Course "Efficient Boolean Reasoning" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

March 13^{th} , 2018

769857918

[COPY WITH SOLUTIONS]

Let φ be a generic Boolean formula, and let $\varphi_1 \stackrel{\text{def}}{=} CNF(\varphi)$, s.c. CNF() is the "classic" CNF conversion (i.e., that using DeMorgan's rules). Let $|\varphi|$ and $|\varphi_1|$ denote the size of φ and φ_1 respectively.

For each of the following sentences, say if it is true or false.

- (a) $|\varphi_1|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: False.]
- (b) φ_1 has the same number of distinct Boolean variables as φ has. [Solution: True.]
- (c) A model for φ_1 (if any) is also a model for φ , and vice versa. [Solution: True.]
- (d) φ_1 is valid if and only if φ is valid. [Solution: True.]

Consider the following CNF formula:

$(-\Lambda)$	\mathbf{N}	$\neg A_2$	\mathbf{N}	- 1) ^
$(\neg A_1)$	V		V	$\neg A_3) \land$
$(A_4$	V	$\neg A_7$	V	$\neg A_5) \land$
$(\neg A_2$	\vee	$\neg A_3$	\vee	$\neg A_6) \land$
$(\neg A_8)$	\vee	$\neg A_1$	\vee	$\neg A_3) \land$
$(\neg A_2$	\vee	$\neg A_3$	\vee	$\neg A_8) \land$
$(\neg A_6$	\vee	$\neg A_5$	\vee	$\neg A_8) \land$
(A_8)	\vee	$\neg A_3$	\vee	$\neg A_7) \land$
$(\neg A_6$	\vee	$\neg A_5$	\vee	$\neg A_2) \land$
(A_8)	\vee	$\neg A_1$	\vee	$\neg A_3) \land$
$(\neg A_3)$	\vee	$\neg A_4$	\vee	$\neg A_3) \land$
(A_7)	\vee	$\neg A_2$	\vee	$\neg A_1) \land$
$(A_1$	\vee	$\neg A_2$	\vee	$\neg A_3) \land$
$(\neg A_4)$	\vee	$\neg A_5$	\vee	$\neg A_2) \land$
$(\neg A_8)$	\vee	$\neg A_7$	\vee	$\neg A_1) \land$
$(\neg A_5)$	\vee	$\neg A_4$	\vee	$\neg A_7) \land$
$(\neg A_4)$	\vee	$\neg A_2$	\vee	$\neg A_5) \land$
(A_3)	\vee	$\neg A_6$	\vee	$\neg A_7) \land$
(A_3)	\vee	$\neg A_4$	\vee	$\neg A_2) \land$
(A_6)	\vee	$\neg A_2$	\vee	$\neg A_8) \land$
(A_1)	\vee	$\neg A_2$	\vee	$\neg A_6) \land$
(A_2)	\vee	$\neg A_3$	\vee	$\neg A_4) \land$
(A_5)	V	$\neg A_6$	V	$\neg A_2) \land$
$(\neg A_5)$	V	$\neg A_3$	V	$\neg A_4)$
(v	.7 13	v	.4.14)

Decide $\underline{quickly}$ if it is satisfiable or not, and briefly explain why.

[Solution: It is a Horn formula with no positive unit clauses. Therefore, the assignment $\{\neg A_i\}_{i=1}^8$ is a model.]

Using the basic DPLL algorithm, decide whether the following formula is satisfiable or not. (Write the search tree.)

				$(\neg A_1) \land$
		$(A_1$	\vee	$\neg A_2) \land$
$(A_1$	\vee	A_2	\vee	$A_3) \wedge$
(A_4)	\vee	$\neg A_3$	\vee	$A_6) \wedge$
(A_4)	\vee	$\neg A_3$	\vee	$\neg A_6) \land$
$(\neg A_3)$	\vee	$\neg A_4$	\vee	$A_7) \wedge$
$(\neg A_3)$	\vee	$\neg A_4$	\vee	$\neg A_7)$

(Literal-selection criteria to your choice.)

[Solution:

]

 \implies the formula is inconsistent.

Consider the following implication graph:

 ${\cal A}_{12}$ being the most recent decision literal. Write the conflict clauses generated by

- 1. the last UIP conflict analysis technique
- 2. the 1st UIP conflict analysis technique
- [Solution:

- 1. Last UIP clause: $\neg A_{12} \lor A_2 \lor A_4 \lor \neg A_3 \lor \neg A_5$
- 2. 1st UIP clause: $\neg A_8 \lor \neg A_3 \lor \neg A_5$

$\mathbf{5}$

Consider the following Boolean formulas:

which are such that $\varphi_1 \wedge \varphi_2 \models \bot$. For each of the following formulas, say if it is a Craig interpolant for (φ_1, φ_2) or not.

[Solution: Recall that a Craig interpolant for (φ_1, φ_2) s.t. $\varphi_1 \wedge \varphi_2 \models \bot$ is a formula ψ s.t.

- 1. $\varphi_1 \models \psi$
- 2. $\psi \wedge \varphi_2 \models \bot$
- 3. all atoms in ψ occur in both φ_1 and φ_2 .

(a)

$(A_1 \vee$	$A_2)$	\wedge
$(\neg A_1 \lor$	A_2)	\wedge
(A_4)		

[Solution: No, it is not a solution because it does not verify condition 3.] (b)

 (A_2)

[Solution: No, it is not a solution because it does not verify condition 2.] (c)

$$(A_2 \land A_4)$$

[Solution: Yes]

Consider the following formula in the theory \mathcal{LRA} of linear arithmetic on the Rationals.

$$\begin{split} \varphi &= \{ (v_1 - v_2 \le 3) \lor A_2 \} \land \\ \{ \neg (2v_3 + v_4 \ge 5) \lor \neg (v_1 - v_3 \le 6) \lor \neg A_1 \} \land \\ \{ A_1 \lor (v_1 - v_2 \le 3) \} \land \\ \{ A_1 \lor (v_1 - v_2 \le 3) \} \land \\ \{ (v_2 - v_4 \le 6) \lor (v_5 = 5 - 3v_4) \lor \neg A_1 \} \land \\ \{ (v_2 - v_3 > 2) \lor A_1 \} \land \\ \{ \overline{\neg (v_2 - v_3 > 2)} \lor A_1 \} \land \\ \{ \overline{\neg A_2} \lor (v_1 - v_5 \le 1) \} \land \\ \{ A_1 \lor (v_3 = v_5 + 6) \lor A_2 \} \end{split}$$

and consider the partial truth assignment μ given by the underlined literals above:

$$\{\neg (v_2 - v_3 > 2), \neg A_2, \neg (v_1 - v_3 \le 6), (v_2 - v_4 \le 6), (v_3 = v_5 + 6)\}.$$

- 1. Does (the Boolean abstraction of) μ propositionally satisfy (the Boolean abstraction of) φ ?
- 2. Is μ satisfiable in \mathcal{LRA} ?
 - (a) If no, find a minimal conflict set for μ and the corresponding conflict clause C.
 - (b) If yes, show one unassigned literal which can be deduced from μ , and show the corresponding deduction clause C.

[Solution:

- 1. No, since there are two clauses which are not satisfied.
- 2. Yes (there is no cycle among the constraints). $v_2 = v_3 = v_4 = 0.0$, $v_1 = 7.0$, $v_5 = -6.0$ is a solution.
 - (a) ...
 - (b) One possible deduction is:

$$\{\neg (v_2 - v_3 > 2), \neg (v_1 - v_3 \le 6)\} \models_{\mathcal{T}} \neg (v_1 - v_2 \le 3).$$

which corresponds to learning the deduction clause:

 $(v_2 - v_3 > 2) \lor (v_1 - v_3 \le 6) \lor \neg (v_1 - v_2 \le 3).$

Another possible deduction is:

$$\{(v_3 = v_5 + 6), \neg (v_1 - v_3 \le 6)\} \models_{\mathcal{T}} \neg (v_1 - v_5 \le 1).$$

which corresponds to learning the deduction clause:

 $\neg (v_3 = v_5 + 6) \lor (v_1 - v_3 \le 6) \lor \neg (v_1 - v_5 \le 1).$

Consider the following \mathcal{LRA} formula φ .

$\left(\left(-x+y>-1\right)\right)$					\wedge
$((x+y \ge -3)$	\vee	$\neg(-x+y > -1))$			\wedge
$(\neg(x+y \ge -3)$	\vee	$\neg(x < -2)$	\vee	(y < -1))	\wedge
$(\neg(-x+y>-1))$	\vee	(x < -2)	\vee	(y < -1))	
$((x+y \ge -3)$	\vee	$\neg(5y - 4z > 1)$	\vee	$\neg(3v - 5x > 7))$	\wedge
$\left(\left(-x+y>-1\right)\right)$	\vee	(3v - 5x > 7)	\vee	$\neg(5y - 4z > 1))$	\wedge

- (a) Write the Boolean Abstraction of φ .
- (b) Using the standard lazy SMT approach (literal-decision order, techniques and strategies to your choice), decide if φ is satisfiable in \mathcal{LRA} , plotting the corresponding search tree and producing the \mathcal{T} -lemmas involved.

[Solution: Using \mathcal{T} -backjumping, we show that the formula is \mathcal{LRA} -satisfiable, as shown in the following search tree:

because $\{(x+y \ge -3), (x < -2), (y < -1)\}$ is a conflict set for the first branch, but the second branch is satisfiable (e.g., $\mathcal{I} \stackrel{\text{def}}{=} \{x = -1.5, y = -1.5\}$ is a model for the second branch).

A faster result is obtained by deciding first $\neg C$ or D, from which the model \mathcal{I} is found in one branch only.

Let $\mathcal{LA}(\mathbb{Q})$ be the logic of linear arithmetic over the rationals and \mathcal{EUF} be the logic of equality and uninterpreted functions, and consider the following pure formula φ in the combined logic $\mathcal{LA}(\mathbb{Q}) \cup \mathcal{EUF}$:

$$(h = 3.0) \land (k = -2.0) \land (x = 1.0) \land (y = h + k) \land$$
(1)

$$(z = f(x)) \land (w = f(y)) \land \neg (g(z) = g(w))$$

$$\tag{2}$$

Say which variables are interface variables, list the interface equalities for this formula, and decide whether this formulas is $\mathcal{LA}(\mathbb{Q}) \cup \mathcal{EUF}$ -satisfiable or not, using either Nelson-Oppen or Delayed Theory Combination.

[Solution: Only x and y occur both in $\mathcal{LA}(\mathbb{Q})$ -atoms (1) and in \mathcal{EUF} -atoms (2). Thus x, y are the interface variables, and x = y is the only interface equality.

- **Nelson-Oppen:** From (1) in \mathcal{LA} we infer the interface equality (x = y). Adding the latter to (2), one gets a contradiction in \mathcal{EUF} .
- **Delayed Theory Combination:** By unit-propagation, φ causes only one branch containing all its literals. Then the SAT solver assigns first a negative value to the interface equality, adding $\neg(x = y)$ to the assignment, which is found inconsistent in $\mathcal{LA}(\mathbb{Q})$:

$$(h = 3.0) \land (k = -2.0) \land (x = 1.0) \land (y = h + k) \land \neg (x = y).$$
(3)

Then the SAT solver backtracks, adding (x = y) to the assignment, which is found inconsistent in \mathcal{EUF} :

$$(z = f(x)) \land (w = f(y)) \land \neg (g(z) = g(w)) \land (x = y).$$

$$\tag{4}$$

Thus, with either technique, we can conclude that φ is $\mathcal{LA}(\mathbb{Q}) \cup \mathcal{EUF}$ -unsatisfiable.

Consider the following set of clauses φ in the theory of linear arithmetic on the Integers \mathcal{LIA} .

$$\begin{cases} (\neg(x=0) \lor \neg(x=1)), \\ (\neg(x=0) \lor (x=1)), \\ ((x=0) \lor \neg(x=1)), \\ ((x=0) \lor (x=1)) \end{cases}$$

Say which of the following sets is a \mathcal{LIA} -unsatisfiable core of φ and which is not. For each one, explain why.

(a)

$$\left\{\begin{array}{l} (\neg(x=0) \lor (x=1)), \\ ((x=0) \lor \neg(x=1)), \\ ((x=0) \lor (x=1)) \end{array}\right\}$$

[Solution: yes, because it is a subset of φ and it is inconsistent in \mathcal{LIA} .] (b)

$$\begin{cases} (\neg(x=0) \lor \neg(x=1)), \\ ((x=0) \lor \neg(x=1)), \\ ((x=0) \lor (x=1)) \end{cases}$$

[Solution: no, because is not inconsistent in \mathcal{LIA} (e.g., (x = 0) is a solution).] (c)

$$\begin{cases} (\neg(x=0) \lor (x=1)), \\ ((x=0) \lor \neg(x=1)), \\ ((x=0) \lor (x=1)), \\ ((x=y)) \end{cases}$$

[Solution: no, because it is not a subset of φ .]

Consider the following formulas in difference logic (\mathcal{DL}) :

$$\begin{split} \varphi_1 \stackrel{\text{def}}{=} & (x_4 - x_5 \leq -2) & \land \\ & (x_5 - x_6 \leq -4) & \land \\ & (x_1 - x_2 \leq 3) & \land \\ & (x_2 - x_3 \leq 1) \\ \\ \varphi_2 \stackrel{\text{def}}{=} & (x_6 - x_1 \leq 0) & \land \\ & (x_3 - x_4 \leq 1) \\ \end{split}$$

which are such that $\varphi_1 \wedge \varphi_2 \models_{\mathcal{DL}} \bot$. For each of the following formulas, say if it is a Craig interpolant in \mathcal{DL} for (φ_1, φ_2) , and explain why.

[Solution: Recall that a Craig interpolant for (φ_1, φ_2) s.t. $\varphi_1 \wedge \varphi_2 \models_{\mathcal{DL}} \bot$ is a formula ψ s.t.

- 1. $\varphi_1 \models_{\mathcal{DL}} \psi$
- 2. $\psi \wedge \varphi_2 \models_{\mathcal{DL}} \bot$
- 3. all symbols in ψ occur in both φ_1 and φ_2 .

]

(a) $(x_1 - x_2 + x_4 - x_6 \le -3)$

[Solution: no, because x_2 is not a symbol occurring in φ_2 . Moreover, it is not a \mathcal{DL} formula.]

(b) $(x_1 - x_3 \le 4)$ [Solution: No, because it violates condition 2.]

(c)
$$(x_1 - x_3 \le 4) \land (x_4 - x_6 \le -6)$$

[Solution: yes, because it is a \mathcal{DL} formula and it verifies all conditions 1., 2., 3.]