Course "An Introduction to SAT and SMT" Chapter 1: Propositional Satisfiability (SAT)

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/

Int. Graduate School on ICT, University of Trento, Academic year 2019-2020

last update: Friday $22^{\text {nd }}$ May, 2020
Copyright notice: some material contained in these slides is courtesy of Alessandro Cimatti, Alberto Griggio and Marco Roveri, who detain its copyright. All the other material is copyrighted by Roberto Sebastiani. Any commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) Basics on SAT
(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT
(5) Random k-SAT and Phase Transition
(6) Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications
- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT

5. Random k-SAT and Phase Transition

6 Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Boolean logic

Basic notation \& definitions

- Boolean formula
- T, \perp are formulas
- A propositional atom $A_{1}, A_{2}, A_{3}, \ldots$ is a formula;
- if φ_{1} and φ_{2} are formulas, then
$\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}$
are formulas.
- $\operatorname{Atoms}(\varphi)$: the set $\left\{A_{1}, \ldots, A_{N}\right\}$ of atoms occurring in φ.
- Literal: a propositional atom A_{i} (positive literal) or its negation $\neg A_{i}$ (negative literal)
- Notation: if $I:=\neg A_{i}$, then $\neg l:=A_{i}$
- Clause: a disjunction of literals $\bigvee_{j} I_{j}$ (e.g., $\left.\left(A_{1} \vee \neg A_{2} \vee A_{3} \vee \ldots\right)\right)$
- Cube: a conjunction of literals $\bigwedge_{j} l_{j}$ (e.g., $\left.\left(A_{1} \wedge \neg A_{2} \wedge A_{3} \wedge \ldots\right)\right)$

Semantics of Boolean operators

- Truth table:

φ_{1}	φ_{2}	$\neg \varphi_{1}$	$\varphi_{1} \wedge \varphi_{2}$	$\varphi_{1} \vee \varphi_{2}$	$\varphi_{1} \rightarrow \varphi_{2}$	$\varphi_{1} \leftarrow \varphi_{2}$	$\varphi_{1} \leftrightarrow \varphi_{2}$
\perp	\perp	\top	\perp	\perp	\top	\top	\top
\perp	\top	\top	\perp	\top	\top	\perp	\perp
\top	\perp	\perp	\perp	\top	\perp	\top	\perp
\top	\top	\perp	\top	\top	\top	\top	\top

Semantics of Boolean operators

- Truth table:

φ_{1}	φ_{2}	$\neg \varphi_{1}$	$\varphi_{1} \wedge \varphi_{2}$	$\varphi_{1} \vee \varphi_{2}$	$\varphi_{1} \rightarrow \varphi_{2}$	$\varphi_{1} \leftarrow \varphi_{2}$	$\varphi_{1} \leftrightarrow \varphi_{2}$
\perp	\perp	\top	\perp	\perp	\top	\top	\top
\perp	\top	\top	\perp	\top	\top	\perp	\perp
\top	\perp	\perp	\perp	\top	\perp	\top	\perp
\top	\top	\perp	\top	\top	\top	\top	\top

Note

- \wedge, \vee and \leftrightarrow are commutative:

$$
\begin{aligned}
& \left(\varphi_{1} \wedge \varphi_{2}\right)
\end{aligned} \Longleftrightarrow \Longleftrightarrow\left(\varphi_{2} \wedge \varphi_{1}\right), ~\left(\varphi_{1} \vee \varphi_{2}\right) \quad \Longleftrightarrow\left(\varphi_{2} \vee \varphi_{1}\right), ~\left(\varphi_{2} \leftrightarrow \varphi_{1}\right)
$$

- \wedge and \vee are associative:

$$
\begin{aligned}
& \left(\left(\varphi_{1} \wedge \varphi_{2}\right) \wedge \varphi_{3}\right) \Longleftrightarrow\left(\varphi_{1} \wedge\left(\varphi_{2} \wedge \varphi_{3}\right)\right) \Longleftrightarrow\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right) \\
& \left(\left(\varphi_{1} \vee \varphi_{2}\right) \vee \varphi_{3}\right) \Longleftrightarrow\left(\varphi_{1} \vee\left(\varphi_{2} \vee \varphi_{3}\right)\right) \Longleftrightarrow\left(\varphi_{1} \vee \varphi_{2} \vee \varphi_{3}\right)
\end{aligned}
$$

Syntactic Properties of Boolean Operators

$$
\begin{aligned}
\neg \neg \varphi_{1} & \Longleftrightarrow \varphi_{1} \\
\left(\varphi_{1} \vee \varphi_{2}\right) & \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \vee \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\left(\varphi_{1} \wedge \varphi_{2}\right) & \Longleftrightarrow \neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \wedge \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\left(\varphi_{1} \rightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \vee \varphi_{2}\right) \\
\neg\left(\varphi_{1} \rightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\varphi_{1} \wedge \neg \varphi_{2}\right) \\
\left(\varphi_{1} \leftarrow \varphi_{2}\right) & \Longleftrightarrow\left(\varphi_{1} \vee \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \leftarrow \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \wedge \varphi_{2}\right) \\
\left(\varphi_{1} \leftrightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\left(\varphi_{1} \rightarrow \varphi_{2}\right) \wedge\left(\varphi_{1} \leftarrow \varphi_{2}\right)\right) \\
& \Longleftrightarrow\left(\left(\neg \varphi_{1} \vee \varphi_{2}\right) \wedge\left(\varphi_{1} \vee \neg \varphi_{2}\right)\right) \\
\neg\left(\varphi_{1} \leftrightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \leftrightarrow \varphi_{2}\right) \\
& \Longleftrightarrow\left(\varphi_{1} \leftrightarrow \neg \varphi_{2}\right) \\
& \Longleftrightarrow\left(\left(\varphi_{1} \vee \varphi_{2}\right) \wedge\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right)\right)
\end{aligned}
$$

Syntactic Properties of Boolean Operators

$$
\begin{aligned}
\neg \neg \varphi_{1} & \Longleftrightarrow \varphi_{1} \\
\left(\varphi_{1} \vee \varphi_{2}\right) & \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \vee \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\left(\varphi_{1} \wedge \varphi_{2}\right) & \Longleftrightarrow \neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \wedge \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\left(\varphi_{1} \rightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \vee \varphi_{2}\right) \\
\neg\left(\varphi_{1} \rightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\varphi_{1} \wedge \neg \varphi_{2}\right) \\
\left(\varphi_{1} \leftarrow \varphi_{2}\right) & \Longleftrightarrow\left(\varphi_{1} \vee \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \leftarrow \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \wedge \varphi_{2}\right) \\
\left(\varphi_{1} \leftrightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\left(\varphi_{1} \rightarrow \varphi_{2}\right) \wedge\left(\varphi_{1} \leftarrow \varphi_{2}\right)\right) \\
& \Longleftrightarrow\left(\left(\neg \varphi_{1} \vee \varphi_{2}\right) \wedge\left(\varphi_{1} \vee \neg \varphi_{2}\right)\right) \\
\neg\left(\varphi_{1} \leftrightarrow \varphi_{2}\right) & \Longleftrightarrow\left(\neg \varphi_{1} \leftrightarrow \varphi_{2}\right) \\
& \Longleftrightarrow\left(\varphi_{1} \leftrightarrow \neg \varphi_{2}\right) \\
& \Longleftrightarrow\left(\left(\varphi_{1} \vee \varphi_{2}\right) \wedge\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right)\right)
\end{aligned}
$$

Boolean logic can be expressed in terms of $\{\neg, \wedge\}$ (or $\{\neg, \vee\}$) only

Tree and DAG representation of formulas: example

Formulas can be represented either as trees or as DAGS:

- DAG representation can be up to exponentially smaller

$$
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right)
$$

Tree and DAG representation of formulas: example

Formulas can be represented either as trees or as DAGS:

- DAG representation can be up to exponentially smaller

$$
\begin{aligned}
\left(A_{1} \leftrightarrow A_{2}\right) & \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
& \Downarrow \\
\left(\left(\left(A_{1} \leftrightarrow A_{2}\right)\right.\right. & \left.\rightarrow\left(A_{3} \leftrightarrow A_{4}\right)\right) \wedge \\
\left(\left(A_{3} \leftrightarrow A_{4}\right)\right. & \left.\left.\rightarrow\left(A_{1} \leftrightarrow A_{2}\right)\right)\right)
\end{aligned}
$$

Tree and DAG representation of formulas: example

Formulas can be represented either as trees or as DAGS:

- DAG representation can be up to exponentially smaller

$$
\begin{gathered}
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
\Downarrow \\
\left(\left(\left(A_{1} \leftrightarrow A_{2}\right) \rightarrow\left(A_{3} \leftrightarrow A_{4}\right)\right) \wedge\right. \\
\left.\left(\left(A_{3} \leftrightarrow A_{4}\right) \rightarrow\left(A_{1} \leftrightarrow A_{2}\right)\right)\right) \\
\Downarrow \\
\forall \\
\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{2} \rightarrow A_{1}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{4} \rightarrow A_{3}\right)\right)\right) \wedge \\
\left(\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{4} \rightarrow A_{3}\right)\right) \rightarrow\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{2} \rightarrow A_{1}\right)\right)\right)\right)
\end{gathered}
$$

Tree and DAG repres. of formulas: example (cont)

Basic notation \& definitions (cont)

- Total truth assignment μ for φ :
$\mu: \operatorname{Atoms}(\varphi) \longmapsto\{T, \perp\}$.
- Partial Truth assignment μ for φ :
$\mu: \mathcal{A} \longmapsto\{T, \perp\}, \mathcal{A} \subset \operatorname{Atoms}(\varphi)$.
- Set and formula representation of an assignment:
- μ can be represented as a set of literals:

EX: $\left\{\mu\left(A_{1}\right):=\top, \mu\left(A_{2}\right):=\perp\right\} \Longrightarrow\left\{A_{1}, \neg A_{2}\right\}$

- μ can be represented as a formula (cube):

$$
\mathrm{EX}:\left\{\mu\left(A_{1}\right):=\top, \mu\left(A_{2}\right):=\perp\right\} \Longrightarrow\left(A_{1} \wedge \neg A_{2}\right)
$$

Basic notation \& definitions (cont)

- a total truth assignment μ satisfies $\varphi(\mu \models \varphi)$:
- $\mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top$
- $\mu \models \neg \varphi \Longleftrightarrow$ not $\mu \models \varphi$
- $\mu \models \varphi_{1} \wedge \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ and $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ or $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \rightarrow \varphi_{2} \Longleftrightarrow$ if $\mu \models \varphi_{1}$, then $\mu \vDash \varphi_{2}$
- $\mu \models \varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$

- φ is valid $(\models \varphi): \models \varphi$ iff $\mu \models \varphi$ for every μ
\square
φ is valid $\Longleftrightarrow \neg \varphi$ is not satisfiable

Basic notation \& definitions (cont)

- a total truth assignment μ satisfies $\varphi(\mu \models \varphi)$:
- $\mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top$
- $\mu \models \neg \varphi \Longleftrightarrow$ not $\mu \models \varphi$
- $\mu \models \varphi_{1} \wedge \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ and $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ or $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \rightarrow \varphi_{2} \Longleftrightarrow$ if $\mu=\varphi_{1}$, then $\mu=\varphi_{2}$
- $\mu \models \varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- a partial truth assignment μ satisfies φ iff it makes φ evaluate to true (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
\Longrightarrow if μ satisfies φ, then all its total extensions satisfy φ

$$
\left(\text { Ex: }\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right) \text { and }\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)
$$

- φ is valid $(\models \varphi)$: $\models \varphi$ iff $\mu \models \varphi$ for every μ
\square is valid $\Longleftrightarrow-\varphi$ is not satisfiable

Basic notation \& definitions (cont)

- a total truth assignment μ satisfies $\varphi(\mu \models \varphi)$:
- $\mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top$
- $\mu \models \neg \varphi \Longleftrightarrow$ not $\mu \models \varphi$
- $\mu \models \varphi_{1} \wedge \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ and $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ or $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \rightarrow \varphi_{2} \Longleftrightarrow$ if $\mu \models \varphi_{1}$, then $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- a partial truth assignment μ satisfies φ iff it makes φ evaluate to true (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
\Longrightarrow if μ satisfies φ, then all its total extensions satisfy φ

$$
\left(\text { Ex: }\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right) \text { and }\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)
$$

- φ is satisfiable iff $\mu \models \varphi$ for some μ
- φ is valid $(\models \varphi)$: $\models \varphi$ iff $\mu \models \varphi$ for every μ
\qquad

Basic notation \& definitions (cont)

- a total truth assignment μ satisfies $\varphi(\mu \models \varphi)$:
- $\mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top$
- $\mu \models \neg \varphi \Longleftrightarrow$ not $\mu \models \varphi$
- $\mu \models \varphi_{1} \wedge \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ and $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ or $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \rightarrow \varphi_{2} \Longleftrightarrow$ if $\mu \models \varphi_{1}$, then $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- a partial truth assignment μ satisfies φ iff it makes φ evaluate to true (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
\Longrightarrow if μ satisfies φ, then all its total extensions satisfy φ

$$
\left(\text { Ex: }\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right) \text { and }\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)
$$

- φ is satisfiable iff $\mu \models \varphi$ for some μ
- φ_{1} entails $\varphi_{2}\left(\varphi_{1} \models \varphi_{2}\right): \varphi_{1} \models \varphi_{2}$ iff $\mu \models \varphi_{1} \Longrightarrow \mu \models \varphi_{2}$ for every μ

Basic notation \& definitions (cont)

- a total truth assignment μ satisfies $\varphi(\mu \models \varphi)$:
- $\mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top$
- $\mu \models \neg \varphi \Longleftrightarrow$ not $\mu \models \varphi$
- $\mu \models \varphi_{1} \wedge \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ and $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ or $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \rightarrow \varphi_{2} \Longleftrightarrow$ if $\mu=\varphi_{1}$, then $\mu=\varphi_{2}$
- $\mu \models \varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- a partial truth assignment μ satisfies φ iff it makes φ evaluate to true (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
\Longrightarrow if μ satisfies φ, then all its total extensions satisfy φ

$$
\left(\text { Ex: }\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right) \text { and }\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)
$$

- φ is satisfiable iff $\mu \models \varphi$ for some μ
- φ_{1} entails $\varphi_{2}\left(\varphi_{1} \models \varphi_{2}\right): \varphi_{1} \models \varphi_{2}$ iff $\mu \models \varphi_{1} \Longrightarrow \mu \models \varphi_{2}$ for every μ
- φ is valid $(\models \varphi)$: $\models \varphi$ iff $\mu \models \varphi$ for every μ

Basic notation \& definitions (cont)

- a total truth assignment μ satisfies $\varphi(\mu \models \varphi)$:
- $\mu \models A_{i} \Longleftrightarrow \mu\left(A_{i}\right)=\top$
- $\mu \models \neg \varphi \Longleftrightarrow$ not $\mu \models \varphi$
- $\mu \models \varphi_{1} \wedge \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ and $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ or $\mu \models \varphi_{2}$
- $\mu \models \varphi_{1} \rightarrow \varphi_{2} \Longleftrightarrow$ if $\mu=\varphi_{1}$, then $\mu=\varphi_{2}$
- $\mu \models \varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow \mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- a partial truth assignment μ satisfies φ iff it makes φ evaluate to true (Ex: $\left.\left\{A_{1}\right\} \models\left(A_{1} \vee A_{2}\right)\right)$
\Longrightarrow if μ satisfies φ, then all its total extensions satisfy φ

$$
\left(\text { Ex: }\left\{A_{1}, A_{2}\right\} \models\left(A_{1} \vee A_{2}\right) \text { and }\left\{A_{1}, \neg A_{2}\right\} \models\left(A_{1} \vee A_{2}\right)\right)
$$

- φ is satisfiable iff $\mu \models \varphi$ for some μ
- φ_{1} entails $\varphi_{2}\left(\varphi_{1} \models \varphi_{2}\right): \varphi_{1} \models \varphi_{2}$ iff $\mu \models \varphi_{1} \Longrightarrow \mu \models \varphi_{2}$ for every μ
- φ is valid $(\models \varphi)$: $\models \varphi$ iff $\mu \models \varphi$ for every μ

Property

φ is valid $\Longleftrightarrow \neg \varphi$ is not satisfiable

Equivalence and equi-satisfiability

- φ_{1} and φ_{2} are equivalent iff, for every μ,
$\mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- φ_{1} and φ_{2} are equi-satisfiable iff
exists μ_{1} s.t. $\mu_{1} \models \varphi_{1}$ iff exists μ_{2} s.t. $\mu_{2} \models \varphi_{2}$
- φ_{1}, φ_{2} equivalent
φ_{1}, φ_{2} equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not
equivalent.

- Typically used when φ_{2} is the result of applying some transformation T to $\varphi_{1}: \varphi_{2} \stackrel{\text { def }}{=} T\left(\varphi_{1}\right)$:
we say that T is validity-preserving [satisfiability-preserving] iff $T\left(\varphi_{1}\right)$ and φ_{1} are equivalent [equi-satisfiable]

Equivalence and equi-satisfiability

- φ_{1} and φ_{2} are equivalent iff, for every μ,
$\mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- φ_{1} and φ_{2} are equi-satisfiable iff exists μ_{1} s.t. $\mu_{1} \models \varphi_{1}$ iff exists μ_{2} s.t. $\mu_{2} \models \varphi_{2}$
- φ_{1}, φ_{2} equivalent
φ_{1}, φ_{2} equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not
equivalent.

- Typically used when φ_{2} is the result of applying some transformation T to $\varphi_{1}: \varphi_{2} \stackrel{\text { def }}{=} T\left(\varphi_{1}\right)$:
we say that T is validity-preserving [satisfiability-preserving] iff $T\left(\varphi_{1}\right)$ and φ_{1} are equivalent [equi-satisfiable]

Equivalence and equi-satisfiability

- φ_{1} and φ_{2} are equivalent iff, for every μ,
$\mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- φ_{1} and φ_{2} are equi-satisfiable iff
exists μ_{1} s.t. $\mu_{1} \models \varphi_{1}$ iff exists μ_{2} s.t. $\mu_{2} \models \varphi_{2}$
- φ_{1}, φ_{2} equivalent
$\Downarrow \not \forall$
φ_{1}, φ_{2} equi-satisfiable
equivalent.

- Typically used when φ_{2} is the result of applying some
transformation T to $\varphi_{1}: \varphi_{2} \stackrel{\text { def }}{=} T\left(\varphi_{1}\right)$:
we say that T is validity-preserving [satisfiability-preserving] iff
$T\left(\varphi_{1}\right)$ and φ_{1} are equivalent [equi-satisfiable]

Equivalence and equi-satisfiability

- φ_{1} and φ_{2} are equivalent iff, for every μ,
$\mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- φ_{1} and φ_{2} are equi-satisfiable iff
exists μ_{1} s.t. $\mu_{1} \models \varphi_{1}$ iff exists μ_{2} s.t. $\mu_{2} \models \varphi_{2}$
- φ_{1}, φ_{2} equivalent
$\Downarrow \nmid$
φ_{1}, φ_{2} equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent.
$\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but
$\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \vDash\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
Typically used when φ_{2} is the result of applying some
transformation T to $\varphi_{1}: \varphi_{2} \stackrel{\text { def }}{=} T\left(\varphi_{1}\right)$:
we say that T is validity-preserving [satisfiability-preserving] iff
$T\left(\varphi_{1}\right)$ and φ_{1} are equivalent [equi-satisfiable]

Equivalence and equi-satisfiability

- φ_{1} and φ_{2} are equivalent iff, for every μ,
$\mu \models \varphi_{1}$ iff $\mu \models \varphi_{2}$
- φ_{1} and φ_{2} are equi-satisfiable iff
exists μ_{1} s.t. $\mu_{1} \models \varphi_{1}$ iff exists μ_{2} s.t. $\mu_{2} \models \varphi_{2}$
- φ_{1}, φ_{2} equivalent
$\Downarrow \not \approx$
φ_{1}, φ_{2} equi-satisfiable
- EX: $A_{1} \vee A_{2}$ and $\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$ are equi-satisfiable, not equivalent.
$\left\{\neg A_{1}, A_{2}, A_{3}\right\} \models\left(A_{1} \vee A_{2}\right)$, but
$\left\{\neg A_{1}, A_{2}, A_{3}\right\} \not \vDash\left(A_{1} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{2}\right)$
- Typically used when φ_{2} is the result of applying some transformation T to $\varphi_{1}: \varphi_{2} \stackrel{\text { def }}{=} T\left(\varphi_{1}\right)$:
we say that T is validity-preserving [satisfiability-preserving] iff $T\left(\varphi_{1}\right)$ and φ_{1} are equivalent [equi-satisfiable]

Complexity

- For N variables, there are up to 2^{N} truth assignments to be checked.
- The problem of deciding the satisfiability of a propositional formula is NP-complete
- The most important logical problems (validity, inference, entailment, equivalence, ...) can be straightforwardly reduced to satisfiability, and are thus (co)NP-complete.

No existing worst-case-polynomial algorithm.

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.

- Positive/negative occurrences
- φ occurs positively in φ;
- if $\neg \varphi_{1}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ
- if $\varphi_{1} \wedge \varphi_{2}$ or $\varphi_{1} \vee \varphi_{2}$ occur positively [negatively] in φ, then φ_{1} and φ_{2} occur positively [negatively] in φ;
- if $\varphi_{1} \rightarrow \varphi_{2}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ and φ_{2} occurs positively [negatively] in φ;
- if $\varphi_{1} \leftrightarrow \varphi_{2}$ occurs in φ, then φ_{1} and φ_{2} occur positively and negatively in φ;

Negative normal form (NNF)

- φ is in Negative normal form iff it is given only by the recursive applications of \wedge, \vee to literals.
- every φ can be reduced into NNF:
(i) substituting all \rightarrow 's and \leftrightarrow 's:

$$
\begin{aligned}
\varphi_{1} \rightarrow \varphi_{2} & \Longrightarrow \neg \varphi_{1} \vee \varphi_{2} \\
\varphi_{1} \leftrightarrow \varphi_{2} & \Longrightarrow\left(\neg \varphi_{1} \vee \varphi_{2}\right) \wedge\left(\varphi_{1} \vee \neg \varphi_{2}\right)
\end{aligned}
$$

(ii) pushing down negations recursively:

$$
\begin{array}{ll}
\neg\left(\varphi_{1} \wedge \varphi_{2}\right) & \Longrightarrow \neg \varphi_{1} \vee \neg \varphi_{2} \\
\neg\left(\varphi_{1} \vee \varphi_{2}\right) & \Longrightarrow \neg \varphi_{1} \wedge \neg \varphi_{2} \\
\neg \neg \varphi_{1} & \Longrightarrow \varphi_{1}
\end{array}
$$

- The reduction is linear if a DAG representation is used.
- Preserves the equivalence of formulas.

NNF: example

$$
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right)
$$

NNF: example

$$
\begin{gathered}
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
\Downarrow \\
\left(\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right) \wedge\right. \\
\left.\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \leftarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right)\right)
\end{gathered}
$$

NNF: example

$$
\begin{aligned}
&\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
& \Downarrow \\
&\left(\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right)\right.\right.\left.\rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right) \wedge \\
&\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right)\right.\left.\left.\leftarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right)\right) \\
& \Downarrow \\
&\left(\left(\neg\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right)\right.\right.\left.\vee\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right) \wedge \\
&\left.\left(\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee \neg\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right)\right)
\end{aligned}
$$

NNF: example

$$
\begin{array}{r}
\left(A_{1} \leftrightarrow A_{2}\right) \leftrightarrow\left(A_{3} \leftrightarrow A_{4}\right) \\
\Downarrow \\
\left(\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right) \rightarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right) \wedge\right. \\
\left(\left(\left(A_{1} \rightarrow A_{2}\right) \wedge\left(A_{1} \leftarrow A_{2}\right)\right)\right. \\
\left.\left.\leftarrow\left(\left(A_{3} \rightarrow A_{4}\right) \wedge\left(A_{3} \leftarrow A_{4}\right)\right)\right)\right) \\
\Downarrow \\
\left(\left(\neg\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right) \wedge\right. \\
\left.\left(\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee \neg\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right)\right) \\
\Downarrow \\
\left(\left(\left(\left(A_{1} \wedge \neg A_{2}\right) \vee\left(\neg A_{1} \wedge A_{2}\right)\right) \vee\left(\left(\neg A_{3} \vee A_{4}\right) \wedge\left(A_{3} \vee \neg A_{4}\right)\right)\right) \wedge\right. \\
\left.\left(\left(\left(\neg A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)\right) \vee\left(\left(A_{3} \wedge \neg A_{4}\right) \vee\left(\neg A_{3} \wedge A_{4}\right)\right)\right)\right)
\end{array}
$$

NNF: example (cont)

For each non-literal subformula φ, φ and $\neg \varphi$ have different representations \Longrightarrow they are not shared.

NNF: example (cont)

Note

For each non-literal subformula φ, φ and $\neg \varphi$ have different representations \Longrightarrow they are not shared.

Optimized polynomial representations

And-Inverter Graphs, Reduced Boolean Circuits, Boolean Expression Diagrams

- Maximize the sharing in DAG representations:
$\{\wedge, \leftrightarrow, \neg\}$-only, negations on arcs, sorting of subformulae, lifting of \neg 's over \leftrightarrow 's,...

Conjunctive Normal Form (CNF)

- φ is in Conjunctive normal form iff it is a conjunction of disjunctions of literals:

- the disjunctions of literals $\bigvee_{j_{i}=1}^{K_{i}} I_{j i}$ are called clauses
- Easier to handle: list of lists of literals.
\Longrightarrow no reasoning on the recursive structure of the formula

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g., (i) converting it into NNF (not indispensible);
(ii) applying recursively the DeMorgan's Rule:
- Worst-case exponential.
- Atoms $(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$.
- $\operatorname{CNF}(\varphi)$ is equivalent to φ.
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g., (i) converting it into NNF (not indispensible);
- Worst-case exponential.
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$.
- $\operatorname{CNF}(\varphi)$ is equivalent to φ.
- Rarely used in practice.

Classic CNF Conversion CNF (φ)

- Every φ can be reduced into CNF by, e.g.,
(i) converting it into NNF (not indispensible);
(ii) applying recursively the DeMorgan's Rule:

$$
\left(\varphi_{1} \wedge \varphi_{2}\right) \vee \varphi_{3} \Rightarrow\left(\varphi_{1} \vee \varphi_{3}\right) \wedge\left(\varphi_{2} \vee \varphi_{3}\right)
$$

- Worst-case exponential.
- $\operatorname{Atoms}(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$.
- $\operatorname{CNF}(\varphi)$ is equivalent to
- Rarely used in practice.

Classic CNF Conversion $\operatorname{CNF}(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
(i) converting it into NNF (not indispensible);
(ii) applying recursively the DeMorgan's Rule:

$$
\left(\varphi_{1} \wedge \varphi_{2}\right) \vee \varphi_{3} \Longrightarrow\left(\varphi_{1} \vee \varphi_{3}\right) \wedge\left(\varphi_{2} \vee \varphi_{3}\right)
$$

- Worst-case exponential.
- Atoms $(\operatorname{CNF}(\varphi))=\operatorname{Atoms}(\varphi)$.
- $\operatorname{CNF}(\varphi)$ is equivalent to φ.
- Rarely used in practice.

Labeling CNF conversion CNF $_{\text {label }}(\varphi)$

- Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:

$$
\begin{aligned}
& \varphi \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \vee I_{j}\right)\right) \\
& \varphi \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge I_{j}\right)\right) \\
& \varphi \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right) \\
& I_{i}, I_{j} \text { being literals and } B \text { being a "new" variable. }
\end{aligned}
$$

- Worst-case linear.
- $\operatorname{Atoms}\left(\operatorname{CNF}_{\text {label }}(\varphi)\right) \supseteq \operatorname{Atoms}(\varphi)$.
- $C N F_{\text {label }}(\varphi)$ is equi-satisfiable w.r.t.
- More used in practice.

Labeling CNF conversion $C N F_{\text {label }}(\varphi)$

- Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:

$$
\begin{aligned}
& \varphi \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \vee I_{j}\right)\right) \\
& \varphi \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge I_{j}\right)\right) \\
& \varphi \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] \wedge \operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right) \\
& I_{i}, I_{j} \text { being literals and } B \text { being a "new" variable. }
\end{aligned}
$$

- Worst-case linear.
- $\operatorname{Atoms}\left(\operatorname{CNF}_{\text {label }}(\varphi)\right) \supseteq \operatorname{Atoms}(\varphi)$.
- $C N F_{\text {label }}(\varphi)$ is equi-satisfiable w.r.t. φ.
- More used in practice.

Labeling CNF conversion $\mathrm{CNF}_{\text {label }}(\varphi)$ (cont.)

$\operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \vee I_{j}\right)\right)$	\Longleftrightarrow	$\left(\neg B \vee I_{i} \vee I_{j}\right) \wedge$
	$\left(B \vee \neg I_{j}\right) \wedge$	
	$\left(B \vee \neg l_{j}\right)$	
$\operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \wedge I_{j}\right)\right) \Longleftrightarrow$	$\left(\neg B \vee I_{i}\right) \wedge$	
	$\left(\neg B \vee I_{j}\right) \wedge$	
	$\left(B \vee \neg l_{i} \neg I_{j}\right)$	
$\operatorname{CNF}\left(B \leftrightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right) \Longleftrightarrow$	$\left(\neg B \vee \neg I_{i} \vee I_{j}\right) \wedge$	
	$\left(\neg B \vee I_{i} \vee \neg I_{j}\right) \wedge$	
	$\left(B \vee I_{i} \vee I_{j}\right) \wedge$	
	$\left(B \vee \neg \neg I_{i} \vee \neg I_{j}\right)$	

Labeling CNF conversion $C N F_{\text {label }}$ - example

Labeling CNF conversion $C N F_{\text {label }}$ (improved)

- As in the previous case, applying instead the rules:

$$
\begin{array}{rlll}
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \vee I_{j}\right)\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \vee I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \wedge I_{j}\right)\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \wedge I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right) & \text { if }\left(I_{i} \leftrightarrow l_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \leftrightarrow I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \leftrightarrow I_{j}\right) \text { neg. } .
\end{array}
$$

- Smaller in size:

Labeling CNF conversion $C N F_{\text {label }}$ (improved)

- As in the previous case, applying instead the rules:

$$
\begin{array}{rlll}
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \vee I_{j}\right)\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \vee I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \vee I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \vee I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \wedge I_{j}\right)\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \wedge I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \wedge I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \wedge I_{j}\right) \text { neg. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(B \rightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right) & \text { if }\left(I_{i} \leftrightarrow I_{j}\right) \text { pos. } \\
\varphi & \Longrightarrow \varphi\left[\left(I_{i} \leftrightarrow I_{j}\right) \mid B\right] & \wedge \operatorname{CNF}\left(\left(I_{i} \leftrightarrow I_{j}\right) \rightarrow B\right) & \text { if }\left(I_{i} \leftrightarrow I_{j}\right) \text { neg. } .
\end{array}
$$

- Smaller in size:

$$
\begin{array}{ll}
\operatorname{CNF}\left(B \rightarrow\left(I_{i} \vee I_{j}\right)\right) & =\left(\neg B \vee I_{i} \vee I_{j}\right) \\
\operatorname{CNF}\left(\left(\left(I_{i} \vee I_{j}\right) \rightarrow B\right)\right) & =\left(\neg I_{i} \vee B\right) \wedge\left(\neg I_{j} \vee B\right)
\end{array}
$$

Labeling CNF conversion $\mathrm{CNF}_{\text {label }}(\varphi)$ (cont.)

$\operatorname{CNF}\left(B \rightarrow\left(I_{i} \vee I_{j}\right)\right)$	\Longleftrightarrow	$\left(\neg B \vee I_{i} \vee I_{j}\right)$
$\operatorname{CNF}\left(B \leftarrow\left(I_{i} \vee I_{j}\right)\right)$	\Longleftrightarrow	$\left(B \vee \neg I_{i}\right) \wedge$
		$\left(B \vee \neg I_{j}\right)$
$\operatorname{CNF}\left(B \rightarrow\left(I_{i} \wedge I_{j}\right)\right)$	\Longleftrightarrow	$\left(\neg B \vee I_{i}\right) \wedge$
		$\left(\neg B \vee I_{j}\right)$
$\operatorname{CNF}\left(B \leftarrow\left(I_{i} \wedge I_{j}\right)\right)$	\Longleftrightarrow	$\left(B \vee \neg I_{i} \neg I_{j}\right)$
$\operatorname{CNF}\left(B \rightarrow\left(I_{i} \leftrightarrow I_{j}\right)\right)$	\Longleftrightarrow	$\left(\neg B \vee \neg I_{i} \vee I_{j}\right) \wedge$
		$\left(\neg B \vee I_{i} \vee \neg I_{j}\right)$
$\operatorname{CNF}\left(B \leftarrow\left(I_{i} \leftrightarrow I_{j}\right)\right)$	\Longleftrightarrow	$\left(B \vee I_{i} \vee I_{j}\right) \wedge$
		$\left(B \vee \neg I_{i} \vee \neg I_{j}\right)$

Labeling CNF conversion $C N F_{\text {label }}$ - example

Labeling CNF conversion $C N F_{\text {label }}$ - further optimizations

- Do not apply $C N F_{\text {label }}$ when not necessary: (e.g., $C N F_{\text {label }}\left(\varphi_{1} \wedge \varphi_{2}\right) \Longrightarrow C N F_{\text {label }}\left(\varphi_{1}\right) \wedge \varphi_{2}$, if φ_{2} already in CNF)
- Apply Demorgan's rules where it is more effective: (e.g., $C N F_{\text {label }}\left(\varphi_{1} \wedge(A \rightarrow(B \wedge C))\right) \Longrightarrow C N F_{\text {label }}\left(\varphi_{1}\right) \wedge(\neg A \vee B) \wedge(\neg A \vee C)$
- exploit the associativity of \wedge 's and \vee 's:
$\ldots \underbrace{\left(A_{1} \vee\left(A_{2} \vee A_{3}\right)\right)}_{B} \ldots \Longrightarrow \ldots \operatorname{CNF}\left(B \leftrightarrow\left(A_{1} \vee A_{2} \vee A_{3}\right)\right) \ldots$
- before applying $C N F_{\text {label }}$, rewrite the initial formula so that to maximize the sharing of subformulas (RBC, BED)
- ...

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques

(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT
(5) Random k-SAT and Phase Transition

6. Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Truth Tables

- Exhaustive evaluation of all subformulas:

φ_{1}	φ_{2}	$\varphi_{1} \wedge \varphi_{2}$	$\varphi_{1} \vee \varphi_{2}$	$\varphi_{1} \rightarrow \varphi_{2}$	$\varphi_{1} \leftrightarrow \varphi_{2}$
\perp	\perp	\perp	\perp	\top	\top
\perp	\top	\perp	\top	\top	\perp
\top	\perp	\perp	\top	\perp	\perp
\top	\top	\top	\top	\top	\top

- Requires polynomial space (draw one line at a time).
- Requires analyzing $2^{|\operatorname{Atoms}(\varphi)|}$ lines.
- Never used in practice.

Resolution [49, 15]

- Search for a refutation of φ
- φ is represented as a set of clauses
- Applies iteratively the resolution rule to pairs of clauses containing a conflicting literal, until a false clause is generated or the resolution rule is no more applicable
- Many different strategies

Resolution Rule

- Resolution of a pair of clauses with exactly one incompatible variable:

- EXAMPLE:

$$
\frac{(A \vee B \vee C \vee D \vee E) \quad(A \vee B \vee \neg C \vee F)}{(A \vee B \vee D \vee E \vee F)}
$$

- NOTE: many standard inference rules subcases of resolution:

$$
\frac{A \rightarrow B \quad B \rightarrow C}{A \rightarrow C}(\text { Transit. }) \frac{A \quad A \rightarrow B}{B}(M . \text { Ponens }) \frac{\neg B \quad A \rightarrow B}{\neg A}
$$

Resolution Rules [15, 14]: unit propagation

- Unit resolution:

$$
\frac{\Gamma^{\prime} \wedge(I) \wedge\left(\neg I \vee \bigvee_{i} I_{i}\right)}{\Gamma^{\prime} \wedge(I) \wedge\left(\bigvee_{i} I_{i}\right)}
$$

- Unit subsumption:

$$
\frac{\Gamma^{\prime} \wedge(I) \wedge\left(I \vee \bigvee_{i} I_{i}\right)}{\Gamma^{\prime} \wedge(I)}
$$

- Unit propagation $=$ unit resolution + unit subsumption
"Deterministic" rule: applied before other "non-deterministic" rules!

Resolution: basic strategy [15]

function $D P(\Gamma)$

```
if }\perp\in
/* unsat */
    then return False;
if (Resolve() is no more applicable to \Gamma) /* sat */
    then return True;
if {a unit clause (I) occurs in \Gamma} /* unit */
    then 「:= Unit_Propagate(I, Г));
    return DP(\Gamma)
A := select-variable(\Gamma); /* resolve */
\Gamma=\Gamma\cup\bigcup \A\in\mp@subsup{C}{}{\prime},->A\in\mp@subsup{C}{}{\prime\prime}}{{\operatorname{Resolve(\mp@subsup{C}{}{\prime},\mp@subsup{C}{}{\prime\prime})}\\bigcup\ \A\in\mp@subsup{C}{}{\prime},->A\in\mp@subsup{C}{}{\prime\prime}}{\mp@subsup{C}{}{\prime},\mp@subsup{C}{}{\prime\prime}}}
return DP(\Gamma)
```

Hint: drops one variable $A \in \operatorname{Atoms}(\Gamma)$ at a time

Resolution: Examples

$$
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right)\left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right)
$$

Resolution: Examples

$$
\begin{gathered}
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right)\left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right) \\
\left(A_{2}\right)\left(A_{2} \vee \neg A_{2}\right)\left(\neg A_{2} \vee A_{2}\right)\left(\neg A_{2}\right)
\end{gathered}
$$

Resolution: Examples

$$
\begin{aligned}
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right) & \left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right) \\
\left(A_{2}\right)\left(A_{2} \vee \neg A_{2}\right) & \stackrel{\left(\neg A_{2} \vee A_{2}\right)\left(\neg A_{2}\right)}{ } \\
& \downarrow
\end{aligned}
$$

Resolution: Examples

$$
\begin{aligned}
\left(A_{1} \vee A_{2}\right)\left(A_{1} \vee \neg A_{2}\right) & \left(\neg A_{1} \vee A_{2}\right)\left(\neg A_{1} \vee \neg A_{2}\right) \\
\left(A_{2}\right)\left(A_{2} \vee \neg A_{2}\right) & \stackrel{\left(\neg A_{2} \vee A_{2}\right)\left(\neg A_{2}\right)}{ } \\
& \downarrow
\end{aligned}
$$

\Longrightarrow UNSAT

Resolution: Examples (cont.)

$$
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E)
$$

Resolution: Examples (cont.)

$$
\begin{gathered}
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E) \\
\Downarrow \\
(A \vee C \vee E)(\neg C \vee \neg F \vee E)
\end{gathered}
$$

Resolution: Examples (cont.)

$$
\begin{gathered}
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E) \\
(A \vee C \vee E) \quad(\neg C \vee \neg F \vee E) \\
(\Downarrow \\
(A \vee E \vee \neg F)
\end{gathered}
$$

Resolution: Examples (cont.)

$$
\begin{gathered}
(A \vee B \vee C)(B \vee \neg C \vee \neg F)(\neg B \vee E) \\
(A \vee C \vee E)(\neg C \vee \neg F \vee E) \\
\Downarrow \\
(A \vee E \vee \neg F)
\end{gathered}
$$

Resolution: Examples

$$
(A \vee B)(A \vee \neg B)(\neg A \vee C)(\neg A \vee \neg C)
$$

\Longrightarrow UNSET

Resolution: Examples

$$
\begin{gathered}
(A \vee B)(A \vee \neg B)(\neg A \vee C)(\neg A \vee \neg C) \\
\Downarrow \\
(A)(\neg A \vee C)(\neg A \vee \neg C) \\
\Downarrow \\
(C C C) \\
\Downarrow \\
\perp
\end{gathered}
$$

\Longrightarrow UNSAT

Resolution: Examples

$$
\begin{gathered}
(A \vee B)(A \vee \neg B)(\neg A \vee C)(\neg A \vee \neg C) \\
\Downarrow \\
(A)(\neg A \vee C)(\neg A \vee \neg C) \\
\Downarrow \\
(C)(\neg C) \\
\Downarrow \\
\perp
\end{gathered}
$$

\Longrightarrow UNSAT

Resolution - summary

- Requires CNF
- 「 may blow up
\Longrightarrow May require exponential space
- Not very much used in Boolean reasoning (unless integrated with DPLL procedure in recent implementations)

Semantic tableaux [55]

- Search for an assignment satisfying φ
- applies recursively elimination rules to the connectives
- If a branch contains A_{i} and $\neg A_{i},\left(\psi_{i}\right.$ and $\left.\neg \psi_{i}\right)$ for some i, the branch is closed, otherwise it is open.
- if no rule can be applied to an open branch μ, then $\mu \models \varphi$;
- if all branches are closed, the formula is not satisfiable;

Tableau elimination rules

$$
\begin{array}{cccc}
\frac{\varphi_{1} \wedge \varphi_{2}}{\varphi_{1}} & \frac{\neg\left(\varphi_{1} \vee \varphi_{2}\right)}{\neg \varphi_{1}} & \frac{\neg\left(\varphi_{1} \rightarrow \varphi_{2}\right)}{\varphi_{1}} & \\
\varphi_{2} & \neg \varphi_{2} & \neg \varphi_{2} & \text { (^-elimination) } \\
& \frac{\neg \neg \varphi}{\varphi} & & \text { (ᄀᄀ-elimination) } \\
\frac{\varphi_{1} \vee \varphi_{2}}{\varphi_{1} \varphi_{2}} & \frac{\neg\left(\varphi_{1} \wedge \varphi_{2}\right)}{\neg \varphi_{1} \neg \varphi_{2}} & \frac{\varphi_{1} \rightarrow \varphi_{2}}{\neg \varphi_{1} \varphi_{2}} & \text { (V-elimination) } \\
\frac{\varphi_{1} \leftrightarrow \varphi_{2}}{\varphi_{1}} & \frac{\neg\left(\varphi_{1} \leftrightarrow \varphi_{1}\right)}{\varphi_{1} \quad \neg \varphi_{1}} & & \\
\varphi_{2} & \neg \varphi_{2} & \neg \varphi_{2} \varphi_{2} & \leftrightarrow \text {-elimination). }
\end{array}
$$

Semantic Tableaux - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

Semantic Tableaux - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

Tableau algorithm

function Tableau(Г)
if $A_{i} \in \Gamma$ and $\neg A_{i} \in \Gamma \quad / *$ branch closed */ then return False;
if $\left(\varphi_{1} \wedge \varphi_{2}\right) \in \Gamma \quad /^{*} \wedge$-elimination */
then return Tableau $\left(\Gamma \cup\left\{\varphi_{1}, \varphi_{2}\right\} \backslash\left\{\left(\varphi_{1} \wedge \varphi_{2}\right)\right\}\right)$;
if $\left(\neg \neg \varphi_{1}\right) \in \Gamma \quad /^{*} \neg \neg$-elimination */
then return Tableau($\left.\Gamma \cup\left\{\varphi_{1}\right\} \backslash\left\{\left(\neg \neg \varphi_{1}\right)\right\}\right)$;
if $\left(\varphi_{1} \vee \varphi_{2}\right) \in \Gamma$
then return
Tableau $\left(\Gamma \cup\left\{\varphi_{1}\right\} \backslash\left\{\left(\varphi_{1} \vee \varphi_{2}\right)\right\}\right)$ or Tableau $\left(\Gamma \cup\left\{\varphi_{2}\right\} \backslash\left\{\left(\varphi_{1} \vee \varphi_{2}\right)\right\}\right)$;
return True;
/* branch expanded */

Semantic Tableaux - summary

- Handles all propositional formulas (CNF not required).
- Branches on disjunctions
- Intuitive, modular, easy to extend \Longrightarrow loved by logicians.
- Rather inefficient
\Longrightarrow avoided by computer scientists.
- Requires polynomial space

DPLL [15, 14]

- Davis-Putnam-Longeman-Loveland procedure (DPLL)
- Tries to build an assignment μ satisfying φ;
- At each step assigns a truth value to (all instances of) one atom.
- Performs deterministic choices first.

DPLL rules

$$
\begin{aligned}
& \frac{\varphi_{1} \wedge(I)}{\varphi_{1}[| | T]}(\text { Unit }) \\
& \frac{\varphi}{\varphi[|\mid T]}(I \text { Pure }) \\
& \frac{\varphi}{\varphi[|\mid \top]} \varphi[I \mid \perp]
\end{aligned} \text { (split) }
$$

($/$ is a pure literal in φ iff it occurs only positively).

- Split applied if and only if the others cannot be applied.
- Richer formalisms described in [57, 44, 45]

DPLL - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

DPLL Algorithm

function $\operatorname{DPLL}(\varphi, \mu)$
if $\varphi=\top$
then return True;
if $\varphi=\perp \quad / *$ backtrack */
then return False;
if $\{$ a unit clause (I) occurs in $\varphi\} \quad / *$ unit */
then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
if $\{$ a literal $/$ occurs pure in $\varphi\} \quad / *$ pure */ then return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$;
I := choose-literal(φ);
/* split */
return $\operatorname{DPLL}(\operatorname{assign}(I, \varphi), \mu \wedge I)$ or $\operatorname{DPLL}(\operatorname{assign}(\neg l, \varphi), \mu \wedge \neg l)$;

DPLL - summary

- Handles CNF formulas (non-CNF variant known [2, 25]).
- Branches on truth values \Longrightarrow all instances of an atom assigned simultaneously
- Postpones branching as much as possible.
- Mostly ignored by logicians.
- (The grandfather of) the most efficient SAT algorithms \Longrightarrow loved by computer scientists.
- Requires polynomial space
- Choose_literal() critical!
- Many very efficient implementations [61, 54, 4, 43].

Ordered Binary Decision Diagrams (OBDDs) [12]]

Canonical representation of Boolean formulas

- "If-then-else" binary direct acyclic graphs (DAGs) with one root and two leaves: 1, 0 (or \top, \perp; or T, F)
- Variable ordering $A_{1}, A_{2}, \ldots, A_{n}$ imposed a priori.
- Paths leading to 1 represent models

Paths leading to 0 represent counter-models

Some authors call them Reduced Ordered Binary Decision Diagrams (ROBDDs)

Ordered Binary Decision Diagrams (OBDDs) [12]]

Canonical representation of Boolean formulas

- "If-then-else" binary direct acyclic graphs (DAGs) with one root and two leaves: 1,0 (or T, \perp; or T, F)
- Variable ordering $A_{1}, A_{2}, \ldots, A_{n}$ imposed a priori.
- Paths leading to 1 represent models

Paths leading to 0 represent counter-models

Note
 Some authors call them Reduced Ordered Binary Decision Diagrams (ROBDDs)

OBDD - Examples

OBDDs of $\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)$ with different variable orderings

Ordered Decision Trees

- Ordered Decision Tree: from root to leaves, variables are encountered always in the same order
- Example: Ordered Decision tree for $\varphi=(a \wedge b) \vee(c \wedge d)$

From Ordered Decision Trees to OBDD's: reductions

- Recursive applications of the following reductions:
- share subnodes: point to the same occurrence of a subtree
(via hash consing)
- remove redundancies: nodes with same left and right children can
be eliminated ("if A then B else B " $\Longrightarrow B$ ")

From Ordered Decision Trees to OBDD's: reductions

- Recursive applications of the following reductions:
- share subnodes: point to the same occurrence of a subtree (via hash consing)

```
- remove redundancies: nodes with same left and right children can
    be eliminated ("if \(A\) then \(B\) else \(B\) " \(\Longrightarrow\) " \(B\) ")
```


From Ordered Decision Trees to OBDD's: reductions

- Recursive applications of the following reductions:
- share subnodes: point to the same occurrence of a subtree (via hash consing)
- remove redundancies: nodes with same left and right children can be eliminated ("if A then B else B " \Longrightarrow " B ")

Reduction: example

Reduction: example

Detect redundacies:
a

Reduction: example

Remove redundacies: a

Reduction: example

Reduction: example

Share identical nodes: a

Reduction: example

Share identical nodes: a

Reduction: example

Detect redundancies: a

Reduction: example

Remove redundancies:a

Final OBDD!

Recursive structure of an OBDD

Assume the variable ordering $A_{1}, A_{2}, \ldots, A_{n}$:
$\operatorname{OBDD}\left(T,\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)=1$
$O B D D\left(\perp,\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)=0$
$\operatorname{OBDD}\left(\varphi,\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)=$ if A_{1}
then $\operatorname{OBDD}\left(\varphi\left[A_{1} \mid \top\right],\left\{A_{2}, \ldots, A_{n}\right\}\right)$ else $O B D D\left(\varphi\left[A_{1} \mid \perp\right],\left\{A_{2}, \ldots, A_{n}\right\}\right)$

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=1$,
- obdd_build $(\perp,\{\ldots\}):=0$,
 apply $\left(\neg\right.$, obdd_build $\left.\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$ - obdd build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ reduce(
\qquad

\qquad

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=1$,
- obdd_build $(\perp,\{\ldots\}):=0$,
 reduce(

Incrementally building an OBDD

- obdd_build(T, \{...\}) :=1,
- obdd_build $(\perp,\{\ldots\}):=0$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, 1,0\right)$,
- obdd_build(($\neg \varphi),\left\{A_{1}\right.$,

"ite $\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)$ " is "If \boldsymbol{A}_{i} Then φ_{i}^{\top} Else φ_{i}^{\perp} "

Incrementally building an OBDD

- obdd_build $(T,\{\ldots\}):=1$,
- obdd_build $(\perp,\{\ldots\}):=0$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, 1,0\right)$,
- obdd_build $\left((\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ $\operatorname{apply}\left(\neg, \operatorname{obdd_ build}\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
reduce(

"ite $\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)$ " is "If \boldsymbol{A}_{i} Then φ_{i}^{\top} Else φ_{i}^{\perp} "

Incrementally building an OBDD

- obdd_build $(T,\{\ldots\}):=1$,
- obdd_build $(\perp,\{\ldots\}):=0$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, 1,0\right)$,
- obdd_build $\left((\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ $\operatorname{apply}\left(\neg, \operatorname{obdd_ build}\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
- obdd_build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ reduce(apply (op, obdd_build $\left(\varphi_{1},\left\{A_{1}, \ldots, A_{n}\right\}\right), \quad o p \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$ obdd_build $\left(\varphi_{2},\left\{A_{1}, \ldots, A_{n}\right\}\right)$
))
"ite $\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)$ " is "If \boldsymbol{A}_{i} Then φ_{i}^{\top} Else φ_{i}^{\perp} "

Incrementally building an OBDD (cont.)

- apply $\left(o p, O_{i}, O_{j}\right):=\left(O_{i}\right.$ op $\left.O_{j}\right)$ if $\left(O_{i}, O_{j} \in\{1,0\}\right)$

Incrementally building an OBDD (cont.)

- apply $\left(o p, O_{i}, O_{j}\right):=\left(O_{i}\right.$ op $\left.O_{j}\right)$ if $\left(O_{i}, O_{j} \in\{1,0\}\right)$
- apply $\left(\neg, \operatorname{ite}\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)\right):=$ $\operatorname{ite}\left(A_{i}, \operatorname{apply}\left(\neg, \varphi_{i}^{\top}\right), \operatorname{apply}\left(\neg, \varphi_{i}^{\perp}\right)\right)$

Incrementally building an OBDD (cont.)

- apply (op, $\left.O_{i}, O_{j}\right):=\left(O_{i}\right.$ op $\left.O_{j}\right)$ if $\left(O_{i}, O_{j} \in\{1,0\}\right)$
- apply $\left(\neg\right.$, ite $\left.\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)\right):=$ $\operatorname{ite}\left(A_{i}, \operatorname{apply}\left(\neg, \varphi_{i}^{\top}\right), \operatorname{apply}\left(\neg, \varphi_{i}^{\perp}\right)\right)$
- apply (op, ite $\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)$, ite $\left.\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right):=$ if $\left(A_{i}=A_{j}\right)$ then ite $\left(A_{i}, \quad\right.$ apply $\left(o p, \varphi_{i}^{\top}, \varphi_{j}^{\top}\right)$, apply (op, $\left.\varphi_{i}^{\perp}, \varphi_{j}^{\perp}\right)$)
if $\left(A_{i}<A_{j}\right)$ then ite $\left(A_{i}, \quad\right.$ apply $\left(o p, \varphi_{i}^{\top}, \operatorname{ite}\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right)$, apply (op, φ_{i}^{\perp}, ite $\left.\left.\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right)\right)$ if $\left(A_{i}>A_{j}\right)$ then ite $\left(A_{j}, \quad\right.$ apply $\left(o p, i t e\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right), \varphi_{j}^{\top}\right)$, $\left.\operatorname{apply}\left(o p, \operatorname{ite}\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right), \varphi_{j}^{\perp}\right)\right)$
$o p \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$

Incrementally building an OBDD (cont.)

- Ex: build the obdd for $A_{1} \vee A_{2}$ from those of A_{1}, A_{2} (order: A_{1}, A_{2}):


```
=ite( (A1, apply (\vee,\top,ite( }\mp@subsup{A}{1}{},\top,\perp)), apply (\vee, \perp, ite ( A , , \top, \perp)))
= ite( (A1, \top, ite (A2,\top,\perp))
```

- Ex: build the obdd for (A_{1}

\square

Incrementally building an OBDD (cont.)

- Ex: build the obdd for $A_{1} \vee A_{2}$ from those of A_{1}, A_{2} (order: A_{1}, A_{2}):

$=\operatorname{ite}\left(A_{1}, \operatorname{apply}\left(\vee, \top, \operatorname{ite}\left(A_{1}, \top, \perp\right)\right)\right.$, apply $\left.\left(\vee, \perp, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right)$
- Ex: build the obdd for $\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)$ from those of $\left(A_{1} \vee A_{2}\right),\left(A_{1} \vee \neg A_{2}\right)$ (order: $\left.A_{1}, A_{2}\right)$:

$=\operatorname{ite}\left(A_{1}, \operatorname{apply}(\wedge, \top, \top), \operatorname{apply}\left(\wedge, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right.\right.$, ite $\left.\left(A_{2}, \perp, \top\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \operatorname{apply}(\wedge, \top, \perp)\right.\right.$, apply $\left.\left.(\wedge, \perp, \top)\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \perp, \perp\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \perp\right)$

OBBD incremental building - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

OBBD incremental building - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

Critical choice of variable Orderings in OBDD's

$$
\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)
$$

Critical choice of variable Orderings in OBDD's

$$
\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)
$$

Linear size

Critical choice of variable Orderings in OBDD's

$$
\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)
$$

Linear size

Exponential size

OBDD's as canonical representation of Boolean formulas

- An OBDD is a canonical representation of a Boolean formula: once the variable ordering is established, equivalent formulas are represented by the same OBDD:

$$
\varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow O B D D\left(\varphi_{1}\right)=O B D D\left(\varphi_{2}\right)
$$

- equivalence check requires constant time! \Longrightarrow validity check requires constant time! $(\varphi \leftrightarrow \top)$ \Longrightarrow (un)satisfiability check requires constant time! $(\varphi \longleftrightarrow \perp)$
- the set of the paths from the root to 1 represent all the models of the formula
- the set of the paths from the root to 0 represent all the counter-models of the formula

OBDD's as canonical representation of Boolean formulas

- An OBDD is a canonical representation of a Boolean formula: once the variable ordering is established, equivalent formulas are represented by the same OBDD:

$$
\varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow O B D D\left(\varphi_{1}\right)=O B D D\left(\varphi_{2}\right)
$$

- equivalence check requires constant time! \Longrightarrow validity check requires constant time! $(\varphi \leftrightarrow \top)$ \Longrightarrow (un)satisfiability check requires constant time! $(\varphi \leftrightarrow \perp)$
- the set of the paths from the root to 1 represent all the models of the formula
- the set of the paths from the root to 0 represent all the counter-models of the formula

OBDD's as canonical representation of Boolean formulas

- An OBDD is a canonical representation of a Boolean formula: once the variable ordering is established, equivalent formulas are represented by the same OBDD:

$$
\varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow O B D D\left(\varphi_{1}\right)=O B D D\left(\varphi_{2}\right)
$$

- equivalence check requires constant time! \Longrightarrow validity check requires constant time! $(\varphi \leftrightarrow T)$ \Longrightarrow (un)satisfiability check requires constant time! $(\varphi \leftrightarrow \perp)$
- the set of the paths from the root to 1 represent all the models of the formula
- the set of the paths from the root to 0 represent all the counter-models of the formula

Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $P=$ co-NP)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

Note
The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent formula

Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $\mathrm{P}=$ co-NP)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent formula

Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $P=$ co-NP)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

> The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent formula

Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $P=$ co-NP)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

Note

The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent formula

Useful Operations over OBDDs

- the equivalence check between two OBDDs is simple
- are they the same OBDD? $(\Longrightarrow$ constant time)
- the size of a Boolean composition is up to the product of the size of the operands:
(but typically much smaller on average).

Useful Operations over OBDDs

- the equivalence check between two OBDDs is simple
- are they the same OBDD? $(\Longrightarrow$ constant time)
- the size of a Boolean composition is up to the product of the size of the operands: $\mid f$ op $g \mid=O(|f| \cdot|g|)$

(but typically much smaller on average).

Boolean quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
\exists v . f & :=\left.\left.f\right|_{v=0} \vee f\right|_{v=1} \\
\forall v . f & :=\left.\left.f\right|_{v=0} \wedge f\right|_{v=1}
\end{aligned}
$$

- v does no more occur in $\exists v . f$ and $\forall v . f$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) . f:=\exists w_{1} \ldots \exists w_{n} \cdot f$
- Intuition:
- Example:

Boolean quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
\exists v . f & :=\left.\left.f\right|_{v=0} \vee f\right|_{v=1} \\
\forall v . f & :=\left.\left.f\right|_{v=0} \wedge f\right|_{v=1}
\end{aligned}
$$

- v does no more occur in $\exists v . f$ and $\forall v . f$!!
- Intuition:
- Example:

Boolean quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
& \exists v . f:=\left.\left.f\right|_{v=0} \vee f\right|_{v=1} \\
& \forall v . f:=\left.\left.f\right|_{v=0} \wedge f\right|_{v=1}
\end{aligned}
$$

- v does no more occur in $\exists v . f$ and $\forall v . f$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) . f:=\exists w_{1} \ldots \exists w_{n} . f$
- Intuition:
- Example

Boolean quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
& \exists v . f:=\left.\left.f\right|_{v=0} \vee f\right|_{v=1} \\
& \forall v . f:=\left.\left.f\right|_{v=0} \wedge f\right|_{v=1}
\end{aligned}
$$

- v does no more occur in $\exists v . f$ and $\forall v . f$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) . f:=\exists w_{1} \ldots \exists w_{n} . f$
- Intuition:
- $\mu \models \exists v . f$ iff exists tvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ tvalue $\} \models f$
- $\mu \models \forall v$. f iff forall tvalue $\in\{T, \perp\}, \mu \cup\{v:=$ tvalue $\} \models f$

Boolean quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then

$$
\begin{aligned}
\exists v . f & :=\left.\left.f\right|_{v=0} \vee f\right|_{v=1} \\
\forall v . f & :=\left.\left.f\right|_{v=0} \wedge f\right|_{v=1}
\end{aligned}
$$

- v does no more occur in $\exists v . f$ and $\forall v . f$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) . f:=\exists w_{1} \ldots \exists w_{n} . f$
- Intuition:
- $\mu \models \exists v . f$ iff exists tvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ tvalue $\} \models f$
- $\mu \models \forall v$.f iff forall tvalue $\in\{T, \perp\}, \mu \cup\{v:=$ tvalue $\} \models f$
- Example: $\exists(b, c) \cdot((a \wedge b) \vee(c \wedge d))=a \vee d$

Naive expansion of quantifiers to propositional logic may cause a blow-up in size of the formulae

Boolean quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then
$\exists v . f:=\left.\left.f\right|_{v=0} \vee f\right|_{v=1}$
$\forall v . f:=\left.\left.f\right|_{v=0} \wedge f\right|_{v=1}$
- v does no more occur in $\exists v . f$ and $\forall v . f$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) . f:=\exists w_{1} \ldots \exists w_{n} . f$
- Intuition:
- $\mu \models \exists v . f$ iff exists tvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ tvalue $\} \models f$
- $\mu \models \forall v$.f iff forall tvalue $\in\{T, \perp\}, \mu \cup\{v:=$ tvalue $\} \models f$
- Example: $\exists(b, c) \cdot((a \wedge b) \vee(c \wedge d))=a \vee d$

Note

Naive expansion of quantifiers to propositional logic may cause a blow-up in size of the formulae

OBDD's and Boolean quantification

- OBDD's handle quantification operations quite efficiently
- if f is a sub-OBDD labeled by variable v, then $\left.f\right|_{v=1}$ and $\left.f\right|_{v=0}$ are the "then" and "else" branches of f

\Longrightarrow lots of sharing of subformulae!

OBDD - summary

- Factorize common parts of the search tree (DAG)
- Require setting a variable ordering a priori (critical!)
- Canonical representation of a Boolean formula.
- Once built, logical operations (satisfiability, validity, equivalence) immediate.
- Represents all models and counter-models of the formula.
- Require exponential space in worst-case
- Very efficient for some practical problems (circuits, symbolic model checking).

Incomplete SAT techniques: GSAT, WSAT $[53,52]$

- Hill-Climbing techniques: GSAT, WSAT
- looks for a complete assignment;
- starts from a random assignment;
- Greedy search: looks for a better "neighbor" assignment
- Avoid local minima: restart \& random walk

The GSAT algorithm [53]

```
function GSAT(\varphi)
    for i:=1 to Max-tries do
        \mu := rand-assign( }\varphi\mathrm{ );
        for j:=1 to Max-flips do
            if (score( }\varphi,\mu)=0
            then return True;
            else Best-flips := hill-climb ( }\varphi,\mu)\mathrm{ ;
            A
            \mu := flip ( }\mp@subsup{A}{i}{},\mu)\mathrm{ ;
        end
end
return "no satisfying assignment found".
```


The WalkSAT algorithm(s) [52]

function WalkSAT(φ)
for $i:=1$ to Max-tries do
$\mu:=$ rand-assign(φ); for $j:=1$ to Max-flips do
if $(\operatorname{score}(\varphi, \mu)=0)$
then return True;
else C := randomly-pick-clause(unsat-clauses (φ, μ));
$A_{i}:=$ heuristically-select-variable(C);
$\mu:=\mathrm{flip}\left(A_{i}, \mu\right)$;
end
end
return "no satisfying assignment found".

- many variants available $[27,58,5]$

SLS SAT solvers - summary

- Handle only CNF formulas.
- Incomplete
- Extremely efficient for some (satisfiable) problems.
- Require polynomial space
- Used in Artificial Intelligence (e.g., planning)
- Lots of variants (see e.g. [31])
- Non-CNF Variants: [50, 51, 6]

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques

(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT

5. Random k-SAT and Phase Transition

6 Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Variants of DPLL

DPLL is a family of algorithms.

- backjumping \& learning
- preprocessing: (subsumption, 2-simplification, resolution)
- different branching heuristics
- restarts
- (horn relaxation)
- ...

"Classic" chronological backtracking

DPLL implements "classic" chronological backtracking:

- variable assignments (literals) stored in a stack
- each variable assignments labeled as "unit", "open", "closed"
- when a conflict is encountered, the stack is popped up to the most recent open assignment /
- / is toggled, is labeled as "closed", and the search proceeds.

Classic chronological backtracking - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

Classic chronological backtracking - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& \ldots \\
& \\
& \\
& \left\{\begin{array}{l}
\\
\text { \{... } \left.\neg A_{91}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\} \\
\text { (initial assignment) }
\end{array}\right. \\
&
\end{aligned}
$$

Classic chronological backtracking - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee \sqrt{ } c_{8}: A_{1} \vee A_{8} \quad \sqrt{ } A_{3} \vee \neg A_{13} \\
& c_{9}: \neg A_{7} \vee \neg \neg A_{8} \vee
\end{aligned}
$$

$$
\neg \dot{A_{9}}
$$

$$
\neg A_{10}
$$

$$
\neg A_{11}
$$

$$
A_{12}
$$

$$
A_{13}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, A_{1}\right\}$
... (branch on A_{1})

Classic chronological backtracking - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \quad \checkmark \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \quad \checkmark \\
& \neg A_{9} \\
& \neg A_{10} \text {. } \\
& \neg A_{11} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee \\
& \begin{array}{l}
c_{8}: A_{1} \vee A_{8} \quad \checkmark \\
c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{array} \\
& \begin{array}{l}
c_{8}: A_{1} \vee A_{8} \quad \checkmark \\
c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{array} \\
& A_{12} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& A_{13} \\
& \text {... } \\
& \begin{array}{c}
A_{1} \\
A_{2} \\
A_{3}
\end{array} \\
& \left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, A_{1}, A_{2}, A_{3}\right\} \\
& \text { (unit } A_{2}, A_{3} \text {) }
\end{aligned}
$$

Classic chronological backtracking - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \vee \sqrt{ } \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \sqrt{ } \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee \sqrt{ } \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& \ldots \\
& \\
& \\
& \\
& \text { \{ } \left.\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, A_{1}, A_{2}, A_{3}, A_{4}\right\} \\
& \text { (unit } A_{4} \text {) }
\end{aligned}
$$

Classic chronological backtracking - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{1 \neg A_{4} 1}, A_{12}, A_{13}, \ldots, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ (unit $\left.A_{5}, A_{6}\right) \Longrightarrow$ conflict

Classic chronological backtracking - example

$$
\neg A_{9}
$$

$$
c_{1}: \neg A_{1} \vee A_{2}
$$

$$
c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}
$$

$$
\neg A_{10}
$$

$$
c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}
$$

$$
\neg A_{11}
$$

$$
c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}
$$

$$
C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}
$$

$$
c_{6}: \neg A_{5} \vee \neg A_{6}
$$

$$
c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}
$$

$$
c_{8}: A_{1} \vee A_{8}
$$

$$
c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
$$

$$
\begin{aligned}
& A_{1} \\
& A_{2} \\
& A_{3} \\
& A_{4} \\
& A_{5} \\
& A_{6}
\end{aligned}
$$

$$
\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}
$$

\Longrightarrow backtrack up to A_{1}

Classic chronological backtracking - example

Classic chronological backtracking - example

Classic chronological backtracking - example

$$
\neg A_{9}
$$

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& \ldots
\end{aligned}
$$

\Longrightarrow backtrack to the most recent open branching point

Classic chronological backtracking - example

$$
\left.\neg A_{9}\right\rangle
$$

$$
c_{1}: \neg A_{1} \vee A_{2}
$$

$$
c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}
$$

$$
\neg A_{10}
$$

$$
c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}
$$

$$
\neg A_{11}
$$

$$
c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}
$$

$$
C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}
$$

$$
c_{6}: \neg A_{5} \vee \neg A_{6}
$$

$$
c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}
$$

$c_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}$
\Longrightarrow lots of useless search before backtracking up to A_{13} !

Classic chronological backtracking: drawbacks

- often the branch heuristic delays the "right" choice
- chronological backtracking always backtracks to the most recent branching point, even though a higher backtrack could be possible \Longrightarrow lots of useless search!

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques

(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT

5. Random k-SAT and Phase Trensition

6 Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Conflict-Driven Clause-Learning (CDCL) SAT solvers

Conflict-Driven Clause-Learning (CDCL) SAT solvers [54, 43, 18, 37]

- Evolution of Davis-Putnam-Longeman-Loveland (DPLL) $[15,14]$
- non-recursive: stack-based representation of data structures
- Perform conflict-directed backtracking (backjumping) and learning
- efficient data structures for doing and undoing assignments (e.g., two-watched-literal scheme)
- perform search restarts
- ...

Dramatically efficient: solve industrial-derived problems with $\approx 10^{7}$ Boolean variables and $\approx 10^{7}-10^{8}$ clauses!

Stack-based representation of a truth assignment μ

- assign one truth-value at a time (add one literal to a stack representing μ)
- stack partitioned into decision levels:
- one decision literal
- its implied literals

- each implied literal tagged with the clause causing its unit-propagation (antecedent clause)
- equivalent to an implication graph

Implication graph

- An implication graph is a DAG s.t.:
- each node represents a variable assignment (literal)

- the node of a decision literal has no incoming edges
- all edges incoming into a node / are labeled with the same clause c, s.t. $I_{1} \stackrel{c}{\longmapsto} I, \ldots, I_{n} \stackrel{c}{\longmapsto} I$ iff $c=\neg I_{1} \vee \ldots \vee \neg I_{n} \vee I$ (c is said to be the antecedent clause of l)
- when both I and \neg / occur in the graph, we have a conflict.
- Intuition:
- representation of the dependencies between literals in μ
- the graph contains $I_{1} \stackrel{ }{ }$ c $I, \ldots, I_{n} \stackrel{ }{ } \stackrel{ }{ }$ I iff I has been obtained from I_{1}, \ldots, l_{n} by unit propagation on c
- a partition of the graph with all decision literals on one side and the conflict on the other represents a conflict set

Implication graph - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

Unique implication point - UIP [63]

- A node / in an implication graph is an unique implication point (UIP) for the last decision level iff every path from the last decision node to both the conflict nodes passes through I.
- the most recent decision node is an UIP (last UIP)
- all other UIP's have been assigned after the most recent decision

Unique implication point - UIP - example

```
c
c
c3:}\neg\mp@subsup{A}{2}{}\vee\neg\mp@subsup{A}{3}{}\vee\mp@subsup{A}{4}{
c4:}\neg\mp@subsup{A}{4}{}\vee\mp@subsup{A}{5}{}\vee\mp@subsup{A}{10}{
C5:\negA
C6}:\neg\mp@subsup{A}{5}{}\vee\neg\mp@subsup{A}{6}{
C7:}\mp@subsup{A}{1}{}\vee\mp@subsup{A}{7}{}\vee\neg\mp@subsup{A}{12}{
c8: A }\mp@subsup{A}{1}{}\vee\mp@subsup{A}{8}{
c9:\negA
```

- A_{1} is the last UIP
- A_{4} is the $1^{\text {st }}$ VIP

$$
\begin{equation*}
\neg A_{11} \backslash \tag{12}
\end{equation*}
$$

$$
\neg A_{10}
$$

A_{12}

Schema of a CDCL DPLL solver [54, 64]

```
Function CDCL-SAT (formula: }\varphi\mathrm{ , assignment & }\mu\mathrm{ ) {
```

status := preprocess (φ, μ);
while (1) \{
while (1) \{
status := deduce (φ, μ);
if (status == Sat)
return Sat;
if (status == Conflict) \{
$\langle\mathrm{blevel}, \eta\rangle:=$ analyze_conflict (φ, μ);
// η is a conflict set
if (blevel $==0$)
return Unsat;
else backtrack(blevel, φ, μ);
\}
else break;
\}
decide_next_branch (φ, μ);
\}

Schema of a CDCL DPLL solver [54, 64]

- preprocess (φ, μ) simplifies φ into an easier equisatisfiable formula (and updates μ if it is the case)
- decide_next_branch (φ, μ) chooses a new decision literal from φ according to some heuristic, and adds it to μ
- deduce (φ, μ) performs all deterministic assignments (unit), and updates φ, μ accordingly.
- analyze_conflict (φ, μ) Computes the subset η of μ causing the conflict (conflict set), and returns the "wrong-decision" level suggested by η (" 0 " means that η is entirely assigned at level 0 , i.e., a conflict exists even without branching);
- backtrack (blevel, φ, μ) undoes the branches up to blevel, and updates φ, μ accordingly

Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

Example

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee$
$c_{5}: \neg A_{4} \vee A_{6} \vee$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$c_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$
$\neg A_{9}$
$\neg A_{10}$
$\neg A_{11}$.
A_{12}
A_{13}

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}$
(Initial assignment. Note: c_{1}, \ldots, c_{9} inconsistent.)

Example

$$
\begin{align*}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \tag{11}\\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee \vee \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{align*}
$$

$$
\begin{equation*}
\neg A_{9} \tag{13}
\end{equation*}
$$

$$
\neg A_{10}
$$

A_{12}

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, A_{1}\right\}$
... (decide A_{1})

Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \quad \vee \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \quad \sqrt{ } \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee \sqrt{ } \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$$
\neg A_{10}
$$

(unit A_{2}, A_{3})

Example

$c_{1}: \neg A_{1} \vee A_{2}$
$\neg A_{9}$
$\neg A_{10}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \sqrt{ }$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \vee$
$c_{8}: A_{1} \vee A_{8} \quad \sqrt{ }$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, A_{1}, A_{2}, A_{3}, A_{4}\right\}$ (unit A_{4})

Example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& C_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$$
\neg A_{9}
$$

$$
\begin{gathered}
\neg A_{10} \\
\neg A_{11} \\
A_{12}
\end{gathered}
$$

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{1 \neg A_{4} 1}, A_{12}, A_{13}, \ldots, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$
(unit $\left.A_{5}, A_{6}\right) \Longrightarrow$ conflict

Backjumping and learning: general ideas $[4,54]$

- When a branch μ fails:
(i) conflict analysis: reveal the sub-assignment $\eta \subseteq \mu$ causing the failure (conflict set η)
(ii) learning: add the conflict clause $C \stackrel{\text { def }}{=} \neg \eta$ to the clause set
(iii) backjumping: use η to decide the point where to backtrack
- may jump back up much more than one decision level in the stack \Longrightarrow may avoid lots of redundant search!!.
- we illustrate two main backjumping \& learning strategies:
- the original strategy presented in [54]
- the state-of-the-art $1^{\text {st }}$ UIP strategy of [63]

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal / in C
until C verifies some given termination criteria

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal / in C until C verifies some given termination criteria

criterium: decision

...until C contains only decision literals
$\frac{\neg A_{1} \vee A_{2} \frac{\neg A_{1} \vee A_{3} \vee A_{9} \frac{\neg A_{2} \vee \neg A_{3} \vee A_{4} \frac{\neg A_{4} \vee A_{5} \vee A_{10}}{\neg A_{2} \vee \neg A_{3} \vee A_{10} \vee A_{11}}}{\neg A_{4} \vee A_{10} \vee A_{11}}}{\neg A_{4} \vee \neg A_{5} \vee A_{11}\left(A_{4}\right)}\left(A_{5}\right)}{\neg A_{2} \vee \neg A_{1} \vee A_{9} \vee A_{10} \vee A_{11}}\left(A_{2}\right) \quad$ Conflicting cl.

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal / in C
until C verifies some given termination criteria

criterium: last UIP

... until C contains only one literal assigned at current decision level: the decision literal (last UIP)

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal / in C
until C verifies some given termination criteria

criterium: 1st UIP

... until C contains only one literal assigned at current decision level (1st UIP)

$$
\frac{\neg A_{4} \vee A_{5} \vee A_{10} \frac{\neg A_{4} \vee A_{6} \vee A_{11} \overbrace{\neg A_{5} \vee \neg A_{6}}^{\text {Conflicting cl. }}}{\neg A_{4} \vee \neg A_{5} \vee A_{11}\left(A_{5}\right)}\left(A_{6}\right)) \text { 1st UIP }}{\neg A_{4}} \vee A_{10} \vee A_{11} \quad \frac{A_{1}}{\text { (}}
$$

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal / in C
until C verifies some given termination criteria

Note:

$\varphi \vDash C$, so that C can be safely added to C.

> Equivalent to finding a partition in the implication graph of μ with all decision literals on one side and the conflict on the other.

Conflict analysis

1. $C:=$ falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the last unit-propagated literal / in C
until C verifies some given termination criteria

Note:

$\varphi \vDash C$, so that C can be safely added to C.

Note:

Equivalent to finding a partition in the implication graph of μ with all decision literals on one side and the conflict on the other.

Conflict analysis and implication graph - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

Note: in this case decision and last-UIP criteria produce the same partition

The original backjumping and learning strategy of [54]

- Idea: when a branch μ fails,
(i) conflict analysis: find the conflict set $\eta \subseteq \mu$ by generating the conflict clause $C \stackrel{\text { def }}{=} \neg \eta$ via resolution from the falsified clause (conflicting clause) using the "Decision" criterion;
(ii) learning: add the conflict clause C to the clause set
(iii) backjumping: backtrack to the most recent branching point s.t. the stack does not fully contain η, and then unit-propagate the unassigned literal on C

The original backjumping strategy - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$$
\begin{equation*}
\neg A 9 \tag{13}
\end{equation*}
$$

$$
\neg A_{10}
$$

...

A_{1}
A_{2}
A_{3}
A_{4}
A_{5}
A_{6}

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{1 \neg A_{4} 1}, A_{12}, A_{13}, \ldots, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$
(unit $\left.A_{5}, A_{6}\right) \Longrightarrow$ conflict

The original backjumping strategy - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}
\end{aligned}
$$

$$
\neg A_{9}
$$

$$
\neg A_{10}
$$

\Longrightarrow Conflict set: $\left\{\neg A_{9}, \neg A_{10}, \neg A_{11}, A_{1}\right\}$ (last-UIP schema)
\Longrightarrow learn the conflict clause $c_{10}:=A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1}$

The original backjumping strategy - example

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$c_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$
$c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1}$

$\neg A_{10}$
$\neg A_{11}$
A_{12}

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots\right\}$
\Longrightarrow backtrack up to A_{1}

The original backjumping strategy - example

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$c_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$
$c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \vee$
...

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, \neg A_{1}\right\}$
(unit $\neg A_{1}$)

The original backjumping strategy - example

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$C_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$c_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$c_{8}: A_{1} \vee A_{8}$ $c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$ $c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \sqrt{ }$...

$\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, \neg A_{1}, A_{7}, A_{8}\right\}$ (unit A_{7}, A_{8})

The original backjumping strategy - example

Conflict!

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& C_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \sqrt{ }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, \ldots, \neg A_{1}, A_{7}, A_{8}\right\}
\end{aligned}
$$

The original backjumping strategy - example

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$c_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$c_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$
$c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \sqrt{ }$

\Longrightarrow conflict set: $\left\{\neg A_{9}, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}\right\}$.
\Longrightarrow learn $C_{11}:=A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{12} \vee \neg A_{13}$

The original backjumping strategy - example

$$
\checkmark A_{11}
$$

$$
\begin{align*}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& \neg A_{9} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& C_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \tag{10}\\
& c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1}
\end{align*}
$$

$$
\begin{aligned}
& \stackrel{A_{5}}{A_{6}} \\
& \Longrightarrow \text { backtrack to } A_{13} \Longrightarrow \text { Lots of search saved! }
\end{aligned}
$$

The original backjumping strategy - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& C_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \\
& c_{11}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{12} \vee \neg A_{1} \\
& \begin{array}{r}
\neg A_{9} \\
-A_{10}
\end{array} \\
& \neg A_{11} \\
& A_{12} \\
& \left.\stackrel{A_{13}}{\vdots}\right|_{\neg A_{13}} ^{\neg A_{13}}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{A_{5}}{A_{5}}
\end{aligned}
$$

\Longrightarrow backtrack to A_{13}, set A_{13} and A_{1} to \perp, \ldots.

State-of-the-art backjumping and learning [63]

- Idea: when a branch μ fails,
(i) conflict analysis: find the conflict set $\eta \subseteq \mu$ by generating the conflict clause $C \stackrel{\text { def }}{=} \neg \eta$ via resolution from the falsified clause, according to the $1^{\text {st }}$ UIP strategy
(ii) learning: add the conflict clause C to the clause set
(iii) backjumping: backtrack to the highest branching point s.t. the stack contains all-but-one literals in η, and then unit-propagate the unassigned literal on C

1st UIP strategy - example (7)

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$c_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$

$$
\begin{gathered}
\neg A_{9} \backslash \\
\neg A_{10} \backslash \\
\neg A_{11} \\
A_{12} \\
\vdots \\
A_{13}
\end{gathered}
$$

A_{1}
A_{2}
A_{3}
A_{4}
A_{5}
A_{6}

\Longrightarrow Conflict set: $\left\{\neg A_{10}, \neg A_{11}, A_{4}\right\}$, learn $c_{10}:=A_{10} \vee A_{11} \vee \neg A_{4}$

1st UIP strategy and backjumping [63]

- The added conflict clause states the reason for the conflict
- The procedure backtracks to the most recent decision level of the variables in the conflict clause which are not the UIP.
- then the conflict clause forces the negation of the UIP by unit propagation.
E.g.: $c_{10}:=A_{10} \vee A_{11} \vee \neg A_{4}$
\Longrightarrow backtrack to A_{11}, then assign $\neg A_{4}$

1st UIP strategy - example (7)

$c_{1}: \neg A_{1} \vee A_{2}$
$c_{2}: \neg A_{1} \vee A_{3} \vee A_{9}$
$c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4}$
$c_{4}: \neg A_{4} \vee A_{5} \vee A_{10}$
$C_{5}: \neg A_{4} \vee A_{6} \vee A_{11}$
$c_{6}: \neg A_{5} \vee \neg A_{6}$
$c_{7}: A_{1} \vee A_{7} \vee \neg A_{12}$
$c_{8}: A_{1} \vee A_{8}$
$c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13}$

$$
\begin{gathered}
\neg A_{9} \backslash \\
\neg A_{10} \backslash \\
\neg A_{11} \\
A_{12} \\
\vdots \\
A_{13}
\end{gathered}
$$

A_{1}
A_{2}
A_{3}
A_{4}
A_{5}
A_{6}

\Longrightarrow Conflict set: $\left\{\neg A_{10}, \neg A_{11}, A_{4}\right\}$, learn $c_{10}:=A_{10} \vee A_{11} \vee \neg A_{4}$

1st UIP strategy - example (8)

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& C_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& \neg A_{9} \\
& \neg A_{10} \\
& \neg A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{10} \vee A_{11} \vee \neg A_{4} \\
& \Longrightarrow \text { backtrack up to } A_{11} \Longrightarrow\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}\right\}
\end{aligned}
$$

1st UIP strategy - example (9)

$\neg A_{9}$
\Longrightarrow unit propagate $\neg A_{4} \Longrightarrow\left\{\ldots, \neg A_{9}, \neg A_{10}, \neg A_{11}, A_{4}\right\} \ldots$

1st UIP strategy and backjumping - intuition

- An UIP is a single reason implying the conflict at the current level
- substituting the 1st UIP for the last UIP
- does not enlarge the conflict
- requires less resolution steps to compute C
- may require involving less decision literals from other levels
- by backtracking to the most recent decision level of the variables in the conflict clause which are not the UIP:
- jump higher
- allows for assigning (the negation of) the UIP as high as possible in the search tree.

Learning [4, 54]

Idea: When a conflict set η is revealed, then $C \stackrel{\text { def }}{=} \neg \eta$ added to φ \Longrightarrow the solver will no more generate an assignment containing η : when $|\eta|-1$ literals in η are assigned, the other is set \perp by unit-propagation on C
\Longrightarrow Drastic pruning of the search!

Learning - example

$$
\begin{aligned}
& c_{1}: \neg A_{1} \vee A_{2} \\
& c_{2}: \neg A_{1} \vee A_{3} \vee A_{9} \\
& c_{3}: \neg A_{2} \vee \neg A_{3} \vee A_{4} \\
& c_{4}: \neg A_{4} \vee A_{5} \vee A_{10} \\
& c_{5}: \neg A_{4} \vee A_{6} \vee A_{11} \\
& c_{6}: \neg A_{5} \vee \neg A_{6} \\
& c_{7}: A_{1} \vee A_{7} \vee \neg A_{12} \\
& c_{8}: A_{1} \vee A_{8} \\
& c_{9}: \neg A_{7} \vee \neg A_{8} \vee \neg A_{13} \\
& c_{10}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{1} \quad \vee \\
& c_{11}: A_{9} \vee A_{10} \vee A_{11} \vee \neg A_{12} \vee \neg A_{13} \vee \\
& \cdots \\
& \Longrightarrow \text { Unit: }\left\{\neg A_{1}, \neg A_{13}\right\}
\end{aligned}
$$

$$
\begin{gathered}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4} \\
A_{5} \\
A_{6} \\
A_{6} \\
\times A_{7} \\
\times
\end{gathered}
$$

Drawbacks of Learning \& Clause discharging

```
Problem with Learning
Learning can generate exponentially-many clauses
- may cause a blowup in space
- may drastically slow down BCP
```

```
A solution: clause discharging
Techniques to drop learned clauses when necessary
- according to their size
- according to their activity.
A clause is currently active if it occurs in the current implication graph
(i.e., it is the antecedent clause of a literal in the current assignment).
```


Drawbacks of Learning \& Clause discharging

Problem with Learning
Learning can generate exponentially-many clauses

- may cause a blowup in space
- may drastically slow down BCP

A solution: clause discharging
Techniques to drop learned clauses when necessary

- according to their size
- according to their activity.

A clause is currently active if it occurs in the current implication graph (i.e., it is the antecedent clause of a literal in the current assignment).

Drawbacks of Learning \& Clause discharging

- Is clause-discharging safe?
- Yes, if done properly.

Lazy" Strategy

- when a clause is involved in conflict analisis, increase its activity
- when needed, drop the least-active clauses

Drawbacks of Learning \& Clause discharging

- Is clause-discharging safe?
- Yes, if done properly.

Property (see, e.g., [45])

In order to guarantee correctness, completeness \& termination of a CDCL solver, it suffices to keep each clause until it is active. \Longrightarrow CDCL solvers require polynomial space

- when a clause is involved in conflict analisis, increase its activity
- when needed. dron the least-active clauses

Drawbacks of Learning \& Clause discharging

- Is clause-discharging safe?
- Yes, if done properly.

Property (see, e.g., [45])

In order to guarantee correctness, completeness \& termination of a CDCL solver, it suffices to keep each clause until it is active. \Longrightarrow CDCL solvers require polynomial space
"Lazy" Strategy

- when a clause is involved in conflict analisis, increase its activity
- when needed, drop the least-active clauses

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
> - intuition: " go back to the oldest decision where you'd have done something different if only you had known $C^{\prime \prime}$ \Rightarrow may avoid lots of redundant search
> - Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:
\Longrightarrow avoid finding the same conflict again

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:
- intuition: "when you're about to repeat the mistake, do the opposite of the last step"

State-of-the-art backjumping and learning: intuitions

- Backjumping: allows for climbing up to many decision levels in the stack
- intuition: " go back to the oldest decision where you'd have done something different if only you had known C"
\Longrightarrow may avoid lots of redundant search
- Learning: in future branches, when all-but-one literals in η are assigned, the remaining literal is assigned to false by unit-propagation:
- intuition: "when you're about to repeat the mistake, do the opposite of the last step"
\Longrightarrow avoid finding the same conflict again

Remark: the "quality" of conflict sets

- Different ideas of "good" conflict set
- Backjumping: if causes the highest backjump ("local" role)
- Learning: if causes the maximum pruning ("global" role)
- Many different strategies implemented (see, e.g., [4, 54, 63])

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques

(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT
(5) Random k-SAT and Phase Transition

6. Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Preprocessing: (sorting plus) subsumption

- Detect and remove subsumed clauses:

$$
\begin{gathered}
\varphi_{1} \wedge\left(I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(I_{2} \vee I_{3} \vee I_{1}\right) \wedge \varphi_{3} \\
\Downarrow \\
\varphi_{1} \wedge\left(I_{1} \vee I_{2}\right) \wedge \varphi_{2} \wedge \varphi_{3}
\end{gathered}
$$

Preprocessing: detect \& collapse equivalent literals [11]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) nerform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing: detect \& collapse equivalent literals [11]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing: detect \& collapse equivalent literals [11]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
perform substitutions
perform unit and pure literal.
Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing: detect \& collapse equivalent literals [11]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
perform unit and pure literal.
Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing: detect \& collapse equivalent literals [11]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:
- Very effective in many application domains.

Preprocessing: detect \& collapse equivalent literals [11]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:

$$
\begin{gathered}
\varphi_{1} \wedge\left(\neg I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(\neg I_{3} \vee I_{2}\right) \wedge \varphi_{3} \wedge\left(\neg I_{1} \vee I_{3}\right) \wedge \varphi_{4} \\
\Downarrow_{1 \leftrightarrow \leftrightarrow} \leftrightarrow I_{3} \\
\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4}\right)\left[I_{2} \leftarrow I_{1} ; I_{3} \leftarrow I_{1} ;\right]
\end{gathered}
$$

- Very effective in many application domains.

Preprocessing: detect \& collapse equivalent literals [11]

Repeat:

(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles \Longrightarrow equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.

Until (no more simplification is possible).

- Ex:

$$
\begin{gathered}
\varphi_{1} \wedge\left(\neg I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(\neg I_{3} \vee I_{2}\right) \wedge \varphi_{3} \wedge\left(\neg I_{1} \vee I_{3}\right) \wedge \varphi_{4} \\
\Downarrow I_{\leftrightarrow} \leftrightarrow I_{2} \leftrightarrow I_{3} \\
\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4}\right)\left[I_{2} \leftarrow I_{1} ; I_{3} \leftarrow I_{1} ;\right]
\end{gathered}
$$

- Very effective in many application domains.

Preprocessing: resolution (and subsumption) [3]

- Apply some basic steps of resolution (and simplify):

$$
\begin{gathered}
\varphi_{1} \wedge\left(I_{2} \vee I_{1}\right) \wedge \varphi_{2} \wedge\left(I_{2} \vee \neg l_{1}\right) \wedge \varphi_{3} \\
\Downarrow_{\text {resolve }} \\
\varphi_{1} \wedge\left(l_{2}\right) \wedge \varphi_{2} \wedge \varphi_{3} \\
\Downarrow_{\text {unit-propagate }} \\
\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right)\left[l_{2} \leftarrow \top\right]
\end{gathered}
$$

Branching heuristics

- Branch is the source of non-determinism for DPLL \Longrightarrow critical for efficiency
- many branch heuristics conceived in literature.

Some example heuristics

- MOMS heuristics: pick the literal occurring most often in the minimal size clauses
\Longrightarrow fast and simple, many variants
- Jeroslow-Wang: choose the literal with maximum

$$
\operatorname{score}(I):=\Sigma_{l \in c \& c \in \varphi} 2^{-|c|}
$$

\Longrightarrow estimates l's contribution to the satisfiability of φ

- Satz [33]: selects a candidate set of literals, perform unit propagation, chooses the one leading to smaller clause set \Longrightarrow maximizes the effects of unit propagation
- VSIDS [43]: variable state independent decaying sum
- "static": scores updated only at the end of a branch
- "local": privileges variable in recently learned clauses

Restarts [26]

(according to some strategy) restart DPLL

- abandon the current search tree and reconstruct a new one
- The clauses learned prior to the restart are still there after the restart and can help pruning the search space
- may significantly reduce the overall search space

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements

4 Tractable subclasses of SAT

5. Random k-SAT and Phase Transition

6 Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Tractable subclasses of SAT

- SAT in general is an NP-complete problem
- Some subclasses of SAT are tractable
- Two noteworthy tractable subclasses of SAT:
- Horn Formulas (Horn-SAT)
- 2-CNF formulas (2-SAT)

Horn Formulas

- A Horn formula is a CNF Boolean formula s.t. each clause contains at most one positive literal.

$$
\begin{aligned}
& A_{1} \vee \neg A_{2} \\
& A_{2} \vee \neg A_{3} \vee \neg A_{4} \\
& \neg A_{5} \vee \neg A_{3} \vee \neg A_{4} \\
& A_{3}
\end{aligned}
$$

- Intuition: implications between positive Boolean variables:

$$
\begin{array}{rll}
A_{2} & \rightarrow A_{1} \\
\left(A_{3} \wedge A_{4}\right) & \rightarrow & A_{2} \\
\left(A_{5} \wedge A_{3} \wedge A_{4}\right) & \rightarrow & \perp \\
& A_{3}
\end{array}
$$

Formulas reducible to Horn

- Remark: Some non-Horn formulas can be reduced to Horn by simply renaming literals

$$
\begin{array}{ll}
A_{1} \vee A_{2} & A_{1} \vee \neg B \\
\neg A_{2} \vee \neg A_{3} \vee \neg A_{4} \\
\neg A_{5} \vee \neg A_{3} \vee \neg A_{4} \quad \Longrightarrow & B:=\neg A_{2} \\
A_{3} & \neg \neg A_{5} \vee \neg A_{4} \vee A_{3} \vee \neg A_{4} \\
& A_{3}
\end{array}
$$

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time
Hint:
(i) Eliminate unit clauses by propagating their value; \Longrightarrow Every clause contains at least one negative literal.

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time
Hint:
(i) Eliminate unit clauses by propagating their value; \Longrightarrow Every clause contains at least one negative literal.

Tractability of Horn Formulas

Property

Checking the satisfiability of Horn formulas requires polynomial time
Hint:
(i) Eliminate unit clauses by propagating their value; \Longrightarrow Every clause contains at least one negative literal.
(ii) Assign all variables to \perp;

A simple polynomial procedure for Horn-SAT

function Horn_SAT(formula φ, assignment \& μ) \{
Unit_Propagate (φ, μ);
if ($\varphi==\perp$)
then return UNSAT;
else \{

$$
\mu:=\mu \cup \bigcup_{A_{i} \notin \mu}\left\{\neg A_{i}\right\} ;
$$

return SAT;
\} \}
function Unit_Propagate(formula \& φ, assignment \& μ) while $(\varphi \neq \mathrm{T}$ and $\varphi \neq \perp$ and $\{$ a unit clause (() occurs in $\varphi\}$) do $\{$

$$
\begin{aligned}
& \varphi=\operatorname{assign}(\varphi, /) ; \\
& \mu:=\mu \cup\{/\} ;
\end{aligned}
$$

\} \}

Example

$$
\begin{array}{rll}
\neg A_{1} & \vee A_{2} & \vee \neg A_{3} \\
A_{1} & \vee \neg A_{3} & \vee \neg A_{4} \\
\neg A_{2} & \vee \neg A_{4} & \\
A_{3} & \vee \neg A_{4} & \\
A_{4} & &
\end{array}
$$

Example

$$
\begin{array}{rll}
\neg A_{1} & \vee A_{2} & \vee \neg A_{3} \\
A_{1} & \vee \neg A_{3} & \vee \neg A_{4} \\
\neg A_{2} & \vee \neg A_{4} & \\
A_{3} & \vee \neg A_{4} & \\
A_{4} & &
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top\right\}
$$

Example

$$
\begin{array}{rll}
\neg A_{1} & \vee A_{2} & \vee \neg A_{3} \\
A_{1} & \vee \neg A_{3} & \vee \neg A_{4} \\
\neg A_{2} & \vee \neg A_{4} & \\
A_{3} & \vee \neg A_{4} & \\
A_{4} & &
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top\right\}
$$

Example

$$
\begin{aligned}
& \neg A_{1} \vee A_{2} \\
& A_{1} \vee \neg A_{3} \\
& \neg A_{3} \vee \neg A_{4} \\
& \neg A_{2} \vee \neg A_{4} \\
& A_{3} \vee \neg A_{4} \\
& A_{4} \\
& \mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \neg A_{1} \vee A_{2} \\
& A_{1} \vee \neg A_{3} \quad \vee \neg A_{3} \quad \times \\
& \neg A_{2} \vee \neg A_{4} \\
& A_{3} \vee \neg A_{4} \\
& A_{4}
\end{aligned}
$$

Example 2

$$
\begin{array}{lll}
A_{1} & \vee \neg A_{2} & \\
A_{2} & \vee \neg A_{5} & \vee \neg A_{4} \\
A_{4} & \vee \neg A_{3} & \\
A_{3} & &
\end{array}
$$

Example 2

$$
\begin{array}{lll}
A_{1} & \vee \neg A_{2} & \\
A_{2} & \vee \neg A_{5} & \vee \neg A_{4} \\
A_{4} & \vee \neg A_{3} & \\
A_{3} & &
\end{array}
$$

$$
\mu:=\left\{A_{3}:=\top\right\}
$$

Example 2

$$
\begin{array}{lll}
A_{1} & \vee \neg A_{2} & \\
A_{2} & \vee \neg A_{5} & \vee \neg A_{4} \\
A_{4} & \vee \neg A_{3} & \\
A_{3} &
\end{array}
$$

$$
\mu:=\left\{A_{3}:=\top, A_{4}:=\top\right\}
$$

Example 2

$$
\begin{aligned}
& A_{1} \vee \neg A_{2} \\
& A_{2} \vee \neg A_{5} \quad \vee \neg A_{4} \\
& A_{4} \vee \neg A_{3} \\
& A_{3}
\end{aligned}
$$

2-CNF Formulas

- A 2-CNF formula is a CNF formula in which each clause has (at most) two literals.
$A_{1} \vee \neg A_{2}$
$A_{2} \vee \neg A_{3}$
$\neg A_{5} \vee \neg A_{3}$
$A_{3} \vee \neg A_{1}$
A_{5}
- Checking the satisfiability of 2-CNF formulas requires polynomial time

Tractability of 2-CNF Formulas

Graph-based approach:
(i) Build the implication graph of the formula
(ii) check if it has a cycle containing both A_{i} and $\neg A_{i}$ for some i (e.g., by Tarjan's algorithm) \Longrightarrow the formula is unsatisfiable iff such cycle exists

- requires linear time

Tractability of 2-CNF Formulas

Graph-based approach:
(i) Build the implication graph of the formula
(ii) check if it has a cycle containing both A_{i} and $\neg A_{i}$ for some i (e.g., by Tarjan's algorithm) \Longrightarrow the formula is unsatisfiable iff such cycle exists

- requires linear time

Tractability of 2-CNF Formulas

Graph-based approach:
(i) Build the implication graph of the formula
(ii) check if it has a cycle containing both A_{i} and $\neg A_{i}$ for some i (e.g., by Tarjan's algorithm)
\Longrightarrow the formula is unsatisfiable iff such cycle exists

- requires linear time

Tractability of 2-CNF Formulas

Graph-based approach:
(i) Build the implication graph of the formula
(ii) check if it has a cycle containing both A_{i} and $\neg A_{i}$ for some i (e.g., by Tarjan's algorithm)
\Longrightarrow the formula is unsatisfiable iff such cycle exists

- requires linear time

Example:

A_{1}	$\vee A_{2}$
A_{1}	$\vee \neg A_{3}$
$\neg A_{2}$	$\vee \neg A_{4}$
A_{3}	$\vee \neg A_{4}$
A_{4}	
$\neg A_{5}$	$\vee A_{6}$
A_{5}	$\vee A_{6}$
A_{5}	$\vee \neg A_{6}$
$\neg A_{5}$	$\vee \neg A_{6}$

Tractability of 2-CNF Formulas

Idea
Let φ, l s.t. $\operatorname{var}(I) \in \varphi$ and $(\varphi \wedge I) \not \vDash_{B C P} \perp$.

- φ^{\prime} : clauses remained after BCP
- $\varphi^{\prime \prime}$: clauses removed by BCP

Suppose φ^{\prime} is UNSAT. Can we conclude anything about φ ?

- Case φ is >2-CNF: No!
- there may be (non-unit) clauses $C \in \varphi^{\prime}$ s.t. $(\neg / \vee C) \in \varphi$
- Case φ is 2-CNF: Yes!
- there cannot be clause $C \in \varphi^{\prime}$ s.t. $(\neg / \vee C) \in \varphi$

Tractability of 2-CNF Formulas

Idea
Let φ, I s.t. $\operatorname{var}(I) \in \varphi$ and $(\varphi \wedge I) \not \vDash_{B C P} \perp$.

- φ^{\prime} : clauses remained after BCP
- $\varphi^{\prime \prime}$: clauses removed by BCP

Suppose φ^{\prime} is UNSAT. Can we conclude anything about φ ?

- Case φ is >2-CNF: No!
- there may be (non-unit) clauses $C \in \varphi^{\prime}$ s.t. $(\neg / \vee C) \in \varphi$
$\Longrightarrow \varphi \neq \varphi^{\prime} \wedge \varphi^{\prime \prime}$ and $\varphi^{\prime} \models \perp \nRightarrow \varphi \models \perp$
\Longrightarrow we must check also $\varphi \wedge \neg$ l
- there cannot be clause $C \in \varphi^{\prime}$ s.t. $(\neg / \vee C) \in \varphi$
\square

Tractability of 2-CNF Formulas

Idea

Let φ, I s.t. $\operatorname{var}(I) \in \varphi$ and $(\varphi \wedge I) \not \models_{B C P} \perp$.

- φ^{\prime} : clauses remained after BCP
- $\varphi^{\prime \prime}$: clauses removed by BCP

Suppose φ^{\prime} is UNSAT. Can we conclude anything about φ ?

- Case φ is $>2-\mathrm{CNF}$: No!
- there may be (non-unit) clauses $C \in \varphi^{\prime}$ s.t. $(\neg / \vee C) \in \varphi$
$\Longrightarrow \varphi \neq \varphi^{\prime} \wedge \varphi^{\prime \prime}$ and $\varphi^{\prime} \models \perp \nRightarrow \varphi \models \perp$
\Longrightarrow we must check also $\varphi \wedge \neg$ l
- Case φ is 2-CNF: Yes!
- there cannot be clause $C \in \varphi^{\prime}$ s.t. $(\neg I \vee C) \in \varphi$
$\Longrightarrow \varphi=\varphi^{\prime} \wedge \varphi^{\prime \prime}$ and $\varphi^{\prime} \models \perp \Longrightarrow \varphi \models \perp$
$\Longrightarrow \varphi$ is UNSAT

Tractability of 2-CNF Formulas

Idea

Let φ, I s.t. $\operatorname{var}(I) \in \varphi$ and $(\varphi \wedge I) \not \vDash_{B C P} \perp$.

- φ^{\prime} : clauses remained after BCP
- $\varphi^{\prime \prime}$: clauses removed by BCP

Suppose φ^{\prime} is UNSAT. Can we conclude anything about φ ?

- Case φ is $>2-\mathrm{CNF}$: No!
- there may be (non-unit) clauses $C \in \varphi^{\prime}$ s.t. $(\neg / \vee C) \in \varphi$
$\Longrightarrow \varphi \neq \varphi^{\prime} \wedge \varphi^{\prime \prime}$ and $\varphi^{\prime} \models \perp \nRightarrow \varphi \models \perp$
\Longrightarrow we must check also $\varphi \wedge \neg$ ।
- Case φ is 2-CNF: Yes!
- there cannot be clause $C \in \varphi^{\prime}$ s.t. $(\neg I \vee C) \in \varphi$
$\Longrightarrow \varphi=\varphi^{\prime} \wedge \varphi^{\prime \prime}$ and $\varphi^{\prime} \models \perp \Longrightarrow \varphi \models \perp$
$\Longrightarrow \varphi$ is UNSAT
Note: we need to check first that $(\varphi \wedge I) \not \models_{B C P} \perp$: If $(\varphi \wedge I) \models_{B C P} \perp$, then $\varphi^{\prime} \models \perp \nRightarrow \varphi \models \perp$ (see later Example 2).

A simple polynomial procedure for 2-SAT

 function 2_SAT(formula φ, assignment \& μ) \{Unit_Propagate (φ, μ);
if $(\varphi==\perp)$ then return UNSAT;
if ($\varphi==\mathrm{T}$) then return SAT;
while True do \{
\{choose some literal / occurring in φ \};
save (φ, μ);
$\varphi:=\varphi \wedge$ l;
Unit_Propagate (φ, μ);
if ($\varphi==\perp$) then $\{$
retrieve (φ, μ);
$\varphi=\varphi \wedge \neg /$;
Unit_Propagate $(\varphi, \mu) ;\}$
if $(\varphi==\perp)$ then return UNSAT;
if $(\varphi==\mathrm{T})$ then return SAT;

Example

$$
\begin{aligned}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6} \\
\neg A_{5} & \vee \neg A_{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6} \\
\neg A_{5} & \vee \neg A_{6}
\end{aligned}
$$

$$
\mu:=\left\{A_{4}:=\top\right\}
$$

Example

$$
\begin{aligned}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6} \\
\neg A_{5} & \vee \neg A_{6}
\end{aligned}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top\right\}
$$

Example

$$
\begin{aligned}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6} \\
\neg A_{5} & \vee \neg A_{6}
\end{aligned}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp\right\}
$$

Example

$$
\begin{aligned}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6} \\
\neg A_{5} & \vee \neg A_{6}
\end{aligned}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\perp\right\} \text { (Select } \neg A_{6} \text {) }
$$

Example

$$
\begin{array}{rll}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} & \\
A_{4} & & \\
\neg A_{5} & \vee A_{6} & \\
A_{5} & \vee A_{6} & \times \\
A_{5} & \vee \neg A_{6} & \\
\neg A_{5} & \vee \neg A_{6}
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\perp, A_{5}:=\perp\right\} \Longrightarrow \text { backtrack }
$$

Example

$$
\begin{aligned}
& A_{1} \\
& \vee A_{2} \\
& A_{1} \vee \neg A_{3} \\
& \neg A_{2} \vee \neg A_{4} \\
& A_{3} \vee \neg A_{4} \\
& A_{4} \\
& A_{5} \vee A_{6} \\
& A_{5} \vee A_{6} \\
& A_{5} \vee \neg A_{6} \\
& A_{5} \vee \neg A_{6} \\
& \mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\top\right\}\left(\text { Select } A_{6}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& A_{1} \vee A_{2} \\
& A_{1} \vee \neg A_{3} \\
& \neg A_{2} \vee \neg A_{4} \\
& A_{3} \vee \neg A_{4} \\
& A_{4} \\
& \neg \\
& \neg A_{5} \vee A_{6} \\
& A_{5} \vee A_{6} \\
& A_{5} \vee \neg A_{6} \quad \times \\
& \neg A_{5} \vee \neg A_{6} \\
& \mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\top, A_{5}:=\top\right\} \Longrightarrow \text { UNSAT }
\end{aligned}
$$

Example 2

$$
\begin{array}{rcc}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6}
\end{array}
$$

Example 2

$$
\begin{aligned}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6}
\end{aligned}
$$

$$
\mu:=\left\{A_{4}:=\top\right\}
$$

Example 2

$$
\begin{aligned}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6}
\end{aligned}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top\right\}
$$

Example 2

$$
\begin{array}{rll}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6}
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp\right\}
$$

Example 2

$$
\begin{array}{rll}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6}
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\perp\right\} \text { (Select } \neg A_{6} \text {) }
$$

Example 2

$$
\begin{array}{rlll}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} & \\
\neg A_{2} & \vee \neg A_{4} & \\
A_{3} & \vee \neg A_{4} & \\
A_{4} & & & \\
\neg A_{5} & \vee A_{6} & \\
A_{5} & \vee A_{6} & \times \\
A_{5} & \vee \neg A_{6} &
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\perp, A_{5}:=\perp\right\} \Longrightarrow \text { backtrack }
$$

Example 2

$$
\begin{array}{rll}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6}
\end{array}
$$

$$
\left.\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\top\right\} \text { (Select } A_{6}\right)
$$

Example 2

$$
\begin{array}{rll}
A_{1} & \vee A_{2} \\
A_{1} & \vee \neg A_{3} \\
\neg A_{2} & \vee \neg A_{4} \\
A_{3} & \vee \neg A_{4} \\
A_{4} & & \\
\neg A_{5} & \vee A_{6} \\
A_{5} & \vee A_{6} \\
A_{5} & \vee \neg A_{6}
\end{array}
$$

$$
\mu:=\left\{A_{4}:=\top, A_{3}:=\top, A_{2}:=\perp, A_{6}:=\top, A_{5}:=\top\right\} \Longrightarrow \text { SAT }
$$

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT

(5) Random k-SAT and Phase Transition

6. Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

The satisfiability of k-CNF (k-SAT) [20]

- k-CNF: CNF s.t. all clauses have k literals
- the satisfiability of 2-CNF is polynomial
- the satisfiability of k -CNF is NP-complete for $k \geq 3$
- every k-CNF formula can be converted into 3-CNF:

$$
I_{1} \vee I_{2} \vee \ldots \vee I_{k-1} \vee I_{k}
$$

The satisfiability of k-CNF (k-SAT) [20]

- k-CNF: CNF s.t. all clauses have k literals
- the satisfiability of 2-CNF is polynomial
- the satisfiability of k -CNF is NP-complete for $k \geq 3$
- every k-CNF formula can be converted into 3-CNF:

$$
\begin{gathered}
I_{1} \vee I_{2} \vee \ldots \vee I_{k-1} \vee I_{k} \\
\Downarrow \\
\left(I_{1} \vee I_{2} \vee B_{1}\right) \wedge \\
\left(\neg B_{1} \vee I_{3} \vee B_{2}\right) \wedge \\
\ldots \\
\left(\neg B_{k-4} \vee I_{k-2} \vee B_{k-3}\right) \wedge \\
\left(\neg B_{k-3} \vee I_{k-1} \vee I_{k}\right)
\end{gathered}
$$

Random K-CNF formulas generation

Random k-CNF formulas with N variables and L clauses: DO
(i) pick with uniform probability a set of k atoms over N
(ii) randomly negate each atom with probability 0.5
(iii) create a disjunction of the resulting literals

UNTIL L different clauses have been generated;

Random K-CNF formulas generation

Random k-CNF formulas with N variables and L clauses: DO
(i) pick with uniform probability a set of k atoms over N
(ii) randomly negate each atom with probability 0.5
(iii) create a disjunction of the resulting literals

UNTIL L different clauses have been generated;

Random K-CNF formulas generation

Random k-CNF formulas with N variables and L clauses: DO
(i) pick with uniform probability a set of k atoms over N
(ii) randomly negate each atom with probability 0.5
iii) create a disjunction of the resulting literals

UNTIL L different clauses have been generated;

Random K-CNF formulas generation

Random k-CNF formulas with N variables and L clauses: DO
(i) pick with uniform probability a set of k atoms over N
(ii) randomly negate each atom with probability 0.5
(iii) create a disjunction of the resulting literals

UNTIL L different clauses have been generated;

Random k-SAT plots

- fix k and N
- for increasing L, randomly generate and solve $(500,1000,10000, \ldots)$ problems with k, L, N
- plot
- satisfiability percentages
- median/geometrical mean CPU time/\# of steps against L / N

The phase transition phenomenon: SAT \% Plots [41, 32]

- Increasing L / N we pass from 100% satisfiable to 100% unsatisfiable formulas
- the decay becomes steeper with N
- for $N \rightarrow \infty$, the plot converges to a step in the cross-over point ($L / N \approx 4.28$ for $\mathrm{k}=3$)
- Revealed for many other NP-complete problems
- Many theoretical models [59, 21, 32, 16, 42]
- Strong relation with Thermodynamics

The phase transition phenomenon: CPU times/step \#

Using search algorithms (DPLL):

- Increasing L / N we pass from easy problems, to very hard problems down to hard problems
- the peak is centered in the 50% satisfiable point
- the decay becomes steeper with N
- for $N \rightarrow \infty$, the plot converges to an impulse in the cross-over point ($L / N \approx 4.28$ for $\mathrm{k}=3$)
- easy problems ($L / N \leq \approx 3.8$) increase polynomially with N, hard problems increase exponentially with N
- Increasing L / N, satisfiable problems get harder, unsatisfiable problems get easier.

MEDIAN

GEOMEAN

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT
(5) Random k-SAT and Phase Transition

6 Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Advanced functionalities

Advanced SAT functionalities (very important in formal verification):

- Computing SAT under assumptions \& Incremental SAT solving
- Building proofs of unsatisfiability
- Extracting unsatisfiable Cores
- Computing Craig Interpolants

SAT under assumptions: $\operatorname{SAT}\left(\varphi,\left\{1_{1}, \ldots, I_{n}\right\}\right)[18]$

- Many SAT solvers allow for solving a CNF formula φ under a set of assumption literals $\mathcal{A} \stackrel{\text { def }}{=}\left\{I_{1}, \ldots, I_{n}\right\}: \operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$
- $\operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$: same result as $\operatorname{SAT}\left(\varphi \wedge \bigwedge_{i=1}^{n} l_{i}\right)$
- often useful to call the same formula with different assumption lists: $\operatorname{SAT}\left(\varphi, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi, \mathcal{A}_{2}\right), \ldots$
- Idea:
- I_{1}, \ldots, I_{n} "decided" at decision level 0 before starting the search
- if backjump to level 0 on $C \stackrel{\text { def }}{=} \neg \eta$ s.t. $\eta \subseteq \mathcal{A}$, then return UNSAT
- if the "decision" strategy for conflict analysis is used, then η is the subset of assumptions causing the inconsistency

SAT under assumptions: $\operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$ [18]

- Many SAT solvers allow for solving a CNF formula φ under a set of assumption literals $\mathcal{A} \stackrel{\text { def }}{=}\left\{I_{1}, \ldots, I_{n}\right\}: \operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$
- $\operatorname{SAT}\left(\varphi,\left\{I_{1}, \ldots, I_{n}\right\}\right)$: same result as $\operatorname{SAT}\left(\varphi \wedge \bigwedge_{i=1}^{n} l_{i}\right)$
- often useful to call the same formula with different assumption lists: $\operatorname{SAT}\left(\varphi, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi, \mathcal{A}_{2}\right), \ldots$
- Idea:
- I_{1}, \ldots, I_{n} "decided" at decision level 0 before starting the search
- if backjump to level 0 on $C \stackrel{\text { def }}{=} \neg \eta$ s.t. $\eta \subseteq \mathcal{A}$, then return UNSAT
- if the "decision" strategy for conflict analysis is used, then η is the subset of assumptions causing the inconsistency

Selection of sub-formulas

Let φ be $\bigwedge_{i=1}^{n} C_{i}$.
Idea [18, 35]

- let $S_{1} \ldots S_{n}$ be fresh Boolean atoms (selection variables).
- let $\mathcal{A} \stackrel{\text { def }}{=}\left\{S_{i_{1}}, \ldots, S_{i_{K}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$
- $\operatorname{SAT}\left(\bigwedge_{i=1}^{n}\left(\neg S_{i} \vee C_{i}\right), \mathcal{A}\right)$: same as $\operatorname{SAT}\left(\bigwedge_{i=i_{1}}^{i_{k}}\left(C_{i}\right)\right)$
\Longrightarrow allows for "selecting" (activating) only a subset of the clauses in φ at each call.

Incremental SAT solving $[18,17]$

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of formulas $\Phi \stackrel{\text { def }}{=}\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information) \Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)

learned clauses safely reused from call to call even if assumptions have been removed
- learned clauses C_{j} s.t.
- C_{j} may be in the form $\neg A_{j} \vee C_{j}^{\prime}$ s.t. $A_{i} \notin \mathcal{A}_{i} \Longrightarrow C_{j}$ not reused

Incremental SAT solving $[18,17]$

- Many CDCL solvers provide a stack-based incremental interface
- it is possible to push/pop ϕ_{i} into a stack of formulas $\Phi \stackrel{\text { def }}{=}\left\{\phi_{1}, \ldots, \phi_{k}\right\}$
- check incrementally the satisfiability of $\bigwedge_{i=1}^{k} \phi_{i}$.
- Maintains the status of the search from one call to the other
- in particular it records the learned clauses (plus other information) \Longrightarrow reuses search from one call to another
- Very useful in many applications (in particular in FV)
- Simple idea [18, 17]: incremental calls $\operatorname{SAT}\left(\varphi, \mathcal{A}_{1}\right), \operatorname{SAT}\left(\varphi, \mathcal{A}_{2}\right), \ldots$
- $\varphi \stackrel{\text { def }}{=} \bigwedge_{i}\left(\neg A_{i} \vee \phi_{i}\right), \mathcal{A}_{i} \subseteq\left\{A_{1}, \ldots, A_{k}\right\} \forall i$,
- stack-based interface for $\mathcal{A} \stackrel{\text { def }}{=}\left\{A_{1}, A_{2}, \ldots\right\}$
learned clauses safely reused from call to call even if assumptions have been removed
- learned clauses C_{j} s.t. $\varphi \models C_{j}$
- C_{j} may be in the form $\neg A_{j} \vee C_{j}^{\prime}$ s.t. $A_{i} \notin \mathcal{A}_{i} \Longrightarrow C_{j}$ not reused

Building Proofs of Unsatisfiability

- When φ is unsat, it is very important to build a (resolution) proof of unsatisfiability:
- to verify the result of the solver
- to understand a "reason" for unsatisfiability
- to build unsatisfiable cores and interpolants
- can be built by keeping track of the resolution steps performed when constructing the conflict clauses.

Building Proofs of Unsatisfiability

- When φ is unsat, it is very important to build a (resolution) proof of unsatisfiability:
- to verify the result of the solver
- to understand a "reason" for unsatisfiability
- to build unsatisfiable cores and interpolants
- can be built by keeping track of the resolution steps performed when constructing the conflict clauses.

Building Proofs of Unsatisfiability

- recall: each conflict clause C_{i} learned is computed from the conflicting clause C_{i-k} by backward resolving with the antecedent clause of one literal
conflicting clause

- C_{1}, \ldots, C_{k}, and C_{i-k} can be original or learned clauses - each resolution (sub)proof can be easily tracked:

Building Proofs of Unsatisfiability

- recall: each conflict clause C_{i} learned is computed from the conflicting clause C_{i-k} by backward resolving with the antecedent clause of one literal
conflicting clause

- C_{1}, \ldots, C_{k}, and C_{i-k} can be original or learned clauses

Building Proofs of Unsatisfiability

- recall: each conflict clause C_{i} learned is computed from the conflicting clause C_{i-k} by backward resolving with the antecedent clause of one literal
conflicting clause

- C_{1}, \ldots, C_{k}, and C_{i-k} can be original or learned clauses
- each resolution (sub)proof can be easily tracked:
k i-k -> i-k-1

2 i-2 -> i-1
1 i-1 -> i

Building Proofs of Unsatisfiability

- ... in particular, if φ is unsatisfiable, the last step produces "false" as conflict clause:

- note: $C_{1}=I, C_{i-1}=\neg /$ for some literal /
- C_{1}, \ldots, C_{k}, and C_{i-k} can be original or learned clauses...

Building Proofs of Unsatisfiability

Starting from the previous proof of unsatisfiability, repeat recursively:

- for every learned leaf clause C_{i}, substitute C_{i} with the resolution proof generating it
until all leaf clauses are original clauses

\Longrightarrow we obtain a resolution proof of unsatisfiability for (a subset of) the clauses in φ

Building Proofs of Unsatisfiability: example

$\left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge$ $\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}$
$\left(\neg B_{0} \vee \neg B_{1}\right)$

$\left(B_{6} \vee A_{2}\right)$

$\left(\neg B_{4} \vee B_{2}\right)$

Extraction of unsatisfiable cores

- Problem: given an unsatisfiable set of clauses, extract from it a (possibly small/minimal/minimum) unsatisfiable subset \Longrightarrow unsatisfiable cores (aka (Minimal) Unsatisfiable Subsets, (M)US)
- Lots of literature on the topic [65, 36, 39, 46, 62, 28, 22, 10]
- We recognize two main approaches:
- Proof-based approach [65]: byproduct of finding a resolution proof
- Assumption-based approach [36]: use extra variables labeling clauses
- many optimizations for further reducing the size of the core:
- repeat the process up to fixpoit
- remove clauses one-by one, until satisfiability is obtained
- combinations of the two processed above
- ...

The proof-based approach to unsat-core extraction [65]

Unsat core: the set of leaf clauses of a resolution proof

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge \\
& \left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{aligned}
$$

The assumption-based approach to unsat-core extraction [36]

Based on the following process:

(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level $0: V_{j} \neg S_{j}$
$\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core!

The assumption-based approach to unsat-core extraction [36]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level $0: \bigvee_{j} \neg S_{j}$ $\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core!

The assumption-based approach to unsat-core extraction [36]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level 0 : $V_{i} \neg S_{j}$
$\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core!

The assumption-based approach to unsat-core extraction [36]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level $0: \bigvee_{j} \neg S_{j}$

The assumption-based approach to unsat-core extraction [36]

Based on the following process:
(i) each clause C_{i} is substituted by $\neg S_{i} \vee C_{i}$, s.t. S_{i} fresh "selector" variable
(ii) before starting the search each S_{i} is forced to true.
(iii) final conflict clause at dec. level $0: \bigvee_{j} \neg S_{j}$
$\Longrightarrow\left\{C_{j}\right\}_{j}$ is the unsat core!

The assumption-based approach to unsat-core extraction

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\
& B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{aligned}
$$

(i) add selector variables:

(ii) The conflict analysis returns:

(iii) corresponding to the unsat core:

The assumption-based approach to unsat-core extraction

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\
& B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{aligned}
$$

(i) add selector variables:

$$
\begin{aligned}
& \left(\neg S_{1} \vee B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(\neg S_{2} \vee B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg S_{3} \vee \neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg S_{4} \vee \neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg S_{5} \vee \neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg S_{6} \vee \neg A_{2} \vee B_{2}\right) \wedge \\
& \left(\neg S_{7} \vee \neg A_{1} \vee B_{3}\right) \wedge\left(\neg S_{8} \vee B_{4}\right) \wedge\left(\neg S_{9} \vee A_{2} \vee B_{5}\right) \wedge\left(\neg S_{10} \vee \neg B_{6} \vee \neg B_{4}\right) \wedge \\
& \left(\neg S_{11} \vee B_{6} \vee \neg A_{1}\right) \wedge\left(\neg S_{12} \vee B_{7}\right)
\end{aligned}
$$

(ii) The conflict analysis returns:

(iii) corresponding to the unsat core:

The assumption-based approach to unsat-core extraction

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\
& B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{aligned}
$$

(i) add selector variables:

$$
\begin{aligned}
& \left(\neg S_{1} \vee B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(\neg S_{2} \vee B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg S_{3} \vee \neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg S_{4} \vee \neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg S_{5} \vee \neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg S_{6} \vee \neg A_{2} \vee B_{2}\right) \wedge \\
& \left(\neg S_{7} \vee \neg A_{1} \vee B_{3}\right) \wedge\left(\neg S_{8} \vee B_{4}\right) \wedge\left(\neg S_{9} \vee A_{2} \vee B_{5}\right) \wedge\left(\neg S_{10} \vee \neg B_{6} \vee \neg B_{4}\right) \wedge \\
& \left(\neg S_{11} \vee B_{6} \vee \neg A_{1}\right) \wedge\left(\neg S_{12} \vee B_{7}\right)
\end{aligned}
$$

(ii) The conflict analysis returns:

$$
\neg S_{1} \vee \neg S_{2} \vee \neg S_{3} \vee \neg S_{4} \vee \neg S_{5} \vee \neg S_{6} \vee \neg S_{8} \vee \neg S_{10} \vee \neg S_{11},
$$

(iii) corresponding to the unsat core:

The assumption-based approach to unsat-core extraction

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge\left(\neg A_{1} \vee B_{3}\right) \wedge \\
& B_{4} \wedge\left(A_{2} \vee B_{5}\right) \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right) \wedge B_{7}
\end{aligned}
$$

(i) add selector variables:

$$
\left(\neg S_{1} \vee B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(\neg S_{2} \vee B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg S_{3} \vee \neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge
$$

$$
\left(\neg S_{4} \vee \neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg S_{5} \vee \neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg S_{6} \vee \neg A_{2} \vee B_{2}\right) \wedge
$$

$$
\left(\neg S_{7} \vee \neg A_{1} \vee B_{3}\right) \wedge\left(\neg S_{8} \vee B_{4}\right) \wedge\left(\neg S_{9} \vee A_{2} \vee B_{5}\right) \wedge\left(\neg S_{10} \vee \neg B_{6} \vee \neg B_{4}\right) \wedge
$$

$$
\left(\neg S_{11} \vee B_{6} \vee \neg A_{1}\right) \wedge\left(\neg S_{12} \vee B_{7}\right)
$$

(ii) The conflict analysis returns:

$$
\neg S_{1} \vee \neg S_{2} \vee \neg S_{3} \vee \neg S_{4} \vee \neg S_{5} \vee \neg S_{6} \vee \neg S_{8} \vee \neg S_{10} \vee \neg S_{11},
$$

(iii) corresponding to the unsat core:

$$
\begin{aligned}
& \left(B_{0} \vee \neg B_{1} \vee A_{1}\right) \wedge\left(B_{0} \vee B_{1} \vee A_{2}\right) \wedge\left(\neg B_{0} \vee B_{1} \vee A_{2}\right) \wedge \\
& \left(\neg B_{0} \vee \neg B_{1}\right) \wedge\left(\neg B_{2} \vee \neg B_{4}\right) \wedge\left(\neg A_{2} \vee B_{2}\right) \wedge \\
& B_{4} \wedge\left(\neg B_{6} \vee \neg B_{4}\right) \wedge\left(B_{6} \vee \neg A_{1}\right)
\end{aligned}
$$

Computing Craig Interpolants in SAT

Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

- Very important in many Formal Verification applications - A few works presented [47, 38, 40]

Computing Craig Interpolants in SAT

Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant
Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:

- Very important in many Formal Verification applications
- A few works presented [47, 38, 40]

Computing Craig Interpolants in SAT

Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant
Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,

- Very important in many Formal Verification applications
- A few works presented [47, 38, 40]

Computing Craig Interpolants in SAT

Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant
Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,
b) $I \wedge B \mid \perp$,

- Very important in many Formal Verification applications
- A few works presented [47, 38, 40]

Computing Craig Interpolants in SAT

Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant
Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,
b) $I \wedge B \mid=\perp$,
c) $I \preceq A$ and $I \preceq B$.

- Very important in many Formal Verification applications
- A few works presented [47, 38, 40]

Computing Craig Interpolants in SAT

Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,
b) $I \wedge B \mid \perp$,
c) $I \preceq A$ and $I \preceq B$.

- Very important in many Formal Verification applications
- A few works presented [47, 38, 40]

Computing Craig Interpolants in SAT

Let " $X \preceq Y$ ", X, Y being Boolean formulas, denote the fact that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \wedge B \vDash \perp$, a Craig interpolant is a formula / s.t.:
a) $A \models I$,
b) $I \wedge B \mid \perp$,
c) $I \preceq A$ and $I \preceq B$.

- Very important in many Formal Verification applications
- A few works presented [47, 38, 40]

Computing Craig Interpolants in SAT: a General Algorithm [47]

Algorithm: Interpolant generation (for SAT)

" $\eta \backslash B$ " [resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [47]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.

$\bar{"} \eta \backslash B$ " [resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [47]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$. (ii) ...

Output I_{\perp} as an interpolant for (A, B).
" $\eta \backslash B$ " [resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [47]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P}, set $I_{C} \stackrel{\text { def }}{=} \downarrow \downarrow B$ if $C \in A$, and $I_{C} \xlongequal{\text { def }} \top$ if $C \in B$.

c_{2} otherwise.
Output /। as an interpolant for (A, B)
" $\eta \backslash B$ " [resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [47]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P}, set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$, and $I_{C} \stackrel{\text { def }}{=} T$ if $C \in B$.
(iv) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \xlongequal{\text { def }} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$, set $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B, and $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \wedge I_{C_{2}}$ otherwise.
(v) Output I_{\perp} as an interpolant for (A, B)
" $\eta \backslash B$ " $[$ resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [47]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P}, set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$, and $I_{C} \stackrel{\text { def }}{=} \top$ if $C \in B$.
(iv) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \stackrel{\text { def }}{=} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$, set $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B, and $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \wedge I_{C_{2}}$ otherwise.
(v) Output I_{\perp} as an interpolant for (A, B).
" $\eta \backslash B$ " $[$ resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

Computing Craig Interpolants in SAT: a General Algorithm [47]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability \mathcal{P} for $A \wedge B$.
(ii) ...
(iii) For every leaf clause C in \mathcal{P}, set $I_{C} \stackrel{\text { def }}{=} C \downarrow B$ if $C \in A$, and $I_{C} \stackrel{\text { def }}{=} \top$ if $C \in B$.
(iv) For every inner node C of \mathcal{P} obtained by resolution from $C_{1} \xlongequal{\text { def }} p \vee \phi_{1}$ and $C_{2} \stackrel{\text { def }}{=} \neg p \vee \phi_{2}$, set $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \vee I_{C_{2}}$ if p does not occur in B, and $I_{C} \stackrel{\text { def }}{=} I_{C_{1}} \wedge I_{C_{2}}$ otherwise.
(v) Output I_{\perp} as an interpolant for (A, B).
" $\eta \backslash B$ " [resp. " $\eta \downarrow B$ "] is the set of literals in η whose atoms do not [resp. do] occur in B.

- optimized versions for the purely-propositional case [38, 40]

Computing Craig Interpolants in SAT: example

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(B_{1} \vee A_{1}\right) \wedge A_{2} \wedge\left(\neg B_{2} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2} \vee \neg B_{3} \vee \neg B_{4}\right) \\
& B \stackrel{\text { def }}{=}\left(\neg B_{3} \vee B_{4}\right) \wedge\left(\neg B_{1} \vee B_{2}\right) \wedge\left(B_{1} \vee B_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \neg A_{1} \vee \neg A_{2} \vee \\
& \neg B_{3} \vee \neg B_{4}
\end{aligned}
$$

$\left(B_{1} \vee \neg B_{3} \vee \neg B_{4}\right) \wedge \neg B_{2}$ is an interpolant

Computing Craig Interpolants in SAT: example

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(B_{1} \vee A_{1}\right) \wedge A_{2} \wedge\left(\neg B_{2} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2} \vee \neg B_{3} \vee \neg B_{4}\right) \\
& B \stackrel{\text { def }}{=}\left(\neg B_{3} \vee B_{4}\right) \wedge\left(\neg B_{1} \vee B_{2}\right) \wedge\left(B_{1} \vee B_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \neg A_{1} \vee \neg A_{2} \vee \\
& \neg B_{3} \vee \neg B_{4}
\end{aligned}
$$

original proof

interpolant proof
$\Longrightarrow\left(B_{1} \vee \neg B_{3} \vee \neg B_{4}\right) \wedge \neg B_{2}$ is an interpolant

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \vDash \perp$, $\varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties
of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization

\Longrightarrow much harder than SAT

- Many different approaches (see e.g. [34])
- EX:

$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \vDash \perp$, $\varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization much harder than SAT
- Many different approaches (see e.g. [34])
- EX:
$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \vDash \perp$, $\varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization
\Longrightarrow much harder than SAT
- Many different approaches (see e.g. [34])
- EX:
$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

MaxSAT (hints)

- MaxSAT: given a pair of CNF formulas $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$ s.t. $\varphi_{h} \wedge \varphi_{s} \vDash \perp$, $\varphi_{s} \stackrel{\text { def }}{=}\left\{C_{1}, \ldots, C_{k}\right\}$, find a truth assignment μ satisfying φ_{h} and maximizing the amount of the satisfied clauses in φ_{s}.
- Weighted MaxSAT: given also the positive integer penalties $\left\{w_{1}, \ldots, w_{k}\right\}, \mu$ must satisfy φ_{h} and maximize the sum of penalties of the satisfied clauses in φ_{s}
- Generalization of SAT to optimization
\Longrightarrow much harder than SAT
- Many different approaches (see e.g. [34])
- EX:

$$
\varphi_{h} \stackrel{\text { def }}{=}\left(A_{1} \vee A_{2}\right) \quad \varphi_{s} \stackrel{\text { def }}{=}\left(\begin{array}{rll}
\left(A_{1} \vee \neg A_{2}\right) & \wedge & {[4]} \\
\left(\neg A_{1} \vee A_{2}\right) & \wedge & {[3]} \\
\left(\neg A_{1} \vee \neg A_{2}\right) & \wedge & {[2]}
\end{array}\right)
$$

$\Longrightarrow \mu=\left\{A_{1}, A_{2}\right\}$ (penalty $=2$)

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT
(5) Random k-SAT and Phase Transition

6. Advanced Functionalities: proofs, unsat cores, interpolants, optimization

(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

Many applications of SAT

- Many successful applications of SAT:
- Boolean circuits
- (Bounded) Planning
- (Bounded) Model Checking
- Cryptography
- Scheduling
- ...
- All NP-complete problem can be (polynomially) converted to SAT.
- Key issue: find an efficient encoding.

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT
(5) Random k-SAT and Phase Transition

6. Advanced Functionalities: proofs, unsat cores, interpolants, optimization
(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

The problem [30, 29, 48]

- Problem Given a set of action operators $O P$, (a representation of) an initial state I and goal state G, and a bound n, find a sequence of operator applications $o_{1}, . ., o_{n}$, leading from the initial state to the goal state.
- Idea: Encode it into satisfiability problem of a Boolean formula φ

Example

$\operatorname{Move}(b, s, d)$ Precond: $\operatorname{Block}(b) \wedge \operatorname{Clear}(b) \wedge O n(b, s) \wedge$ $($ Clear $(d) \vee$ Table $(d)) \wedge$
$b \neq s \wedge b \neq d \wedge s \neq d$
Effect : $\quad \operatorname{Clear}(s) \wedge \neg O n(b, s) \wedge$
On $(b, d) \wedge \neg$ Clear (d)

Encoding

- Initial states:

$$
O n_{0}(A, B), O n_{0}(B, C), O n_{0}(C, T), \text { Clear }_{0}(A)
$$

- Goal states:

$$
O n_{2 n}(C, B) \wedge O n_{2 n}(B, A) \wedge O n_{2 n}(A, T)
$$

- Action preconditions and effects:

$$
\begin{aligned}
& \text { Move }_{t}(A, B, C) \rightarrow \\
& \text { Clear }_{t-1}(A) \wedge O n_{t-1}(A, B) \wedge \text { Clear }_{t-1}(C) \wedge \\
& \text { Clear }_{t+1}(B) \wedge \neg \text { On }_{t+1}(A, B) \wedge \\
& O n_{t+1}(A, C) \wedge \neg \text { Clear }_{t+1}(C)
\end{aligned}
$$

Encoding: Frame axioms

- Classic

$$
\begin{aligned}
& \text { Move }_{t}(A, B, T) \wedge \text { Clear }_{t-1}(C) \rightarrow \text { Clear }_{t+1}(C), \\
& \text { Move }_{t}(A, B, T) \wedge \neg \text { Clear }_{t-1}(C) \rightarrow \neg \text { Clear }_{t+1}(C) .
\end{aligned}
$$

"At least one action" axiom:

$$
\begin{gathered}
\bigvee \\
b, s, d \in\{A, B, C, T\} \\
b \neq s, b \neq d, s \neq d, b \neq T
\end{gathered}
$$

- Explanatory
\neg Clear $_{t+1}(C) \wedge$ Clear $_{t-1}(C) \rightarrow$
$\quad \operatorname{Move}_{t}(A, B, C) \vee \operatorname{Move}_{t}(A, T, C) \vee \operatorname{Move}_{t}(B, A, C) \vee \operatorname{Move}_{t}(B, 7$

Planning strategy

- Sequential for each pair of actions α and β, add axioms of the form $\neg \alpha_{t} \vee \neg \beta_{t}$ for each odd time step. For example, we will have:

$$
\neg \operatorname{Move}_{t}(A, B, C) \vee \neg \operatorname{Move}_{t}(A, B, T) .
$$

- parallel for each pair of actions α and β, add axioms of the form $\neg \alpha_{t} \vee \neg \beta_{t}$ for each odd time step if α effects contradict β preconditions. For example, we will have

$$
\neg \operatorname{Move}_{t}(B, T, A) \vee \neg \operatorname{Move}_{t}(A, B, C) .
$$

Encoding into SAT

- Assumption: the possible values of all the variables are bounded.
- Naive idea: Encode all possible ground predicates as Boolean variables.
E.g.: $\operatorname{Move}_{1}(B, T, A) \Longrightarrow$ Move1_B_T_A
- much more efficient encodings have been presented [29, 19]
- customizations of SAT solvers [23].

Outline

(1) Basics on SAT

(2) Basic SAT-Solving techniques
(3) Modern CDCL SAT Solvers

- Conflict-Driven Clause-Learning SAT solvers
- Further Improvements
(4) Tractable subclasses of SAT
(5) Random k-SAT and Phase Transition

6. Advanced Functionalities: proofs, unsat cores, interpolants, optimization

(7) Some Applications

- Appl. \#1: (Bounded) Planning
- Appl. \#2: Bounded Model Checking

The problem [8, 7]

Ingredients:

- A system written as a Kripke structure $M:=\langle S, I, T, \mathcal{L}\rangle$
- S: set of states
- I: set of initial states
- T: transition relation
- \mathcal{L} : labeling function
- A property f written as a LTL formula:
- a propositional literal p
- $h \wedge g, h \vee g, \mathbf{X} g, \mathbf{G} g, \mathbf{F} g, h \mathbf{U} g$ and $h \mathbf{R} g$,

X, G, F, U, R "next", "globally", "eventually", "until" and "releases"

- an integer k (bound)

The problem (cont.)

Problem:

Is there an execution path of M of length k satisfying the temporal property f?:

$$
M \models_{k} \mathbf{f}
$$

The encoding

Equivalent to the satisfiability problem of a Boolean formula $[[M, f]]_{k}$ defined as follows:

$$
\begin{align*}
{[[M, f]]_{k} } & :=[[M]]_{k} \wedge[[f]]_{k} \tag{1}\\
{[[M]]_{k} } & :=I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right), \tag{2}\\
{[[f]]_{k} } & :=\left(\neg \bigvee_{l=0}^{k} T\left(s_{k}, s_{l}\right) \wedge[[f f]]_{k}^{0}\right) \vee \bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge I[[f]]_{k}^{0}\right), \tag{3}
\end{align*}
$$

The encoding of $[[f]]_{k}^{i}$ and,$[[f]]_{k}^{j}$

f	$[[f]]_{k}^{\prime}$	${ }_{\text {l }}[[f]]_{k}^{j}$
p	p_{i}	p_{i}
$\neg p$	$\neg p_{i}$	$\neg p_{i}$
$h \wedge g$	$[[h]]_{k}^{i} \wedge[[g]]_{k}^{i}$	${ }_{1}[[h]]_{k}^{i} \wedge /[[g]]_{k}^{i}$
$h \vee g$	$[[h]]_{k}^{i} \vee[[g]]_{k}^{i}$	${ }_{1}[[h]]_{k}^{i} \vee,[[g]]_{k}^{i}$
$\mathbf{X} g$	$\begin{array}{ll} {[[g]]_{k}^{i+1}} & \text { if } i<k \\ \perp & \text { otherwise } . \end{array}$	$\begin{array}{ll} l_{i}[[g]]_{k}^{l+1} & \text { if } i<k \\ ,[[g]]_{k}^{l^{\prime}} & \text { otherwise. } \end{array}$
Gg	\perp	$\bigwedge_{j=\min (i, 1)}^{k},[[g]]_{k}^{j}$
Fg	$\bigvee_{j=i}^{k}[[g]]_{k}^{j}$	$\bigvee_{j=m i n(i, l)}^{k},[[g]]_{k}^{j}$
$h \mathbf{U} g$	$\bigvee_{j=i}^{k}\left([[g]]_{k}^{j} \wedge \bigwedge_{n=i}^{j-1}[[h]]_{k}^{n}\right)$	$\begin{aligned} & \left.\left.\vee_{j=i}^{k}(I,[g]]_{k}^{j} \wedge \Lambda_{n=i}^{j-1}, l[h]\right]_{k}^{n}\right) \vee \\ & \left.\bigvee_{j=1}^{i-1}\left(I[[g]]_{k}^{j} \wedge \bigwedge_{n=i}^{k}, l[h]\right]_{k}^{n} \wedge \bigwedge_{n=1}^{j-1} \quad l[[h]]_{k}^{n}\right) \end{aligned}$
$h \mathbf{R g}$	$\bigvee_{j=i}^{k}\left([[h]]_{k}^{j} \wedge \bigwedge_{n=i}^{j}[[g]]_{k}^{n}\right)$	

Example: Fp (reachability)

- $f:=\mathbf{F} p$: is there a reachable state in which p holds?
- $[[M, f]]_{k}$ is:

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{j=0}^{k} p_{j}
$$

Example: Gp

- $f:=\mathbf{G} p$: is there a path where p holds forever?
- $[[M, f]]_{k}$ is:

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{I=0}^{k} T\left(s_{k}, s_{l}\right) \wedge \bigwedge_{j=0}^{k} p_{j}
$$

Example: $\mathrm{GFq} \wedge \mathrm{Fp}$ (fair reachability)

- $f:=\mathbf{G F} q \wedge \mathbf{F} p$: is there a reachable state in which p holds provided that q holds infinitely often?
- $[[M, f]]_{k}$ is:

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{j=0}^{k} p_{j} \wedge \bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge \bigvee_{j=1}^{k} q\right)
$$

Bounded Model Checking

- very efficient for some problems
- lots of enhancements [8, 1, 56, 60, 13]

References I

[1] P. A. Abdullah, P. Bjesse, and N. Een.
Symbolic Reachability Analysis based on SAT-Solvers.
In Sixth Int.nl Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'00), 2000.
[2] A. Armando and E. Giunchiglia.
Embedding Complex Decision Procedures inside an Interactive Theorem Prover.
Annals of Mathematics and Artificial Intelligence, 8(3-4):475-502, 1993.
[3] F. Bacchus and J. Winter.
Effective Preprocessing with Hyper-Resolution and Equality Reduction.
In Proc. Sixth International Symposium on Theory and Applications of Satisfiability Testing, 2003.
[4] R. J. Bayardo, Jr. and R. C. Schrag.
Using CSP Look-Back Techniques to Solve Real-World SAT instances.
In Proc. AAAl'97, pages 203-208. AAAI Press, 1997.
[5] A. Belov and Z. Stachniak.
Improving variable selection process in stochastic local search for propositional satisfiability.
In SAT'09, LNCS. Springer, 2009.
[6] A. Belov and Z. Stachniak. Improved local search for circuit satisfiability.
In SAT, volume 6175 of LNCS, pages 293-299. Springer, 2010.
[7] A. Biere.
Bounded Model Checking, chapter 14, pages 455-481.
In Biere et al. [9], February 2009.
[8] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic Model Checking without BDDs.
In Proc. TACAS'99, pages 193-207, 1999.

References II

[^0]
References III

```
[17] N. Eén and N. Sörensson.
    Temporal induction by incremental sat solving.
    Electr. Notes Theor. Comput. Sci., 89(4):543-560, }2003
[18] N. Eén and N. Sörensson.
    An extensible SAT-solver.
    In Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of LNCS, pages 502-518. Springer, }2004
[19] M. Ernst, T. Millstein, and D. Weld.
    Automatic SAT-compilation of planning problems.
    In Proc. IJCAI-97, }1997
[20] M. R. Garey and D. S. Johnson.
    Computers and Intractability.
    Freeman and Company, New York, 1979.
[21] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh.
    The constrainedness of search.
    In Proceedings of AAAI-96, pages 246-252, Menlo Park, 1996. AAAI Press / MIT Press.
[22] R. Gershman, M. Koifman, and O. Strichman.
    Deriving Small Unsatisfiable Cores with Dominators.
    In Proc. CAV'06, volume }4144\mathrm{ of LNCS. Springer, }2006
[23] E. Giunchiglia, A. Massarotto, and R. Sebastiani.
    Act, and the Rest Will Follow: Exploiting Determinism in Planning as Satisfiability.
    In Proc. AAAl'98, pages 948-953, 1998.
[24] E. Giunchiglia, M. Narizzano, A. Tacchella, and M. Vardi.
    Towards an Efficient Library for SAT: a Manifesto.
    In Proc. SAT 2001, Electronics Notes in Discrete Mathematics. Elsevier Science., }2001
```


References IV

```
[25] E. Giunchiglia and R. Sebastiani.
    Applying the Davis-Putnam procedure to non-clausal formulas.
    In Proc. Al*IA'99, volume 1792 of LNAI. Springer, 1999.
[26] C. Gomes, B. Selman, and H. Kautz.
    Boosting Combinatorial Search Through Randomization.
    In Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998.
[27] H. H. Hoos and T. Stutzle.
    Stochastic Local Search Foundation And Application.
    Morgan Kaufmann, 2005.
[28] J. Huang.
    MUP: a minimal unsatisfiability prover.
    In Proc. ASP-DAC '05. ACM Press, 2005.
[29] H. Kautz, D. McAllester, and B. Selman.
    Encoding Plans in Propositional Logic.
    In Proceedings International Conference on Knowledge Representation and Reasoning. AAAI Press, 1996.
[30] H. Kautz and B. Selman.
    Planning as Satisfiability.
    In Proc. ECAI-92, pages 359-363, }1992
[31] H. A. Kautz, A. Sabharwal, and B. Selman.
    Incomplete Algorithms, chapter 6, pages 185-203.
    In Biere et al. [9], February 2009.
[32] S. Kirkpatrick and B. Selman.
    Critical behaviour in the satisfiability of random boolean expressions.
    Science, 264:1297-1301, 1994.
```


References V

```
[33] C. M. Li and Anbulagan.
    Heuristics based on unit propagation for satisfiability problems.
    In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), pages 366-371, 1997.
[34] C. M. Li and F. Manyà.
    MaxSAT, Hard and Soft Constraints, chapter 19, pages 613-631.
    In Biere et al. [9], February 2009.
[35] I. Lynce and J. Marques-Silva.
    On Computing Minimum Unsatisfiable Cores.
    In 7th International Conference on Theory and Applications of Satisfiability Testing, 2004.
[36] I. Lynce and J. P. Marques-Silva.
    On computing minimum unsatisfiable cores.
    In SAT, 2004.
[37] J. P. Marques-Silva, I. Lynce, and S. Malik.
    Conflict-Driven Clause Learning SAT Solvers, chapter 4, pages 131-153.
    In Biere et al. [9], February }2009
[38] K. McMillan.
    Interpolation and SAT-based model checking.
    In Proc. CAV, 2003.
[39] K. McMillan and N. Amla.
    Automatic abstraction without counterexamples.
    In Proc. of TACAS, }2003
[40] K. L. McMillan.
    An interpolating theorem prover.
    Theor. Comput. Sci., 345(1):101-121, }2005
```


References VI

[41] D. Mitchell, B. Selman, and H. Levesque.
Hard and Easy Distributions of SAT Problems.
In Proc. of the 10th National Conference on Artificial Intelligence, pages 459-465, 1992.
[42] M.Mezard, G.Parisi, and R. Zecchina.
Analytic and Algorithmic Solution of Random Satisfiability Problems.
Science, 297(812), 2002.
[43] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Design Automation Conference, 2001.
[44] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Abstract DPLL and abstract DPLL modulo theories.
In F. Baader and A. Voronkov, editors, Proceedings of the 11th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR'04), Montevideo, Uruguay, volume 3452 of LNCS, pages 36-50. Springer, 2005.
[45] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, November 2006.
[46] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov.
Amuse: A Minimally-Unsatisfiable Subformula Extractor.
In Proc. DAC'04. ACM/IEEE, 2004.
[47] P. Pudlák.
Lower bounds for resolution and cutting planes proofs and monotone computations.
J. of Symb. Logic, 62(3), 1997.

References VII

```
[48] J. Rintanen.
    Planning and SAT, chapter 15, pages 483-504.
    In Biere et al. [9], February 2009.
[49] A. Robinson.
    A machine-oriented logic based on the resolution principle.
    Journal of the ACM, 12:23-41, 1965.
[50] R. Sebastiani.
    Applying GSAT to Non-Clausal Formulas.
    Journal of Artificial Intelligence Research, 1:309-314, 1994.
[51] B. Selman and H. Kautz.
    Domain-Independent Extension to GSAT: Solving Large Structured Satisfiability Problems.
    In Proc. of the 13th International Joint Conference on Artificial Intelligence, pages 290-295, 1993.
[52] B. Selman, H. Kautz, and B. Cohen.
    Local Search Strategies for Satisfiability Testing.
    In Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 521-532, 1996.
[53] B. Selman, H. Levesque., and D. Mitchell.
    A New Method for Solving Hard Satisfiability Problems.
    In Proc. of the 10th National Conference on Artificial Intelligence, pages 440-446, 1992.
[54] J. P. M. Silva and K. A. Sakallah.
    GRASP - A new Search Algorithm for Satisfiability.
    In Proc. ICCAD'96, 1996.
[55] R. M. Smullyan.
    First-Order Logic.
    Springer-Verlag, NY, 1968.
```


References VIII

[56] O. Strichmann.
Tuning SAT checkers for Bounded Model Checking.
In Proc. CAVOO, volume 1855 of LNCS, pages 480-494. Springer, 2000.
[57] C. Tinelli.
A DPLL-based Calculus for Ground Satisfiability Modulo Theories.
In Proc. JELIA-02, volume 2424 of LNAI, pages 308-319. Springer, 2002.
[58] D. Tompkins and H. Hoos.
UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT.
In SAT, volume 3542 of LNCS. Springer, 2004.
[59] C. P. Williams and T. Hogg.
Exploiting the deep structure of constraint problems.
Artificial Intelligence, 70:73-117, 1994.
[60] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta.
Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking.
In Proc. CAV2000, volume 1855 of LNCS, pages 124-138, Berlin, 2000. Springer.
[61] H. Zhang and M. Stickel.
Implementing the Davis-Putnam algorithm by tries.
Technical report, University of lowa, August 1994.
[62] J. Zhang, S. Li, and S. Shen.
Extracting Minimum Unsatisfiable Cores with a Greedy Genetic Algorithm.
In Proc. ACAI, volume 4304 of LNCS. Springer, 2006.

References IX

[63] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.
Efficient conflict driven learning in a boolean satisfiability solver.
In ICCAD '01: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pages 279-285,
Piscataway, NJ, USA, 2001. IEEE Press.
[64] L. Zhang and S. Malik.
The quest for efficient boolean satisfiability solvers.
In Proc. CAV'02, number 2404 in LNCS, pages 17-36. Springer, 2002.
[65] L. Zhang and S. Malik.
Extracting small unsatisfiable cores from unsatisfiable boolean formula.
In Proc. of SAT, 2003.

Disclaimer

The list of references above is by no means intended to be all-inclusive. The author of these slides apologizes both with the authors and with the readers for all the relevant works which are not cited here.

The papers (co)authored by the author of these slides are availlable at: http://disi.unitn.it/rseba/publist.html.

Related web sites:

- Combination Methods in Automated Reasoning http://combination.cs.uiowa.edu/
- The SAT Association
http://satassociation.org/
- SATLive! - Up-to-date links for SAT
http://www.satlive.org/index.jsp
- SATLIB - The Satisfiability Library
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

[^0]: [9] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability.
 IOS Press, February 2009.
 [10] Booleforce, http://fmv.jku.at/booleforce/.
 [11] R. Brafman.
 A simplifier for propositional formulas with many binary clauses.
 In Proc. IJCAIO1, 2001.
 [12] R. E. Bryant.
 Graph-Based Algorithms for Boolean Function Manipulation.
 IEEE Transactions on Computers, C-35(8):677-691, Aug. 1986.
 [13] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding of LTL Model Checking into SAT.
 In Proc. VMCAl'02, volume 2294 of LNCS. Springer, January 2002.
 [14] M. Davis, G. Longemann, and D. Loveland.
 A machine program for theorem proving.
 Journal of the ACM, 5(7), 1962.
 [15] M. Davis and H. Putnam.
 A computing procedure for quantification theory.
 Journal of the ACM, 7:201-215, 1960.
 [16] E. Friedgut.
 Sharp thresholds of graph properties, and the k -sat problem.
 Journal of the American Mathematical Society, 12(4), 1998.

