Course "An Introduction to SAT and SMT" Chapter 2: Satisfiability Modulo Theories

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/

Int. Graduate School on ICT, University of Trento, Academic year 2019-2020

last update: Friday $22^{\text {nd }}$ May, 2020
Copyright notice: some material contained in these slides is courtesy of Alessandro Cimatti, Alberto Griggio and Marco Roveri, who detain its copyright. All the other material is copyrighted by Roberto Sebastiani. Any commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) Motivations and goals
(2) Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for theories of interest
- SMT for combinations of theories
(3) Beyond Solving: advanced SMT functionalities
- Proofs and unsatisfiable cores
- Interpolants
- All-SMT \& Predicate Abstraction
- SMT with cost optimization (Optimization Modulo Theories)

4 Conclusions \& current research directions

Satisfiability Modulo Theories (SMT(T))

Satisfiability Modulo Theories (SMT(T))

The problem of deciding the satisfiability of (typically quantifier-free) formulas in some decidable first-order theory \mathcal{T}

- \mathcal{T} can also be a combination of theories $\bigcup_{i} \mathcal{T}_{i}$.

$\operatorname{SMT}(\mathcal{T})$: theories of interest

Some theories of interest (e.g., for formal verification)

- Equality and Uninterpreted Functions (EUF):

$$
((x=y) \wedge(y=f(z))) \rightarrow(g(x)=g(f(z)))
$$

- Difference logic $(\mathcal{D L}):((x=y) \wedge(y-z \leq 4)) \rightarrow(x-z \leq 6)$
- UTVPI (UTVPI): $((x=y) \wedge(y-z \leq 4)) \rightarrow(x+z \leq 6)$
- Linear arithmetic over the rationals $(\mathcal{L R A})$:
$\left(T_{\delta} \rightarrow\left(s_{1}=s_{0}+3.4 \cdot t-3.4 \cdot t_{0}\right)\right) \wedge\left(\neg T_{\delta} \rightarrow\left(s_{1}=s_{0}\right)\right)$
- Linear arithmetic over the integers ($\mathcal{L I A}$): $\left(x:=x_{l}+2^{16} x_{h}\right) \wedge(x \geq 0) \wedge\left(x \leq 2^{16}-1\right)$
- Arrays $(\mathcal{A R}):(i=j) \vee \operatorname{read}(w r i t e(a, i, e), j)=\operatorname{read}(a, j)$
- Bit vectors ($\mathcal{B V}$):
$x_{[16]}[15: 0]=\left(y_{[16]}[15: 8]:: z_{[16]}[7: 0]\right) \ll w_{[8]}[3: 0]$
- Non-Linear arithmetic over the reals $(\mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{R}))$: $\left((c=a \cdot b) \wedge\left(a_{1}=a-1\right) \wedge\left(b_{1}=b+1\right)\right) \rightarrow\left(c=a_{1} \cdot b_{1}+1\right)$

Satisfiability Modulo Theories (SMT($\mathcal{T})$): Example

Example: $\operatorname{SMT}(\mathcal{L I A} \cup \mathcal{E} \mathcal{U F} \cup \mathcal{A R})$

$$
\begin{aligned}
& \varphi^{\text {def }}(d \geq 0) \wedge(d<1) \wedge \\
& ((f(d)=f(0)) \rightarrow(\text { read }(\text { write }(V, i, x), i+d)=x+1))
\end{aligned}
$$

- involves arithmetical, arrays, and uninterpreted function/predicate symbols, plus Boolean operators
- Is it consistent?
- No:

$$
\begin{array}{ll}
& \varphi \\
\Longrightarrow_{\mathcal{L I A}} & (d=0) \\
\Longrightarrow_{\mathcal{E U F}} & (f(d)=f(0)) \\
\Longrightarrow_{\text {Bool }} & (\operatorname{read}(\text { write }(V, i, x), i+d)=x+1) \\
\Longrightarrow_{\mathcal{L I A}} & (\operatorname{read}(\text { write }(V, i, x), i)=x+1) \\
\Longrightarrow_{\mathcal{L I A}} & \neg(\operatorname{read}(\text { write }(V, i, x), i)=x) \\
\Longrightarrow_{\mathcal{A R}} & \perp
\end{array}
$$

Some Motivating Applications

Interest in SMT triggered by some real-word applications

- Verification of Hybrid \& Timed Systems
- Verification of RTL Circuit Designs \& of Microcode
- SW Verification
- Planning with Resources
- Temporal reasoning
- Scheduling
- Compiler optimization
- ...

Verification of Timed Systems

- Bounded/inductive model checking of Timed Systems [6, 36, 58],
- Timed Automata encoded into \mathcal{T}-formulas:
- discrete information (locations, transitions, events) with Boolean vars.
- timed information (clocks, elapsed time) with differences $\left(t_{3}-x_{3} \leq 2\right)$, equalities $\left(x_{4}=x_{3}\right)$ and linear constraints $\left(t_{8}-x_{8}=t_{2}-x_{2}\right)$ on \mathbb{Q}
$\Longrightarrow S M T$ on $\mathcal{D L}(\mathbb{Q})$ or $\mathcal{L R} \mathcal{A}$ required

Verification of Hybrid Systems ...

- Bounded model checking of Hybrid Systems [5],...
- Hybrid Automata encoded into \mathcal{L}-formulas:
- discrete information (locs, trans., events) with Boolean vars.
- timed information (clocks, elapsed time) with differences ($t_{3}-x_{3} \leq 2$), equalities $\left(x_{4}=x_{3}\right)$ and linear constraints $\left(t_{8}-x_{8}=t_{2}-x_{2}\right)$ on \mathbb{Q}
- Evolution of Physical Variables (e.g., speed, pressure) with linear $\left(\omega_{4}=2 \omega_{3}\right)$ and non-linear constraints $\left(P_{1} V_{1}=4 T_{1}\right)$ on \mathbb{Q}
- Undecidable under simple hypotheses!
$\Longrightarrow S M T$ on $\mathcal{D} \mathcal{L}(\mathbb{Q}), \mathcal{L} \mathcal{R} \mathcal{A}$ or $\mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{R})$ required

Verification of HW circuit designs \& microcode

- SAT/SMT-based Model Checking \& Equiv. Checking of RTL designs, symbolic simulation of μ-code [25, 22, 42]
- Control paths handled by Boolean reasoning
- Data paths information abstracted into theory-specific terms
- words (bit-vectors, integers, $\mathcal{E U F}$ vars, ...): $\underline{a}[31: 0]$, a
- word operations: ($\mathcal{B V}, \mathcal{E U F}, \mathcal{A R}, \mathcal{L I} \mathcal{A}, \mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{Z})$ operators) $x_{[16]}[15: 0]=\left(y_{[16]}[15: 8]:: z_{[16]}[7: 0]\right) \ll w_{[8]}[3: 0]$, $\left(a=a_{L}+2^{16} a_{H}\right),\left(m_{1}=\operatorname{store}\left(m_{0}, l_{0}, v_{0}\right)\right), \ldots$
- Trades heavy Boolean reasoning ($\approx 2^{64}$ factors) with \mathcal{T}-solving

Verification of SW systems

```
••• 
i}=0
acc=0.0;
while (i<dim)
    acc}+=|[i]
    i++;
}
```

$$
\begin{array}{ll}
\ldots . \wedge \\
\left(i_{0}=0\right) \wedge \\
\left(a c c_{0}=0.0\right) \wedge & \\
\left((i _ { 0 } < \operatorname { d i m }) \rightarrow \left(\begin{array}{ll}
\left(a c c_{1}=a c c_{0}+\operatorname{read}\left(V, i_{0}\right)\right) \wedge
\end{array}\right.\right. \\
& \left.\left.\left(i_{1}=i_{0}+1\right)\right)\right) \wedge \\
\left(\neg i_{0}<\operatorname{dim}\right) \rightarrow\left(\begin{array}{l}
\left.\left.\left(a c c_{1}=a c c_{0}\right) \wedge\left(i_{1}=i_{0}\right)\right)\right) \wedge \\
\left(i_{1}<\operatorname{dim}\right) \rightarrow\left(\begin{array}{ll}
\left(a c c_{2}=a c c_{1}+\operatorname{read}\left(V, i_{1}\right)\right) \wedge
\end{array}\right. \\
\left(\neg (i _ { 1 } < \operatorname { d i m }) \rightarrow \left(\begin{array}{l}
\left.\left.\left(i_{2}=i_{1}+1\right)\right)\right) \wedge \\
\left.\left.\left(a c c_{2}=a c c_{1}\right) \wedge\left(i_{2}=i_{1}\right)\right)\right) \wedge
\end{array}\right.\right.
\end{array},\right.
\end{array}
$$

- Verification of SW code
- BMC, K-induction, Check of proof obligations, interpolation-based model checking, symbolic simulation, concolic testing, ...
\Longrightarrow SMT on $\mathcal{B V}, \mathcal{E U \mathcal { F }}, \mathcal{A R}$, (modulo-) $\mathcal{L I} \mathcal{A}[\mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{Z})]$ required

Planning with Resources [82]

- SAT-bases planning augmented with numerical constraints
- Straightforward to encode into into $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$

Example (sketch) [82]

(Deliver)	$\wedge / /$ goal
(MaxLoad)	$\wedge / /$ load constraint
(MaxFuel)	$\wedge / /$ fuel constraint
(Move \rightarrow MinFuel)	$\wedge / /$ move requires fuel
(Move \rightarrow Deliver)	$\wedge / /$ move implies delivery
(GoodTrip \rightarrow Deliver $)$	$\wedge / /$ a good trip requires
(GoodTrip \rightarrow AllLoaded)	$\wedge / /$ a full delivery
$($ MaxLoad \rightarrow (load $\leq 30))$	$\wedge / /$ load limit
$($ MaxFuel \rightarrow (fuel $\leq 15))$	$\wedge / /$ fuel limit
(MinFuel $\rightarrow($ fuel $\geq 7+0.5 l o a d))$	$\wedge / /$ fuel constraint
(AllLoaded $\rightarrow($ load $=45))$	

(Disjunctive) Temporal Reasoning [79, 2]

- Temporal reasoning problems encoded as disjunctions of difference constraints

$$
\begin{array}{lll}
\left(\left(x_{1}-x_{2} \leq 6\right)\right. & \left.\vee\left(x_{3}-x_{4} \leq-2\right)\right) & \wedge \\
\left(\left(x_{2}-x_{3} \leq-2\right)\right. & \left.\vee\left(x_{4}-x_{5} \leq 5\right)\right) & \wedge \\
\left(\left(x_{2}-x_{1} \leq 4\right)\right. & \left.\vee\left(x_{3}-x_{7} \leq-6\right)\right) & \wedge
\end{array}
$$

- Straightforward to encode into into $\operatorname{SMT}(\mathcal{D L})$

SMT and SMT solvers

Common fact about SMT problems from various applications
SMT requires capabilities for heavy Boolean reasoning combined with capabilities for reasoning in expressive decidable F.O. theories

- SAT alone not expressive enough
- standard automated theorem proving inadequate (e.g., arithmetic)
- may involve also numerical computation (e.g., simplex)

Modern SMT solvers

- combine SAT solvers with decision procedures (theory solvers)
- contributions from SAT, Automated Theorem Proving (ATP), formal verification (FV) and operational research (OR)

Goal

Provide an overview of standard "lazy" SMT:

- foundations
- SMT-solving techniques
- beyond solving: advanced SMT functionalities
- ongoing research

We do not cover related approaches like:

- Eager SAT encodings
- Rewrite-based approaches

We refer to $[71,10]$ for an overview and references.

Notational remark (1): most/all examples in $\mathcal{L} \mathcal{R} \mathcal{A}$

For better readability, in most/all the examples of this presentation we will use the theory of linear arithmetic on rational numbers ($\mathcal{L R \mathcal { A } \text {) }}$ because of its intuitive semantics. E.g.:

$$
\left(\neg A_{1} \vee\left(3 x_{1}-2 x_{2}-3 \leq 5\right)\right) \wedge\left(A_{2} \vee\left(-2 x_{1}+4 x_{3}+2=3\right)\right)
$$

Nevertheless, analogous examples can be built with all other theories of interest.

Notational remark (2): "constants" vs. "variables"

- Consider, e.g., the formula:

$$
\left(\neg A_{1} \vee\left(3 x_{1}-2 x_{2}-3 \leq 5\right)\right) \wedge\left(A_{2} \vee\left(-2 x_{1}+4 x_{3}+2=3\right)\right)
$$

- How do we call A_{1}, A_{2} ?:
(a) Boolean/propositional variables?
(b) uninterpreted 0 -ary predicates?
- How do we call x_{1}, x_{2}, x_{3} ?:
(a) domain variables?
(b) uninterpreted Skolem constants/0-ary uninterpreted functions?
- Hint:
(a) typically used in SAT, CSP and OR communities
(b) typically used in logic \& ATP communities

Hereafter we call A_{1}, A_{2} "Boolean/propositional variables" and x_{1}, x_{2}, x_{3} "domain variables" (logic purists, please forgive me!)

Modern "lazy" SMT (\mathcal{T}) solvers

A prominent "lazy" approach [45, 2, 82, 3, 8, 36] (aka "DPLL($\mathcal{T})$ ")

- a CDCL SAT solver is used to enumerate truth assignments μ_{i} for (the Boolean abstraction of) the input formula φ
- a theory-specific solver \mathcal{T}-solver checks the \mathcal{T}-consistency of the set of \mathcal{T}-literals corresponding to each assignment
- Many techniques to maximize the benefits of integration [71, 10]
- Many lazy SMT tools available (Barcelogic, CVC4, MathSAT, OpenSMT, Yices, Z3, ...)

Basic schema: example

```
\(\varphi=\)
\(c_{1}: \quad \neg\left(2 v_{2}-v_{3}>2\right) \vee A_{1}\)
\(c_{2}: \quad \neg A_{2} \vee\left(v_{1}-v_{5} \leq 1\right)\)
\(c_{3}: \quad\left(3 v_{1}-2 v_{2} \leq 3\right) \vee A_{2}\)
\(c_{4}: \quad \neg\left(2 v_{3}+v_{4} \geq 5\right) \vee \neg\left(3 v_{1}-v_{3} \leq 6\right) \vee \neg A_{1}\)
\(A_{1} \vee\left(3 v_{1}-2 v_{2} \leq 3\right)\)
\(\left(v_{2}-v_{4} \leq 6\right) \vee\left(v_{5}=5-3 v_{4}\right) \vee \neg A_{1}\)
\(A_{1} \vee\left(v_{3}=3 v_{5}+4\right) \vee A_{2}\)
    true, false
```

$\varphi^{p}=$
$\neg B_{1} \vee A_{1}$
$\neg A_{2} \vee B_{2}$
$B_{3} \vee A_{2}$
$\neg B_{4} \vee \neg B_{5} \vee \neg A_{1}$
$A_{1} \vee B_{3}$
$B_{6} \vee B_{7} \vee \neg A_{1}$
$A_{1} \vee B_{8} \vee A_{2}$

$$
\begin{aligned}
\mu^{p}= & \left\{\neg B_{5}, B_{8}, B_{6}, \neg B_{1}, \neg B_{3}, A_{1}, A_{2}, B_{2}\right\} \\
\mu= & \left\{\neg\left(3 v_{1}-v_{3} \leq 6\right),\left(v_{3}=3 v_{5}+4\right),\left(v_{2}-v_{4} \leq 6\right),\right. \\
& \left.\neg\left(2 v_{2}-v_{3}>2\right), \neg\left(3 v_{1}-2 v_{2} \leq 3\right),\left(v_{1}-v_{5} \leq 1\right)\right\}
\end{aligned}
$$

\Longrightarrow inconsistent in $\mathcal{L R} \mathcal{A} \Longrightarrow$ backtrack

\mathcal{T}-Backjumping \& \mathcal{T}-learning [50, 82, 3, 8, 36]

- Similar to Boolean backjumping \& learning
- important property of \mathcal{T}-solver:
- extraction of \mathcal{T}-conflict sets: if μ is \mathcal{T}-unsatisfiable, then \mathcal{T}-solver (μ) returns the subset η of μ causing the \mathcal{T}-inconsistency of μ (\mathcal{T}-conflict set)
- If so, the \mathcal{T}-conflict clause $C:=\neg \eta$ is used to drive the backjumping \& learning mechanism of the SAT solver
\Longrightarrow lots of search saved
- the less redundant is η, the more search is saved

$$
\neg I_{1} \vee \neg I_{2} \vee \neg I_{3} \vee \neg I_{4} \vee I_{5}
$$

\mathcal{T}-Backjumping \& \mathcal{T}-learning: example


```
\(\varphi=\)
\(c_{1}: \quad \neg\left(2 v_{2}-v_{3}>2\right) \vee A_{1}\)
    \(c_{2}: \quad \neg A_{2} \vee\left(v_{1}-v_{5} \leq 1\right)\)
    \(c_{3}: \quad\left(3 v_{1}-2 v_{2} \leq 3\right) \vee \boldsymbol{A}_{2}\)
    \(c_{4}: \quad \neg\left(2 v_{3}+v_{4} \geq 5\right) \vee \neg\left(3 v_{1}-v_{3} \leq 6\right) \vee \neg A_{1}\)
    \(c_{5}: \quad A_{1} \vee\left(3 v_{1}-2 v_{2} \leq 3\right)\)
    \(c_{6}: \quad\left(v_{2}-v_{4} \leq 6\right) \vee\left(v_{5}=5-3 v_{4}\right) \vee \neg A_{1}\)
    \(c_{7}: \quad A_{1} \vee\left(v_{3}=3 v_{5}+4\right) \vee A_{2}\)
```

 \(\varphi^{p}=\)
 $\neg B_{1} \vee A_{1}$
$\neg A_{2} \vee B_{2}$
$B_{3} \vee A_{2}$
$\neg B_{4} \vee \neg B_{5} \vee \neg A_{1}$
$A_{1} \vee B_{3}$
$B_{6} \vee B_{7} \vee \neg A_{1}$
$A_{1} \vee B_{8} \vee A_{2}$

\mathcal{T}-Backjumping \& \mathcal{T}-learning: example (2)


```
\(\varphi=\)
\(c_{1}: \quad \neg\left(2 v_{2}-v_{3}>2\right) \vee A_{1}\)
    \(c_{2}: \quad \neg A_{2} \vee\left(v_{1}-v_{5} \leq 1\right)\)
    \(c_{3}: \quad\left(3 v_{1}-2 v_{2} \leq 3\right) \vee \boldsymbol{A}_{2}\)
    \(c_{4}: \quad \neg\left(2 v_{3}+v_{4} \geq 5\right) \vee \neg\left(3 v_{1}-v_{3} \leq 6\right) \vee \neg A_{1} \neg B_{4} \vee \neg B_{5} \vee \neg A_{1}\)
    \(c_{5}: \quad A_{1} \vee\left(3 v_{1}-2 v_{2} \leq 3\right)\)
    \(c_{6}: \quad\left(v_{2}-v_{4} \leq 6\right) \vee\left(v_{5}=5-3 v_{4}\right) \vee \neg A_{1}\)
    \(c_{7}: \quad A_{1} \vee\left(v_{3}=3 v_{5}+4\right) \vee A_{2}\)
```

 \(\varphi^{p}=\)
 $\neg B_{1} \vee A_{1}$
$\neg A_{2} \vee B_{2}$
$A_{1} \vee B_{3}$
$B_{6} \vee B_{7} \vee \neg A_{1}$
$A_{1} \vee B_{8} \vee A_{2}$

Early Pruning [45, 2, 82]

- Introduce a \mathcal{T}-satisfiability test on intermediate assignments: if \mathcal{T}-solver returns UNSAT, the procedure backtracks.
- benefit: prunes drastically the Boolean search
- Drawback: possibly many useless calls to \mathcal{T}-solver

Early Pruning [45, 2, 82] II

- Different strategies for interleaving Boolean search steps and \mathcal{T}-solver calls
- Eager E.P. [82, 11, 80, 44]): invoke \mathcal{T}-solver every time a new \mathcal{T}-atom is added to the assignment (unit propagations included)
- Selective E.P.: Do not call \mathcal{T}-solver if the have been added only literals which hardly cause any \mathcal{T}-conflict with the previous assignment (e.g., Boolean literals, disequalities $(x-y \neq 3)$, \mathcal{T}-literals introducing new variables $(x-z=3)$)
- Weakened E.P.: for intermediate checks only, use weaker but faster versions of \mathcal{T}-solver (e.g., check μ on \mathbb{R} rather than on \mathbb{Z}): $\{(x-y \leq 4),(z-x \leq-6),(z=y),(3 x+2 y-3 z=4)\}$

Early pruning: example

$$
\begin{array}{rlrl}
\varphi= & \left\{\neg\left(2 v_{2}-v_{3}>2\right) \vee A_{1}\right\} \wedge & \varphi^{p}= & \left\{\neg B_{1} \vee A_{1}\right\} \wedge \\
& \left\{\neg A_{2} \vee\left(2 v_{1}-4 v_{5}>3\right)\right\} \wedge & \left\{\neg A_{2} \vee B_{2}\right\} \wedge \\
& \left\{\left(3 v_{1}-2 v_{2} \leq 3\right) \vee A_{2}\right\} \wedge & \left\{B_{3} \vee A_{2}\right\} \wedge \\
& \left\{\neg\left(2 v_{3}+v_{4} \geq 5\right) \vee \neg\left(3 v_{1}-v_{3} \leq 6\right) \vee \neg A_{1}\right\} \wedge & & \left\{\neg B_{4} \vee \neg B_{5} \vee \neg A_{1}\right\} \\
& \left\{A_{1} \vee\left(3 v_{1}-2 v_{2} \leq 3\right)\right\} \wedge & & \left\{A_{1} \vee B_{3}\right\} \wedge \\
& \left\{\left(v_{1}-v_{5} \leq 1\right) \vee\left(v_{5}=5-3 v_{4}\right) \vee \neg A_{1}\right\} \wedge & & \left\{B_{6} \vee B_{7} \vee \neg A_{1}\right\} \wedge \\
& \left\{A_{1} \vee\left(v_{3}=3 v_{5}+4\right) \vee A_{2}\right\} . & \left\{A_{1} \vee B_{8} \vee A_{2}\right\} .
\end{array}
$$

- Suppose it is built the intermediate assignment:

$$
\mu^{\prime p}=\neg B_{1} \wedge \neg A_{2} \wedge B_{3} \wedge \neg B_{5}
$$

corresponding to the following set of \mathcal{T}-literals

$$
\mu^{\prime}=\neg\left(2 v_{2}-v_{3}>2\right) \wedge \neg A_{2} \wedge\left(3 v_{1}-2 v_{2} \leq 3\right) \wedge \neg\left(3 v_{1}-v_{3} \leq 6\right)
$$

- If \mathcal{T}-solver is invoked on μ^{\prime}, then it returns UNSAT, and DPLL backtracks without exploring any extension of μ^{\prime}.

Early pruning: remark

Incrementality \& Backtrackability of \mathcal{T}-solvers

- With early pruning, lots of incremental calls to \mathcal{T}-solver:

\mathcal{T}-solver $\left(\mu_{1}\right)$	\Rightarrow Sat	Undo $\mu_{4}, \mu_{3}, \mu_{2}$	
\mathcal{T}-solver $\left(\mu_{1} \cup \mu_{2}\right)$	\Rightarrow Sat	\mathcal{T}-solver $\left(\mu_{1} \cup \mu_{2}^{\prime}\right)$	\Rightarrow Sat
\mathcal{T}-solver $\left(\mu_{1} \cup \mu_{2} \cup \mu_{3}\right)$	\Rightarrow Sat	\mathcal{T}-solver $\left(\mu_{1} \cup \mu_{2}^{\prime} \cup \mu_{3}^{\prime}\right)$	\Rightarrow Sat
\mathcal{T}-solver $\left(\mu_{1} \cup \mu_{2} \cup \mu_{3} \cup \mu_{4}\right)$	\Rightarrow Unsat	\ldots	

\Longrightarrow Desirable features of \mathcal{T}-solvers:

- incrementality: \mathcal{T}-solver $\left(\mu_{1} \cup \mu_{2}\right)$ reuses computation of \mathcal{T}-solver $\left(\mu_{1}\right)$ without restarting from scratch
- backtrackability (resettability): \mathcal{T}-solver can efficiently undo steps and return to a previous status on the stack
$\Longrightarrow \mathcal{T}$-solver requires a stack-based interface

\mathcal{T}-Propagation [2, 3, 44]

- strictly related to early pruning
- important property of \mathcal{T}-solver.
- \mathcal{T}-deduction: when a partial assignment μ is \mathcal{T}-satisfiable, \mathcal{T}-solver may be able to return also an assignment η to some unassigned atom occurring in φ s.t. $\mu \neq \mathcal{T}$.
- If so:
- the literal η is then unit-propagated;
- optionally, a \mathcal{T}-deduction clause $C:=\neg \mu^{\prime} \vee \eta$ can be learned, μ^{\prime} being the subset of μ which caused the deduction ($\mu^{\prime}=\mathcal{T} \eta$)
- lazy explanation: compute C only if needed for conflict analysis
\Longrightarrow may prune drastically the search

Both \mathcal{T}-deduction clauses and \mathcal{T}-conflict clauses are called \mathcal{T}-lemmas since they are valid in \mathcal{T}

\mathcal{T}-propagation: example

$$
\begin{array}{lll}
\varphi= & & \varphi^{p}= \\
c_{1}: & \neg\left(2 v_{2}-v_{3}>2\right) \vee A_{1} & \neg B_{1} \vee A_{1} \\
c_{2}: & \neg A_{2} \vee\left(v_{1}-v_{5} \leq 1\right) & \neg A_{2} \vee B_{2} \\
c_{3}: & \left(3 v_{1}-2 v_{2} \leq 3\right) \vee A_{2} & B_{3} \vee A_{2} \\
c_{4}: & \neg\left(2 v_{3}+v_{4} \geq 5\right) \vee \neg\left(3 v_{1}-v_{3} \leq 6\right) \vee \neg A_{1} & \neg B_{4} \vee \neg B_{5} \vee \neg A_{1} \\
c_{5}: & A_{1} \vee\left(3 v_{1}-2 v_{2} \leq 3\right) & A_{1} \vee B_{3} \\
c_{6}: & \left(v_{2}-v_{4} \leq 6\right) \vee\left(v_{5}=5-3 v_{4}\right) \vee \neg A_{1} & B_{6} \vee B_{7} \vee \neg A_{1} \\
c_{7}: & A_{1} \vee\left(v_{3}=3 v_{5}+4\right) \vee A_{2} & A_{1} \vee B_{8} \vee A_{2}
\end{array}
$$

Pure-literal filtering [82, 3, 17]

Property

If we have non-Boolean \mathcal{T}-atoms occurring only positively [negatively] in the original formula φ (learned clauses are not considered), we can drop every negative [positive] occurrence of them from the assignment to be checked by \mathcal{T}-solver (and from the \mathcal{T}-deducible ones).

- increases the chances of finding a model
- reduces the effort for the \mathcal{T}-solver
- eliminates unnecessary "nasty" negated literals (e.g. negative equalities like $\neg\left(3 v_{1}-9 v_{2}=3\right)$ in $\mathcal{L I A}$ force splitting: $\left.\left(3 v_{1}-9 v_{2}>3\right) \vee\left(3 v_{1}-9 v_{2}<3\right)\right)$.
- may weaken the effect of early pruning.

Pure literal filtering: example

$$
\begin{aligned}
& \varphi=\left\{\neg\left(2 v_{2}-v_{3}>2\right) \vee A_{1}\right\} \wedge \\
&\left\{\neg A_{2} \vee\left(2 v_{1}-4 v_{5}>3\right)\right\} \wedge \\
&\left\{\left(\neg v_{1}-2 v_{2} \leq 3\right) \vee A_{2}\right\} \wedge \\
&\left\{\neg\left(2 v_{3}+v_{4} \geq 5\right) \vee \neg\left(3 v_{1}-v_{3} \leq 6\right) \vee \neg A_{1}\right\} \wedge \\
&\left\{A_{1} \vee\left(3 v_{1}-2 v_{2} \leq 3\right)\right\} \wedge \\
&\left\{\left(v_{1}-v_{5} \leq 1\right) \vee\left(v_{5}=5-3 v_{4}\right) \vee \neg A_{1}\right\} \wedge \\
&\left\{A_{1} \vee\left(v_{3}=3 v_{5}+4\right) \vee A_{2}\right\} \wedge \\
&\left\{\left(2 v_{2}-v_{3}>2\right) \vee \neg\left(3 v_{1}-2 v_{2} \leq 3\right) \vee\left(3 v_{1}-v_{3} \leq 6\right)\right\} \text { learned } \\
& \mu^{\prime}=\left\{\neg \left(2 v_{2}-\right.\right.\left.\left.v_{3}>2\right), \neg A_{2},\left(3 v_{1}-2 v_{2} \leq 3\right), \neg A_{1},\left(v_{3}=3 v_{5}+4\right),\left(3 v_{1}-v_{3} \leq 6\right)\right\} . \\
& \Longrightarrow \text { Sat: } v_{1}= \\
& \text { N. } v_{2}=v_{3}=0, v_{5}=-4 / 3 \text { is a solution } \\
& \text { N. }\left(3 v_{1}-\right.\left.v_{3} \leq 6\right) \text { "filtered out" from } \mu^{\prime} \text { because it occurs only } \\
& \text { negatively in the original formula } \varphi
\end{aligned}
$$

Preprocessing atoms [45, 50, 4]

Source of inefficiency: semantically equivalent but syntactically different atoms are not recognized to be identical [resp. one the negation of the other]
\Longrightarrow they may be assigned different [resp. identical] truth values.
\Longrightarrow lots of redundant unsatisfiable assignment generated

Solution

Rewrite a priori trivially-equivalent atoms/literals into the same atom/literal.

Preprocessing atoms (cont.)

- Sorting: $\left(v_{1}+v_{2} \leq v_{3}+1\right),\left(v_{2}+v_{1} \leq v_{3}+1\right),\left(v_{1}+v_{2}-1 \leq v_{3}\right)$ $\left.\Longrightarrow\left(v_{1}+v_{2}-v_{3} \leq 1\right)\right)$;
- Rewriting dual operators:

$$
\left(v_{1}<v_{2}\right),\left(v_{1} \geq v_{2}\right) \Longrightarrow\left(v_{1}<v_{2}\right), \neg\left(v_{1}<v_{2}\right)
$$

- Exploiting associativity:

$$
\left.\left(v_{1}+\left(v_{2}+v_{3}\right)=1\right),\left(\left(v_{1}+v_{2}\right)+v_{3}\right)=1\right) \Longrightarrow\left(v_{1}+v_{2}+v_{3}=1\right) ;
$$

- Factoring $\left(v_{1}+2.0 v_{2} \leq 4.0\right),\left(-2.0 v_{1}-4.0 v_{2} \geq-8.0\right)$, \Longrightarrow $\left(0.25 v_{1}+0.5 v_{2} \leq 1.0\right)$;
- Exploiting properties of \mathcal{T} :
$\left(v_{1} \leq 3\right),\left(v_{1}<4\right) \Longrightarrow\left(v_{1} \leq 3\right)$ if $v_{1} \in \mathbb{Z}$;

Static Learning [2, 4]

- Often possible to quickly detect a priori short and "obviously inconsistent" pairs or triplets of literals occurring in φ.
- mutual exclusion $\{x=0, x=1\}$,
- congruence $\left\{\left(x_{1}=y_{1}\right),\left(x_{2}=y_{2}\right), \neg\left(f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right)\right)\right\}$,
- transitivity $\{(x-y=2),(y-z \leq 4), \neg(x-z \leq 7)\}$,
- substitution $\{(x=y),(2 x-3 z \leq 3), \neg(2 y-3 z \leq 3)\}$
- Preprocessing step: detect these literals and add blocking clauses to the input formula:
(e.g., $\neg(x=0) \vee \neg(x=1)$)
\Longrightarrow No assignment including one such group of literals is ever generated: as soon as all but one literals are assigned, the remaining one is immediately assigned false by unit-propagation.

Other optimization techniques

- \mathcal{T}-deduced-literal filtering
- Ghost-literal filtering
- \mathcal{T}-solver layering
- \mathcal{T}-solver clustering
(see [71, 10] for an overview)

Other SAT-solving techniques for SMT?

Frequently-asked question:

Are CDCL SAT solvers the only suitable Boolean Engines for SMT?
Some previous attempts:

- Ordered Binary Decision Diagrams (OBDDs) [83, 60, 1]
- Stochastic Local Search [49]

CDCL based currently much more efficient.

SMT formulas = "partially-invisible" SAT formulas

An SMT problem φ from the perspective of a SAT solver:

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
- φ^{p} : the Boolean abstraction of the input formula φ
- τ^{p} : (the B. abst. of) the set τ of all \mathcal{T}-lemmas on atoms in φ.
$\varphi \mathcal{T}$-satisfiable iff $\varphi^{\mathcal{D}} \wedge \tau^{D}$ satisfiable.

Example

```
\(\varphi\) :
\(c_{1}:\left\{A_{1}\right\}\)
\(c_{2}: \quad\left\{\neg A_{1} \vee(x-z>4)\right\}\)
\(c_{3}: \quad\left\{\neg A_{3} \vee A_{1} \vee(y \geq 1)\right\}\)
\(c_{4}: \quad\left\{\neg A_{2} \vee \neg(x-z>4) \vee \neg A_{1}\right\}\)
\(c_{5}: \quad\left\{(x-y \leq 3) \vee \neg A_{4} \vee A_{5}\right\}\)
\(c_{6}: \quad\left\{\neg(y-z \leq 1) \vee(x+y=1) \vee \neg A_{5}\right\}\)
\(c_{7}: \quad\left\{A_{3} \vee \neg(x+y=0) \vee A_{2}\right\}\)
\(c_{8}: \quad\left\{\neg A_{3} \vee(z+y=2)\right\}\)
\(\tau: \quad\) (all possible \(\mathcal{T}\)-lemmas on the \(\mathcal{T}\)-atoms of \(\varphi\) )
\(c_{9}: \quad\{\neg(x+y=0) \vee \neg(x+y=1)\}\)
\(c_{10}: \quad\{\neg(x-z>4) \vee \neg(x-y \leq 3) \vee \neg(y-z \leq 1)\}\)
\(c_{11}: \quad\{(x-z>4) \vee(x-y \leq 3) \vee(y-z \leq 1)\}\)
\(c_{12}: \quad\{\neg(x-z>4) \vee \neg(x+y=1) \vee \neg(z+y=2)\}\)
\(c_{13}: \quad\{\neg(x-z>4) \vee \neg(x+y=0) \vee \neg(z+y=2)\}\)
\(\begin{array}{ll}\varphi^{p}: & \\ c_{1}: & \left\{A_{1}\right\} \\ C_{2}: & \left\{\neg A_{1} \vee B_{1}\right\} \\ C_{3}: & \left\{\neg A_{3} \vee A_{1} \vee B_{2}\right\} \\ C_{4}: & \left\{\neg A_{2} \vee \neg B_{1} \vee \neg A_{1}\right\} \\ C_{5}: & \left\{B_{3} \vee \neg A_{4} \vee A_{5}\right\} \\ C_{6}: & \left\{\neg B_{4} \vee B_{5} \vee \neg A_{5}\right\} \\ C_{7}: & \left\{A_{3} \vee \neg B_{6} \vee A_{2}\right\} \\ C_{8}: & \left\{\neg A_{3} \vee B_{7}\right\} \\ \tau^{p}: & \\ c_{9}: & \left\{\neg B_{6} \vee \neg B_{5}\right\} \\ c_{10}: & \left\{\neg B_{1} \vee \neg B_{3} \vee \neg B_{4}\right\} \\ C_{11}: & \left\{B_{1} \vee B_{3} \vee B_{4}\right\} \\ C_{2}: & \left\{\neg B_{1} \vee \neg B_{5} \vee \neg B_{7}\right\} \\ C_{13}: & \left\{\neg B_{1} \vee \neg B_{6} \vee \neg \neg B_{7}\right\}\end{array}\)
\(\mu_{1}^{\rho}:\left\{A_{1}, B_{1}, \neg A_{2}, A_{3}, \neg A_{4}, \neg A_{5}, \neg B_{6}, B_{5}, B_{3}, B_{4}, B_{7}, \neg B_{2}\right\}\)
\(\mu_{1}:\{(\underline{\underline{x-z>4})}, \neg(x+y=0),(x+y=1),(x-y \leq 3),(y-z \leq 1),(z+y=2), \neg(y \geq\)
```

satisfies φ^{ρ}, but violates both c_{10} and c_{12} in τ^{ρ}.

\mathcal{T}-solvers for Equality and Uninterpreted Functions $(\mathcal{E U F})$

- Typically used as a "core" \mathcal{T}-solver
- $\mathcal{E U F}$ polynomial: $O(n \cdot \log (n))$
- Fully incremental and backtrackable (stack-based)
- use a congruence closure data structures (E-Graphs) [40, 64, 35], based on the Union-Find data-structure for equivalence classes
- Supports efficient \mathcal{T}-propagation
- Exhaustive for positive equalities
- Incomplete for disequalities
- Supports Lazy explanations and conflict generation
- However, minimality not guaranteed
- Supports efficient extensions
(e.g., Integer offsets, Bit-vector slicing and concatenation)

\mathcal{T}-solvers for $\mathcal{E U F}$: Example

Idea (sketch): given the set of terms occurring in the formula represented as nodes in a DAG (aka term bank),

- if $(t=s)$, then merge the eq. classes of t and s
- if $\forall i \in 1 \ldots k, t_{i}$ and s_{i} pairwise belong to the same eq. classes, then merge the the eq. classes of $f\left(t_{1}, \ldots, t_{k}\right)$ and $f\left(s_{1}, \ldots, s_{k}\right)$
- if $(t \neq s)$ and t and s belong to the same eq. class, then conflict

$$
\begin{array}{r}
f(a, b)=a \\
f(f(a, b), b)=c \\
g(a) \neq g(c)
\end{array}
$$

$$
\begin{aligned}
& f(a, b)=a \\
& f(f(a, b), b)=c
\end{aligned}
$$

\mathcal{T}-solvers for Difference logic (\mathcal{D})

- DL polynomial: O(\#vars • \#constraints)
- variants of the Bellman-Ford shortest-path algorithm: a negative cycle reveals a conflict [65, 34]
- Ex:

$$
\begin{aligned}
& \left\{\left(x_{1}-x_{2} \leq-1\right),\left(x_{1}-x_{4} \leq-1\right),\left(x_{1}-x_{3} \leq-2\right),\left(x_{2}-x_{1} \leq 2\right),\right. \\
& \left.\left(x_{3}-x_{4} \leq-2\right),\left(x_{3}-x_{2} \leq-1\right),\left(x_{4}-x_{2} \leq 3\right),\left(x_{4}-x_{3} \leq 6\right)\right\}
\end{aligned}
$$

\Longrightarrow Sat

\Longrightarrow Unsat

\mathcal{T}-solvers for Linear arithmetic over the rationals

 ($\mathcal{L R} \mathcal{A}$)- EX: $\left\{\left(s_{1}-s_{2} \leq 5.2\right),\left(s_{1}=s_{0}+3.4 \cdot t-3.4 \cdot t_{0}\right), \neg\left(s_{1}=s_{0}\right)\right\}$
- $\mathcal{L R} \mathcal{A}$ polynomial
- variants of the simplex LP algorithm [41]
- [41] allows for detecting conflict sets \& performing \mathcal{T}-propagation
- strict inequalities $t<0$ rewritten as $t+\epsilon \leq 0, \epsilon$ treated symbolically

$$
\begin{gathered}
\mathcal{B} \\
{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{i} \\
\vdots \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
\ldots A_{1 j} \ldots \\
\vdots \\
A_{i 1} \ldots A_{i j} \ldots A_{i M} \\
\vdots \\
\ldots A_{N j} \ldots
\end{array}\right]\left[\begin{array}{c}
\mathcal{N} \\
x_{N+1} \\
\vdots \\
x_{j} \\
\vdots \\
x_{N+M}
\end{array}\right] ;}
\end{gathered}
$$

Invariant: $\beta\left(x_{j}\right) \in\left[l_{j}, u_{j}\right] \forall x_{j} \in \mathcal{N}$

Remark: infinite precision arithmetic

In order to avoid incorrect results due to numerical errors and to overflows, all \mathcal{T}-solvers for $\mathcal{L R} \mathcal{A}, \mathcal{L} \mathcal{A}$ and their subtheories which are based on numerical algorithms must be implemented on top of infinite-precision-arithmetic software packages.

\mathcal{T}-solvers for Linear arithmetic over the integers $(\mathcal{L I} \mathcal{A})$

- EX: $\left\{\left(x:=x_{l}+2^{16} x_{h}\right),(x \geq 0),\left(x \leq 2^{16}-1\right)\right\}$
- $\mathcal{L I A}$ NP-complete
- combination of many techniques: simplex, branch\&bound, cutting planes, ... [41, 47]

Figure courtesy of A. Griggio [47]

\mathcal{T}-solvers for Arrays ($\mathcal{A R}$)

- EX: $($ write $(A, i, v)=$ write $(B, i, w)) \wedge \neg(v=w)$
- NP-complete
- congruence closure ($\mathcal{E U F}$) plus on-the-fly instantiation of array's axioms:

$$
\begin{align*}
& \forall a . \forall i . \forall e .(\operatorname{read}(w r i t e(a, i, e), i)=e), \tag{1}\\
& \forall a . \forall i . \forall j . \forall e .((i \neq j) \rightarrow \operatorname{read}(w r i t e(a, i, e), j)=\operatorname{read}(a, j)),(\tag{2}\\
& \forall a . \forall b .(\forall i .(\operatorname{read}(a, i)=\operatorname{read}(b, i)) \rightarrow(a=b)) . \tag{3}
\end{align*}
$$

- EX:

$$
\begin{array}{ll}
\text { Input : } & (\text { write }(A, i, v)=\text { write }(B, i, w)) \wedge \neg(v=w) \\
\text { inst. (1): } & (\operatorname{read}(w r i t e(A, i, v), i)=v) \\
& (\operatorname{read}(w r i t e(B, i, w), i)=w) \\
\models_{\mathcal{E U F}} \quad & (v=w) \\
=_{\text {Bool }} & \perp
\end{array}
$$

\mathcal{T}-solvers for Bit vectors ($\mathcal{B V}$)

Bit vectors ($\mathcal{B V}$)

- EX: $\left\{\left(x_{[16]}[15: 0]=\left(y_{[16]}[15: 8]:: z_{[16]}[7: 0]\right) \ll w_{[16]}[3: 0]\right), \ldots\right\}$
- NP-hard
- involve complex word-level operations: word partition/concat, modulo-2 ${ }^{N}$ arithmetic, shifts, bitwise-operations, multiplexers, ...
- \mathcal{T}-solving: combination of rewriting \& simplification techniques with either:
- final encoding into $\mathcal{L I A}[19,22]$
- final encoding into SAT (lazy bit-blasting) [25, 43, 21, 42]

Eager approach

Most solvers use an eager approach for $\mathcal{B V}$ (e.g., [21]):

- Heavy preprocessing, based on rewriting rules
- bit-blasting

\mathcal{T}-solvers for Bit vectors (BV) [cont.]

Example borrowed from [22]

\mathcal{T}-solvers for Bit vectors ($\mathcal{B V}$) [cont.]

Lazy bit-blasting

- Two nested SAT solvers
- bit-blast each $\mathcal{B V}$ atom ψ_{i}
$\Longrightarrow \Phi \stackrel{\text { def }}{=} \bigwedge_{i}\left(A_{i} \leftrightarrow B B\left(\psi_{i}\right)\right)$,
\boldsymbol{A}_{i} fresh variables labeling $\mathcal{B V}$-atoms ψ_{i} in φ
$\Longrightarrow \varphi \mathcal{B V}$-satisfiable iff $\varphi^{p} \wedge \Phi$ satisfiable
- Exploit SAT under assumptions
- let μ^{p} an assignment for φ^{p}, s.t. $\mu^{p} \stackrel{\text { def }}{=}\left\{[\neg] A_{1}, \ldots,[\neg] A_{n}\right\}$
- \mathcal{T}-solver for $\mathcal{B V}: S A T_{\text {assumption }}\left(\Phi, \mu^{p}\right)$
- If UNSAT, generate the unsat core $\eta^{p} \subseteq \mu^{p}$
$\Longrightarrow \neg \eta^{p}$ used as blocking clause

SMT for combined theories: $\operatorname{SMT}\left(\bigcup_{i} \mathcal{T}_{i}\right)$

Problem: Many problems can be expressed as SMT problems only in combination of theories $\bigcup_{i} \mathcal{T}_{i}-\operatorname{SMT}\left(\bigcup_{i} \mathcal{T}_{i}\right)$

SMT for combined theories: $\operatorname{SMT}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$

- Standard approach for combining \mathcal{T}_{i}-solver's: (deterministic) Nelson-Oppen/Shostak (N.O.) [61, 63, 77]
- based on deduction and exchange of equalities on shared variables
- combined \mathcal{T}_{i}-solver's integrated with a SAT tool
- More-recent alternative approaches: Delayed Theory Combination [15, 14] and Model-Based Theory Combination [37]
- based on Boolean search on equalities on shared variables
- \mathcal{T}_{i}-solver's integrated directly with a SAT tool

Problem:

N.O. approaches have some drawbacks and limitations when used within a SMT framework

Background: Pure Formulas

Consider two theories T_{1}, T_{2} with equality and disjoint signatures Σ_{1}, Σ_{2}

- W.I.o.g. we assume all input formulas $\phi \in T_{1} \cup T_{2}$ are pure.
- A formula ϕ is pure iff every atom in ϕ is i-pure for some $i \in\{1,2\}$.
- An atom/literal in ϕ is i-pure if only $=$, variables and symbols from Σ_{i} can occur in ϕ

Purification:

maps a formula into an equisatisfiable pure formula by labeling terms with fresh variables

$$
\begin{array}{cl}
(f(\underbrace{x+3 y}_{w})=g(\underbrace{2 x-y}_{t})) & \text { [not pure] } \\
\Downarrow & \\
(w=x+3 y) \wedge(t=2 x-y) \wedge(f(w)=g(t)) & {[\text { pure }]}
\end{array}
$$

Background: Interface equalities

Interface variables \& equalities

- A variable v occurring in a pure formula ϕ is an interface variable iff it occurs in both 1-pure and 2-pure atoms of ϕ.
- An equality $\left(v_{i}=v_{j}\right)$ is an interface equality for ϕ iff v_{i}, v_{j} are interface variables for ϕ.
- We denote the interface equality $v_{i}=v_{j}$ by " $e_{i j}$ "

Example:

$$
\begin{array}{ll}
\mathcal{L I \mathcal { A }}: & \left(G E_{01} \leftrightarrow\left(v_{0} \geq v_{1}\right)\right) \wedge\left(L E_{01} \leftrightarrow\left(v_{0} \leq v_{1}\right)\right) \wedge \\
\mathcal{E U F}: & \left(v_{3}=h\left(v_{0}\right)\right) \wedge\left(v_{4}=h\left(v_{1}\right)\right) \wedge \\
\mathcal{L I \mathcal { A }}: & \left(v_{2}=v_{3}-v_{4}\right) \wedge\left(R E S E T_{5} \rightarrow\left(v_{5}=0\right)\right) \wedge \\
\mathcal{E U F} \text { or } \mathcal{L I \mathcal { A }}: & \left(\neg R E S E T_{5} \rightarrow\left(v_{5}=v_{8}\right)\right) \wedge \\
\mathcal{E U}: & \left(v_{6}=f\left(v_{2}\right)\right) \wedge\left(v_{7}=f\left(v_{5}\right)\right) \wedge \\
\mathcal{E U \mathcal { F }} \text { or } \mathcal{L I} \mathcal{I}: & \left(E Q_{67} \leftrightarrow\left(v_{6}=v_{7}\right)\right) \wedge \ldots
\end{array}
$$

$v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are interface variables, v_{6}, v_{7}, v_{8} are not $\Longrightarrow\left(v_{0}=v_{1}\right)$ is an interface equality, $\left(v_{0}=v_{6}\right)$ is not.

Background: Stably-infinite \& Convex Theories

Stably-infinite Theories

A theory T is stably-infinite iff every quantifier-free T-satisfiable formula is satisfiable in an infinite model of T.

- $\mathcal{E U F}, \mathcal{D} \mathcal{L}, \mathcal{L R} \mathcal{A}, \mathcal{L I} \mathcal{A}$ are stably-infinite
- bit-vector theories typically are not stably-infinite

Convex Theories

A theory T is convex iff, for every collection $l_{1}, \ldots, l_{k}, l^{\prime}, l^{\prime \prime}$ of literals in T s.t. $I^{\prime}, I^{\prime \prime}$ are in the form $(x=y), x, y$ being variables, we have that: $\left\{I_{1}, \ldots, I_{k}\right\} \models T\left(I^{\prime} \vee I^{\prime \prime}\right) \Longleftrightarrow\left\{I_{1}, \ldots, I_{k}\right\} \models I^{\prime \prime}$ or $\left\{I_{1}, \ldots, I_{k}\right\} \vDash{ }^{\prime} I^{\prime \prime}$

- $\mathcal{E U F}, \mathcal{D} \mathcal{L}, \mathcal{L R} \mathcal{A}$ are convex
- $\mathcal{L I} \mathcal{A}$ is not convex:

$$
\begin{aligned}
& \left\{\left(v_{0}=0\right),\left(v_{1}=1\right),\left(v \geq v_{0}\right),\left(v \leq v_{1}\right)\right\} \not \models\left(\left(v=v_{0}\right) \vee\left(v=v_{1}\right)\right), \\
& \left\{\left(v_{0}=0\right),\left(v_{1}=1\right),\left(v \geq v_{0}\right),\left(v \leq v_{1}\right)\right\} \not \vDash\left(v=v_{0}\right) \\
& \left\{\left(v_{0}=0\right),\left(v_{1}=1\right),(v \geq 0),\left(v \leq v_{1}\right)\right\} \not \vDash\left(v=v_{1}\right)
\end{aligned}
$$

$\operatorname{SMT}\left(\bigcup_{i} \mathcal{T}_{i}\right)$ via "classic" Nelson-Oppen

Main idea

Combine two or more \mathcal{T}_{i}-solvers into one $\left(\bigcup_{i} \mathcal{T}_{i}\right)$-solver via Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, $e_{i j} \mathrm{~s}$)
- important improvements and evolutions [69, 7, 40]

Schema of N.O. combination of T-solvers: $\operatorname{no}\left(T_{1}, T_{2}\right)$

For $i \in\{1,2\}$, let T_{i} be a stably infinite theory admitting a satisfiability T_{i}-solver, and μ_{i} a set of i-pure literals.
We want to to decide the $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-satisfiability of $\mu_{1} \cup \mu_{2}$

- each T_{i}-solver, in turn
- checks the T_{i}-satisfiability of μ_{i},
- deduces all the (disjunctions of) interface equalities which derive from μ_{i}
- passes them to T_{j}-solve, $j \neq i$, which adds them to μ_{j} until either:
- one T_{i}-solver detects inconsistency ($\mu_{1} \cup \mu_{2}$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-unsat)
- no more deductions are possible ($\mu_{1} \cup \mu_{2}$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-sat)
- disjunctions of literals (due to non-convexity) force case-splitting

Schema of N.O. combination of T-solvers: $\operatorname{no}\left(T_{1}, T_{2}\right)$

no $\left(T_{1}, T_{2}\right)$

\mathcal{T}_{1}-solver	\mathcal{T}_{2}-solver
\mathcal{T}_{1}-deduce	$\xrightarrow[V\left(v_{i}=v_{j}\right)]{ } T_{2}$-satisfiable

N.O.: example (convex theory)

$$
\begin{array}{ll}
\mathcal{E U \mathcal { F } :} & \left(v_{3}=h\left(v_{0}\right)\right) \wedge\left(v_{4}=h\left(v_{1}\right)\right) \wedge\left(v_{6}=f\left(v_{2}\right)\right) \wedge\left(v_{7}=f\left(v_{5}\right)\right) \wedge \\
\text { LRAA: } & \left(v_{0} \geq v_{1}\right) \wedge\left(v_{0} \leq v_{1}\right) \wedge\left(v_{2}=v_{3}-v_{4}\right) \wedge\left(R E S E T_{5} \rightarrow\left(v_{5}=0\right)\right) \wedge \\
\text { Both : } & \left(\neg R E S E T_{5} \rightarrow\left(v_{5}=v_{8}\right)\right) \wedge \neg\left(v_{6}=v_{7}\right) .
\end{array}
$$

N.O.: example (convex theory) [cont.]

$$
\begin{aligned}
& \begin{array}{l:ll}
v_{3}=h\left(v_{0}\right) \mathcal{E U F} & \mathcal{L R} \mathcal{A} & v_{0} \geq v_{1} \\
V_{4}=h\left(v_{1}\right) & & v_{0} \leq v_{1} \\
v_{6}=f\left(v_{2}\right) & & v_{2}=v_{3}-v_{4} \\
V_{7}=f\left(V_{5}\right) & & v_{5}=V_{8}
\end{array} \\
& \left\langle\mathbf{e}_{i j}\right. \text {-deduction〉 }
\end{aligned}
$$

$\mathcal{E} \mathcal{U} \mathcal{F} \cup \mathcal{L R A}$-Satisfiable!
$\mathcal{E U F}$-conflict :
$\mathcal{L} \mathcal{R}$ - -deduction :
$\mathcal{E} \mathcal{U F}$-deduction :
$\mathcal{L} \mathcal{R}$-deduction:
\Longrightarrow
$\mathcal{E} \mathcal{U F} \cup \mathcal{L R} \mathcal{A}$-conflict :

$$
\begin{aligned}
& \left(\left(v_{6}=f\left(v_{2}\right)\right) \wedge\left(v_{7}=f\left(v_{5}\right)\right) \wedge \neg\left(v_{6}=v_{7}\right) \wedge\left(v_{2}=v_{3}-v_{4}\right) \wedge\right. \\
& \left.\left(v_{5}=0\right) \wedge\left(v_{3}=h\left(v_{0}\right)\right) \wedge\left(v_{4}=h\left(v_{1}\right)\right) \wedge\left(v_{0} \geq v_{1}\right)\right) \rightarrow \perp .
\end{aligned}
$$

N.O.: example (non-convex theory)

SMT $\left(\bigcup_{i} \mathcal{T}_{i}\right)$ via "classic" Nelson-Oppen

Main idea

Combine two or more \mathcal{T}_{i}-solvers into one $\left(\bigcup_{i} \mathcal{T}_{i}\right)$-solver via Nelson-Oppen/Shostak (N.O.) combination procedure [62, 78]

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, $e_{i j} \mathrm{~s}$)
- important improvements and evolutions [69, 7, 40]
- drawbacks [23, 24]:
- require (possibly expensive) deduction capabilities from \mathcal{T}_{i}-solvers
- [with non-convex theories] case-splits forced by the deduction of disjunctions of $e_{i j}$'s
- generate (typically long) $\left(\bigcup_{i} \mathcal{T}_{i}\right)$-lemmas, without interface equalities \Longrightarrow no backjumping \& learning from $e_{i j}$-reasoning

SMT $\left(\bigcup_{i} \mathcal{T}_{i}\right)$ via Delayed Theory Combination (DTC)

Main idea

Delegate to the CDCL SAT solver part/most of the (possibly very expensive) reasoning effort on interface equalities previously due to the \mathcal{T}_{i}-solvers ($e_{i j}$-deduction, case-split). [15, 16, 24]

- based on Boolean reasoning on interface equalities via CDCL (plus \mathcal{T}-propagation)
- important improvements and evolutions [37, 9]
- feature wrt N.O. [23, 24]
- do not require (possibly expensive) deduction capabilities from \mathcal{T}_{i}-solvers
- with non-convex theories, case-splits on $e_{i j}$'s handled by SAT
- generate \mathcal{T}_{i}-lemmas with interface equalities \Longrightarrow backjumping \& learning from $e_{i j}$-reasoning

DTC: Basic schema

DTC: Basic schema

The boolean solver assigns values not only to atoms in $\operatorname{Atoms}(\phi)$, but also to interface equalities $\left\{\left(v_{i}=v_{j}\right)\right\}_{i j}$:
$\mu=\mu_{1} \cup \mu_{2} \cup \mu_{e}, \quad \mu_{e}:=\left\{[\neg]\left(v_{i}=v_{j}\right) \mid v_{i}, v_{j} \in \mu_{1} \cup \mu_{2}\right\}$

DTC: Basic schema

Each \mathcal{T}_{i}-solver interacts only with the boolean solver

- receives $\mu_{i}^{\prime}:=\mu_{i} \cup \mu_{e}$ from Bool
- checks the T_{i}-satisfiability of μ_{i}^{\prime}

DTC: Basic schema

...until either:
\bullet some μ propositionally satisfies ϕ and both $\mu_{i}^{\prime}:=\mu_{i} \cup \mu_{e}$ are T_{i}-consistent $\Longrightarrow\left(\phi\right.$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-sat $)$

- no more assignment μ are available
$\Longrightarrow\left(\phi\right.$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-unsat $)$

DTC: enhanced schema

- DPLL-based assignment enumeration on $\operatorname{Atoms}(\phi) \cup\left\{\boldsymbol{e}_{i j}\right\}_{i j}$, \Longrightarrow benefits of state-of-the-art SAT techniques
- Early pruning: invoke the \mathcal{T}_{i}-solver's before every Boolean decision
\Longrightarrow total assignments generated only when strictly necessary
- Branching: branching on $e_{i j}$'s postponed \Longrightarrow Boolean search on $e_{i j}$'s performed only when strictly necessary
- Theory-Backjumping \& Learning: $e_{i j}$'s are involved in conflicts $\Longrightarrow e_{i j}$'s can be assigned by unit propagation
- [Theory-deduction \& learning: \mathcal{T}_{i}-solver deduces unassigned literals / on Atoms $(\phi) \cup\left\{e_{i j}\right\}_{i j}$
- I is passed back to the Boolean solver, which unit-propagates it
- the deduction $\mu^{\prime} \models l$ is learned as a clause $\mu^{\prime} \rightarrow I$ (deduction clause)]

DTC: example w.out \mathcal{T}-prop. (non-convex theory)

$$
\begin{array}{c:cc}
\mu_{\mathcal{E U F}}: & \mu_{\mathcal{L I A}}: & \\
\neg\left(f\left(v_{1}\right)=f\left(v_{2}\right)\right) & v_{1} \geq 0 & v_{5}=v_{4}-1 \\
\neg\left(f\left(v_{2}\right)=f\left(v_{4}\right)\right) & v_{1} \sum 1 & v_{3}=0 \\
f\left(v_{3}\right)=v_{5} & v_{2} \geq v_{6} & v_{4}=1 \\
f\left(v_{1}\right)=v_{6} & , & v_{2} \leq v_{6}+1
\end{array}
$$

DTC: example with \mathcal{T}-prop. (non-convex theory)

$$
\begin{array}{c:ll}
\mu \mathcal{E U F}: & \mu_{\mathcal{L I A}}: \\
\left.\left.v_{1}\right)=f\left(v_{2}\right)\right) & v_{1} \geq 0 & v_{5}=v_{4}-1 \\
\left.v_{2}\right)=f\left(v_{4}\right), & v_{1} \leq 1 & v_{3}=0 \\
f\left(v_{3}\right)=v_{5} & v_{2} \geq v_{6} & v_{4}=1 \\
f\left(v_{1}\right)=v_{6}, & v_{2} \leq v_{6}+1 &
\end{array}
$$

$$
\begin{array}{c:c}
\mu_{\mathcal{E U F}}: & \mu_{\mathcal{L I A}}: \\
\neg\left(f\left(v_{1}\right)=f\left(v_{2}\right)\right) & v_{1} \geq 0 \\
\neg\left(f\left(v_{2}\right)=f\left(v_{4}\right)\right), & v_{1} \geq 1 \\
f\left(v_{3}\right)=v_{5} & v_{2} \geq v_{6} \\
f\left(v_{1}\right)=v_{6}, & v_{2} \leq v_{6}+1
\end{array}
$$

$\mathcal{L I} \mathcal{A}$-deduce (

$$
C_{13}:\left(\mu_{\mathcal{L I A}}^{\prime}\right) \rightarrow\left(\left(v_{1}=v\right.\right.
$$

DTC: example without \mathcal{T}-propagation (convex theory)

$\mathcal{E U F}: \quad\left(v_{3}=h\left(v_{0}\right)\right) \wedge\left(v_{4}=h\left(v_{1}\right)\right) \wedge\left(v_{6}=f\left(v_{2}\right)\right) \wedge\left(v_{7}=f\left(v_{5}\right)\right) \wedge$
$\mathcal{L R A}: \quad\left(v_{0} \geq v_{1}\right) \wedge\left(v_{0} \leq v_{1}\right) \wedge\left(v_{2}=v_{3}-v_{4}\right) \wedge\left(R E S E T_{5} \rightarrow\left(v_{5}=0\right)\right) \wedge$
Both: $\quad\left(\neg R E S E T_{5} \rightarrow\left(v_{5}=v_{8}\right)\right) \wedge \neg\left(v_{6}=v_{7}\right)$.

DTC: example with \mathcal{T}-propagation (convex theory)

```
\(\mathcal{E U \mathcal { F }}: \quad\left(v_{3}=h\left(v_{0}\right)\right) \wedge\left(v_{4}=h\left(v_{1}\right)\right) \wedge\left(v_{6}=f\left(v_{2}\right)\right) \wedge\left(v_{7}=f\left(v_{5}\right)\right) \wedge\)
\(\mathcal{L R} \mathcal{A}: \quad\left(v_{0} \geq v_{1}\right) \wedge\left(v_{0} \leq v_{1}\right) \wedge\left(v_{2}=v_{3}-v_{4}\right) \wedge\left(R E S E T_{5} \rightarrow\left(v_{5}=0\right)\right) \wedge\)
Both: \(\quad\left(\neg R E S E T_{5} \rightarrow\left(v_{5}=v_{8}\right)\right) \wedge \neg\left(v_{\mu_{\mathcal{L R A}}}=v_{7}\right)\).
\(\mu_{\text {EUF }}: \quad\left\{\left(v_{0} \geq v_{1}\right),\left(v_{0} \leq v_{1}\right)\right.\),
\(\left\{\begin{array}{l|l}\left\{\left(v_{3}=h\left(v_{0}\right)\right),\left(v_{4}=h\left(v_{1}\right)\right), \neg\left(v_{6}=v_{7}\right),\right. & \left.\left(v_{2}=v_{3}-v_{4}\right)\right\}\end{array}\right.\)
\(\left.\left(v_{6}=f\left(v_{2}\right)\right),\left(v_{7} \overline{\overline{R E}}{ }_{S}^{f}\left(v_{5}\right)\right)\right\}\)
    \(\neg R E S E T_{5}\)
    \(\left(v_{5}=0\right)-\cdots-\begin{aligned} & \left(v_{5}=v_{8}\right)\end{aligned}\)
    \(\mathcal{L R A}\)-deduce \(\left(\begin{array}{l|l|l}v_{0}=v_{1} \\ \text { learn } & C_{01} & \left(v_{0} \prime^{\prime}=v_{1}\right) \\ \mathcal{E} \mathcal{U} \mathcal{F} \text {-deduce }\left(v_{3}=v_{1}\right) & \left(v_{0}=v_{1}\right) & \mathcal{L R} \mathcal{L} \text {-deduce }\left(v_{0}=v_{1}\right) \\ \text { learn } C_{01}^{\prime}\end{array}\right.\)
```



```
    \(\mathcal{E U F}_{67}\)-unsat \(\quad C_{34}:\left(\mu_{\mathcal{E} \mathcal{I}}^{\prime} \wedge\left(v_{0}=v_{1}\right)\right) \rightarrow\left(v_{3}=v_{4}\right)\)
    \(C_{25}:\left(\mu_{\mathcal{L R A}}^{\prime \prime} \wedge\left(v_{5}=0\right) \wedge\left(v_{3}=v_{4}\right)\right) \rightarrow\left(v_{2}=v_{5}\right)\)
    \(C_{67}:\left(\mu_{\mathcal{E} \mathcal{I F}}^{\prime \prime} \wedge\left(v_{2}=v_{5}\right)\right) \rightarrow\left(v_{6}=v_{7}\right)\)
```


DTC + Model-based heuristic (aka Model-Based Theory Combination) [37]

- Initially, no interface equalities generated
- When a model is found, check against all the possible interface equalities
- If \mathcal{T}_{1} and \mathcal{T}_{2} agree on the implied equalities, then return SAT
- Otherwise, branch on equalities implied by \mathcal{T}_{1}-model but not by \mathcal{T}_{2}-model
- "Optimistic" approach, similar to axiom instantiation

Beyond Solving: advanced SAT \& SMT functionalities

Advanced SMT functionalities (very important in FV):

- Building proofs of \mathcal{T}-unsatisfiability
- Extracting \mathcal{T}-unsatisfiable Cores
- Computing Craig interpolants
- Performing All-SMT and Predicate Abstraction
- Deciding/optimizing SMT problems with costs

Building (Resolution) Proofs of \mathcal{T}-Unsatisfiability

Resolution proof of \mathcal{T}-unsatisfiability
Very similar to building proofs with plain SAT:

- resolution proofs whose leaves are original clauses and \mathcal{T}-lemmas returned by the \mathcal{T}-solver (i.e., \mathcal{T}-conflict and \mathcal{T}-deduction clauses)
- built by backward traversal of implication graphs, as in CDCL SAT
- Sub-proofs of \mathcal{T}-lemmas can be built in some \mathcal{T}-specific deduction framework if requested

Important for:

- certifying \mathcal{T}-unsatisfiability results
- computing unsatisfiable cores
- computing interpolants

Building Proofs of \mathcal{T}-Unsatisfiability: example

$$
\begin{gathered}
\left(x=0 \vee \neg(x=1) \vee A_{1}\right) \wedge\left(x=0 \vee x=1 \vee A_{2}\right) \wedge\left(\neg(x=0) \vee x=1 \vee A_{2}\right) \wedge \\
\left(\neg A_{2} \vee y=1\right) \wedge\left(\neg A_{1} \vee x+y>3\right) \wedge(y<0) \wedge\left(A_{2} \vee x-y=4\right) \wedge\left(y=2 \vee \neg A_{1}\right) \wedge(x \geq 0)
\end{gathered}
$$

relevant original clauses, irrelevant original clauses, \mathcal{T}-lemmas

Example: proof on non-strict $\mathcal{L R} \mathcal{A}$ inequalities

- A proof of unsatisfiability for a set of non-strict $\mathcal{L R} \mathcal{A}$ inequalities can be obtained by building a linear combination of such inequalities, each time eliminating one or more variables, until you get a contradictory inequality on constant values.
- Example:
$\varphi \stackrel{\text { def }}{=}\left(0 \leq x_{1}-3 x_{2}+1\right),\left(0 \leq x_{1}+x_{2}\right),\left(0 \leq x_{3}-2 x_{1}-3\right),\left(0 \leq 1-2 x_{3}\right)$.
A proof of unsatisfiability P for φ is the following:

$\frac{\left(0 \leq x_{1}-3 x_{2}+1\right) \quad\left(0 \leq x_{1}+x_{2}\right)}{\text { COMB }\left(0 \leq 4 x_{1}+1\right) \text { with coeffs } 1 \text { and } 3} \quad \frac{\left(0 \leq x_{3}-2 x_{1}-3\right)\left(0 \leq 1-2 x_{3}\right)}{\text { COMB }\left(0 \leq-4 x_{1}-5\right) \text { with coeffs } 2 \text { and } 1}$

COMB ($0 \leq-4$) with coeffs 1 and 1

- It is possible to produce such proof from an inconsistent tableau in Simplex procedure for $\mathcal{L R} \mathcal{A}[30,32]$
- It is straightforward to produce such proof from a negative cycle in the graph-based procedure for $\mathcal{D} \mathcal{L}[30,32]$

Extraction of \mathcal{T}-unsatisfiable cores

The problem

Given a \mathcal{T}-unsatisfiable set of clauses, extract from it a (possibly small/minimal/minimum) \mathcal{T}-unsatisfiable subset (\mathcal{T}-unsatisfiable core)

- wide literature in SAT
- Some implementations, very few literature for SMT [29, 56]
- We recognize three approaches:
- Proof-based approach (CVClite, MathSAT): byproduct of finding a resolution proof
- Assumption-based approach (Yices): use extra variables labeling clauses, as in the plain Boolean case
- Lemma-Lifting approach [29] :
use an external (possibly-optimized) Boolean unsat-core extractor

The proof-based approach to \mathcal{T}-unsat cores

Idea (adapted from [84])

Unsatisfiable core of φ :

- in SAT: the set of leaf clauses of a resolution proof of unsatisfiability of φ
- in $\operatorname{SMT}(\mathcal{T})$: the set of leaf clauses of a resolution proof of \mathcal{T}-unsatisfiability of φ, minus the \mathcal{T}-lemmas

The proof-based approach to \mathcal{T}-unsat cores: example

$$
\begin{aligned}
& \left(x=0 \vee \neg(x=1) \vee A_{1}\right) \wedge\left(x=0 \vee x=1 \vee A_{2}\right) \wedge\left(\neg(x=0) \vee x=1 \vee A_{2}\right) \wedge \\
& \left(\neg A_{2} \vee y=1\right) \wedge\left(\neg A_{1} \vee x+y>3\right) \wedge(y<0) \wedge\left(A_{2} \vee x-y=4\right) \wedge\left(y=2 \vee \neg A_{1}\right) \wedge(x \geq 0), \\
& (\neg(x=0) \vee \neg(x=1))_{\mathcal{C L A}} \quad\left(x=1 \vee \neg \neg(x=0) \vee A_{2}\right) \\
& \begin{aligned}
&\left(y=2 \vee A_{2}\right)(\neg(y=2) \vee \neg(y<0))_{\mathcal{L I A}} \\
&\left(A_{2} \vee \neg(y<0)\right) \quad\left(\neg A_{2} \vee y=1\right)
\end{aligned} \\
& (\neg(y=1) \vee \neg(y<0))_{\text {CIA }} \quad(\neg(y<0) \vee y=1) \\
& (y<0)
\end{aligned}
$$

The assumption-based approach to \mathcal{T}-unsat cores

Let φ be $\bigwedge_{i=1}^{n} C_{i}$ s.t. φ inconsistent.

Idea (adapted from [57])

1 each clause C_{i} in φ is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
2 the resulting formula is checked for satisfiability under the assumption of all S_{i} 's
3 final conflict clause at dec. level 0 : $\bigvee_{j} \neg S_{j}$
$\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core

- extends straightforwardly to $\operatorname{SMT}(\mathcal{T})$.

The assumption-based approach to \mathcal{T}-unsat cores: Example

$$
\begin{gathered}
\left(S_{1} \rightarrow\left(x=0 \vee \neg(x=1) \vee A_{1}\right)\right) \wedge\left(S_{2} \rightarrow\left(x=0 \vee x=1 \vee A_{2}\right)\right) \wedge \\
\left(S_{3} \rightarrow\left(\neg(x=0) \vee x=1 \vee A_{2}\right)\right) \wedge\left(S_{4} \rightarrow\left(\neg A_{2} \vee y=1\right)\right) \wedge \\
\left(S_{5} \rightarrow\left(\neg A_{1} \vee x+y>3\right)\right) \wedge\left(S_{6} \rightarrow y<0\right) \wedge \\
\left(S_{7} \rightarrow\left(A_{2} \vee x-y=4\right)\right) \wedge\left(S_{8} \rightarrow\left(y=2 \vee \neg A_{1}\right)\right) \wedge\left(S_{9} \rightarrow x \geq 0\right)
\end{gathered}
$$

Conflict analysis (Yices 1.0.6) returns:

$$
\neg S_{1} \vee \neg S_{2} \vee \neg S_{3} \vee \neg S_{4} \vee \neg S_{6} \vee \neg S_{7} \vee \neg S_{8}
$$

corresponding to the unsat core in red.

The Iemma-lifting approach to \mathcal{T}-unsat cores

Idea [29, 33]

(i) The \mathcal{T}-lemmas D_{i} are valid in \mathcal{T}
(ii) The conjunction of φ with all the \mathcal{T}-lemmas D_{1}, \ldots, D_{k} is propositionally unsatisfiable: $\mathcal{T} 2 \mathcal{B}\left(\varphi \wedge \bigwedge_{i=1}^{n} D_{i}\right) \models \perp$.

- interfaces with an external Boolean Unsat-core Extractor \Longrightarrow benefits for free of all state-of-the-art size-reduction techniques

The lemma-lifting approach to \mathcal{T}-unsat cores: example

$$
\begin{gathered}
\left(x=0 \vee \neg(x=1) \vee A_{1}\right) \wedge\left(x=0 \vee x=1 \vee A_{2}\right) \wedge\left(\neg(x=0) \vee x=1 \vee A_{2}\right) \wedge \\
\left(\neg A_{2} \vee y=1\right) \wedge\left(\neg A_{1} \vee x+y>3\right) \wedge(y<0) \wedge\left(A_{2} \vee x-y=4\right) \wedge\left(y=2 \vee \neg A_{1}\right) \wedge(x \geq 0),
\end{gathered}
$$

1 The SMT solver generates the following set of $\mathcal{L I} \mathcal{A}$-lemmas:

$$
\{(\neg(x=1) \vee \neg(x=0)), \quad(\neg(y=2) \vee \neg(y<0)), \quad(\neg(y=1) \vee \neg(y<0))\}
$$

2 The following formula is passed to the external Boolean core extractor

$$
\begin{aligned}
&\left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
&\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7} \wedge \\
&\left(\neg B_{1} \vee \neg B_{0}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right)
\end{aligned}
$$

which returns the unsat core in red.
3 The unsat-core is mapped back, the three \mathcal{T}-lemmas are removed \Longrightarrow the final \mathcal{T}-unsat core (in red above).

Computing (Craig) Interpolants in SMT

Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \wedge B \models_{\mathcal{T}} \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models_{\mathcal{T}} I$,
b) $I \wedge B \models_{\mathcal{T}} \perp$,
c) $I \preceq A$ and $I \preceq B$.
" $I \preceq A$ " meaning that all uninterpreted (in \mathcal{T}) symbols in $/$ occur in A.

- Very important in many FV applications
- A few works presented for various theories:
- $\mathcal{E U F}[59,70], \mathcal{D L}[30,32], \mathcal{U T V P I}$ [31, 32], $\mathcal{L R A}[59,70,30,32]$, $\mathcal{L I} \mathcal{A}[51,18,48], \mathcal{B V}$ [52], ...

A General Algorithm

Algorithm: Interpolant generation for $\operatorname{SMT}(\mathcal{T})$ [68, 59]

(i) Generate a resolution proof of \mathcal{T}-unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) Foreach \mathcal{T}-lemma $\neg \eta$ in \mathcal{P}, generate an interpolant I_{η} for $(\eta \backslash B, \eta \downarrow B)$.
(iv) For every original leaf clause C in \mathcal{P}, set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$, and $I_{C} \stackrel{\text { def }}{=} T$ if $C \in B$.
(v) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \stackrel{\text { def }}{=} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$, set $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B, and $I_{C} \xlongequal{\text { def }} I_{C_{1}} \wedge I_{C_{2}}$ otherwise.
(vi) Output I_{\perp} as an interpolant for (A, B).
" $\eta \backslash B$ " [resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

- row 2. only takes place where \mathcal{T} comes in to play
\Longrightarrow Reduced to the problem of finding an interpolant for two sets of \mathcal{T}-literals (Boolean and \mathcal{T}-specific component decoupled)

Computing Craig Interpolants in SMT: example

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(B_{1} \vee\left(0 \leq x_{1}-3 x_{2}+1\right)\right) \wedge\left(0 \leq x_{1}+x_{2}\right) \wedge\left(\neg B_{2} \vee \neg\left(0 \leq x_{1}+x_{2}\right)\right) \\
& B \xlongequal{\text { def }}\left(\neg\left(0 \leq x_{3}-2 x_{1}-3\right) \vee\left(0 \leq 1-2 x_{3}\right)\right) \wedge\left(\neg B_{1} \vee B_{2}\right) \wedge\left(B_{1} \vee\left(0 \leq x_{3}-2 x_{1}-3\right)\right) \\
& \neg\left(\mathbf{0} \leq \mathbf{x}_{1}-3 \mathbf{x}_{2}+\mathbf{1}\right) \vee \neg\left(0 \leq \mathbf{x}_{1}+\mathbf{x}_{2}\right) \vee \\
& \neg\left(0 \leq x_{3}-2 x_{1}-3\right) \vee \neg\left(0 \leq 1-2 x_{3}\right) \\
& \begin{array}{l}
\neg\left(0 \leq x_{3}-2 x_{1}-3\right) \vee\left(0 \leq 1-2 x_{3}\right) \\
\neg\left(0 \leq x_{1}-3 x_{2}+1\right) \vee \neg\left(0 \leq x_{1}+x_{2}\right) \vee \\
\neg\left(0 \leq x_{3}-2 x_{1}-3\right)
\end{array} \\
& \neg\left(0 \leq x_{1}-3 x_{2}+1\right) \vee \neg\left(0 \leq x_{1}+x_{2}\right) \vee B_{1} \\
& B_{1} \vee\left(0 \leq x_{1}-3 x_{2}+1\right) \\
& \neg\left(0 \leq x_{1}+x_{2}\right) \vee B_{1} \\
& \neg\left(0 \leq x_{1}+x_{2}\right) \vee B_{2} \\
& \text { original proof }
\end{aligned}
$$

McMillan's algorithm for non-strict $\mathcal{L R} \mathcal{A}$ inequalities

$$
\begin{array}{ll}
A & \stackrel{\text { def }}{=}\left\{\left(0 \leq x_{1}-3 x_{2}+1\right),\left(0 \leq x_{1}+x_{2}\right\}\right. \\
B & \stackrel{\text { def }}{=}\left\{\left(0 \leq x_{3}-2 x_{1}-3\right),\left(0 \leq 1-2 x_{3}\right)\right\}
\end{array}
$$

A proof of unsatisfiability P for $A \wedge B$ is the following:
$\frac{\left(0 \leq x_{1}-3 x_{2}+1\right) \quad\left(0 \leq x_{1}+x_{2}\right)}{\text { ComB }\left(0 \leq 4 x_{1}+1\right) \text { with coeffs } 1 \text { and } 3} \quad \frac{\left(0 \leq x_{3}-2 x_{1}-3\right)\left(0 \leq 1-2 x_{3}\right)}{\text { ComB }\left(0 \leq-4 x_{1}-5\right) \text { with coeffs } 2 \text { and } 1}$ COMB ($0 \leq-4$) with coeffs 1 and 1

By replacing inequalities in B with $(0 \leq 0)$, we obtain the proof P^{\prime} :

$$
\frac{\frac{\left(0 \leq x_{1}-3 x_{2}+1\right) \quad\left(0 \leq x_{1}+x_{2}\right)}{\operatorname{ComB}\left(0 \leq 4 x_{1}+1\right)}}{\operatorname{COMB}\left(0 \leq 4 x_{1}+1\right)} \quad \frac{(0 \leq 0)(0 \leq 0)}{\operatorname{CoMB~}(0 \leq 0)}
$$

Thus, the interpolant obtained is $\left(0 \leq 4 x_{1}+1\right)$.

Example: interpolation algorithms for difference logic

- An inference-based algorithm [59]

\Longrightarrow Interpolant: $\left(0 \leq x_{1}-x_{3}+x_{4}-x_{5}\right)$ (not in $\mathcal{D} \mathcal{L}$, and weaker).
- A graph-based algorithm [30, 32]

\Longrightarrow Interpolant: $\left(0 \leq x_{1}-x_{3}+1\right) \wedge\left(0 \leq x_{4}-x_{5}-1\right)($ still in $\mathcal{D} \mathcal{L})$

All-SAT/All-SMT

- All-SAT: enumerate all truth assignments satisfying φ
- All-SMT: enumerate all \mathcal{T}-satisfiable truth assignments propositionally satisfying φ
- All-SMT over an "important" subset of atoms $\mathbf{P} \stackrel{\text { def }}{=}\left\{P_{i}\right\}_{i}$: enumerate all assignments over \mathbf{P} which can be extended to \mathcal{T}-satisfiable truth assignments propositionally satisfying φ
\Longrightarrow can compute predicate abstraction
- Algorithms:
- BCLT [53]
each time a \mathcal{T}-satisfiable assignment $\left\{I_{1}, \ldots, I_{n}\right\}$ is found, perform conflict-driven backjumping as if the restricted clause $\left(\bigvee_{i} \neg l_{i}\right) \downarrow \mathbf{P}$ belonged to the clause set
- MathSAT/NuSMV [26]

As above, plus the Boolean search of the SMT solver is driven by an OBDD.

Predicate Abstraction

Predicate abstraction

if $\varphi(\mathbf{v})$ is a SMT formula over the domain variables $\mathbf{v} \stackrel{\text { def }}{=}\left\{v_{j}\right\}_{j},\left\{\gamma_{i}\right\}_{i}$ is a set of "relevant" predicates over \mathbf{v}, and $\mathbf{P} \stackrel{\text { def }}{=}\left\{P_{i}\right\}_{i}$ a set of Boolean labels, then:

$$
\begin{aligned}
& \operatorname{PredAbsp}(\varphi) \\
& \stackrel{\text { def }}{=} \exists \mathbf{v} \cdot\left(\varphi(\mathbf{v}) \wedge \bigwedge_{i} P_{i} \leftrightarrow \gamma_{i}(\mathbf{v})\right) \\
& =\bigvee\left\{\begin{array}{ll}
\mu \mid & \left.\begin{array}{l}
\mu \text { truth assignment on } \mathbf{P} \\
\text { s.t. } \mu \wedge \varphi \wedge \bigwedge_{i}\left(P_{i} \leftrightarrow \gamma_{i}\right)
\end{array}\right) \text { is } \mathcal{T} \text {-satisfiable }
\end{array}\right\}
\end{aligned}
$$

- projection of φ over (the Boolean abstraction of) the set $\left\{\gamma_{i}\right\}_{i}$.
- essential step in FV: extracts finite-state abstractions from a infinite state space

Predicate Abstraction: example

$$
\left.\begin{array}{c}
\varphi \stackrel{\text { def }}{=}\left(v_{1}+v_{2}>12\right) \\
\gamma_{1} \stackrel{\text { def }}{=}\left(v_{1}+v_{2}=2\right) \\
\gamma_{2} \stackrel{\text { def }}{=}\left(v_{1}-v_{2}<10\right) \\
\forall \\
\operatorname{PreAbs}(\varphi)_{\left\{P_{1}, P_{2}\right\}} \stackrel{\text { def }}{=} \exists v_{1} v_{2} \cdot\left(\begin{array}{l}
\left(v_{1}+v_{2}>12\right) \\
\left(P_{1} \leftrightarrow\left(v_{1}+v_{2}=2\right)\right) \\
\left(P_{2} \leftrightarrow\left(v_{1}-v_{2}<10\right)\right)
\end{array}\right. \\
\\
=\left(\neg P_{1} \wedge \neg P_{2}\right) \vee\left(\neg P_{1} \wedge P_{2}\right)
\end{array}\right)
$$

SMT with Pseudo-Boolean (PB) cost-minimization

The problem

$\operatorname{SMT}(\mathcal{T})$ problem φ for some \mathcal{T}, augmented with cost functions:
$\cos t^{i}=\sum_{j=1}^{N^{i}} i t e\left(P^{i j}, c_{1}^{i j}, c_{2}^{i j}\right)$, s.t. $\cos t^{i} \in\left(I^{i}, u^{i}\right], c_{\{1,2\}}^{i j}>0$

- Decision problem: is there a model complying with cost ranges?
- Optimization problem: find model minimizing some cost i.
- allows for encoding MaxSAT/MaxSMT and PseudoBoolean

Proposed solution: [66, 27]

- $\operatorname{SMT}(\mathcal{T} \cup \mathcal{C}), \mathcal{C}$ is an ad-hoc "theory of costs"
- a specialized very-fast theory-solver for \mathcal{C} added to MathSAT
- very fast \& aggressive search pruning and theory-propagation
- cost minimization handled by linear or binary search

$\operatorname{SMT}(\mathcal{T} \cup \mathcal{C}):$ main ideas

- A "theory of costs" C :
- Cost variables cost ${ }^{i}$
- "bound cost" $B C\left(\operatorname{cost}^{i}, k\right)$: "cost ${ }^{i} \leq k$ "
- "incur cost" $I C\left(\operatorname{cost}^{i}, j, k_{j}^{i}\right)$: "the j th addend of $\operatorname{cost}^{i}:=k_{j}^{i}$
- "cost ${ }^{i}=\sum_{j=1}^{N^{i}} \operatorname{ite}\left(P_{j}^{i}, k_{j}^{i}, 0\right)$, s.t. $\operatorname{cost}^{i} \in\left(I^{i}, u^{i}\right]$ " encoded as $\neg B C\left(\cos t^{i}, I^{i}\right) \wedge B C\left(\operatorname{cost}^{i}, u^{i}\right) \wedge \bigwedge_{j=1}^{\wedge^{i}}\left(P_{j}^{i} \leftrightarrow I C\left(\cos t^{i}, j, k_{j}^{i}\right)\right)$
- very-fast theory solver: \mathcal{C}-solver

1. $I C\left(\right.$ cost $\left.^{i}, j, k_{j}^{i}\right)=\top \Longrightarrow \operatorname{cost}^{i}=\cos ^{i}+k_{j}^{i}$
2. cost $^{i}>u b^{i} \Longrightarrow$ conflict
3. cost $^{i}+\left\{\right.$ total cost of all unassigned $\left.I C^{\prime} s\right\} \leq I b^{i} \Longrightarrow$ conflict
4. $I C\left(\operatorname{cost}^{i}, j, k_{j}^{i}\right)=\top$ causes $2 . \Longrightarrow \mathcal{C}$-propagate $\neg I C\left(\operatorname{cost}^{i}, j, k_{j}^{i}\right)$
5. $I C\left(\operatorname{cost}^{i}, j, k_{j}^{i}\right)=\perp$ causes $3 . \Longrightarrow \mathcal{C}$-propagate $I C\left(\operatorname{cost}^{i}, j, k_{j}^{i}\right)$

- no symbol shared with \mathcal{T}
\Longrightarrow independent theory solvers for \mathcal{T} and \mathcal{C}

Optimization Modulo Theories with $\mathcal{L} \mathcal{A} \mathcal{L} \mathcal{R} \mathcal{A}$ costs

Ingredients

- an SMT formula φ on $\mathcal{L A} \cup \mathcal{T} \mathcal{L R} \mathcal{A} \cup \mathcal{T}$
- $\mathcal{L A}$ can be $\mathcal{L R} \mathcal{A}, \mathcal{L I} \mathcal{A}$ or a combination of both
- $\mathcal{T} \stackrel{\text { def }}{=} \bigcup_{i} \mathcal{T}_{i}$, possibly empty
- $\mathcal{L} \mathcal{A L R} \mathcal{A}$ and \mathcal{T}_{i} disjoint Nelson-Oppen theories
- a $\mathcal{L} \mathcal{A} \mathcal{L} \mathcal{R} \mathcal{A}$ variable [term] "cost" occurring in φ
- (optionally) two constant numbers lb (lower bound) and ub (upper bound) s.t. $\mathrm{lb} \leq$ cost $<\mathrm{ub}$ (lb , ub may be $\mp \infty$)

Optimization Modulo Theories with $\mathcal{L A} \mathcal{L} \mathcal{R} \mathcal{A}$ costs $(\mathrm{OMT}(\mathcal{L} \mathcal{A} \cup \mathcal{T})$ $\operatorname{OMT}(\mathcal{L} \mathcal{R} \mathcal{A} \cup \mathcal{T}))$
Find a model for φ whose value of cost is minimum.

- maximization dual

Optimization Modulo Theories with $\mathcal{L} \mathcal{A} \mathcal{L} \mathcal{A} \mathcal{A}$ costs II

We restrict to the case $\mathcal{L A}=\mathcal{L R} \mathcal{A}$ and $\bigcup_{i} \mathcal{T}_{i}=\{ \}(\operatorname{OMT}(\mathcal{L R} \mathcal{A}))$.

Basic idea [72]:

SMT $(\mathcal{L R A})$ augmented with a LP optimization routine:

- once each assignment μ is found $\mathcal{L R} \mathcal{A}$-satisfiable, an LP optimization is invoked, finding the minimum \min
- (cost < min) is learned
- the search proceeds, until UNSAT
\Longrightarrow the latest value of min is returned

Optimization Modulo Theories with $\mathcal{L} \mathcal{A} \mathcal{L} \mathcal{R} \mathcal{A}$ costs III

Extensions

- both linear and binary search, and combination [72, 73]
- cost minimization embedded inside the CDCL search [72, 73]
- combination with other theories: $\operatorname{OMT}(\mathcal{L R A} \cup \mathcal{T})$ via DTC [73]
- extension to integers via ILP techniques: $\operatorname{OMT}(\mathcal{L I A} \cup \mathcal{T})$ [13, 76, 54]
- extension to multiple independent objectives [55, 13, 76]
- incremental OMT [13, 76]
- other combinations of objectives (min-max, lexicograpohic) [13, 76]
- OMT with Pareto fronts [13].

A toy example (linear search)

OMT with Independent Objectives (aka Boxed OMT)

 [55, 76]The problem: $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}\right\rangle[55]$
Given $\langle\varphi, \mathcal{C}\rangle$ s.t.:

- φ is the input formula
- $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}$ is a set of $\mathcal{L \mathcal { A }}$-terms on variables in φ, $\langle\varphi, \mathcal{C}\rangle$ is the problem of finding a set of independent $\mathcal{L A}$-models $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ s.t. s.t. each \mathcal{M}_{i} makes cost $_{i}$ minimum.

Notes

- derives from SW verification problems [55]
- equivalent to k independent problems $\left\langle\varphi, \operatorname{cost}_{1}\right\rangle, \ldots,\left\langle\varphi, \cos _{k}\right\rangle$
- intuition: share search effort for the different objectives
- generalizes to $\operatorname{OMT}(\mathcal{L A} \cup \mathcal{T})$ straightforwardly

OMT with Multiple Objectives [55, 13, 76]

Solution

- Intuition: when a \mathcal{T}-consistent satisfying assignment μ is found,
foreach cost ${ }_{i}$

$$
\min _{\mathrm{i}}:=\min \left\{\min _{\mathrm{i}}, \mathcal{T} \text { solver.minimize }\left(\mu, \operatorname{cost}_{\mathrm{i}}\right)\right\}
$$

learn $\bigvee_{i}\left(\operatorname{cost}_{i}<\min _{\mathrm{i}}\right) ; \quad / /\left(\operatorname{cost}_{\mathrm{i}}<-\infty\right) \equiv \perp$
proceed until UNSAT;

- Notice:
- for each μ, guaranteed improvement of at least one $\min _{i}$
- in practice, for each μ, multiple cost $_{i}$ minima are improved
- Implemented improvements:
(a) drop previous clauses $\bigvee_{i}\left(\operatorname{cost}_{i}<\min _{i}\right)$
(b) $\left(\right.$ cost $\left._{i}<\min _{i}\right)$ pushed in μ first: if \mathcal{T}-inconsistent, skip minimization
(c) learn $\neg\left(\operatorname{cost}_{i}<\min _{i}\right) \vee\left(\operatorname{cost}_{i}<\min _{i}^{\text {old }}\right)$, s.t. minold $_{i}^{\text {old }}$ previous $\min _{i}$ \Longrightarrow reuse previously-learned clauses like $\neg\left(\right.$ cost $_{i}<$ min $\left._{i}^{\text {old }}\right) \vee C$

Boxed OMT: Example [55, 76]

$$
\begin{aligned}
& \text { (} \\
& \begin{aligned}
\varphi & =(1 \leq y) \wedge(y \leq 3) \wedge(((1 \leq x) \wedge(x \leq 3)) \vee(x \geq 4)) \\
& \wedge\left(\operatorname{cost}_{1}=-y\right) \wedge\left(\operatorname{cost}_{2}=-x-y\right)
\end{aligned} \\
& \mu_{1}=\{(1 \leq y),(y \leq 3),(1 \leq x),(x \leq 3)\} \Longrightarrow \text { SAT } \Longrightarrow[-3,-6] \\
& \Longrightarrow \text { learn }\left\{\left(\operatorname{cost}_{1}<-3\right) \vee\left(\operatorname{cost}_{2}<-6\right)\right\} \\
& \mu_{2} \Longrightarrow \underset{\text { learn }}{\{(1 \leq y),(y \leq 3),(x \geq 4)\} \Longrightarrow \text { SAT } \Longrightarrow[-3,-\infty]} \\
& \Longrightarrow \text { UNSAT }
\end{aligned}
$$

OMT with Lexicographic Combination of Objectives [13]

The problem

Find one optimal model \mathcal{M} minimizing $\underline{c} \stackrel{\text { def }}{=} \operatorname{cost}_{1}, \operatorname{cost}_{2}, \ldots, \operatorname{cost}_{k}$ lexicographically.

Solution

- Intuition:
$\left\{\right.$ minimize cost $\left._{1}\right\}$
when UNSAT
 \{minimize cost $\left._{2}\right\}$
- improvement:
- each time UNSAT is found, add $\bigwedge_{i}\left(\operatorname{cost}_{i} \leq \mathcal{M}_{i}\left(\operatorname{cost}_{i}\right)\right)$ to φ

Optimization problems encoded into $\operatorname{OMT}(\mathcal{L} \mathcal{A} \cup \mathcal{T})$ I

SMT with Pseudo-Boolean Constraints \& Weighted MaxSMT
$O M T+P B: \quad \sum_{j} w_{j} \cdot A_{j}, w_{i}>0 / /\left(\sum_{j} i t e\left(A_{j}, w_{j}, 0\right)\right)$
\Downarrow
$\sum_{j} x_{j}, x_{j}$ fresh
s.t. $\quad \ldots \wedge \wedge_{j}\left(A_{j} \rightarrow\left(x_{j}=w_{j}\right)\right) \wedge\left(\neg A_{j} \rightarrow\left(x_{j}=0\right)\right)$
$\wedge\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$
MaxSMT: $\left\langle\varphi_{h}, \Lambda_{j} \psi_{j}\right\rangle$ s.t. ψ_{j} soft, $w_{j}=\operatorname{weight}\left(\psi_{j}\right), w_{i}>0$ \Downarrow
minimize $\sum_{j} x_{j}, x_{j}, A_{j}$ fresh
$\varphi_{h} \wedge \bigwedge_{j}\left(A_{j} \vee \psi_{j}\right) \wedge \bigwedge_{j}\left(\neg A_{j} \vee\left(x_{j}=w_{j}\right)\right) \wedge\left(A_{j} \vee\left(x_{j}=0\right)\right.$ $\wedge\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$

Remark: range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ "

$O M T+P B: \quad \sum_{j} w_{j} \cdot A_{j}, w_{i}>0 / /\left(\sum_{j} \operatorname{ite}\left(A_{j}, w_{j}, 0\right)\right)$

$$
\sum_{j} x_{j}, x_{j} \text { fresh }
$$

s.t. $\quad \ldots \wedge \wedge_{j}\left(A_{j} \rightarrow\left(x_{j}=w_{j}\right)\right) \wedge\left(\neg A_{j} \rightarrow\left(x_{j}=0\right)\right)$

$$
\wedge\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)
$$

Range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_{i} 's are assigned :
Ex: $w_{1}=4, w_{2}=7, \sum_{i=1} x_{i}<10, A_{1}=A_{2}=\mathrm{T}, A_{i}=* \forall i>2$.
- With range constraints, the SMT solver detects the violation as soon as the assigned A_{i} 's violate a bound
\Longrightarrow drastic pruning of the search
- same for weighted MaxSMT

Optimization problems encoded into $\operatorname{OMT}(\mathcal{L} \mathcal{A} \cup \mathcal{T})$ II

OMT with Min-Max [Max-Min] optimization
Given $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}\right\rangle$, find a solution which minimizes the maximum value among $\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}$. (Max-Min dual.)

- Frequent in some applications (e.g. [74, 81])
\Longrightarrow encode into $\operatorname{OMT}(\mathcal{L A} \cup \mathcal{T})$ problem $\left\{\varphi \wedge \bigwedge_{i}\left(\right.\right.$ cost $\left._{i} \leq \operatorname{cost}\right)$, cost $\}$ s.t. cost fresh.

OMT with linear combinations of costs
Given $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}\right\rangle$ and a set of weights $\left\{w_{1}, \ldots, w_{k}\right\}$, find a solution which minimizes $\sum_{i} w_{i} \cdot$ cost $_{i}$.
\Longrightarrow encode into $\operatorname{OMT}(\mathcal{L A} \cup \mathcal{T})$ problem
$\left\{\varphi \wedge\left(\cos t=\sum_{i} w_{i} \cdot \operatorname{cost}_{i}\right), \operatorname{cost}\right\}$ s.t. cost fresh.

These objectives can be composed with other $\operatorname{OMT}(\mathcal{L A})$ objectives.

Other OMT Functionalities [hints]

Incremental interface [13, 76]

Allows for pushing/popping sub-formulas into a stack, and then run OMT incrementally over them, reusing previous search.

- useful in some applications (e.g., BMC with parametric systems)
- straightforward variant of incremental SAT and SMT solvers

Pareto Fronts [13, 12]

- Given cost_{1}, cost $_{2}$, compute $\mathcal{M}_{1}, \ldots, \mathcal{M}_{i}, \ldots, \mathcal{M}_{j}, \ldots$ s.t.:
- either $\mathcal{M}_{i}\left(\cos _{1}\right)>\mathcal{M}_{j}\left(\operatorname{cost}_{1}\right)$ or $\mathcal{M}_{i}\left(\operatorname{cost}_{2}\right)>\mathcal{M}_{j}\left(\operatorname{cost}_{2}\right)$ and $\mathcal{M}_{i}\left(\operatorname{cost}_{1}\right)<\mathcal{M}_{j}\left(\operatorname{cost}_{1}\right)$ or $\mathcal{M}_{i}\left(\operatorname{cost}_{2}\right)<\mathcal{M}_{j}\left(\operatorname{cost}_{2}\right)$
- for each \mathcal{M}_{i}, no \mathcal{M}^{\prime} dominates \mathcal{M}_{i}
- no objective can be improved without degrading some other one

Some OMT tools

- BCLT $[66,54]$
http://www.cs.upc.edu/~oliveras/bclt-main.html
- OptiMathSAT [72, 74, 76, 75], on top of MathSAT [28]
http://optimathsat.disi.unitn.it
- SYMBA [55], on top of Z3 [38]
https://bitbucket.org/arieg/symba/src
- $\nu Z[13,12]$, on top of Z3 [38]
http://z3.codeplex.com

Conclusions

- SMT very popular, due to successful application in many domains
- Combines techniques from SAT, ATP and operational research
- Not only satisfiability, but also advanced functionalities

Open/ongoing research directions

- Solving:
- improve efficiency (e.g. $\mathcal{B V}, \mathcal{A R}, \mathcal{L I} \mathcal{A} \&$ their combinations) "a never-ending fight against the search-space explosion problem [E. Clarke, Turing-award winner 2007]"
- develop efficient solvers for other theories $(\mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{R}), \mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{Z}))$
- develop new theories \& solvers (e.g., floating-point arithmetic)
- ...
- Functionalities
- Interpolation in some theories $(\mathcal{L I} \mathcal{A}, \mathcal{B V})$ still very challenging
- Predicate abstraction (AllSMT) still a bottleneck in SMT-based FV
- SMT with costs/optimization still in very early stage
- ...
- Combination of SMT solvers and ATP (SMT with quantifiers)
- Integration \& customization of SMT solvers with (FV) tools
- See also [67]

Links I

- survey papers:
- Roberto Sebastiani: "Lazy Satisfiability Modulo Theories". Journal on Satisfiability, Boolean Modeling and Computation, JSAT. Vol. 3, 2007. Pag 141-224, © IOS Press.
- Clark Barrett, Roberto Sebastiani, Sanjit Seshia, Cesare Tinelli "Satisfiability Modulo Theories". Part II, Chapter 26, The Handbook of Satisfiability. 2009. ©(IOS press.
- Leonardo de Moura and Nikolaj Bjørner. "Satisfiability modulo theories: introduction and applications". Communications of the ACM, 54 (9), 2011. © ACM press.
- web links:
- The SMT library SMT-LIB:
http://goedel.cs.uiowa.edu/smtlib/
- The SMT Competition SMT-COMP: http://www.smtcomp.org/
- The SAT/SMT Schools
http://satassociation.org/sat-smt-school.html

References I

[1] A. Armando.
Simplifying OBDDs in Decidable Theories.
In Proc. PDPAR'03., 2003.
[2] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal reasoning.
In Proc. European Conference on Planning, CP-99, 1999.
[3] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani.
A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions.
In Proc. CADE'2002., volume 2392 of LNAI. Springer, July 2002.
[4] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani.
Integrating Boolean and Mathematical Solving: Foundations, Basic Algorithms and Requirements.
In Proc. AIARSC'2002, volume 2385 of LNAI. Springer, 2002.
[5] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani.
Verifying Industrial Hybrid Systems with MathSAT.
In Proc. PDPAR'03, 2003.
[6] G. Audemard, A. Cimatti, A. Korniłowicz, and R. Sebastiani. SAT-Based Bounded Model Checking for Timed Systems.
In Proc. FORTE'02., volume 2529 of LNCS. Springer, November 2002.
[7] C. Barret, D. Dill, and A. Stump.
A Generalization of Shostak's Method for Combining Decision Procedures.
In Proc. FROCOS'02, 2002.
[8] C. Barrett, D. Dill, and A. Stump.
Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT.
In 14th International Conference on Computer-Aided Verification, 2002.

References II

```
[9] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
    Splitting on Demand in SAT Modulo Theories.
    In Proc. LPAR'06, volume 4246 of LNAI. Springer, }2006
[10] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli.
    Satisfiability Modulo Theories.
    In Handbook of Satisfiability, chapter 26, pages 825-885. IOS Press, 2009.
[11] P. Baumgartner.
    FDPLL - A First Order Davis-Putnam-Longeman-Loveland Procedure.
    In Proceedings of CADE-17, pages 200-219. Springer-Verlag, 2000.
[12] N. Bjørner, A. Phan, and L. Fleckenstein.
    \nuz - an optimizing SMT solver.
    In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held
    as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
    2015. Proceedings, pages 194-199, }2015
[13] N. Bjorner and A.-D. Phan.
    \nu - Maximal Satisfaction with Z3.
    In Proc International Symposium on Symbolic Computation in Software Science, Gammart, Tunisia, December 2014.
    EasyChair Proceedings in Computing (EPiC).
    http://www.easychair.org/publications/?page=862275542.
[14] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani.
    Efficient Satisfiability Modulo Theories via Boolean Search.
    Information and Computation, }2005
[15] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani.
    Efficient Satisfiability Modulo Theories via Delayed Theory Combination.
    In Proc. CAV 2005, volume }3576\mathrm{ of LNCS. Springer, }2005
```


References III

[16] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum, and R. Sebastiani. Efficient Theory Combination via Boolean Search.
Information and Computation, 204(10):1493-1525, 2006.
[17] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum, S. Schulz, and R. Sebastiani. Mathsat: Tight integration of sat and mathematical decision procedures.
Journal of Automated Reasoning, 35(1-3):265-293, 2005.
[18] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl.
An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic.
In Proc. IJCAR, volume 6173 of LNCS. Springer, 2010.
[19] R. Brinkmann and R. Drechsler.
RTL-datapath verification using integer linear programming.
In Proc. ASP-DAC 2002, pages 741-746. IEEE, 2002.
[20] R. Brummaryer and A. Biere.
Lemmas on Demand for the Extensional Theory of Arrays.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 6, 2009.
[21] R. Brummayer and A. Biere.
Boolector: An efficient smt solver for bit-vectors and arrays.
In TACAS, volume 5505 of LNCS, pages 174-177. Springer, 2009.
[22] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Palti, and R. Sebastiani.
A Lazy and Layered SMT (BV) Solver for Hard Industrial Verification Problems.
In CAV, volume 4590 of LNCS, pages 547-560. Springer, 2007.
[23] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis.
In Proc. LPAR, volume 4246 of LNCS. Springer, 2006.

References IV

```
[24] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
    Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis. .
    Annals of Mathematics and Artificial Intelligence., 55(1-2), }2009
[25] J. R. Burch and D. L. Dill.
    Automatic Verification of Pipelined Microprocessor Control.
    In Proc. CAV '94, volume }818\mathrm{ of LNCS. Springer, }1994
[26] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and R. K. Shyamasundar.
    Computing Predicate Abstractions by Integrating BDDs and SMT Solvers.
    In FMCAD, pages 69-76. IEEE Computer Society, 2007.
[27] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico.
    Satisfiability modulo the theory of costs: Foundations and applications.
    In TACAS, volume 6015 of LNCS, pages 99-113. Springer, }2010
[28] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
    The MathSAT }5\mathrm{ SMT Solver.
    In Tools and Algorithms for the Construction and Analysis of Systems, TACAS'13., volume 7795 of LNCS, pages 95-109.
    Springer, 2013.
[29] A. Cimatti, A. Griggio, and R. Sebastiani.
    A Simple and Flexible Way of Computing Small Unsatisfiable Cores in SAT Modulo Theories.
    In SAT, volume 4501 of LNCS, pages 334-339. Springer, }2007
[30] A. Cimatti, A. Griggio, and R. Sebastiani.
    Efficient Interpolant Generation in Satisfiability Modulo Theories.
    In Tools and Algorithms for the Construction and Analysis of Systems, TACAS'08., volume 4963 of LNCS. Springer, }2008
```


References V

[31] A. Cimatti, A. Griggio, and R. Sebastiani.
Interpolant Generation for UTVPI.
In CADE, volume 5663 of LNCS, pages 167-182, 2009.
[32] A. Cimatti, A. Griggio, and R. Sebastiani.
Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories.
ACM Transaction on Computational Logics - TOCL, 12(1), October 2010.
[33] A. Cimatti, A. Griggio, and R. Sebastiani.
Computing Small Unsatisfiable Cores in SAT Modulo Theories.
Journal of Artificial Intelligence Research, JAIR, 40:701-728, April 2011.
[34] S. Cotton and O. Maler.
Fast and Flexible Difference Logic Propagation for DPLL(T).
In Proc. SAT'06, volume 4121 of LNCS. Springer, 2006.
[35] L. de Moura and N. Bjørner.
Efficient E-matching for SMT solvers.
In Proc. CADE-21, 21st International Conference on Automated Deduction, volume 4603 of LNCS. Springer, 2007.
[36] L. de Moura, H. Ruess, and M. Sorea.
Lazy Theorem Proving for Bounded Model Checking over Infinite Domains.
In Proc. CADE'2002., volume 2392 of LNAI. Springer, July 2002.
[37] L. M. de Moura and N. Bjørner.
Model-based theory combination.
Electr. Notes Theor. Comput. Sci., 198(2):37-49, 2008.

References VI

[38] L. M. de Moura and N. Bjørner.
Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages 337-340, 2008.
[39] L. M. de Moura and N. Bjørner.
Generalized, efficient array decision procedures.
In FMCAD, pages 45-52. IEEE, 2009.
[40] D. Detlefs, G. Nelson, and J. Saxe.
Simplify: a theorem prover for program checking.
Journal of the ACM, 52(3):365-473, 2005.
[41] B. Dutertre and L. de Moura.
System Description: Yices 1.0.
In Proc. on 2nd SMT competition, SMT-COMP'06, 2006.
Available at yices.csl.sri.com/yices-smtcomp06.pdf.
[42] A. Franzen, A. Cimatti, A. Nadel, R. Sebastiani, and J. Shalev.
Applying SMT in Symbolic Execution of Microcode.
In Proc. Int. Conference on Formal Methods in Computer Aided Design (FMCAD'10). IEEE, 2010.
[43] V. Ganesh and D. L. Dill.
A Decision Procedure for Bit-Vectors and Arrays.
In CAV, 2007.
[44] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
$\operatorname{DPLL}(\mathrm{T})$: Fast decision procedures.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer Aided Verification, CAV'04 (Boston, Massachusetts), LNCS. Springer, 2004.

References VII

```
[45] F. Giunchiglia and R. Sebastiani.
    Building decision procedures for modal logics from propositional decision procedures - the case study of modal K.
    In Proc. CADE'13, LNAI, New Brunswick, NJ, USA, August 1996. Springer.
[46] A. Goel, S. Krstić, and A. Fuchs.
    Deciding array formulas with frugal axiom instantiation.
    In Proceedings of SMT'08/BPR'08, pages 12-17, New York, NY, USA, 2008. ACM.
[47] A. Griggio.
    A Practical Approach to SMT(LA(Z)).
    In Proc. SMT 2010, 2010.
[48] A. Griggio, T. T. H. Le, and R. Sebastiani.
    Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic.
    In Proc. Tools and Algorithms for the Construction and Analysis of Systems, TACAS'11, LNCS. Springer, }2011
[49] A. Griggio, Q. S. Phan, R. Sebastiani, and S. Tomasi.
    Stochastic Local Search for SMT: Combining Theory Solvers with WalkSAT.
    In Frontiers of Combining Systems, FroCoS'11, volume 6989 of LNAI. Springer, }2011
[50] I. Horrocks and P. F. Patel-Schneider.
    FaCT and DLP.
    In Proc. Tableaux'98, pages 27-30, 1998.
[51] H. Jain, E. M. Clarke, and O. Grumberg.
    Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations.
    In A. Gupta and S. Malik, editors, CAV, volume }5123\mathrm{ of Lecture Notes in Computer Science, pages 254-267. Springer,
    2008.
[52] D. Kroening and G. Weissenbacher.
    Lifting Propositional Interpolants to the Word-Level.
    In FMCAD, pages 85-89, Los Alamitos, CA, USA, 2007. IEEE Computer Society.
```


References VIII

```
[53] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras.
    SMT techniques for fast predicate abstraction.
    In Proc. CAV, LNCS 4144. Springer, }2006
[54] D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
    Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions.
    In C. Sinz and U. Egly, editors, SAT, volume }8561\mathrm{ of Lecture Notes in Computer Science, pages 333-350. Springer, 2014.
[55] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
    Symbolic optimization with smt solvers.
    In POPL, pages 607-618, 2014.
[56] M. Liffiton and K. Sakallah.
    Algortithms for Computing Minimal Unsatisfiable Subsets of Constraints.
    Journal of Automated Reasoning, 40(1), }2008
[57] I. Lynce and J. P. Marques-Silva.
    On computing minimum unsatisfiable cores.
    In SAT, 2004.
[58] M. Mahfoudh, P. Niebert, E. Asarin, and O. Maler.
    A Satisfibaility Checker for Difference Logic.
    In Proceedings of SAT-02, pages 222-230, 2002.
[59] K. L. McMillan.
    An interpolating theorem prover.
    Theor. Comput. Sci., 345(1):101-121, }2005
[60] J. Moeller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard.
    Fully symbolic model checking of timed systems using difference decision diagrams.
    In Proc. Workshop on Symbolic Model Checking (SMC), FLoC'99, Trento, Italy, July 1999.
```


References IX

[61] C. G. Nelson and D. C. Oppen.
Simplification by cooperating decision procedures.
TOPLAS, 1(2):245-257, 1979.
[62] G. Nelson and D. Oppen.
Simplification by Cooperating Decision Procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245-257, 1979.
[63] G. Nelson and D. Oppen.
Fast Decision Procedures Based on Congruence Closure.
Journal of the ACM, 27(2):356-364, 1980.
[64] R. Nieuwenhuis and A. Oliveras.
Congruence closure with integer offsets.
In In 10th Int. Conf. Logic for Programming, Artif. Intell. and Reasoning (LPAR), volume 2850 of LNAI, pages 78-90.
Springer, 2003.
[65] R. Nieuwenhuis and A. Oliveras.
DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic.
In Proc. CAV'05, volume 3576 of LNCS. Springer, 2005.
[66] R. Nieuwenhuis and A. Oliveras.
On SAT Modulo Theories and Optimization Problems.
In Proc. Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS. Springer, 2006.
[67] R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
Challenges in Satisfiability Modulo Theories.
In Proc. RTA'07, volume 4533 of LNCS. Springer, 2007.

References X

```
[68] P. Pudlák.
    Lower bounds for resolution and cutting planes proofs and monotone computations.
    J. of Symb. Logic, 62(3), 1997.
[69] H. Rueßand N. Shankar.
    Deconstructing Shostak.
    In Proc. LICS '01. IEEE Computer Society, 2001.
[70] A. Rybalchenko and V. Sofronie-Stokkermans.
    Constraint Solving for Interpolation.
    In Proc. VMCAI, volume 4349 of LNCS. Springer, 2007.
[71] R. Sebastiani.
    Lazy Satisfiability Modulo Theories.
    Journal on Satisfiability, Boolean Modeling and Computation, JSAT, 3(3-4):141-224, }2007
[72] R. Sebastiani and S. Tomasi.
    Optimization in SMT with LA(Q) Cost Functions.
    In IJCAR, volume 7364 of LNAI, pages 484-498. Springer, July }2012
[73] R. Sebastiani and S. Tomasi.
    Optimization Modulo Theories with Linear Rational Costs.
    ACM Transactions on Computational Logics, 16(2), March }2015
[74] R. Sebastiani and S. Tomasi.
    Optimization Modulo Theories with Linear Rational Costs.
    ACM Transactions on Computational Logics, 16(2), March }2015
[75] R. Sebastiani and P. Trentin.
    OptiMathSAT: A Tool for Optimization Modulo Theories.
    In Proc. International Conference on Computer-Aided Verification, CAV 2015, volume }9206\mathrm{ of LNCS. Springer, }2015
```


References XI

[76] R. Sebastiani and P. Trentin.
Pushing the Envelope of Optimization Modulo Theories with Linear-Arithmetic Cost Functions.
In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'15, volume 9035 of LNCS. Springer, 2015.
[77] R. Shostak.
A Pratical Decision Procedure for Arithmetic with Function Symbols.
Journal of the ACM, 26(2):351-360, 1979.
[78] R. Shostak.
Deciding Combinations of Theories.
Journal of the ACM, 31:1-12, 1984.
[79] K. Stergiou and M. Koubarakis.
Backtracking algorithms for disjunctions of temporal constraints.
In Proc. AAAI, pages 248-253, 1998.
[80] A. Stump, C. W. Barrett, and D. L. Dill.
CVC: A Cooperating Validity Checker.
In Proc. CAV'02, number 2404 in LNCS. Springer Verlag, 2002.
[81] S. Teso, R. Sebastiani, and A. Passerini.
Structured learning modulo theories.
Artificial Intelligence, 244:166-187, 2017.
[82] S. Wolfman and D. Weld.
The LPSAT Engine \& its Application to Resource Planning.
In Proc. IJCAI, 1999.
[83] T. Yavuz-Kahveci, M. Tuncer, and T. Bultan.
A Library for Composite Symbolic Representation.
In Proc. TACAS2001, volume 2031 of LNCS. Springer Verlag, 2000.

References XII

```
[84] L. Zhang and S. Malik.
    Extracting small unsatisfiable cores from unsatisfiable boolean formula.
    In Proc. of SAT, 2003.
```


Disclaimer

The list of references above is by no means intended to be all-inclusive. I apologize both with the authors and with the readers for all the relevant works which are not cited here.

(C)Warner Bros. Inc.

