat Undo µ4, µ3, µ2
T -solver (µ1 ∪ µ2) ⇒ Sat T -solver (µ1 ∪ µ′

2) ⇒ Sat
T -solver (µ1 ∪ µ2 ∪ µ3) ⇒ Sat T -solver (µ1 ∪ µ′

2 ∪ µ′
3) ⇒ Sat

T -solver (µ1 ∪ µ2 ∪ µ3 ∪ µ4) ⇒ Unsat ...

=⇒ Desirable features of T -solvers:
incrementality: T -solver(µ1 ∪ µ2) reuses computation of
T -solver(µ1) without restarting from scratch
backtrackability (resettability): T -solver can efficiently undo steps
and return to a previous status on the stack

=⇒ T -solver requires a stack-based interface

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 28 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Early pruning: remark

Incrementality & Backtrackability of T -solvers
With early pruning, lots of incremental calls to T -solver:
T -solver (µ1) ⇒ Sat Undo µ4, µ3, µ2
T -solver (µ1 ∪ µ2) ⇒ Sat T -solver (µ1 ∪ µ′

2) ⇒ Sat
T -solver (µ1 ∪ µ2 ∪ µ3) ⇒ Sat T -solver (µ1 ∪ µ′

2 ∪ µ′
3) ⇒ Sat

T -solver (µ1 ∪ µ2 ∪ µ3 ∪ µ4) ⇒ Unsat ...

=⇒ Desirable features of T -solvers:
incrementality: T -solver(µ1 ∪ µ2) reuses computation of
T -solver(µ1) without restarting from scratch
backtrackability (resettability): T -solver can efficiently undo steps
and return to a previous status on the stack

=⇒ T -solver requires a stack-based interface

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 28 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Early pruning: remark

Incrementality & Backtrackability of T -solvers
With early pruning, lots of incremental calls to T -solver:
T -solver (µ1) ⇒ Sat Undo µ4, µ3, µ2
T -solver (µ1 ∪ µ2) ⇒ Sat T -solver (µ1 ∪ µ′

2) ⇒ Sat
T -solver (µ1 ∪ µ2 ∪ µ3) ⇒ Sat T -solver (µ1 ∪ µ′

2 ∪ µ′
3) ⇒ Sat

T -solver (µ1 ∪ µ2 ∪ µ3 ∪ µ4) ⇒ Unsat ...

=⇒ Desirable features of T -solvers:
incrementality: T -solver(µ1 ∪ µ2) reuses computation of
T -solver(µ1) without restarting from scratch
backtrackability (resettability): T -solver can efficiently undo steps
and return to a previous status on the stack

=⇒ T -solver requires a stack-based interface

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 28 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Propagation [2, 3, 44]

strictly related to early pruning
important property of T -solver:

T -deduction: when a partial assignment µ is T -satisfiable, T -solver
may be able to return also an assignment η to some unassigned
atom occurring in ϕ s.t. µ |=T η.

If so:
the literal η is then unit-propagated;
optionally, a T -deduction clause C := ¬µ′ ∨ η can be learned, µ′

being the subset of µ which caused the deduction (µ′ |=T η)
lazy explanation: compute C only if needed for conflict analysis

=⇒ may prune drastically the search

Both T -deduction clauses and T -conflict clauses are called T -lemmas
since they are valid in T

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 29 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -Propagation [2, 3, 44]

strictly related to early pruning
important property of T -solver:

T -deduction: when a partial assignment µ is T -satisfiable, T -solver
may be able to return also an assignment η to some unassigned
atom occurring in ϕ s.t. µ |=T η.

If so:
the literal η is then unit-propagated;
optionally, a T -deduction clause C := ¬µ′ ∨ η can be learned, µ′

being the subset of µ which caused the deduction (µ′ |=T η)
lazy explanation: compute C only if needed for conflict analysis

=⇒ may prune drastically the search

Both T -deduction clauses and T -conflict clauses are called T -lemmas
since they are valid in T

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 29 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -propagation: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2)}

|=LRA ¬(3v1 − 2v2 ≤ 3)︸ ︷︷ ︸
¬B3

=⇒ propagate ¬B3 [and learn the deduction clause B5 ∨ B1 ∨ ¬B3]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 30 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -propagation: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B5

B8

B6

¬B1

µp = {¬B5,B8,B6,¬B1}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2)}

|=LRA ¬(3v1 − 2v2 ≤ 3)︸ ︷︷ ︸
¬B3

=⇒ propagate ¬B3 [and learn the deduction clause B5 ∨ B1 ∨ ¬B3]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 30 / 130

Efficient SMT solving Combining SAT with Theory Solvers

T -propagation: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5− 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B3

¬B5

B8

B6

¬B1

T -propagate

µp = {¬B5,B8,B6,¬B1}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2)}

|=LRA ¬(3v1 − 2v2 ≤ 3)︸ ︷︷ ︸
¬B3

=⇒ propagate ¬B3 [and learn the deduction clause B5 ∨ B1 ∨ ¬B3]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 30 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Pure-literal filtering [82, 3, 17]

Property
If we have non-Boolean T -atoms occurring only positively [negatively]
in the original formula ϕ (learned clauses are not considered), we can
drop every negative [positive] occurrence of them from the assignment
to be checked by T -solver (and from the T -deducible ones).

increases the chances of finding a model
reduces the effort for the T -solver
eliminates unnecessary “nasty” negated literals
(e.g. negative equalities like ¬(3v1 − 9v2 = 3) in LIA force
splitting: (3v1 − 9v2 > 3) ∨ (3v1 − 9v2 < 3)).
may weaken the effect of early pruning.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 31 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Pure literal filtering: example

ϕ = {¬(2v2 − v3 > 2) ∨ A1} ∧
{¬A2 ∨ (2v1 − 4v5 > 3)} ∧
{(3v1 − 2v2 ≤ 3) ∨ A2} ∧
{¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1} ∧
{A1 ∨ (3v1 − 2v2 ≤ 3)} ∧
{(v1 − v5 ≤ 1) ∨ (v5 = 5− 3v4) ∨ ¬A1} ∧
{A1 ∨ (v3 = 3v5 + 4) ∨ A2} ∧
{(2v2 − v3 > 2) ∨ ¬(3v1 − 2v2 ≤ 3) ∨ (3v1 − v3 ≤ 6)} learned

µ′ = {¬(2v2 − v3 > 2),¬A2, (3v1 − 2v2 ≤ 3),¬A1, (v3 = 3v5 + 4), (3v1 − v3 ≤ 6)}.

=⇒ Sat: v1 = v2 = v3 = 0, v5 = −4/3 is a solution
N.B. (3v1 − v3 ≤ 6) “filtered out” from µ′ because it occurs only
negatively in the original formula ϕ

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 32 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms [45, 50, 4]

Source of inefficiency: semantically equivalent but syntactically
different atoms are not recognized to be identical [resp. one the
negation of the other]

=⇒ they may be assigned different [resp. identical] truth values.
=⇒ lots of redundant unsatisfiable assignment generated

Solution
Rewrite a priori trivially-equivalent atoms/literals into the same
atom/literal.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 33 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms [45, 50, 4]

Source of inefficiency: semantically equivalent but syntactically
different atoms are not recognized to be identical [resp. one the
negation of the other]

=⇒ they may be assigned different [resp. identical] truth values.
=⇒ lots of redundant unsatisfiable assignment generated

Solution
Rewrite a priori trivially-equivalent atoms/literals into the same
atom/literal.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 33 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms [45, 50, 4]

Source of inefficiency: semantically equivalent but syntactically
different atoms are not recognized to be identical [resp. one the
negation of the other]

=⇒ they may be assigned different [resp. identical] truth values.
=⇒ lots of redundant unsatisfiable assignment generated

Solution
Rewrite a priori trivially-equivalent atoms/literals into the same
atom/literal.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 33 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms [45, 50, 4]

Source of inefficiency: semantically equivalent but syntactically
different atoms are not recognized to be identical [resp. one the
negation of the other]

=⇒ they may be assigned different [resp. identical] truth values.
=⇒ lots of redundant unsatisfiable assignment generated

Solution
Rewrite a priori trivially-equivalent atoms/literals into the same
atom/literal.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 33 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms (cont.)

Sorting: (v1 + v2 ≤ v3 + 1), (v2 + v1 ≤ v3 + 1), (v1 + v2 − 1 ≤ v3)
=⇒ (v1 + v2 − v3 ≤ 1));
Rewriting dual operators:
(v1 < v2), (v1 ≥ v2) =⇒ (v1 < v2), ¬(v1 < v2)

Exploiting associativity:
(v1 + (v2 + v3) = 1), ((v1 + v2) + v3) = 1) =⇒ (v1 + v2 + v3 = 1);
Factoring (v1 + 2.0v2 ≤ 4.0), (−2.0v1 − 4.0v2 ≥ −8.0), =⇒
(0.25v1 + 0.5v2 ≤ 1.0);
Exploiting properties of T :
(v1 ≤ 3), (v1 < 4) =⇒ (v1 ≤ 3) if v1 ∈ Z;
...

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 34 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms (cont.)

Sorting: (v1 + v2 ≤ v3 + 1), (v2 + v1 ≤ v3 + 1), (v1 + v2 − 1 ≤ v3)
=⇒ (v1 + v2 − v3 ≤ 1));
Rewriting dual operators:
(v1 < v2), (v1 ≥ v2) =⇒ (v1 < v2), ¬(v1 < v2)

Exploiting associativity:
(v1 + (v2 + v3) = 1), ((v1 + v2) + v3) = 1) =⇒ (v1 + v2 + v3 = 1);
Factoring (v1 + 2.0v2 ≤ 4.0), (−2.0v1 − 4.0v2 ≥ −8.0), =⇒
(0.25v1 + 0.5v2 ≤ 1.0);
Exploiting properties of T :
(v1 ≤ 3), (v1 < 4) =⇒ (v1 ≤ 3) if v1 ∈ Z;
...

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 34 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms (cont.)

Sorting: (v1 + v2 ≤ v3 + 1), (v2 + v1 ≤ v3 + 1), (v1 + v2 − 1 ≤ v3)
=⇒ (v1 + v2 − v3 ≤ 1));
Rewriting dual operators:
(v1 < v2), (v1 ≥ v2) =⇒ (v1 < v2), ¬(v1 < v2)

Exploiting associativity:
(v1 + (v2 + v3) = 1), ((v1 + v2) + v3) = 1) =⇒ (v1 + v2 + v3 = 1);
Factoring (v1 + 2.0v2 ≤ 4.0), (−2.0v1 − 4.0v2 ≥ −8.0), =⇒
(0.25v1 + 0.5v2 ≤ 1.0);
Exploiting properties of T :
(v1 ≤ 3), (v1 < 4) =⇒ (v1 ≤ 3) if v1 ∈ Z;
...

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 34 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms (cont.)

Sorting: (v1 + v2 ≤ v3 + 1), (v2 + v1 ≤ v3 + 1), (v1 + v2 − 1 ≤ v3)
=⇒ (v1 + v2 − v3 ≤ 1));
Rewriting dual operators:
(v1 < v2), (v1 ≥ v2) =⇒ (v1 < v2), ¬(v1 < v2)

Exploiting associativity:
(v1 + (v2 + v3) = 1), ((v1 + v2) + v3) = 1) =⇒ (v1 + v2 + v3 = 1);
Factoring (v1 + 2.0v2 ≤ 4.0), (−2.0v1 − 4.0v2 ≥ −8.0), =⇒
(0.25v1 + 0.5v2 ≤ 1.0);
Exploiting properties of T :
(v1 ≤ 3), (v1 < 4) =⇒ (v1 ≤ 3) if v1 ∈ Z;
...

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 34 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Preprocessing atoms (cont.)

Sorting: (v1 + v2 ≤ v3 + 1), (v2 + v1 ≤ v3 + 1), (v1 + v2 − 1 ≤ v3)
=⇒ (v1 + v2 − v3 ≤ 1));
Rewriting dual operators:
(v1 < v2), (v1 ≥ v2) =⇒ (v1 < v2), ¬(v1 < v2)

Exploiting associativity:
(v1 + (v2 + v3) = 1), ((v1 + v2) + v3) = 1) =⇒ (v1 + v2 + v3 = 1);
Factoring (v1 + 2.0v2 ≤ 4.0), (−2.0v1 − 4.0v2 ≥ −8.0), =⇒
(0.25v1 + 0.5v2 ≤ 1.0);
Exploiting properties of T :
(v1 ≤ 3), (v1 < 4) =⇒ (v1 ≤ 3) if v1 ∈ Z;
...

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 34 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Static Learning [2, 4]

Often possible to quickly detect a priori short and “obviously
inconsistent” pairs or triplets of literals occurring in ϕ.

mutual exclusion {x = 0, x = 1},
congruence {(x1 = y1), (x2 = y2),¬(f (x1, x2) = f (y1, y2))},
transitivity {(x − y = 2), (y − z ≤ 4),¬(x − z ≤ 7)},
substitution {(x = y), (2x − 3z ≤ 3),¬(2y − 3z ≤ 3)}
...

Preprocessing step: detect these literals and add blocking clauses
to the input formula:
(e.g., ¬(x = 0) ∨ ¬(x = 1))

=⇒ No assignment including one such group of literals is ever
generated: as soon as all but one literals are assigned, the
remaining one is immediately assigned false by unit-propagation.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 35 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Static Learning [2, 4]

Often possible to quickly detect a priori short and “obviously
inconsistent” pairs or triplets of literals occurring in ϕ.

mutual exclusion {x = 0, x = 1},
congruence {(x1 = y1), (x2 = y2),¬(f (x1, x2) = f (y1, y2))},
transitivity {(x − y = 2), (y − z ≤ 4),¬(x − z ≤ 7)},
substitution {(x = y), (2x − 3z ≤ 3),¬(2y − 3z ≤ 3)}
...

Preprocessing step: detect these literals and add blocking clauses
to the input formula:
(e.g., ¬(x = 0) ∨ ¬(x = 1))

=⇒ No assignment including one such group of literals is ever
generated: as soon as all but one literals are assigned, the
remaining one is immediately assigned false by unit-propagation.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 35 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Static Learning [2, 4]

Often possible to quickly detect a priori short and “obviously
inconsistent” pairs or triplets of literals occurring in ϕ.

mutual exclusion {x = 0, x = 1},
congruence {(x1 = y1), (x2 = y2),¬(f (x1, x2) = f (y1, y2))},
transitivity {(x − y = 2), (y − z ≤ 4),¬(x − z ≤ 7)},
substitution {(x = y), (2x − 3z ≤ 3),¬(2y − 3z ≤ 3)}
...

Preprocessing step: detect these literals and add blocking clauses
to the input formula:
(e.g., ¬(x = 0) ∨ ¬(x = 1))

=⇒ No assignment including one such group of literals is ever
generated: as soon as all but one literals are assigned, the
remaining one is immediately assigned false by unit-propagation.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 35 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Other optimization techniques

T -deduced-literal filtering
Ghost-literal filtering
T -solver layering
T -solver clustering
...

(see [71, 10] for an overview)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 36 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Other SAT-solving techniques for SMT?

Frequently-asked question:
Are CDCL SAT solvers the only suitable Boolean Engines for SMT?

Some previous attempts:

Ordered Binary Decision Diagrams (OBDDs) [83, 60, 1]
Stochastic Local Search [49]

CDCL based currently much more efficient.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 37 / 130

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τp

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τpµp

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τpµp

µp |= τp?

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τp

T -solver

µp

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τp

T -solver

Hey T -solver!

µp

µp |= τp?

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τp

T -solver

µp |= τp?

µp

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τp

T -solver

Yes, µp |= τp!

µp

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

SMT formulas = “partially-invisible” SAT formulas

An SMT problem ϕ from the perspective of a SAT solver:

a “partially-invisible” Boolean CNF formula ϕp ∧ τp:
ϕp: the Boolean abstraction of the input formula ϕ
τp: (the B. abst. of) the set τ of all T -lemmas on atoms in ϕ.

ϕ T -satisfiable iff ϕp ∧ τp satisfiable.

the SAT solver:
“sees” only ϕp

finds µps.t. µp |= ϕp

cannot state if µp |= τp

invokes T -solver on µp

the T -solver:
“sees” τp

checks if µp |= τp:
if yes, returns SAT
if no, returns UNSAT and some
falsified clauses cp

1 , ..., c
p
k ∈ τ

p

c© www.xkcd.com

SAT solver

ϕp τp

T -solver

No! cp
1 , ..., c

p
k are falsified!

µp

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 38 / 130

www.xkcd.com

Efficient SMT solving Combining SAT with Theory Solvers

Example
ϕ :
c1 : {A1}
c2 : {¬A1 ∨ (x − z > 4)}
c3 : {¬A3 ∨ A1 ∨ (y ≥ 1)}
c4 : {¬A2 ∨ ¬(x − z > 4) ∨ ¬A1}
c5 : {(x − y ≤ 3) ∨ ¬A4 ∨ A5}
c6 : {¬(y − z ≤ 1) ∨ (x + y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x + y = 0) ∨ A2}
c8 : {¬A3 ∨ (z + y = 2)}
τ : (all possible T -lemmas on the T -atoms of ϕ)
c9 : {¬(x + y = 0) ∨ ¬(x + y = 1)}
c10 : {¬(x − z > 4) ∨ ¬(x − y ≤ 3) ∨ ¬(y − z ≤ 1)}
c11 : {(x − z > 4) ∨ (x − y ≤ 3) ∨ (y − z ≤ 1)}
c12 : {¬(x − z > 4) ∨ ¬(x + y = 1) ∨ ¬(z + y = 2)}
c13 : {¬(x − z > 4) ∨ ¬(x + y = 0) ∨ ¬(z + y = 2)}
... ...

ϕp :
c1 : {A1}
c2 : {¬A1 ∨ B1}
c3 : {¬A3 ∨ A1 ∨ B2}
c4 : {¬A2 ∨ ¬B1 ∨ ¬A1}
c5 : {B3 ∨ ¬A4 ∨ A5}
c6 : {¬B4 ∨ B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6 ∨ A2}
c8 : {¬A3 ∨ B7}
τ p :
c9 : {¬B6 ∨ ¬B5}
c10 : {¬B1 ∨ ¬B3 ∨ ¬B4}
c11 : {B1 ∨ B3 ∨ B4}
c12 : {¬B1 ∨ ¬B5 ∨ ¬B7}
c13 : {¬B1 ∨ ¬B6 ∨ ¬B7}
... ...

µp
1 : {A1,B1,¬A2,A3,¬A4,¬A5,¬B6,B5,B3,B4,B7,¬B2}
µ1 : {(x − z > 4),¬(x + y = 0), (x + y = 1), (x − y ≤ 3), (y − z ≤ 1), (z + y = 2),¬(y ≥ 1)}

satisfies ϕp, but violates both c10 and c12 in τ p.
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 39 / 130

Efficient SMT solving Combining SAT with Theory Solvers

Example
ϕ :
c1 : {A1}
c2 : {¬A1 ∨ (x − z > 4)}
c3 : {¬A3 ∨ A1 ∨ (y ≥ 1)}
c4 : {¬A2 ∨ ¬(x − z > 4) ∨ ¬A1}
c5 : {(x − y ≤ 3) ∨ ¬A4 ∨ A5}
c6 : {¬(y − z ≤ 1) ∨ (x + y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x + y = 0) ∨ A2}
c8 : {¬A3 ∨ (z + y = 2)}
τ : (all possible T -lemmas on the T -atoms of ϕ)
c9 : {¬(x + y = 0) ∨ ¬(x + y = 1)}
c10 : {¬(x − z > 4) ∨ ¬(x − y ≤ 3) ∨ ¬(y − z ≤ 1)}
c11 : {(x − z > 4) ∨ (x − y ≤ 3) ∨ (y − z ≤ 1)}
c12 : {¬(x − z > 4) ∨ ¬(x + y = 1) ∨ ¬(z + y = 2)}
c13 : {¬(x − z > 4) ∨ ¬(x + y = 0) ∨ ¬(z + y = 2)}
... ...

ϕp :
c1 : {A1}
c2 : {¬A1 ∨ B1}
c3 : {¬A3 ∨ A1 ∨ B2}
c4 : {¬A2 ∨ ¬B1 ∨ ¬A1}
c5 : {B3 ∨ ¬A4 ∨ A5}
c6 : {¬B4 ∨ B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6 ∨ A2}
c8 : {¬A3 ∨ B7}
τ p :
c9 : {¬B6 ∨ ¬B5}
c10 : {¬B1 ∨ ¬B3 ∨ ¬B4}
c11 : {B1 ∨ B3 ∨ B4}
c12 : {¬B1 ∨ ¬B5 ∨ ¬B7}
c13 : {¬B1 ∨ ¬B6 ∨ ¬B7}
... ...

µp
1 : {A1,B1,¬A2,A3,¬A4,¬A5,¬B6,B5,B3,B4,B7,¬B2}
µ1 : {(x − z > 4),¬(x + y = 0), (x + y = 1), (x − y ≤ 3), (y − z ≤ 1), (z + y = 2),¬(y ≥ 1)}

satisfies ϕp, but violates both c10 and c12 in τ p.
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 39 / 130

Efficient SMT solving Theory Solvers for theories of interest

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 40 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Equality and Uninterpreted Functions
(EUF)

Typically used as a “core” T -solver
EUF polynomial: O(n · log(n))

Fully incremental and backtrackable (stack-based)
use a congruence closure data structures (E-Graphs) [40, 64, 35],
based on the Union-Find data-structure for equivalence classes
Supports efficient T -propagation

Exhaustive for positive equalities
Incomplete for disequalities

Supports Lazy explanations and conflict generation
However, minimality not guaranteed

Supports efficient extensions
(e.g., Integer offsets, Bit-vector slicing and concatenation)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 41 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for EUF : Example

Idea (sketch): given the set of terms occurring in the formula
represented as nodes in a DAG (aka term bank),

if (t = s), then merge the eq. classes of t and s
if ∀i ∈ 1...k , ti and si pairwise belong to the same eq. classes,
then merge the the eq. classes of f (t1, ..., tk) and f (s1, ..., sk)

if (t 6= s) and t and s belong to the same eq. class, then conflict

g

a

g

c

f

b

f f (a,b) = a
f (f (a,b),b) = c

g(a) 6= g(c)

Example borrowed from [40].

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 42 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for EUF : Example

Idea (sketch): given the set of terms occurring in the formula
represented as nodes in a DAG (aka term bank),

if (t = s), then merge the eq. classes of t and s
if ∀i ∈ 1...k , ti and si pairwise belong to the same eq. classes,
then merge the the eq. classes of f (t1, ..., tk) and f (s1, ..., sk)

if (t 6= s) and t and s belong to the same eq. class, then conflict

g

a

g

c

f

b

f f (a,b) = a
f (f (a,b),b) = c

g(a) 6= g(c)

Example borrowed from [40].

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 42 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for EUF : Example

Idea (sketch): given the set of terms occurring in the formula
represented as nodes in a DAG (aka term bank),

if (t = s), then merge the eq. classes of t and s
if ∀i ∈ 1...k , ti and si pairwise belong to the same eq. classes,
then merge the the eq. classes of f (t1, ..., tk) and f (s1, ..., sk)

if (t 6= s) and t and s belong to the same eq. class, then conflict

g

a

g

c

f

b

f f (a,b) = a
f (f (a,b),b) = c

g(a) 6= g(c)

Example borrowed from [40].

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 42 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for EUF : Example

Idea (sketch): given the set of terms occurring in the formula
represented as nodes in a DAG (aka term bank),

if (t = s), then merge the eq. classes of t and s
if ∀i ∈ 1...k , ti and si pairwise belong to the same eq. classes,
then merge the the eq. classes of f (t1, ..., tk) and f (s1, ..., sk)

if (t 6= s) and t and s belong to the same eq. class, then conflict

g

a

g

c

f

b

f f (a,b) = a
f (f (a,b),b) = c

g(a) 6= g(c)

Example borrowed from [40].

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 42 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for EUF : Example

Idea (sketch): given the set of terms occurring in the formula
represented as nodes in a DAG (aka term bank),

if (t = s), then merge the eq. classes of t and s
if ∀i ∈ 1...k , ti and si pairwise belong to the same eq. classes,
then merge the the eq. classes of f (t1, ..., tk) and f (s1, ..., sk)

if (t 6= s) and t and s belong to the same eq. class, then conflict

g

a

g

c

f

b

f f (a,b) = a
f (f (a,b),b) = c

g(a) 6= g(c)

=⇒ conflict
Example borrowed from [40].

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 42 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Difference logic (DL)

DL polynomial: O(#vars ·#constraints)
variants of the Bellman-Ford shortest-path algorithm: a negative
cycle reveals a conflict [65, 34]
Ex:
{(x1 − x2 ≤ −1), (x1 − x4 ≤ −1), (x1 − x3 ≤ −2),
(x3 − x4 ≤ −2), (x3 − x2 ≤ −1), (x4 − x2 ≤ 3), (x4 − x3 ≤ 6)}

−1

−1

−1

−2

6

−2

0

0

0

0

3

x1

x0

x2

x4x3

[−4, x3]

[0, x0]

[0, x0]

[0, x0][−2, x4]

=⇒ Sat
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 43 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Difference logic (DL)

DL polynomial: O(#vars ·#constraints)
variants of the Bellman-Ford shortest-path algorithm: a negative
cycle reveals a conflict [65, 34]
Ex:
{(x1 − x2 ≤ −1), (x1 − x4 ≤ −1), (x1 − x3 ≤ −2), (x2 − x1 ≤ 2),
(x3 − x4 ≤ −2), (x3 − x2 ≤ −1), (x4 − x2 ≤ 3), (x4 − x3 ≤ 6)}

−1

−1

−1

−2

6

−2

0

0

0

0

3

x1

x0

x2

x4x3

[−4, x3]

[0, x0]

[0, x0]

[0, x0][−2, x4]

2

−1

−1

−1

−2

6

−2

0

0

0

0

3

x1

x0

x2

x4x3

[0,x0]

[-6,x3] [-4,x1]

[-5,x2] [0,x0]

=⇒ Sat =⇒ Unsat
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 43 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Linear arithmetic over the rationals
(LRA)

EX: {(s1 − s2 ≤ 5.2), (s1 = s0 + 3.4 · t − 3.4 · t0),¬(s1 = s0)}
LRA polynomial
variants of the simplex LP algorithm [41]
[41] allows for detecting conflict sets & performing T -propagation
strict inequalities t < 0 rewritten as t + ε ≤ 0, ε treated symbolically

B N
x1
...
xi
...

xN

 =


. . .A1j . . .

...
Ai1 . . .Aij . . .AiM

...
. . .ANj . . .




xN+1

...
xj
...

xN+M

 ;

Invariant: β(xj) ∈ [lj ,uj] ∀xj ∈ N
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 44 / 130

Efficient SMT solving Theory Solvers for theories of interest

Remark: infinite precision arithmetic

In order to avoid incorrect results due to numerical errors and to
overflows, all T -solvers for LRA, LIA and their subtheories which are
based on numerical algorithms must be implemented on top of
infinite-precision-arithmetic software packages.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 45 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Linear arithmetic over the integers (LIA)

EX: {(x := xl + 216xh), (x ≥ 0), (x ≤ 216 − 1)}
LIA NP-complete
combination of many techniques: simplex, branch&bound, cutting
planes, ... [41, 47]

Internal
Branch and Bound

Branch and Bound
lemmas generator

LIA-solver

3

DPLL

21

2LRA-solver

3no conflict
trail simplifications

4 conflict
5

5

timeout

Branch and Bound-lemma

1
Diophantine

equations handler

4

1

conflict

LIA-conflict

no conflict
equality elimination

no conflict

LIA model

conflict

LIA model

SAT

Figure courtesy of A. Griggio [47]
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 46 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Arrays (AR)

EX: (write(A, i , v) = write(B, i ,w)) ∧ ¬(v = w)
NP-complete
congruence closure (EUF) plus on-the-fly instantiation of array’s
axioms:

∀a.∀i .∀e. (read(write(a, i ,e), i) = e), (1)
∀a.∀i .∀j .∀e. ((i 6= j)→ read(write(a, i ,e), j) = read(a, j)),(2)
∀a.∀b. (∀i .(read(a, i) = read(b, i))→ (a = b)). (3)

EX:
Input : (write(A, i , v) = write(B, i ,w)) ∧ ¬(v = w)
inst . (1) : (read(write(A, i , v), i) = v)

(read(write(B, i ,w), i) = w)
|=EUF (v = w)
|=Bool ⊥

many strategies discussed in the literature (e.g., [40, 46, 20, 39])Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 47 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Bit vectors (BV)

Bit vectors (BV)

EX: {(x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[16][3 : 0]), ...}
NP-hard
involve complex word-level operations: word partition/concat,
modulo-2N arithmetic, shifts, bitwise-operations, multiplexers, ...
T -solving: combination of rewriting & simplification techniques
with either:

final encoding into LIA [19, 22]
final encoding into SAT (lazy bit-blasting) [25, 43, 21, 42]

Eager approach

Most solvers use an eager approach for BV (e.g., [21]):
Heavy preprocessing, based on rewriting rules
bit-blasting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 48 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Bit vectors (BV) [cont.]

PREPROCESSOR SOLVER
Concat. Elimination (match)

LITERAL NORMALIZATION

Concat. elimination (no match)

Variable elimination

Deduction rules

TERM BANK

Evaluation of Ground Terms
Bit−mask Elimination Selection Propagation

Unconstrained variables

Control paths extraction

Bool/word1 encoding

Frontier propagation

ITE expansion

Formula Normalizer

Example borrowed from [22]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 49 / 130

Efficient SMT solving Theory Solvers for theories of interest

T -solvers for Bit vectors (BV) [cont.]

Lazy bit-blasting

Two nested SAT solvers
bit-blast each BV atom ψi

=⇒ Φ
def
=
∧

i(Ai ↔ BB(ψi)),
Ai fresh variables labeling BV-atoms ψi in ϕ
=⇒ ϕ BV-satisfiable iff ϕp ∧ Φ satisfiable
Exploit SAT under assumptions

let µp an assignment for ϕp, s.t. µp def
= {[¬]A1, ..., [¬]An}

T -solver for BV: SATassumption(Φ, µp)
If UNSAT, generate the unsat core ηp ⊆ µp

=⇒ ¬ηp used as blocking clause

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 50 / 130

Efficient SMT solving SMT for combinations of theories

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 51 / 130

Efficient SMT solving SMT for combinations of theories

SMT for combined theories: SMT (
⋃

i Ti)

Problem: Many problems can be expressed as SMT problems only in
combination of theories

⋃
i Ti — SMT (

⋃
i Ti)

Sub

h

f

f

=

h

0

v0 v1 v3 v2 v6

v4 v8 v7

EQ67

v5RESET5

LE01

GE01 ≥

≥

LIA : (GE01 ↔ (v0 ≥ v1)) ∧ (LE01 ↔ (v0 ≤ v1))∧
EUF : (v3 = h(v0)) ∧ (v4 = h(v1))∧
LIA : (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
EUF or LIA : (¬RESET5 → (v5 = v8))∧
EUF : (v6 = f (v2)) ∧ (v7 = f (v5))∧
EUF or LIA : (EQ67 ↔ (v6 = v7)) ∧

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 52 / 130

Efficient SMT solving SMT for combinations of theories

SMT for combined theories: SMT(T1 ∪ T2)

Standard approach for combining Ti -solver’s:
(deterministic) Nelson-Oppen/Shostak (N.O.) [61, 63, 77]

based on deduction and exchange of equalities on shared variables
combined Ti -solver’s integrated with a SAT tool

More-recent alternative approaches: Delayed Theory
Combination [15, 14] and Model-Based Theory Combination [37]

based on Boolean search on equalities on shared variables
Ti -solver’s integrated directly with a SAT tool

Problem:
N.O. approaches have some drawbacks and limitations when used
within a SMT framework

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 53 / 130

Efficient SMT solving SMT for combinations of theories

Background: Pure Formulas

Consider two theories T1, T2 with equality and disjoint signatures
Σ1,Σ2

W.l.o.g. we assume all input formulas φ ∈ T1 ∪ T2 are pure.
A formula φ is pure iff every atom in φ is i-pure for some i ∈ {1,2}.
An atom/literal in φ is i-pure if only =, variables and symbols from
Σi can occur in φ

Purification:
maps a formula into an equisatisfiable pure formula by labeling terms
with fresh variables

(f (x + 3y︸ ︷︷ ︸
w

) = g(2x − y︸ ︷︷ ︸
t

)) [not pure]

⇓
(w = x + 3y) ∧ (t = 2x − y) ∧ (f (w) = g(t)) [pure]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 54 / 130

Efficient SMT solving SMT for combinations of theories

Background: Interface equalities
Interface variables & equalities

A variable v occurring in a pure formula φ is an interface variable
iff it occurs in both 1-pure and 2-pure atoms of φ.
An equality (vi = vj) is an interface equality for φ iff vi , vj are
interface variables for φ.
We denote the interface equality vi = vj by “eij ”

Example:

LIA : (GE01 ↔ (v0 ≥ v1)) ∧ (LE01 ↔ (v0 ≤ v1))∧
EUF : (v3 = h(v0)) ∧ (v4 = h(v1))∧
LIA : (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
EUF or LIA : (¬RESET5 → (v5 = v8))∧
EUF : (v6 = f (v2)) ∧ (v7 = f (v5))∧
EUF or LIA : (EQ67 ↔ (v6 = v7)) ∧

v0, v1, v2, v3, v4, v5 are interface variables, v6, v7, v8 are not
=⇒ (v0 = v1) is an interface equality, (v0 = v6) is not.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 55 / 130

Efficient SMT solving SMT for combinations of theories

Background: Stably-infinite & Convex Theories
Stably-infinite Theories
A theory T is stably-infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T .

EUF , DL, LRA, LIA are stably-infinite
bit-vector theories typically are not stably-infinite

Convex Theories
A theory T is convex iff, for every collection l1, ..., lk , l ′, l ′′ of literals in T
s.t. l ′, l ′′ are in the form (x = y), x , y being variables, we have that:
{l1, ..., lk} |=T (l ′ ∨ l ′′) ⇐⇒ {l1, ..., lk} |=T l ′ or {l1, ..., lk} |=T l ′′

EUF , DL, LRA are convex
LIA is not convex:
{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} |= ((v = v0) ∨ (v = v1)),
{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} 6|= (v = v0)
{(v0 = 0), (v1 = 1), (v ≥ 0), (v ≤ v1)} 6|= (v = v1)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 56 / 130

Efficient SMT solving SMT for combinations of theories

Background: Stably-infinite & Convex Theories
Stably-infinite Theories
A theory T is stably-infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T .

EUF , DL, LRA, LIA are stably-infinite
bit-vector theories typically are not stably-infinite

Convex Theories
A theory T is convex iff, for every collection l1, ..., lk , l ′, l ′′ of literals in T
s.t. l ′, l ′′ are in the form (x = y), x , y being variables, we have that:
{l1, ..., lk} |=T (l ′ ∨ l ′′) ⇐⇒ {l1, ..., lk} |=T l ′ or {l1, ..., lk} |=T l ′′

EUF , DL, LRA are convex
LIA is not convex:
{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} |= ((v = v0) ∨ (v = v1)),
{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} 6|= (v = v0)
{(v0 = 0), (v1 = 1), (v ≥ 0), (v ≤ v1)} 6|= (v = v1)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 56 / 130

Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via “classic” Nelson-Oppen

Main idea
Combine two or more Ti -solvers into one (

⋃
i Ti)-solver via

Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

based on the deduction and exchange of equalities between
shared variables/terms (interface equalities, eijs)
important improvements and evolutions [69, 7, 40]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 57 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

For i ∈ {1,2}, let Ti be a stably infinite theory admitting a satisfiability
Ti -solver, and µi a set of i-pure literals.
We want to to decide the T1 ∪ T2-satisfiability of µ1 ∪ µ2

each Ti -solver, in turn
checks the Ti -satisfiability of µi ,
deduces all the (disjunctions of) interface equalities which derive
from µi
passes them to Tj -solve, j 6= i , which adds them to µj

until either:
one Ti -solver detects inconsistency (µ1 ∪ µ2 is T1 ∪ T2-unsat)
no more deductions are possible (µ1 ∪ µ2 is T1 ∪ T2-sat)

disjunctions of literals (due to non-convexity) force case-splitting

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 58 / 130

Efficient SMT solving SMT for combinations of theories

Schema of N.O. combination of T-solvers: no(T1,T2)

∨(vi = vj)
T2-deduce

T2-satisfiable

T2-solverT1-solver
no(T1,T2)

T1-deduce

T1-satisfiable

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 59 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (convex theory)

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LRA : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

Branch 1 Branch 2

¬RESET5

v0 = v1

v2 = v5

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v3 = v4

¬(v6 = v7)

v0 ≥ v1

v5 = 0

v0 = v1

v2 = v5

v3 = v4

v2 = v3 − v4

v0 ≥ v1

v5 = v8

v0 ≤ v1

v0 = v1

v3 = v4

v2 = v3 − v4

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v0 = v1

v3 = v4

¬(v6 = v7)

v0 ≤ v1

LRA

EUF ∪ LRA-Satisfiable!

EUF EUF LRA

〈eij-deduction〉

〈eij-deduction〉 〈eij-deduction〉

〈eij-deduction〉〈eij-deduction〉

RESET5

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 60 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (convex theory) [cont.]

Branch 1 Branch 2

¬RESET5

v0 = v1

v2 = v5

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v3 = v4

¬(v6 = v7)

v0 ≥ v1

v5 = 0

v0 = v1

v2 = v5

v3 = v4

v2 = v3 − v4

v0 ≥ v1

v5 = v8

v0 ≤ v1

v0 = v1

v3 = v4

v2 = v3 − v4

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v0 = v1

v3 = v4

¬(v6 = v7)

v0 ≤ v1

LRA

EUF ∪ LRA-Satisfiable!

EUF EUF LRA

〈eij-deduction〉

〈eij-deduction〉 〈eij-deduction〉

〈eij-deduction〉〈eij-deduction〉

RESET5

EUF-conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v5))→ ⊥
LRA-deduction : ((v2 = v3 − v4) ∧ (v5 = 0) ∧ (v3 = v4))→ (v2 = v5)
EUF-deduction : ((v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 = v1))→ (v3 = v4)
LRA-deduction : ((v0 ≥ v1) ∧ (v0 ≤ v1))→ (v0 = v1)
=⇒
EUF ∪ LRA-conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v3 − v4)∧

(v5 = 0) ∧ (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 ≥ v1))→ ⊥.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 61 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

v2 = v3

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

v2 = v4v2 = v3

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

v1 = v4
SAT!

v2 = v4v2 = v3

〈eij-deduction〉
v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

N.O.: example (non-convex theory)

3 eij-deductions,

3 branches

v1 = v4
SAT!

v2 = v4v2 = v3

v5 = v6

v2 = v3 ∨ v2 = v4

〈eij-deduction〉

〈eij-deduction〉
v5 = v6

v1 = v3

〈eij-deduction〉

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1
v4 = 1
v3 = 0
v5 = v4 − 1

µLIA

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF
¬(f (v1) = f (v2))

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 62 / 130

Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via “classic” Nelson-Oppen

Main idea
Combine two or more Ti -solvers into one (

⋃
i Ti)-solver via

Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

based on the deduction and exchange of equalities between
shared variables/terms (interface equalities, eijs)
important improvements and evolutions [69, 7, 40]
drawbacks [23, 24]:

require (possibly expensive) deduction capabilities from Ti -solvers
[with non-convex theories] case-splits forced by the deduction of
disjunctions of eij ’s
generate (typically long) (

⋃
i Ti)-lemmas, without interface equalities

=⇒ no backjumping & learning from eij -reasoning

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 63 / 130

Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via “classic” Nelson-Oppen

Main idea
Combine two or more Ti -solvers into one (

⋃
i Ti)-solver via

Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

based on the deduction and exchange of equalities between
shared variables/terms (interface equalities, eijs)
important improvements and evolutions [69, 7, 40]
drawbacks [23, 24]:

require (possibly expensive) deduction capabilities from Ti -solvers
[with non-convex theories] case-splits forced by the deduction of
disjunctions of eij ’s
generate (typically long) (

⋃
i Ti)-lemmas, without interface equalities

=⇒ no backjumping & learning from eij -reasoning

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 63 / 130

Efficient SMT solving SMT for combinations of theories

SMT (
⋃

i Ti) via Delayed Theory Combination (DTC)

Main idea
Delegate to the CDCL SAT solver part/most of the (possibly very
expensive) reasoning effort on interface equalities previously due to
the Ti -solvers (eij -deduction, case-split). [15, 16, 24]

based on Boolean reasoning on interface equalities via CDCL
(plus T -propagation)
important improvements and evolutions [37, 9]
feature wrt N.O. [23, 24]

do not require (possibly expensive) deduction capabilities from
Ti -solvers
with non-convex theories, case-splits on eij ’s handled by SAT
generate Ti -lemmas with interface equalities
=⇒ backjumping & learning from eij -reasoning

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 64 / 130

Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 65 / 130

Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

µ = µ1 ∪ µ2 ∪ µe, µe := {[¬](vi = vj)|vi , vj ∈ µ1 ∪ µ2}

The boolean solver assigns values not only to atoms in Atoms(φ),
but also to interface equalities {(vi = vj)}ij :

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 66 / 130

Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

• checks the Ti-satisfiability of µ′i

• receives µ′i := µi ∪ µe from Bool
Each Ti-solver interacts only with the boolean solver

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 67 / 130

Efficient SMT solving SMT for combinations of theories

DTC: Basic schema

BOOLEAN MODEL

ENUMERATION

...until either:
• some µ propositionally satisfies φ and both µ′i := µi ∪ µe are Ti-consistent
=⇒ (φ is T1 ∪ T2-sat)

=⇒ (φ is T1 ∪ T2-unsat)
• no more assignment µ are available

T1-satisfiable

µe µ2µ1
Sat/UnsatSat/Unsat

T2-satisfiable

Atoms ∪ {eij}ij

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 68 / 130

Efficient SMT solving SMT for combinations of theories

DTC: enhanced schema

DPLL-based assignment enumeration on Atoms(φ) ∪ {eij}ij ,
=⇒ benefits of state-of-the-art SAT techniques
Early pruning: invoke the Ti -solver’s before every Boolean
decision
=⇒ total assignments generated only when strictly necessary
Branching: branching on eij ’s postponed
=⇒ Boolean search on eij ’s performed only when strictly
necessary
Theory-Backjumping & Learning: eij ’s are involved in conflicts
=⇒ eij ’s can be assigned by unit propagation
[Theory-deduction & learning: Ti -solver deduces unassigned
literals l on Atoms(φ) ∪ {eij}ij

l is passed back to the Boolean solver, which unit-propagates it
the deduction µ′ |= l is learned as a clause µ′ → l (deduction
clause)]

...
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 69 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

LIA-unsat, C13

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

EUF-unsat, C56

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

LIA-unsat, C23

C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

EUF-unsat, C24

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

EUF-unsat, C14

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

SAT!

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

SAT! 6 branches

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example w.out T -prop. (non-convex theory)

SAT!

and the two branches (v1 = v3), (v1 = v4)

µ′LIA |=LIA ((v1 = v3) ∨ (v1 = v4))

Mimics the eij-deduction
v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

v1 = v3

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLIA:
¬(f (v1) = f (v2))
¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 70 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

LIA-deduce (v1 = v4) ∨ (v1 = v3), C13

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

¬(v1 = v4)

v1 = v3

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

EUF-deduce (v5 = v6), C56
v5 = v6

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

¬(v1 = v4)

v1 = v3

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

LIA-deduce (v2 = v4) ∨ (v2 = v3), C23

C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

v5 = v6

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

¬(v1 = v4)

v1 = v3

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

EUF-unsat, C24

v2 = v3

¬(v2 = v4)

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

v5 = v6

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

¬(v1 = v4)

v1 = v3

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

EUF-unsat, C14

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

¬(v2 = v4)

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

v5 = v6

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

¬(v1 = v4)

v1 = v3

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

SAT!

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

¬(v2 = v4)

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

v5 = v6

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

¬(v1 = v4)

v1 = v3

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -prop. (non-convex theory)

SAT! 3 eij-deductions
3 branches

v1 = v4

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥

v2 = v4

v2 = v3

¬(v2 = v4)

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LIA ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

v5 = v6

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

¬(v1 = v4)

v1 = v3

C13 : (µ′LIA)→ ((v1 = v3) ∨ (v1 = v4))

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

µEUF :
¬(f (v1) = f (v2))

v2 ≤ v6 + 1

µLIA:
v5 = v4 − 1
v3 = 0
v4 = 1

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 71 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example without T -propagation (convex theory)

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LRA : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

....

LRA-unsat
C01

C01 : (µ′LRA)→ (v0 = v1)
C34 : (µ′EUF ∧ (v0 = v1))→ (v3 = v4)
C25 : (µ′′LRA ∧ (v5 = 0) ∧ (v3 = v4))→ (v2 = v5)
C67 : (µ′′EUF ∧ (v2 = v5))→ (v6 = v7)

¬(v3 = v4)

¬(v2 = v5)

(v3 = v4)

(v2 = v5)

C67

C25

C34

¬e′ij

LRA-unsat

(v0 = v1)

(v5 = 0)

EUF-unsat

¬RESET5

(v5 = v8)

¬eij”

EUF-unsat

µEUF :
{(v3 = h(v0)), (v4 = h(v1)),¬(v6 = v7),
(v6 = f (v2)), (v7 = f (v5))}

Search for an assignment µ
propositionally satisfying ϕ

Search on eij’s:
check the T1 ∪ T2-
satisfiability of µ

RESET5

¬(v0 = v1)

µLRA :
{(v0 ≥ v1), (v0 ≤ v1),
(v2 = v3 − v4)}

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 72 / 130

Efficient SMT solving SMT for combinations of theories

DTC: example with T -propagation (convex theory)

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LRA : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

SAT

(v0 = v1)

EUF-unsat
C67

LRA-deduce (v0 = v1)
learn C01

C34 : (µ′EUF ∧ (v0 = v1))→ (v3 = v4)
C01 : (µ′LRA)→ (v0 = v1)

C25 : (µ′′LRA ∧ (v5 = 0) ∧ (v3 = v4))→ (v2 = v5)
C67 : (µ′′EUF ∧ (v2 = v5))→ (v6 = v7)

(v2 = v5)

RESET5

µEUF :
{(v3 = h(v0)), (v4 = h(v1)),¬(v6 = v7),
(v6 = f (v2)), (v7 = f (v5))}

(v0 = v1)

(v3 = v4)

(v5 = v8)(v5 = 0)

(v3 = v4)

¬RESET5

EUF-deduce (v3 = v4)

LRA-deduce (v2 = v5)

µLRA :
{(v0 ≥ v1), (v0 ≤ v1),
(v2 = v3 − v4)}

learn C34

learn C25

LRA-deduce (v0 = v1)
learn C ′01

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 73 / 130

Efficient SMT solving SMT for combinations of theories

DTC + Model-based heuristic
(aka Model-Based Theory Combination) [37]

Initially, no interface equalities generated
When a model is found, check against all the possible interface
equalities

If T1 and T2 agree on the implied equalities, then return SAT
Otherwise, branch on equalities implied by T1-model but not by
T2-model

“Optimistic” approach, similar to axiom instantiation

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 74 / 130

Beyond Solving: advanced SMT functionalities

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 75 / 130

Beyond Solving: advanced SMT functionalities

Beyond Solving: advanced SAT & SMT functionalities

Advanced SMT functionalities (very important in FV):

Building proofs of T -unsatisfiability
Extracting T -unsatisfiable Cores
Computing Craig interpolants
Performing All-SMT and Predicate Abstraction
Deciding/optimizing SMT problems with costs

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 76 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 77 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Building (Resolution) Proofs of T -Unsatisfiability

Resolution proof of T -unsatisfiability
Very similar to building proofs with plain SAT:

resolution proofs whose leaves are original clauses and T -lemmas
returned by the T -solver (i.e., T -conflict and T -deduction clauses)
built by backward traversal of implication graphs, as in CDCL SAT
Sub-proofs of T -lemmas can be built in some T -specific
deduction framework if requested

Important for:
certifying T -unsatisfiability results
computing unsatisfiable cores
computing interpolants

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 78 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Building Proofs of T -Unsatisfiability: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧
(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

(x = 1 ∨ x = 0 ∨ A2)

(x = 0 ∨ A1 ∨ A2)

(x = 0 ∨ ¬(x = 1) ∨ A1)

(y = 2 ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LIA

(A2 ∨ ¬(y < 0)) (¬A2 ∨ y = 1)

(¬(y < 0) ∨ y = 1)

(A1 ∨ A2)(¬A1 ∨ y = 2)

(¬(y = 1) ∨ ¬(y < 0))LIA

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LIA

(¬(x = 0) ∨ A2)

(x = 1 ∨ ¬(x = 0) ∨ A2)

relevant original clauses, irrelevant original clauses, T -lemmas

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 79 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Example: proof on non-strict LRA inequalities

A proof of unsatisfiability for a set of non-strict LRA inequalities
can be obtained by building a linear combination of such
inequalities, each time eliminating one or more variables, until you
get a contradictory inequality on constant values.
Example:

ϕ
def
= (0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2),(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3).

A proof of unsatisfiability P for ϕ is the following:
(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1) with coeffs 1 and 3
(0 ≤ x3 − 2x1 − 3) (0 ≤ 1− 2x3)

COMB (0 ≤ −4x1 − 5) with coeffs 2 and 1
COMB (0 ≤ −4) with coeffs 1 and 1

It is possible to produce such proof from an inconsistent tableau in
Simplex procedure for LRA [30, 32]
It is straightforward to produce such proof from a negative cycle in
the graph-based procedure for DL [30, 32]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 80 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Example: proof on non-strict LRA inequalities

A proof of unsatisfiability for a set of non-strict LRA inequalities
can be obtained by building a linear combination of such
inequalities, each time eliminating one or more variables, until you
get a contradictory inequality on constant values.
Example:

ϕ
def
= (0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2),(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3).

A proof of unsatisfiability P for ϕ is the following:
(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1) with coeffs 1 and 3
(0 ≤ x3 − 2x1 − 3) (0 ≤ 1− 2x3)

COMB (0 ≤ −4x1 − 5) with coeffs 2 and 1
COMB (0 ≤ −4) with coeffs 1 and 1

It is possible to produce such proof from an inconsistent tableau in
Simplex procedure for LRA [30, 32]
It is straightforward to produce such proof from a negative cycle in
the graph-based procedure for DL [30, 32]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 80 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Example: proof on non-strict LRA inequalities

A proof of unsatisfiability for a set of non-strict LRA inequalities
can be obtained by building a linear combination of such
inequalities, each time eliminating one or more variables, until you
get a contradictory inequality on constant values.
Example:

ϕ
def
= (0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2),(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3).

A proof of unsatisfiability P for ϕ is the following:
(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1) with coeffs 1 and 3
(0 ≤ x3 − 2x1 − 3) (0 ≤ 1− 2x3)

COMB (0 ≤ −4x1 − 5) with coeffs 2 and 1
COMB (0 ≤ −4) with coeffs 1 and 1

It is possible to produce such proof from an inconsistent tableau in
Simplex procedure for LRA [30, 32]
It is straightforward to produce such proof from a negative cycle in
the graph-based procedure for DL [30, 32]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 80 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Example: proof on non-strict LRA inequalities

A proof of unsatisfiability for a set of non-strict LRA inequalities
can be obtained by building a linear combination of such
inequalities, each time eliminating one or more variables, until you
get a contradictory inequality on constant values.
Example:

ϕ
def
= (0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2),(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3).

A proof of unsatisfiability P for ϕ is the following:
(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1) with coeffs 1 and 3
(0 ≤ x3 − 2x1 − 3) (0 ≤ 1− 2x3)

COMB (0 ≤ −4x1 − 5) with coeffs 2 and 1
COMB (0 ≤ −4) with coeffs 1 and 1

It is possible to produce such proof from an inconsistent tableau in
Simplex procedure for LRA [30, 32]
It is straightforward to produce such proof from a negative cycle in
the graph-based procedure for DL [30, 32]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 80 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Extraction of T -unsatisfiable cores

The problem
Given a T -unsatisfiable set of clauses, extract from it a (possibly
small/minimal/minimum) T -unsatisfiable subset (T -unsatisfiable core)

wide literature in SAT
Some implementations, very few literature for SMT [29, 56]
We recognize three approaches:

Proof-based approach (CVClite, MathSAT):
byproduct of finding a resolution proof
Assumption-based approach (Yices):
use extra variables labeling clauses, as in the plain Boolean case
Lemma-Lifting approach [29] :
use an external (possibly-optimized) Boolean unsat-core extractor

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 81 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The proof-based approach to T -unsat cores

Idea (adapted from [84])
Unsatisfiable core of ϕ:

in SAT: the set of leaf clauses of a resolution proof of
unsatisfiability of ϕ
in SMT(T): the set of leaf clauses of a resolution proof of
T -unsatisfiability of ϕ, minus the T -lemmas

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 82 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The proof-based approach to T -unsat cores: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧
(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

(x = 1 ∨ x = 0 ∨ A2)

(x = 0 ∨ A1 ∨ A2)

(x = 0 ∨ ¬(x = 1) ∨ A1)

(y = 2 ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LIA

(A2 ∨ ¬(y < 0)) (¬A2 ∨ y = 1)

(¬(y < 0) ∨ y = 1)

(A1 ∨ A2)(¬A1 ∨ y = 2)

(¬(y = 1) ∨ ¬(y < 0))LIA

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LIA

(¬(x = 0) ∨ A2)

(x = 1 ∨ ¬(x = 0) ∨ A2)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 83 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The assumption-based approach to T -unsat cores

Let ϕ be
∧n

i=1 Ci s.t. ϕ inconsistent.

Idea (adapted from [57])
1 each clause Ci in ϕ is substituted by ¬Si ∨ Ci , s.t. Si fresh

“selector” variable
2 the resulting formula is checked for satisfiability under the

assumption of all Si ’s
3 final conflict clause at dec. level 0:

∨
j ¬Sj

=⇒{Cj}j is the unsat core

extends straightforwardly to SMT(T).

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 84 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The assumption-based approach to T -unsat cores:
Example

(S1 → (x = 0 ∨ ¬(x = 1) ∨ A1)) ∧ (S2 → (x = 0 ∨ x = 1 ∨ A2)) ∧
(S3 → (¬(x = 0) ∨ x = 1 ∨ A2)) ∧ (S4 → (¬A2 ∨ y = 1)) ∧

(S5 → (¬A1 ∨ x + y > 3)) ∧ (S6 → y < 0) ∧
(S7 → (A2 ∨ x − y = 4)) ∧ (S8 → (y = 2 ∨ ¬A1)) ∧ (S9 → x ≥ 0)

Conflict analysis (Yices 1.0.6) returns:

¬S1 ∨ ¬S2 ∨ ¬S3 ∨ ¬S4 ∨ ¬S6 ∨ ¬S7 ∨ ¬S8,

corresponding to the unsat core in red.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 85 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The lemma-lifting approach to T -unsat cores

Idea [29, 33]

(i) The T -lemmas Di are valid in T
(ii) The conjunction of ϕ with all the T -lemmas D1, . . . ,Dk is

propositionally unsatisfiable: T 2B(ϕ ∧
∧n

i=1 Di) |= ⊥.

Boolean unsat−core:

Refinement:Boolean abstraction:

Result:Input clauses:

Boolean_Unsat_Core_Extractor

T 2B({C1, . . . ,Cn,D1, . . . ,Dk})

Lazy_SMT_Solver

{D1, . . . ,Dk}
Stored T -Lemmas:

{D′1, . . . ,D
′
j }

T 2B({C′1, . . . ,C
′
m,D′1, . . . ,D

′
j })

T -valid clauses:

T 2B B2T

SAT/UNSAT{C1, . . . ,Cn}
T -unsat core:
{C′1, . . . ,C

′
m}

interfaces with an external Boolean Unsat-core Extractor
=⇒benefits for free of all state-of-the-art size-reduction techniques

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 86 / 130

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The lemma-lifting approach to T -unsat cores: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧
(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

1 The SMT solver generates the following set of LIA-lemmas:

{(¬(x = 1) ∨ ¬(x = 0)), (¬(y = 2) ∨ ¬(y < 0)), (¬(y = 1) ∨ ¬(y < 0))}.

2 The following formula is passed to the external Boolean core
extractor

(B0 ∨ ¬B1 ∨ A1) ∧ (B0 ∨ B1 ∨ A2) ∧ (¬B0 ∨ B1 ∨ A2)∧
(¬A2 ∨ B2) ∧ (¬A1 ∨ B3) ∧ B4 ∧ (A2 ∨ B5) ∧ (B6 ∨ ¬A1) ∧ B7∧

(¬B1 ∨ ¬B0) ∧ (¬B6 ∨ ¬B4) ∧ (¬B2 ∨ ¬B4)

which returns the unsat core in red.
3 The unsat-core is mapped back, the three T -lemmas are removed

=⇒ the final T -unsat core (in red above).
Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 87 / 130

Beyond Solving: advanced SMT functionalities Interpolants

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 88 / 130

Beyond Solving: advanced SMT functionalities Interpolants

Computing (Craig) Interpolants in SMT

Craig Interpolant

Given an ordered pair (A,B) of formulas such that A ∧ B |=T ⊥, a
Craig interpolant is a formula I s.t.:

a) A |=T I,
b) I ∧ B |=T ⊥,
c) I � A and I � B.

“I � A” meaning that all uninterpreted (in T) symbols in I occur in A.

Very important in many FV applications
A few works presented for various theories:

EUF [59, 70], DL [30, 32], UT VPI [31, 32], LRA [59, 70, 30, 32],
LIA [51, 18, 48], BV [52], ...

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 89 / 130

Beyond Solving: advanced SMT functionalities Interpolants

A General Algorithm

Algorithm: Interpolant generation for SMT(T) [68, 59]

(i) Generate a resolution proof of T -unsatisfiability P for A ∧ B.
(ii) ...

(iii) For every original leaf clause C in P, set IC
def
= C ↓ B if C ∈ A, and IC

def
= > if C ∈ B.

(iv) For every inner node C of P obtained by resolution from C1
def
= p ∨ φ1 and

C2
def
= ¬p ∨ φ2, set IC

def
= IC1 ∨ IC2 if p does not occur in B, and IC

def
= IC1 ∧ IC2

otherwise.
(v) Output I⊥ as an interpolant for (A,B).

“η \B” [resp. “η ↓ B”] is the set of literals in η whose atoms do not [resp. do] occur in B.

row 2. only takes place where T comes in to play
=⇒ Reduced to the problem of finding an interpolant for two sets of

T -literals (Boolean and T -specific component decoupled)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 90 / 130

Beyond Solving: advanced SMT functionalities Interpolants

A General Algorithm

Algorithm: Interpolant generation for SMT(T) [68, 59]

(i) Generate a resolution proof of T -unsatisfiability P for A ∧ B.
(ii) Foreach T -lemma ¬η in P, generate an interpolant Iη for (η \ B, η ↓ B) .

(iii) For every original leaf clause C in P, set IC
def
= C ↓ B if C ∈ A, and IC

def
= > if C ∈ B.

(iv) For every inner node C of P obtained by resolution from C1
def
= p ∨ φ1 and

C2
def
= ¬p ∨ φ2, set IC

def
= IC1 ∨ IC2 if p does not occur in B, and IC

def
= IC1 ∧ IC2

otherwise.
(v) Output I⊥ as an interpolant for (A,B).

“η \B” [resp. “η ↓ B”] is the set of literals in η whose atoms do not [resp. do] occur in B.

row 2. only takes place where T comes in to play
=⇒ Reduced to the problem of finding an interpolant for two sets of

T -literals (Boolean and T -specific component decoupled)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 90 / 130

Beyond Solving: advanced SMT functionalities Interpolants

Computing Craig Interpolants in SMT: example

A def
= (B1 ∨ (0 ≤ x1 − 3x2 + 1)) ∧ (0 ≤ x1 + x2) ∧ (¬B2 ∨ ¬(0 ≤ x1 + x2))

B def
= (¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)) ∧ (¬B1 ∨ B2) ∧ (B1 ∨ (0 ≤ x3 − 2x1 − 3))

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨
¬(0 ≤ x3 − 2x1 − 3) ∨ ¬(0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2) ∨ B1

B1 ∨ (0 ≤ x1 − 3x2 + 1)

¬B1 ∨ B2

¬(0 ≤ x1 + x2) ∨ B2

¬(0 ≤ x1 + x2)(0 ≤ x1 + x2)

⊥

¬(0 ≤ x1 + x2) ∨ B1

¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨

¬B2 ∨ ¬(0 ≤ x1 + x2)

¬(0 ≤ x3 − 2x1 − 3) B1 ∨ (0 ≤ x3 − 2x1 − 3)

(0 ≤ 4x1 + 1)

>

>

B1 ∨ (0 ≤ 4x1 + 1)

(B1 ∨ (0 ≤ 4x1 + 1)) ∧ ¬B2⊥

(B1 ∨ (0 ≤ 4x1 + 1)) ∧ ¬B2

B1 ∨ (0 ≤ 4x1 + 1)

>

(0 ≤ 4x1 + 1)

(0 ≤ 4x1 + 1)

¬B2

B1

original proof interpolant proof

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 91 / 130

Beyond Solving: advanced SMT functionalities Interpolants

McMillan’s algorithm for non-strict LRA inequalities

A def
= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2}

B def
= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3)}.

A proof of unsatisfiability P for A ∧ B is the following:

(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1) with coeffs 1 and 3
(0 ≤ x3 − 2x1 − 3) (0 ≤ 1− 2x3)

COMB (0 ≤ −4x1 − 5) with coeffs 2 and 1
COMB (0 ≤ −4) with coeffs 1 and 1

By replacing inequalities in B with (0 ≤ 0), we obtain the proof P ′:

(0 ≤ x1 − 3x2 + 1) (0 ≤ x1 + x2)

COMB (0 ≤ 4x1 + 1)
(0 ≤ 0) (0 ≤ 0)
COMB (0 ≤ 0)

COMB (0 ≤ 4x1 + 1)

Thus, the interpolant obtained is (0 ≤ 4x1 + 1).

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 92 / 130

Beyond Solving: advanced SMT functionalities Interpolants

Example: interpolation algorithms for difference logic

An inference-based algorithm [59]

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)

COMB (0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)
COMB (0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

COMB (0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)
COMB (0 ≤ x1 − x3 + x4 − x5)

=⇒ Interpolant: (0 ≤ x1 − x3 + x4 − x5) (not in DL, and weaker).
A graph-based algorithm [30, 32]

A def
= {

Chord : (0≤x1−x3+1)︷ ︸︸ ︷
(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3), (0 ≤ x4 − x5 − 1)}

B def
= {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)}. −1

−10

1

0

1

A

B

x1 x5

x2

x3

x4

=⇒ Interpolant: (0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 − x5 − 1) (still in DL)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 93 / 130

Beyond Solving: advanced SMT functionalities All-SMT & Predicate Abstraction

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 94 / 130

Beyond Solving: advanced SMT functionalities All-SMT & Predicate Abstraction

All-SAT/All-SMT

All-SAT: enumerate all truth assignments satisfying ϕ
All-SMT: enumerate all T -satisfiable truth assignments
propositionally satisfying ϕ

All-SMT over an “important” subset of atoms P def
= {Pi}i :

enumerate all assignments over P which can be extended to
T -satisfiable truth assignments propositionally satisfying ϕ
=⇒can compute predicate abstraction
Algorithms:

BCLT [53]
each time a T -satisfiable assignment {l1, ..., ln} is found, perform
conflict-driven backjumping as if the restricted clause (

∨
i ¬li) ↓ P

belonged to the clause set
MathSAT/NuSMV [26]
As above, plus the Boolean search of the SMT solver is driven by
an OBDD.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 95 / 130

Beyond Solving: advanced SMT functionalities All-SMT & Predicate Abstraction

Predicate Abstraction

Predicate abstraction

if ϕ(v) is a SMT formula over the domain variables v def
= {vj}j , {γi}i is a

set of “relevant” predicates over v, and P def
= {Pi}i a set of Boolean

labels, then:

PredAbsP(ϕ)
def
= ∃v.(ϕ(v) ∧

∧
i

Pi ↔ γi(v))

=
∨{

µ | µ truth assignment on P
s.t. µ ∧ ϕ ∧

∧
i(Pi ↔ γi) is T -satisfiable

}

projection of ϕ over (the Boolean abstraction of) the set {γi}i .
essential step in FV: extracts finite-state abstractions from a
infinite state space

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 96 / 130

Beyond Solving: advanced SMT functionalities All-SMT & Predicate Abstraction

Predicate Abstraction: example

ϕ
def
= (v1 + v2 > 12)

γ1
def
= (v1 + v2 = 2)

γ2
def
= (v1 − v2 < 10)

⇓

PreAbs(ϕ){P1,P2}
def
= ∃ v1 v2 .

 (v1 + v2 > 12) ∧
(P1 ↔ (v1 + v2 = 2)) ∧
(P2 ↔ (v1 − v2 < 10))


= (¬P1 ∧ ¬P2) ∨ (¬P1 ∧ P2)

= ¬P1.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 97 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 98 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

SMT with Pseudo-Boolean (PB) cost-minimization

The problem

SMT(T) problem ϕ for some T , augmented with cost functions:
cost i =

∑N i

j=1 ite(P ij , c ij
1, c

ij
2), s.t. cost i ∈ (l i ,ui], c ij

{1,2} > 0

Decision problem: is there a model complying with cost ranges?
Optimization problem: find model minimizing some cost i .

allows for encoding MaxSAT/MaxSMT and PseudoBoolean

Proposed solution: [66, 27]
SMT(T ∪ C), C is an ad-hoc “theory of costs”
a specialized very-fast theory-solver for C added to MathSAT

very fast & aggressive search pruning and theory-propagation

cost minimization handled by linear or binary search

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 99 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

SMT with Pseudo-Boolean (PB) cost-minimization

The problem

SMT(T) problem ϕ for some T , augmented with cost functions:
cost i =

∑N i

j=1 ite(P ij , c ij
1, c

ij
2), s.t. cost i ∈ (l i ,ui], c ij

{1,2} > 0

Decision problem: is there a model complying with cost ranges?
Optimization problem: find model minimizing some cost i .

allows for encoding MaxSAT/MaxSMT and PseudoBoolean

Proposed solution: [66, 27]
SMT(T ∪ C), C is an ad-hoc “theory of costs”
a specialized very-fast theory-solver for C added to MathSAT

very fast & aggressive search pruning and theory-propagation

cost minimization handled by linear or binary search

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 99 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

SMT(T ∪ C): main ideas

A “theory of costs” C:
Cost variables cost i

“bound cost” BC(cost i , k): “cost i ≤ k"
“incur cost” IC(cost i , j , k i

j): “the j th addend of cost i := k i
j

“cost i =
∑N i

j=1 ite(P i
j , k

i
j ,0), s.t . cost i ∈ (l i ,ui]” encoded as

¬BC(cost i , l i) ∧ BC(cost i ,ui) ∧
∧N i

j=1(P i
j ↔ IC(cost i , j , k i

j))

very-fast theory solver: C-solver
1. IC(cost i , j , k i

j) = > =⇒ cost i = cost i + k i
j

2. cost i > ubi =⇒ conflict
3. cost i + {total cost of all unassigned IC′s} ≤ lbi =⇒ conflict
4. IC(cost i , j , k i

j) = > causes 2. =⇒ C-propagate ¬IC(cost i , j , k i
j)

5. IC(cost i , j , k i
j) = ⊥ causes 3. =⇒ C-propagate IC(cost i , j , k i

j)

no symbol shared with T
=⇒ independent theory solvers for T and C

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 100 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization Modulo Theories with LA costs I

Ingredients

an SMT formula ϕ on LA ∪ T
LA can be LRA, LIA or a combination of both
T def

=
⋃

i Ti , possibly empty
LA and Ti disjoint Nelson-Oppen theories

a LA variable [term] “cost” occurring in ϕ
(optionally) two constant numbers lb (lower bound) and ub (upper
bound) s.t. lb ≤ cost < ub (lb, ub may be ∓∞)

Optimization Modulo Theories with LA costs (OMT(LA ∪ T))

Find a model for ϕ whose value of cost is minimum.
maximization dual

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 101 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization Modulo Theories with LA costs II

We restrict to the case LA = LRA and
⋃

i Ti = {} (OMT(LRA)).

Basic idea [72]:
SMT(LRA) augmented with a LP optimization routine:

once each assignment µ is found LRA-satisfiable, an LP
optimization is invoked, finding the minimum min
(cost < min) is learned
the search proceeds, until UNSAT

=⇒ the latest value of min is returned

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 102 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization Modulo Theories with LA costs III

Extensions
both linear and binary search, and combination [72, 73]
cost minimization embedded inside the CDCL search [72, 73]
combination with other theories: OMT(LRA ∪ T) via DTC [73]
extension to integers via ILP techniques: OMT(LIA ∪ T)
[13, 76, 54]
extension to multiple independent objectives [55, 13, 76]
incremental OMT [13, 76]
other combinations of objectives (min-max, lexicograpohic)
[13, 76]
OMT with Pareto fronts [13].

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 103 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =



A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 104 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =



A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


=⇒ SAT, min = −0.2

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 104 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =



A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


=⇒ SAT, min = −1.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)

(cost < −1.0)(cost < −0.2)

y

x

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 104 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =



A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


=⇒ SAT, min = −2.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 104 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

A toy example (linear search)
[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =



A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)


=⇒ UNSAT,min = −2.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 104 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

OMT with Independent Objectives (aka Boxed OMT)
[55, 76]

The problem: 〈ϕ, {cost1, ..., costk}〉 [55]

Given 〈ϕ, C〉 s.t.:
ϕ is the input formula

C def
= {cost1, ..., costk} is a set of LA-terms on variables in ϕ,

〈ϕ, C〉 is the problem of finding a set of independent LA-models
M1, ...,Mk s.t. s.t. eachMi makes cost i minimum.

Notes
derives from SW verification problems [55]
equivalent to k independent problems 〈ϕ, cost1〉, ..., 〈ϕ, costk 〉
intuition: share search effort for the different objectives
generalizes to OMT(LA ∪ T) straightforwardly

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 105 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

OMT with Multiple Objectives [55, 13, 76]

Solution
Intuition: when a T -consistent satisfying assignment µ is found,
foreach costi

mini := min{mini, T solver.minimize(µ,costi)};
learn

∨
i(costi < mini); // (costi < −∞) ≡ ⊥

proceed until UNSAT;
Notice:

for each µ, guaranteed improvement of at least one mini
in practice, for each µ, multiple cost i minima are improved

Implemented improvements:
(a) drop previous clauses

∨
i (cost i < mini)

(b) (cost i < mini) pushed in µ first: if T -inconsistent, skip minimization
(c) learn ¬(cost i < mini) ∨ (cost i < minold

i), s.t. minold
i previous mini

=⇒ reuse previously-learned clauses like ¬(cost i < minold
i) ∨ C

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 106 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Boxed OMT: Example [55, 76]

1 3 40

1

3

cost1

cost2

ϕ = (1 ≤ y) ∧ (y ≤ 3) ∧ (((1 ≤ x) ∧ (x ≤ 3)) ∨ (x ≥ 4))
∧ (cost1 = −y) ∧ (cost2 = −x − y)

µ1 = {(1 ≤ y), (y ≤ 3), (1 ≤ x), (x ≤ 3)} =⇒ SAT =⇒ [−3,−6]

=⇒ learn {(cost1 < −3) ∨ (cost2 < −6)}

µ2 = {(1 ≤ y), (y ≤ 3), (x ≥ 4)} =⇒ SAT =⇒ [−3,−∞]
=⇒ learn {(cost1 < −3)}
=⇒ UNSAT

µ2µ1

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 107 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

OMT with Lexicographic Combination of Objectives
[13]

The problem

Find one optimal modelM minimizing c def
= cost1, cost2, ..., costk

lexicographically.

Solution
Intuition:
{minimize cost1}
when UNSAT

{substitute unit clause (cost1 < min1) with (cost1 = min1)}
{minimize cost2}
...

improvement:
each time UNSAT is found, add

∧
i (cost i ≤Mi (cost i)) to ϕ

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 108 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization problems encoded into OMT(LA ∪ T) I

SMT with Pseudo-Boolean Constraints & Weighted MaxSMT

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

MaxSMT : 〈ϕh,
∧

j ψj〉 s.t . ψj soft , wj = weight(ψj), wi > 0
⇓

minimize
∑

j xj , xj ,Aj fresh
ϕh ∧

∧
j(Aj ∨ ψj) ∧

∧
j(¬Aj ∨ (xj = wj)) ∧ (Aj ∨ (xj = 0)

∧(xj ≥ 0) ∧ (xj ≤ wj)

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 109 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the violation
of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search
same for weighted MaxSMT

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 110 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the violation
of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search
same for weighted MaxSMT

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 110 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the violation
of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search
same for weighted MaxSMT

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 110 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the violation
of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search
same for weighted MaxSMT

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 110 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Optimization problems encoded into OMT(LA ∪ T) II

OMT with Min-Max [Max-Min] optimization

Given 〈ϕ, {cost1, ..., costk}〉, find a solution which minimizes the
maximum value among {cost1, ..., costk}. (Max-Min dual.)

Frequent in some applications (e.g. [74, 81])
=⇒ encode into OMT(LA ∪ T) problem {ϕ ∧

∧
i(cost i ≤ cost), cost}

s.t. cost fresh.

OMT with linear combinations of costs
Given 〈ϕ, {cost1, ..., costk}〉 and a set of weights {w1, ...,wk}, find a
solution which minimizes

∑
i wi · cost i .

=⇒ encode into OMT(LA ∪ T) problem
{ϕ ∧ (cost =

∑
i wi · cost i), cost} s.t. cost fresh.

These objectives can be composed with other OMT(LA) objectives.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 111 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Other OMT Functionalities [hints]

Incremental interface [13, 76]
Allows for pushing/popping sub-formulas into a stack, and then run
OMT incrementally over them, reusing previous search.

useful in some applications (e.g., BMC with parametric systems)
straightforward variant of incremental SAT and SMT solvers

Pareto Fronts [13, 12]
Given cost1, cost2, computeM1, ...,Mi , ...,Mj , ... s.t.:

eitherMi (cost1) >Mj (cost1) orMi (cost2) >Mj (cost2) and
Mi (cost1) <Mj (cost1) orMi (cost2) <Mj (cost2)
for eachMi , noM′ dominatesMi

no objective can be improved without degrading some other one

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 112 / 130

Beyond Solving: advanced SMT functionalities SMT with cost optimization (Optimization Modulo Theories)

Some OMT tools

BCLT [66, 54]
http://www.cs.upc.edu/~oliveras/bclt-main.html

OPTIMATHSAT [72, 74, 76, 75], on top of MATHSAT [28]
http://optimathsat.disi.unitn.it

SYMBA [55], on top of Z3 [38]
https://bitbucket.org/arieg/symba/src

νZ [13, 12], on top of Z3 [38]
http://z3.codeplex.com

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 113 / 130

http://www.cs.upc.edu/~oliveras/bclt-main.html
http://optimathsat.disi.unitn.it
https://bitbucket.org/arieg/symba/src
http://z3.codeplex.com

Conclusions & current research directions

Outline

1 Motivations and goals

2 Efficient SMT solving
Combining SAT with Theory Solvers
Theory Solvers for theories of interest
SMT for combinations of theories

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT & Predicate Abstraction
SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions & current research directions

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 114 / 130

Conclusions & current research directions

Conclusions

SMT very popular, due to successful application in many domains
Combines techniques from SAT, ATP and operational research
Not only satisfiability, but also advanced functionalities

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 115 / 130

Conclusions & current research directions

Open/ongoing research directions

Solving:
improve efficiency (e.g. BV, AR, LIA & their combinations)
“a never-ending fight against the search-space explosion problem
[E. Clarke, Turing-award winner 2007]”
develop efficient solvers for other theories (NLA(R), NLA(Z))
develop new theories & solvers (e.g., floating-point arithmetic)
...

Functionalities
Interpolation in some theories (LIA, BV) still very challenging
Predicate abstraction (AllSMT) still a bottleneck in SMT-based FV
SMT with costs/optimization still in very early stage
...

Combination of SMT solvers and ATP (SMT with quantifiers)
Integration & customization of SMT solvers with (FV) tools
See also [67]

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 116 / 130

Links & References

Links I
survey papers:

Roberto Sebastiani: "Lazy Satisfiability Modulo Theories".
Journal on Satisfiability, Boolean Modeling and Computation, JSAT.
Vol. 3, 2007. Pag 141–224, c©IOS Press.
Clark Barrett, Roberto Sebastiani, Sanjit Seshia, Cesare Tinelli
"Satisfiability Modulo Theories". Part II, Chapter 26, The Handbook
of Satisfiability. 2009. c©IOS press.
Leonardo de Moura and Nikolaj Bjørner. “Satisfiability modulo
theories: introduction and applications”. Communications of the
ACM, 54 (9), 2011. c©ACM press.

web links:

The SMT library SMT-LIB:
http://goedel.cs.uiowa.edu/smtlib/
The SMT Competition SMT-COMP: http://www.smtcomp.org/
The SAT/SMT Schools
http://satassociation.org/sat-smt-school.html

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 117 / 130

http://goedel.cs.uiowa.edu/smtlib/
http://www.smtcomp.org/
http://satassociation.org/sat-smt-school.html

Links & References

References I

[1] A. Armando.
Simplifying OBDDs in Decidable Theories.
In Proc. PDPAR’03., 2003.

[2] A. Armando, C. Castellini, and E. Giunchiglia.
SAT-based procedures for temporal reasoning.
In Proc. European Conference on Planning, CP-99, 1999.

[3] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani.
A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions.
In Proc. CADE’2002., volume 2392 of LNAI. Springer, July 2002.

[4] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani.
Integrating Boolean and Mathematical Solving: Foundations, Basic Algorithms and Requirements.
In Proc. AIARSC’2002, volume 2385 of LNAI. Springer, 2002.

[5] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani.
Verifying Industrial Hybrid Systems with MathSAT.
In Proc. PDPAR’03, 2003.

[6] G. Audemard, A. Cimatti, A. Korniłowicz, and R. Sebastiani.
SAT-Based Bounded Model Checking for Timed Systems.
In Proc. FORTE’02., volume 2529 of LNCS. Springer, November 2002.

[7] C. Barret, D. Dill, and A. Stump.
A Generalization of Shostak’s Method for Combining Decision Procedures.
In Proc. FROCOS’02, 2002.

[8] C. Barrett, D. Dill, and A. Stump.
Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT.
In 14th International Conference on Computer-Aided Verification, 2002.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 118 / 130

Links & References

References II

[9] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Splitting on Demand in SAT Modulo Theories.
In Proc. LPAR’06, volume 4246 of LNAI. Springer, 2006.

[10] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli.
Satisfiability Modulo Theories.
In Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.

[11] P. Baumgartner.
FDPLL - A First Order Davis-Putnam-Longeman-Loveland Procedure.
In Proceedings of CADE-17, pages 200–219. Springer-Verlag, 2000.

[12] N. Bjørner, A. Phan, and L. Fleckenstein.
νz - an optimizing SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, pages 194–199, 2015.

[13] N. Bjorner and A.-D. Phan.
νZ - Maximal Satisfaction with Z3.
In Proc International Symposium on Symbolic Computation in Software Science, Gammart, Tunisia, December 2014.
EasyChair Proceedings in Computing (EPiC).
http://www.easychair.org/publications/?page=862275542.

[14] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani.
Efficient Satisfiability Modulo Theories via Boolean Search.
Information and Computation, 2005.

[15] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani.
Efficient Satisfiability Modulo Theories via Delayed Theory Combination.
In Proc. CAV 2005, volume 3576 of LNCS. Springer, 2005.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 119 / 130

http://www.easychair.org/publications/?page=862275542

Links & References

References III

[16] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum, and R. Sebastiani.
Efficient Theory Combination via Boolean Search.
Information and Computation, 204(10):1493–1525, 2006.

[17] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum, S. Schulz, and R. Sebastiani.
Mathsat: Tight integration of sat and mathematical decision procedures.
Journal of Automated Reasoning, 35(1-3):265–293, 2005.

[18] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl.
An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic.
In Proc. IJCAR, volume 6173 of LNCS. Springer, 2010.

[19] R. Brinkmann and R. Drechsler.
RTL-datapath verification using integer linear programming.
In Proc. ASP-DAC 2002, pages 741–746. IEEE, 2002.

[20] R. Brummaryer and A. Biere.
Lemmas on Demand for the Extensional Theory of Arrays.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 6, 2009.

[21] R. Brummayer and A. Biere.
Boolector: An efficient smt solver for bit-vectors and arrays.
In TACAS, volume 5505 of LNCS, pages 174–177. Springer, 2009.

[22] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Palti, and R. Sebastiani.
A Lazy and Layered SMT(BV) Solver for Hard Industrial Verification Problems.
In CAV, volume 4590 of LNCS, pages 547–560. Springer, 2007.

[23] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis.
In Proc. LPAR, volume 4246 of LNCS. Springer, 2006.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 120 / 130

Links & References

References IV

[24] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis. .
Annals of Mathematics and Artificial Intelligence., 55(1-2), 2009.

[25] J. R. Burch and D. L. Dill.
Automatic Verification of Pipelined Microprocessor Control.
In Proc. CAV ’94, volume 818 of LNCS. Springer, 1994.

[26] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and R. K. Shyamasundar.
Computing Predicate Abstractions by Integrating BDDs and SMT Solvers.
In FMCAD, pages 69–76. IEEE Computer Society, 2007.

[27] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico.
Satisfiability modulo the theory of costs: Foundations and applications.
In TACAS, volume 6015 of LNCS, pages 99–113. Springer, 2010.

[28] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
The MathSAT 5 SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS’13., volume 7795 of LNCS, pages 95–109.
Springer, 2013.

[29] A. Cimatti, A. Griggio, and R. Sebastiani.
A Simple and Flexible Way of Computing Small Unsatisfiable Cores in SAT Modulo Theories.
In SAT, volume 4501 of LNCS, pages 334–339. Springer, 2007.

[30] A. Cimatti, A. Griggio, and R. Sebastiani.
Efficient Interpolant Generation in Satisfiability Modulo Theories.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS’08., volume 4963 of LNCS. Springer, 2008.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 121 / 130

Links & References

References V

[31] A. Cimatti, A. Griggio, and R. Sebastiani.
Interpolant Generation for UTVPI.
In CADE, volume 5663 of LNCS, pages 167–182, 2009.

[32] A. Cimatti, A. Griggio, and R. Sebastiani.
Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories.
ACM Transaction on Computational Logics – TOCL, 12(1), October 2010.

[33] A. Cimatti, A. Griggio, and R. Sebastiani.
Computing Small Unsatisfiable Cores in SAT Modulo Theories.
Journal of Artificial Intelligence Research, JAIR, 40:701–728, April 2011.

[34] S. Cotton and O. Maler.
Fast and Flexible Difference Logic Propagation for DPLL(T).
In Proc. SAT’06, volume 4121 of LNCS. Springer, 2006.

[35] L. de Moura and N. Bjørner.
Efficient E-matching for SMT solvers.
In Proc. CADE-21, 21st International Conference on Automated Deduction, volume 4603 of LNCS. Springer, 2007.

[36] L. de Moura, H. Ruess, and M. Sorea.
Lazy Theorem Proving for Bounded Model Checking over Infinite Domains.
In Proc. CADE’2002., volume 2392 of LNAI. Springer, July 2002.

[37] L. M. de Moura and N. Bjørner.
Model-based theory combination.
Electr. Notes Theor. Comput. Sci., 198(2):37–49, 2008.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 122 / 130

Links & References

References VI

[38] L. M. de Moura and N. Bjørner.
Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, pages 337–340, 2008.

[39] L. M. de Moura and N. Bjørner.
Generalized, efficient array decision procedures.
In FMCAD, pages 45–52. IEEE, 2009.

[40] D. Detlefs, G. Nelson, and J. Saxe.
Simplify: a theorem prover for program checking.
Journal of the ACM, 52(3):365–473, 2005.

[41] B. Dutertre and L. de Moura.
System Description: Yices 1.0.
In Proc. on 2nd SMT competition, SMT-COMP’06, 2006.
Available at yices.csl.sri.com/yices-smtcomp06.pdf.

[42] A. Franzen, A. Cimatti, A. Nadel, R. Sebastiani, and J. Shalev.
Applying SMT in Symbolic Execution of Microcode.
In Proc. Int. Conference on Formal Methods in Computer Aided Design (FMCAD’10). IEEE, 2010.

[43] V. Ganesh and D. L. Dill.
A Decision Procedure for Bit-Vectors and Arrays.
In CAV, 2007.

[44] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast decision procedures.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer Aided Verification, CAV’04
(Boston, Massachusetts), LNCS. Springer, 2004.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 123 / 130

yices.csl.sri.com/yices-smtcomp06.pdf

Links & References

References VII

[45] F. Giunchiglia and R. Sebastiani.
Building decision procedures for modal logics from propositional decision procedures - the case study of modal K.
In Proc. CADE’13, LNAI, New Brunswick, NJ, USA, August 1996. Springer.

[46] A. Goel, S. Krstić, and A. Fuchs.
Deciding array formulas with frugal axiom instantiation.
In Proceedings of SMT’08/BPR’08, pages 12–17, New York, NY, USA, 2008. ACM.

[47] A. Griggio.
A Practical Approach to SMT(LA(Z)).
In Proc. SMT 2010, 2010.

[48] A. Griggio, T. T. H. Le, and R. Sebastiani.
Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic.
In Proc. Tools and Algorithms for the Construction and Analysis of Systems, TACAS’11, LNCS. Springer, 2011.

[49] A. Griggio, Q. S. Phan, R. Sebastiani, and S. Tomasi.
Stochastic Local Search for SMT: Combining Theory Solvers with WalkSAT.
In Frontiers of Combining Systems, FroCoS’11, volume 6989 of LNAI. Springer, 2011.

[50] I. Horrocks and P. F. Patel-Schneider.
FaCT and DLP.
In Proc. Tableaux’98, pages 27–30, 1998.

[51] H. Jain, E. M. Clarke, and O. Grumberg.
Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations.
In A. Gupta and S. Malik, editors, CAV, volume 5123 of Lecture Notes in Computer Science, pages 254–267. Springer,
2008.

[52] D. Kroening and G. Weissenbacher.
Lifting Propositional Interpolants to the Word-Level.
In FMCAD, pages 85–89, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 124 / 130

Links & References

References VIII

[53] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras.
SMT techniques for fast predicate abstraction.
In Proc. CAV, LNCS 4144. Springer, 2006.

[54] D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions.
In C. Sinz and U. Egly, editors, SAT, volume 8561 of Lecture Notes in Computer Science, pages 333–350. Springer, 2014.

[55] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
Symbolic optimization with smt solvers.
In POPL, pages 607–618, 2014.

[56] M. Liffiton and K. Sakallah.
Algortithms for Computing Minimal Unsatisfiable Subsets of Constraints.
Journal of Automated Reasoning, 40(1), 2008.

[57] I. Lynce and J. P. Marques-Silva.
On computing minimum unsatisfiable cores.
In SAT, 2004.

[58] M. Mahfoudh, P. Niebert, E. Asarin, and O. Maler.
A Satisfibaility Checker for Difference Logic.
In Proceedings of SAT-02, pages 222–230, 2002.

[59] K. L. McMillan.
An interpolating theorem prover.
Theor. Comput. Sci., 345(1):101–121, 2005.

[60] J. Moeller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard.
Fully symbolic model checking of timed systems using difference decision diagrams.
In Proc. Workshop on Symbolic Model Checking (SMC), FLoC’99, Trento, Italy, July 1999.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 125 / 130

Links & References

References IX

[61] C. G. Nelson and D. C. Oppen.
Simplification by cooperating decision procedures.
TOPLAS, 1(2):245–257, 1979.

[62] G. Nelson and D. Oppen.
Simplification by Cooperating Decision Procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, 1979.

[63] G. Nelson and D. Oppen.
Fast Decision Procedures Based on Congruence Closure.
Journal of the ACM, 27(2):356–364, 1980.

[64] R. Nieuwenhuis and A. Oliveras.
Congruence closure with integer offsets.
In In 10th Int. Conf. Logic for Programming, Artif. Intell. and Reasoning (LPAR), volume 2850 of LNAI, pages 78–90.
Springer, 2003.

[65] R. Nieuwenhuis and A. Oliveras.
DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic.
In Proc. CAV’05, volume 3576 of LNCS. Springer, 2005.

[66] R. Nieuwenhuis and A. Oliveras.
On SAT Modulo Theories and Optimization Problems.
In Proc. Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS. Springer, 2006.

[67] R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
Challenges in Satisfiability Modulo Theories.
In Proc. RTA’07, volume 4533 of LNCS. Springer, 2007.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 126 / 130

Links & References

References X

[68] P. Pudlák.
Lower bounds for resolution and cutting planes proofs and monotone computations.
J. of Symb. Logic, 62(3), 1997.

[69] H. Rueßand N. Shankar.
Deconstructing Shostak.
In Proc. LICS ’01. IEEE Computer Society, 2001.

[70] A. Rybalchenko and V. Sofronie-Stokkermans.
Constraint Solving for Interpolation.
In Proc. VMCAI, volume 4349 of LNCS. Springer, 2007.

[71] R. Sebastiani.
Lazy Satisfiability Modulo Theories.
Journal on Satisfiability, Boolean Modeling and Computation, JSAT, 3(3-4):141–224, 2007.

[72] R. Sebastiani and S. Tomasi.
Optimization in SMT with LA(Q) Cost Functions.
In IJCAR, volume 7364 of LNAI, pages 484–498. Springer, July 2012.

[73] R. Sebastiani and S. Tomasi.
Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.

[74] R. Sebastiani and S. Tomasi.
Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.

[75] R. Sebastiani and P. Trentin.
OptiMathSAT: A Tool for Optimization Modulo Theories.
In Proc. International Conference on Computer-Aided Verification, CAV 2015, volume 9206 of LNCS. Springer, 2015.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 127 / 130

Links & References

References XI

[76] R. Sebastiani and P. Trentin.
Pushing the Envelope of Optimization Modulo Theories with Linear-Arithmetic Cost Functions.
In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’15, volume 9035 of
LNCS. Springer, 2015.

[77] R. Shostak.
A Pratical Decision Procedure for Arithmetic with Function Symbols.
Journal of the ACM, 26(2):351–360, 1979.

[78] R. Shostak.
Deciding Combinations of Theories.
Journal of the ACM, 31:1–12, 1984.

[79] K. Stergiou and M. Koubarakis.
Backtracking algorithms for disjunctions of temporal constraints.
In Proc. AAAI, pages 248–253, 1998.

[80] A. Stump, C. W. Barrett, and D. L. Dill.
CVC: A Cooperating Validity Checker.
In Proc. CAV’02, number 2404 in LNCS. Springer Verlag, 2002.

[81] S. Teso, R. Sebastiani, and A. Passerini.
Structured learning modulo theories.
Artificial Intelligence, 244:166–187, 2017.

[82] S. Wolfman and D. Weld.
The LPSAT Engine & its Application to Resource Planning.
In Proc. IJCAI, 1999.

[83] T. Yavuz-Kahveci, M. Tuncer, and T. Bultan.
A Library for Composite Symbolic Representation.
In Proc. TACAS2001, volume 2031 of LNCS. Springer Verlag, 2000.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 128 / 130

Links & References

References XII

[84] L. Zhang and S. Malik.
Extracting small unsatisfiable cores from unsatisfiable boolean formula.
In Proc. of SAT, 2003.

Disclaimer
The list of references above is by no means intended to be
all-inclusive. I apologize both with the authors and with the readers for
all the relevant works which are not cited here.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 129 / 130

Links & References

c©Warner Bros. Inc.

Sebastiani () Cap. 2: Satisfiability Modulo Theories Friday 22nd May, 2020 130 / 130

	Motivations and goals
	Efficient SMT solving
	Combining SAT with Theory Solvers
	Theory Solvers for theories of interest
	SMT for combinations of theories

	 Beyond Solving: advanced SMT functionalities
	Proofs and unsatisfiable cores
	Interpolants
	All-SMT & Predicate Abstraction
	SMT with cost optimization (Optimization Modulo Theories)

	Conclusions & current research directions
	Links & References

