Course "Efficient Boolean Reasoning" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy

March $13^{\text {th }}, 2018$
[COPY WITH SOLUTIONS]

1

Let φ be a generic Boolean formula, and let $\varphi_{1} \stackrel{\text { def }}{=} C N F(\varphi)$, s.c. $C N F()$ is the "classic" CNF conversion (i.e., that using DeMorgan's rules). Let $|\varphi|$ and $\left|\varphi_{1}\right|$ denote the size of φ and φ_{1} respectively.

For each of the following sentences, say if it is true or false.
(a) $\left|\varphi_{1}\right|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: False.]
(b) φ_{1} has the same number of distinct Boolean variables as φ has. [Solution: True.]
(c) A model for φ_{1} (if any) is also a model for φ, and vice versa. [Solution: True.]
(d) φ_{1} is valid if and only if φ is valid. [Solution: True.]

2

Consider the following CNF formula:

$$
\begin{aligned}
& \left(\neg A_{1} \vee \neg A_{2} \vee \neg A_{3}\right) \wedge \\
& \left(A_{4} \vee \neg A_{7} \vee \neg A_{5}\right) \wedge \\
& \left(\neg A_{2} \vee \neg A_{3} \vee \neg A_{6}\right) \wedge \\
& \left(\neg A_{8} \vee \neg A_{1} \vee \neg A_{3}\right) \wedge \\
& \left(\neg A_{2} \vee \neg A_{3} \vee \neg A_{8}\right) \wedge \\
& \left(\neg A_{6} \vee \neg A_{5} \vee \neg A_{8}\right) \wedge \\
& \left(A_{8} \vee \neg \neg A_{3} \vee \neg A_{7}\right) \wedge \\
& \left(\neg A_{6} \vee \neg A_{5} \vee \neg A_{2}\right) \wedge \\
& \left(A_{8} \vee \neg A_{1} \vee \neg A_{3}\right) \wedge \\
& \left(\neg A_{3} \vee \neg A_{4} \vee \neg A_{3}\right) \wedge \\
& \left(A_{7} \vee \neg A_{2} \vee \neg A_{1}\right) \wedge \\
& \left(A_{1} \vee \neg A_{2} \vee \neg A_{3}\right) \wedge \\
& \left(\neg A_{4} \vee \neg A_{5} \vee \neg A_{2}\right) \wedge \\
& \left(\neg A_{8} \vee \neg A_{7} \vee \neg A_{1}\right) \wedge \\
& \left(\neg A_{5} \vee \neg A_{4} \vee \neg A_{7}\right) \wedge \\
& \left(\neg A_{4} \vee \neg A_{2} \vee \neg A_{5}\right) \wedge \\
& \left(A_{3} \vee \neg \neg A_{6} \vee \neg A_{7}\right) \wedge \\
& \left(A_{3} \vee \neg A_{4} \vee \neg A_{2}\right) \wedge \\
& \left(A_{6} \vee \neg A_{2} \vee \neg A_{8}\right) \wedge \\
& \left(A_{1} \vee \neg A_{2} \vee \neg A_{6}\right) \wedge \\
& \left(A_{2} \vee \neg \neg A_{3} \vee \neg \neg A_{4}\right) \wedge \\
& \left(A_{5} \vee \neg A_{6} \vee \neg A_{2}\right) \wedge \\
& \left(\neg A_{5} \vee \neg \neg A_{3} \vee \neg A_{4}\right)
\end{aligned}
$$

Decide quickly if it is satisfiable or not, and briefly explain why.
[Solution: It is a Horn formula with no positive unit clauses. Therefore, the assignment $\left\{\neg A_{i}\right\}_{i=1}^{8}$ is a model.]

3

Using the basic DPLL algorithm, decide whether the following formula is satisfiable or not. (Write the search tree.)

$$
\left.\begin{array}{llll}
& & & \left(\neg A_{1}\right) \wedge \\
& & \left(\begin{array}{rlr}
A_{1} & \vee & \left.\neg A_{2}\right) \wedge
\end{array}\right. \\
\left(\begin{array}{rlrl}
A_{1} & \vee & A_{2} & \vee \\
A_{4} & \vee & \left.\neg A_{3}\right) & \vee \\
A_{4} & \vee & \neg A_{3} & \vee \\
\left(\neg A_{6}\right) & \wedge \\
\left(\neg A_{3}\right. & \vee & \neg A_{4} & \vee \\
\left(\neg A_{3}\right. & \vee & \neg A_{4} & \vee
\end{array}\right. & \left.\neg A_{7}\right)
\end{array}\right)
$$

(Literal-selection criteria to your choice.)
[Solution:

\Longrightarrow the formula is inconsistent.

Consider the following implication graph:

A_{12} being the most recent decision literal. Write the conflict clauses generated by

1. the last UIP conflict analysis technique
2. the 1st UIP conflict analysis technique
[Solution:

3. Last UIP clause: $\neg A_{12} \vee A_{2} \vee A_{4} \vee \neg A_{3} \vee \neg A_{5}$
4. 1st UIP clause: $\neg A_{8} \vee \neg A_{3} \vee \neg A_{5}$

5

Consider the following Boolean formulas:

$$
\begin{aligned}
\varphi_{1} \stackrel{\text { def }}{=} & \left(\begin{array}{cc}
A_{1} \vee & \left.A_{2}\right) \\
& \left(\neg A_{1} \vee\right. \\
A_{2}
\end{array}\right) \wedge \\
& \left(\begin{array}{ll}
A_{3} \vee & \left.A_{4}\right) \\
& \wedge \\
& \left(\neg A_{3} \vee\right. \\
\left.A_{4}\right)
\end{array}\right. \\
\varphi_{2} \stackrel{\text { def }}{=} & \left(\neg A_{2} \vee\right. \\
& \left(\neg A_{5}\right) \wedge \\
& \left(\neg A_{4} \vee \neg A_{5}\right)
\end{aligned}
$$

which are such that $\varphi_{1} \wedge \varphi_{2} \vDash \perp$. For each of the following formulas, say if it is a Craig interpolant for $\left(\varphi_{1}, \varphi_{2}\right)$ or not.
[Solution: Recall that a Craig interpolant for $\left(\varphi_{1}, \varphi_{2}\right)$ s.t. $\varphi_{1} \wedge \varphi_{2} \models \perp$ is a formula ψ s.t.

1. $\varphi_{1} \models \psi$
2. $\psi \wedge \varphi_{2} \models \perp$
3. all atoms in ψ occur in both φ_{1} and φ_{2}.
]
(a)

$$
\begin{aligned}
& \left(\begin{array}{cc}
A_{1} \vee & \left.A_{2}\right) \\
(\neg \\
\left(\neg A_{1} \vee\right. & \left.A_{2}\right)
\end{array} \wedge\right. \\
& \left(A_{4}\right)
\end{aligned}
$$

[Solution: No, it is not a solution because it does not verify condition 3.]
(b)

$$
\left(A_{2}\right)
$$

[Solution: No, it is not a solution because it does not verify condition 2.]
(c)

$$
\left(A_{2} \wedge A_{4}\right)
$$

[Solution: Yes]

6

Consider the following formula in the theory $\mathcal{L R} \mathcal{A}$ of linear arithmetic on the Rationals.

$$
\begin{aligned}
& \varphi=\left\{\left(v_{1}-v_{2} \leq 3\right) \vee A_{2}\right\} \wedge \\
&\left\{\neg\left(2 v_{3}+v_{4} \geq 5\right) \vee \neg\left(v_{1}-v_{3} \leq 6\right) \vee \neg A_{1}\right\} \wedge \\
&\left\{A_{1} \vee\left(v_{1}-v_{2} \leq 3\right)\right\} \wedge \\
&\left\{\left(v_{2}-v_{4} \leq 6\right) \vee\left(v_{5}=5-3 v_{4}\right) \vee \neg A_{1}\right\} \wedge \\
&\left\{\neg\left(v_{2}-v_{3}>2\right)\right. \\
&\left\{A_{1}\right\} \wedge \\
&\left\{\overline{\left.\neg A_{2} \vee\left(v_{1}-v_{5} \leq 1\right)\right\} \wedge}\right. \\
&\left.A_{1} \vee \underline{\left(v_{3}=v_{5}+6\right)} \vee A_{2}\right\}
\end{aligned}
$$

and consider the partial truth assignment μ given by the underlined literals above:

$$
\left\{\neg\left(v_{2}-v_{3}>2\right), \neg A_{2}, \neg\left(v_{1}-v_{3} \leq 6\right),\left(v_{2}-v_{4} \leq 6\right),\left(v_{3}=v_{5}+6\right)\right\} .
$$

1. Does (the Boolean abstraction of) μ propositionally satisfy (the Boolean abstraction of) φ ?
2. Is μ satisfiable in $\mathcal{L R} \mathcal{A}$?
(a) If no, find a minimal conflict set for μ and the corresponding conflict clause C.
(b) If yes, show one unassigned literal which can be deduced from μ, and show the corresponding deduction clause C.
[Solution:
3. No, since there are two clauses which are not satisfied.
4. Yes (there is no cycle among the constraints). $v_{2}=v_{3}=v_{4}=0.0, v_{1}=7.0, v_{5}=-6.0$ is a solution.
(a) ...
(b) One possible deduction is:

$$
\left\{\neg\left(v_{2}-v_{3}>2\right), \neg\left(v_{1}-v_{3} \leq 6\right)\right\} \models_{\mathcal{T}} \neg\left(v_{1}-v_{2} \leq 3\right) .
$$

which corresponds to learning the deduction clause:

$$
\left(v_{2}-v_{3}>2\right) \vee\left(v_{1}-v_{3} \leq 6\right) \vee \neg\left(v_{1}-v_{2} \leq 3\right)
$$

Another possible deduction is:

$$
\left\{\left(v_{3}=v_{5}+6\right), \neg\left(v_{1}-v_{3} \leq 6\right)\right\} \not \models_{\mathcal{T}} \neg\left(v_{1}-v_{5} \leq 1\right) .
$$

which corresponds to learning the deduction clause:

$$
\neg\left(v_{3}=v_{5}+6\right) \vee\left(v_{1}-v_{3} \leq 6\right) \vee \neg\left(v_{1}-v_{5} \leq 1\right)
$$

7

Consider the following $\mathcal{L R} \mathcal{A}$ formula φ.

$$
\begin{array}{rrrrrr}
((-x+y>-1)) & & & \wedge \\
((x+y \geq-3) & \vee & \neg(-x+y>-1)) & & \wedge \\
(\neg(x+y \geq-3) & \vee & \neg(x<-2) & \vee & (y<-1)) & \wedge \\
(\neg(-x+y>-1) & \vee & (x<-2) & \vee & (y<-1)) & \\
((x+y \geq-3) & \vee & \neg(5 y-4 z>1) & \vee & \neg(3 v-5 x>7)) & \wedge \\
((-x+y>-1) & \vee & (3 v-5 x>7) & \vee & \neg(5 y-4 z>1)) & \wedge
\end{array}
$$

(a) Write the Boolean Abstraction of φ.
(b) Using the standard lazy SMT approach (literal-decision order, techniques and strategies to your choice), decide if φ is satisfiable in $\mathcal{L R} \mathcal{A}$, plotting the corresponding search tree and producing the \mathcal{T}-lemmas involved.
[Solution: Using \mathcal{T}-backjumping, we show that the formula is $\mathcal{L} \mathcal{R} \mathcal{A}$-satisfiable, as shown in the following search tree:

because $\{(x+y \geq-3),(x<-2),(y<-1)\}$ is a conflict set for the first branch, but the second branch is satisfiable (e.g., $\mathcal{I} \stackrel{\text { def }}{=}\{x=-1.5, y=-1.5\}$ is a model for the second branch).

A faster result is obtained by deciding first $\neg C$ or D, from which the model \mathcal{I} is found in one branch only.]

8

Let $\mathcal{L} \mathcal{A}(\mathbb{Q})$ be the logic of linear arithmetic over the rationals and $\mathcal{E U} \mathcal{F}$ be the logic of equality and uninterpreted functions, and consider the following pure formula φ in the combined logic $\mathcal{L A}(\mathbb{Q}) \cup$ $\mathcal{E U F}$:

$$
\begin{align*}
& (h=3.0) \wedge(k=-2.0) \wedge(x=1.0) \wedge(y=h+k) \wedge \tag{1}\\
& (z=f(x)) \wedge(w=f(y)) \wedge \neg(g(z)=g(w)) \tag{2}
\end{align*}
$$

Say which variables are interface variables, list the interface equalities for this formula, and decide whether this formulas is $\mathcal{L} \mathcal{A}(\mathbb{Q}) \cup \mathcal{E} \mathcal{U} \mathcal{F}$-satisfiable or not, using either Nelson-Oppen or Delayed Theory Combination.
[Solution: Only x and y occur both in $\mathcal{L A}(\mathbb{Q})$-atoms (1) and in $\mathcal{E U \mathcal { F }}$-atoms (2). Thus x, y are the interface variables, and $x=y$ is the only interface equality.

Nelson-Oppen: From (1) in $\mathcal{L} \mathcal{A}$ we infer the interface equality $(x=y)$. Adding the latter to (2), one gets a contradiction in $\mathcal{E U F}$.

Delayed Theory Combination: By unit-propagation, φ causes only one branch containing all its literals. Then the SAT solver assigns first a negative value to the interface equality, adding $\neg(x=y)$ to the assignment, which is found inconsistent in $\mathcal{L} \mathcal{A}(\mathbb{Q})$:

$$
\begin{equation*}
(h=3.0) \wedge(k=-2.0) \wedge(x=1.0) \wedge(y=h+k) \wedge \neg(x=y) . \tag{3}
\end{equation*}
$$

Then the SAT solver backtracks, adding $(x=y)$ to the assignment, which is found inconsistent in $\mathcal{E U F}$:

$$
\begin{equation*}
(z=f(x)) \wedge(w=f(y)) \wedge \neg(g(z)=g(w)) \wedge(x=y) . \tag{4}
\end{equation*}
$$

Thus, with either technique, we can conclude that φ is $\mathcal{L \mathcal { A }}(\mathbb{Q}) \cup \mathcal{E} \mathcal{U} \mathcal{F}$-unsatisfiable.]

9

Consider the following set of clauses φ in the theory of linear arithmetic on the Integers $\mathcal{L I} \mathcal{A}$.

$$
\left\{\begin{array}{l}
(\neg(x=0) \vee \neg(x=1)), \\
(\neg(x=0) \vee(x=1)), \\
((x=0) \vee \neg(x=1)), \\
((x=0) \vee(x=1))
\end{array}\right\}
$$

Say which of the following sets is a $\mathcal{L I} \mathcal{A}$-unsatisfiable core of φ and which is not. For each one, explain why.
(a)

$$
\left\{\begin{array}{c}
(\neg(x=0) \vee \\
((x=1)), \\
((x=0) \vee \neg(x=1)), \\
((x=0) \vee
\end{array}\right\}
$$

[Solution: yes, because it is a subset of φ and it is inconsistent in $\mathcal{L I} \mathcal{A}$.]
(b)

$$
\left\{\begin{array}{c}
(\neg(x=0) \vee \neg(x=1)), \\
((x=0) \vee \neg(x=1)), \\
((x=0) \vee(x=1))
\end{array}\right\}
$$

[Solution: no, because is not inconsistent in $\mathcal{L I \mathcal { A }}$ (e.g., $\quad(x=0)$ is a solution).] (c)

$$
\left\{\begin{array}{l}
(\neg(x=0) \vee \\
(\quad(x=1)), \\
(x=0) \vee \neg(x=1)), \\
((x=0) \vee \\
((x=y))
\end{array}\right.
$$

[Solution: no, because it is not a subset of φ.]

10

Consider the following formulas in difference logic ($\mathcal{D} \mathcal{L})$:

$$
\begin{aligned}
\varphi_{1} \stackrel{\text { def }}{=} & \left(x_{4}-x_{5} \leq-2\right) \wedge \\
& \left(x_{5}-x_{6} \leq-4\right) \wedge \\
& \left(x_{1}-x_{2} \leq 3\right) \wedge \\
& \left(x_{2}-x_{3} \leq 1\right) \\
\varphi_{2} \stackrel{\text { def }}{=} & \left(x_{6}-x_{1} \leq 0\right) \quad \wedge \\
& \left(x_{3}-x_{4} \leq 1\right)
\end{aligned}
$$

which are such that $\varphi_{1} \wedge \varphi_{2} \models_{\mathcal{D L}} \perp$. For each of the following formulas, say if it is a Craig interpolant in $\mathcal{D} \mathcal{L}$ for $\left(\varphi_{1}, \varphi_{2}\right)$, and explain why.
[Solution: Recall that a Craig interpolant for $\left(\varphi_{1}, \varphi_{2}\right)$ s.t. $\varphi_{1} \wedge \varphi_{2} \models_{\mathcal{D} \mathcal{L}} \perp$ is a formula ψ s.t.

1. $\varphi_{1}=_{\mathcal{D L}} \psi$
2. $\psi \wedge \varphi_{2} \models_{\mathcal{D L}} \perp$
3. all symbols in ψ occur in both φ_{1} and φ_{2}.
]
(a) $\quad\left(x_{1}-x_{2}+x_{4}-x_{6} \leq-3\right)$
[Solution: no, because x_{2} is not a symbol occurring in φ_{2}. Moreover, it is not a $\mathcal{D} \mathcal{L}$ formula.]
(b) $\quad\left(x_{1}-x_{3} \leq 4\right)$
[Solution: No, because it violates condition 2.]
(c) $\quad \begin{aligned} & \left(x_{1}-x_{3} \leq 4\right) \\ & \left(x_{4}-x_{6} \leq-6\right)\end{aligned} \wedge$
[Solution: yes, because it is a $\mathcal{D} \mathcal{L}$ formula and it verifies all conditions 1., 2., 3.]
