Course “An Introduction to SAT and SMT”
Chapter 1: Propositional Satisfiability (SAT)

Roberto Sebastiani

DISI, Universita di Trento, ltaly — roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/

Int. Graduate School on ICT, University of Trento,
Academic year 2019-2020

last update: Friday 22" May, 2020

Copyright notice: some material contained in these slides is courtesy of Alessandro Cimatti, Alberto Griggio and Marco
Roveri, who detain its copyright. All the other material is copyrighted by Roberto Sebastiani. Any commercial use of this
material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be
displayed in public without containing this copyright notice.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 1/220

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/SAT_SMT2020/

.
Outline

o Basics on SAT

9 Basic SAT-Solving techniques
@ Conflict-Driven Clause-Learning SAT solvers

© Modern CDCL SAT Solvers
@ Further Improvements

@ Tractable subclasses of SAT

e Random k-SAT and Phase Transition

e Advanced Functionalities: proofs, unsat cores, interpolants,
optimization
@ Appl. #1: (Bounded) Planning
@ Appl. #2: Bounded Model Checking

Q Some Applications

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

2/220

Basics on SAT

Boolean logic

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 4/220

Basic notation & definitions

@ Boolean formula

e T, L are formulas
o A propositional atom Ay, Az, As, ... is a formula;
o if 1 and ¢, are formulas, then

TP1, 1A P2, 01V P2, P1 > P2, P1 S P2, P15 P2
are formulas.

@ Atoms(y): the set {Aq, ..., Ay} of atoms occurring in .

@ Literal: a propositional atom A; (positive literal) or its negation —A;
(negative literal)

o Notation: if / := —A;, then =/ .= A;
o Clause: a disjunction of literals \/; /; (e.g., (A1 V Az V Az v ...))
@ Cube: a conjunction of literals A\; /j (e.g., (A1 A A2 N Ag A ...))

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 5/220

Basics on SAT

Semantics of Boolean operators

@ Truth table:

V1 w2 || 1 | 1AW | 1V P2 | 1 o | P1 & P2 | P12
. T 1 1 T T T
1 T T 1 T T 1 1
T 1 1 1 T i T 1
T T 1 T T T T T

Note

@ A,V and < are commutative:
(P1 Ap2) = (p2Ae1)
(p1Vpa) = (p2Ve1)
(1 < p2) = (p2 < ¢1)
@ A and V are associative:
((p1 Ap2) ANps) <= (o1 A(p2 Ap3)) <= (1 A2 A ps)
(1 Vp2) Vpz) <= (p1V(p2Vp3)) < (p1Vp2Ves)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

6/220

Basics on SAT

Syntactic Properties of Boolean Operators

1
(1
—(1
(01
=(1
(801
=(e1
(991
—(1
(991

=1

Perreeeeeeeeey

©1

—(—1 A —2)

(—p1 A =p2)

—(—p1 V —e2)

(mp1 V 2)

(—ep1 V p2)

(01 A —p2)

(01 V —p2)

(=1 A p2)

(1 = @2) A (o1 92))

(51 V p2) A (@1 V —p2))

(—p1 ¢ w2)

(01 <> ~p2)
A

(1 V 2) A (mp1 V —2))

v

Boolean logic can be expressed in terms of {—, A} (or {—, V}) only

J

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

7/220

Basics on SAT

Tree and DAG representation of formulas: example

Formulas can be represented either as trees or as DAGS:

@ DAG representation can be up to exponentially smaller
(A1 < Az) < (Ag <> Ag)

<~

\
(((A1 <> A2) = (As < Ag))A
((A3 < A4) — (A1 < Ag)))
\
_>
—

(((A1 — A2) VAN (A2 — A1))
(((As — A4) A (As — Ag))

((A3 — A4) A (A4 — A3)))/\
(((A1 — A2) A (A2 — Ar))))

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

8/220

Basics on SAT

Tree and DAG repres. of formulas: example (cont)

Rn AR

Al A2 A2 Al A4 A4 A3 A4 A4 A3 Al A2 A2
Tree Representation

Al A2

DAG Representation

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

9/220

Basic notation & definitions (cont)

@ Total truth assignment p for ¢:
w: Atoms(p) — {T, L}.
@ Partial Truth assignment p for ¢:
w: A—{T, L}, A C Atoms(p).
@ Set and formula representation of an assignment:
@ . can be represented as a set of literals:
EX:{u(Ar) =T, u(Ae) = L} = {A1, A}
@ u can be represented as a formula (cube):
EX: {u(A1) =T, u(A2) := L} = (A1 A—-A2)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

10/220

Basics on SAT

Basic notation & definitions (cont)

@ a total truth assignment p satisfies ¢ (1 = ¢):
o nEA = ulA)=T
pE e = notp =g
WE @1 A p2 = = and p = p2
BWE @1V g2 < pl=pr0rpl= ez
BEp1 = p2 <= If =1, then p = g2
o pEpr1 o= pEpiff pl= 2
@ a partial truth assignment 1 satisfies ¢ iff it makes ¢ evaluate to
true (Ex: {A1} E (A1 V A2))
— if u satisfies ¢, then all its total extensions satisfy ¢
(EX: {A1,A2} ': (A1 V A2) and {A1 , —\Ag} ': (A1 V A2))
@ ¢ is satisfiable iff u = ¢ for some

@ 1 entails 2 (p1 | w2): o1 [w2 iff = o1 = p = @2 for every p
@ pisvalid (= ¢): E ¢ iff u = ¢ for every u

Property J

p is valid <= —¢ is not satisfiable

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 11/220

Basics on SAT

Equivalence and equi-satisfiability

@ ¢ and po are equivalent iff, for every u,
pE= o iff p = o
@ 1 and p» are equi-satisfiable iff
exists uq S.t. w1 | 1 iff exists pp st po = w2
@ 1, Yo equivalent
4
1, w2 equi-satisfiable
@ EX: A; vV Az and (Ay VvV —A3) A (Az V As) are equi-satisfiable, not
equivalent.
{—\A1,A2,A3}): (A1 V Ag), but
{—\A1 , Ag, A3} l;é (A1 V —|A3) A (A3 V Ag)
@ Typically used when o5 is the result of applying some
transformation 7 to ¢1: o & T(1):
we say that T is validity-preserving [satisfiability-preserving] iff
T(¢1) and ¢1 are equivalent [equi-satisfiable]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 12/220

Complexity

@ For N variables, there are up to 2N truth assignments to be
checked.

@ The problem of deciding the satisfiability of a propositional formula
is NP-complete

@ The most important logical problems (validity, inference,
entailment, equivalence, ...) can be straightforwardly reduced to
satisfiability, and are thus (co)NP-complete.

Y

No existing worst-case-polynomial algorithm.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 13/220

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.
@ Positive/negative occurrences

@ occurs positively in ;
e if =y occurs positively [negatively] in ¢,
then ¢ occurs negatively [positively] in ¢
o if o1 A w2 OF 1 V o Occur positively [negatively] in ¢,
then ¢1 and o2 occur positively [negatively] in ¢;
e if o1 — o occurs positively [negatively] in ¢,
then ¢1 occurs negatively [positively] in ¢ and ¢, occurs positively
[negatively] in ¢;
o if 1 <> o OCCUrs in ¢,
then ¢ and 2 occur positively and negatively in ;

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 14/220

Basics on SAT

Negative normal form (NNF)

@ ¢ is in Negative normal form iff it is given only by the recursive

applications of A, V to literals.
@ every o can be reduced into NNF:
(i) substituting all —’s and +’s:

1> p2 = Tp1 V2
P12 = (71 Vp2) A(p1V p2)
(i) pushing down negations recursively:
“(p1 Ap2) = —p1V o2

(1 Vp2) = @1 A
TP = ¥

@ The reduction is linear if a DAG representation is used.
@ Preserves the equivalence of formulas.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

15/220

NNF: example

(A1 ¢ A2) <> (A3 < Ag)
A8
((((A1 = A2) A (A1 < A2)) = ((As — Ag) A (Ag « Ag)))A
(A1 = A2) A (A1 < A2)) < ((As — Ag) A (A3 < Ag))))
I
(=((=A1 VA2) A (A1 V =A2)) V ((mA3 V Ag) A (A3 V =Ag)))A
(A1 V A2) A (A1 V =A2)) V =((mA3 V Ag) A (A3 V —A))))
(8
((((A1 A=A2) V (AT A A2)) V ((mA3 V Ag) A (Ag V —=A)))N
(A1 V A2) A (A1 V —A2)) V ((As A =Ag) V (A3 A Ag))))

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

16/220

Basics on SAT

NNF: example (cont)

———
0 \)@
A T AR SR

Tree Representation

@

e
f&\f@\ < ?D

DAG Representation

Note

For each non-literal subformula ¢, ¢ and -y have different
representations = they are not shared.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 17/220

Optimized polynomial representations

And-Inverter Graphs, Reduced Boolean Circuits, Boolean Expression
Diagrams

@ Maximize the sharing in DAG representations:

{A, <+, =}-only, negations on arcs, sorting of subformulae, lifting of
—’S Over «<»’s,...

redtce

(D
o&0

P
N
[

Z T

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 18/220

Basics on SAT

Conjunctive Normal Form (CNF)

@ ¢ is in Conjunctive normal form iff it is a conjunction of
disjunctions of literals:

L K
AV
=1 ji=1

@ the disjunctions of literals \/j’.,i1 i are called clauses

@ Easier to handle: list of lists of literals.
= no reasoning on the recursive structure of the formula

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 19/220

Classic CNF Conversion CNF ()

@ Every ¢ can be reduced into CNF by, e.g.,
(i) converting it into NNF (not indispensible);
(ii) applying recursively the DeMorgan’s Rule:
(p1 Ap2) Vs = (1 Ve3) A(p2V p3)
@ Worst-case exponential.
@ Atoms(CNF(p)) = Atoms(y).
@ CNF(y) is equivalent to .
@ Rarely used in practice.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 20/220

Labeling CNF conversion CNFapei(¢)

@ Every ¢ can be reduced into CNF by, e.g., applying recursively
bottom-up the rules:
p = ol(hV])|BIACNF(B < (hv)
o = ¢[(i A)IBIACNF(B + (I A]})
p = ol(< [)|BI A CNF(B ¢ (I + I}))
I;, I being literals and B being a “new” variable.
@ Worst-case linear.
@ Atoms(CNF apei()) 2 Atoms(y).
@ CNFapei(ip) is equi-satisfiable w.r.t. ¢.

@ More used in practice.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

21/220

Labeling CNF conversion CNFape/(p) (cont.)

CNF(B< (V1) <<=

CNF(B< (in])) =

CNF(B < (I < [)) <

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 22/220

Basics on SAT

Labeling CNF conversion CNF/pe) — example

BlS@

BS BG B8 \

—A3 Al A5 -A4 -A3 A4 A2 -A6 Al A4 A3 —Ai -A2 Aﬁ Al A4

CNF(B1 <~ (—|A3 \Y A1))

CNF(By < (A1 V —-Ay))
CNF(BQ <~ (B1 — Bz))

CNF(B12 > (B7 A Bg))
CNF(B13 A nd (Bg \Y B10))
CNF(B14 > (Bn V B12))
CNF(B15 > (813 A B14))
Bis

>>>>>>>> >

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 23/220

Labeling CNF conversion CNF/zpe (improved)

@ As in the previous case, applying instead the rules:

o = ol(hV])B] ACNF(B (/vl,)) if (I V 1) pos.
¢ = ol(ivIBl A~CNF((lvI)— B) if (V) neg.
o — Gllin])Bl ACNEB—(hAL) if (1AL pos
o = ol(iAL)B] ACNF((liAf)— B) if (lA]) neg.
o = ol(h e [)IB] A CNF(B— (h })) if (I & |) pos
¢ = ol(li< Bl ACNF((li <+) = B) if (I < ;) neg

@ Smaller in size:

CNF(B— (V1) = (=BV V)
CNF(((li v) = B)) = (=i v B)A (=l B)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 24/220

Labeling CNF conversion CNFape/(p) (cont.)

CNF(B— (V1)) <= (-BVIVl)
CNF(B+ (V1)) <= (BV-hA
(BV-l)
CNF(B = (linh)) <= (=BVI)A
(=B V)
CNF(B+ (iN])) <= (BV i)
CNF(B— (li <+ })) <= (=BV -V A
(=B V IV =)
CNF(B<« (li < 1)) <= (BVIVI)A
(BV =liv—l)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 25/220

Basics on SAT

Labeling CNF conversion CNF/pe) — example

/ms@\@

ila ? \

—A3 Al A5 -A4 -A3 A4 A2 -A6 Al A4 A3 -A5 -A2 A6 Al -A4
Basic Improved

CNF(B1 > (—|A3 V A1)) A CNF(B1 <~ (—\A3 \ A1)) N
A A
CNF(Bg e (A1 Vv ﬁA4)) AN CNF(Bg — (A1 Vv ﬁA4)) A
CNF(BQ > (B1 <~ Bg)) A CNF(Bg — (B1 <~ Bz)) A
A A
CNF(B12 L d (B7 74\ Bg)) N CNF(B12 — (B7 A Bg)) N
CNF(B13 > (Bg \Y B1o)) A CNF(B13 — (Bg \Y B10)) N
CNF(B14 — (B11 Vv B12)) A CNF(B14 — (B11 Vv B12)) A
CNF(B15 L d (B13 A B14)) N CNF(B15 — (B13 N B14)) N
Bis Bis

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 26/220

Basics on SAT

Labeling CNF conversion CNF/4e — further
optimizations

@ Do not apply CNF,.p¢) Wwhen not necessary:
(e.9-; CNFjapei(1 N p2) = CNFjapei(p1) A 92,
if po already in CNF)
@ Apply Demorgan’s rules where it is more effective: (e.g.,
CNFapei(01 N (A — (BAC))) = CNFiapei(i01) AN (=AY B)A(-AV C)
@ exploit the associativity of A’s and V’s:
(A1 V (A2 V As)) e = CNF(B — (A1 V AV A3))
B
@ before applying CNF e/, rewrite the initial formula so that to
maximize the sharing of subformulas (RBC, BED)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 27/220

Basic SAT-Solving techniques

Truth Tables

@ Exhaustive evaluation of all subformulas:

P12 || P12 | p1 V2| p1 = 2 | P12
1 L 1 1 T T
1 T 1 T T 1
T L 1 T 1 1
T T T T T T

@ Requires polynomial space (draw one line at a time).

@ Requires analyzing 2/407s(#)! |ines.

@ Never used in practice.

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

29/220

Resolution [49, 15]

@ Search for a refutation of ¢
@ ¢ is represented as a set of clauses

@ Applies iteratively the resolution rule to pairs of clauses containing
a conflicting literal, until a false clause is generated or the
resolution rule is no more applicable

@ Many different strategies

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 30/220

Basic SAT-Solving techniques

Resolution Rule

@ Resolution of a pair of clauses with exactly one incompatible

variable:
common resolvent c’ common resolvent c”
—_——— =~ ’/ ,\ ——— N ’” ,\,
(hv..vViv | VgV Vi) (hv..Viv =l VvV q4V..VI)
(hV VIV gy VoV VvV
————
common c’ cr
o EXAMPLE:
(AvB vV C v DVE) (AvB vV -C Vv F)

(AvBvV DVE Vv F)

@ NOTE: many standard inference rules subcases of resolution:

A—-B B—-C +y A A—>B -B A—B
A5 C (Transit.) 5 (M. Ponens) ay

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 31/220

Basic SAT-Solving techniques

Resolution Rules [15, 14]: unit propagation

@ Unit resolution:
I A () A (=1 V)

A ANV)

@ Unit subsumption:
ANV V)

N

@ Unit propagation = unit resolution + unit subsumption

“Deterministic” rule: applied before other “non-deterministic” rules!)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 32/220

Basic SAT-Solving techniques

Resolution: basic strategy [15]

function DP(T)

if Lel /* unsat */
then return False;

if (Resolve() is no more applicable to I') /* sat */
then return True;

if {a unit clause (/) occurs in I'} /* unit */
then T := Unit_Propagate(l,T));
return DP()

A = select-variable(T'); /* resolve */

M =TUUacc —accr{Resolve(C’, C")} \ Uacer~accr{C, C"}

return DP()

Hint: drops one variable A € Atoms(I') at a time)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 33/220

Basic SAT-Solving techniques

Resolution: Examples

(A1 VAQ) (A1 V —|A2) (—\A1 \/A2) (—\A1 V _\A2)

(Az) (A2V —Az) (mA2V Az) (—A2)

I

(
I
L

= UNSAT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

34/220

Basic SAT-Solving techniques

Resolution: Examples (cont.)

(AV BV C) (BV~CV~F) (-BV E)

U
(AVCVE) (~CV ~FV E)

I
(Av EV—F)

= SAT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 35/220

Basic SAT-Solving techniques

Resolution: Examples

(AV B) (AV-B) (-AV C) (~AV ~C)

U
(A) (~AV C) (AV -C)

(€) (=0)

I

(
I
L

= UNSAT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

36/220

Basic SAT-Solving techniques

Resolution — summary

@ Requires CNF

@ [may blow up
— May require exponential space

@ Not very much used in Boolean reasoning (unless integrated with
DPLL procedure in recent implementations)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 37/220

Basic SAT-Solving techniques

Semantic tableaux [55]

@ Search for an assignment satisfying ¢
@ applies recursively elimination rules to the connectives

@ If a branch contains A; and —A;, (; and —;) for some i, the
branch is closed, otherwise it is open.

@ if no rule can be applied to an open branch p, then = ¢;
@ if all branches are closed, the formula is not satisfiable;

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 38/220

Basic SAT-Solving techniques

Tableau elimination rules

P1 N\ p2

(et V) (1 = p2)
1 K2 1 L
222 ﬁégz fcpg (A-elimination)
‘7‘799 . . .
® (——-elimination)
1V (et Ap2) o1 = S
P12 TP T2 TP P2 (v-elimination)
01 ¢ w2 (et < p2)
o1 TP P T L
P2 T2 T2 P2 («+ -elimination).

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

39/220

Basic SAT-Solving techniques

Semantic Tableaux — example

Y= (A1 V A2) A (A1 V —\Ag) A (—\A1 V Ag) A (—\A1 V —\Ag)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 40/220

Basic SAT-Solving techniques

Tableau algorithm

function Tableau(I")

ifAjeland -A; el /* branch closed */
then return False;

if (01 Ap2) el /* A-elimination */
then return Tableau(l' U {¢1, o2} \{(¢1 A ©2)});

if (-—pq) el /* ——-elimination */
then return Tableau(l" U {¢1 }\{(——¢1)});

if (01 Vo) el /* v-elimination */

then return Tableau(T U {p1}\{(v1 V ¢2)}) or
Tableau(T U {p2}\{(1 V ¥2)});

return True; /* branch expanded */

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 41/220

Basic SAT-Solving techniques

Semantic Tableaux — summary

Handles all propositional formulas (CNF not required).

Branches on disjunctions

Intuitive, modular, easy to extend
= loved by logicians.

Rather inefficient
—> avoided by computer scientists.

Requires polynomial space

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 42/220

DPLL [15, 14]

@ Davis-Putnam-Longeman-Loveland procedure (DPLL)

@ Tries to build an assignment p satisfying ¢;

@ At each step assigns a truth value to (all instances of) one atom.
@ Performs deterministic choices first.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 43/220

DPLL rules

o1 A (1)
o1[/IT]

(Unit)

»
U] (I Pure)

\

AT el P

(/'is a pure literal in ¢ iff it occurs only positively).

@ Split applied if and only if the others cannot be applied.
@ Richer formalisms described in [57, 44, 45]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 44/220

DPLL — example

@ = (A1 VA2) A (A1 V 2A2) A (A1 V A2) A (A1 V A7)

Al -Al

A2 A2

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 45/220

Basic SAT-Solving techniques

DPLL Algorithm
function DPLL(p, 1)
ifo=T /* base */
then return True;
ifo=1 /* backtrack */
then return False;
if {a unit clause (/) occurs in ¢} /* unit */
then return DPLL(assign(l, p), A1),
if {a literal / occurs pure in ¢} /* pure */
then return DPLL (assign(l, v), u A 1);
= choose-literal (y); /* split */

return DPLL(assign(l,¢),u A1) or
DPLL (assign(—l,), u A —l);

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

46/220

DPLL — summary

Handles CNF formulas (non-CNF variant known [2, 25]).

Branches on truth values
= all instances of an atom assigned simultaneously

Postpones branching as much as possible.
Mostly ignored by logicians.

(The grandfather of) the most efficient SAT algorithms
= loved by computer scientists.

@ Requires polynomial space
@ Choose_literal() critical!
@ Many very efficient implementations [61, 54, 4, 43].

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 47/220

Ordered Binary Decision Diagrams (OBDDs) [12]]

Canonical representation of Boolean formulas

@ “If-then-else” binary direct acyclic graphs (DAGs) with one root
and two leaves: 1,0 (or T, L;or T, F)

@ Variable ordering A1, Ao, ..., A, imposed a priori.

@ Paths leading to 1 represent models
Paths leading to 0 represent counter-models

Note

Some authors call them Reduced Ordered Binary Decision Diagrams
(ROBDDs)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 48/220

OBDD - Examples

OBDDs of (ay <» by) A (a2 <» b2) A (as < bs) with different variable
orderings

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 49/220

Basic SAT-Solving techniques

Ordered Decision Trees

@ Ordered Decision Tree: from root to leaves, variables are
encountered always in the same order

@ Example: Ordered Decision tree for ¢ = (a A b) V (¢ A d)

ONIRO ©
@ é @
NIFL

3%

@/

S ORON
_;A/@‘ -~

@/

%

Ow- _
Ow-
Yy
_L‘/
-
—

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

50/220

Basic SAT-Solving techniques

From Ordered Decision Trees to OBDD'’s: reductions

@ Recursive applications of the following reductions:
e share subnodes: point to the same occurrence of a subtree
(via hash consing)
e remove redundancies: nodes with same left and right children can
be eliminated (“if Athen Belse B" = “B")

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 51/220

Reduction: example

Basic SAT-Solving techniques

Recursive structure of an OBDD

Assume the variable ordering A+, Ao, ..., Ap:

OBDD(T,{A1,As, ..., An}) = 1
OBDD(L,{A1,As, ..., As}) = 0
OBDD(p, {A1, A, ..., An}) = Iif A
then OBDD(¢[A1|T], {As, ..., An})
else OBDD(y[A1| L], {As, ..., An})

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 53/220

Incrementally building an OBDD

e obdd_build(T,{..}) =1,
@ obdd build(L,{..}) := o,
e obdd build(A;, {...}) := ite(A;, 1,0),

@ obdd_build((—¢),{Aq, ..., An}) :==
apply (—, obdd_build(p,{A1, ..., An}))
@ obdd_build((¢1 op ¢2),{A1,...,An}) :=
reduce(
apply(op,
obdd_build(p1,{A1,....,An}), op € {NV,—, +}
obdd_build(p2,{A1,...,An})
))

“ite(Ai, o, i) is “If A; Then ¢ Else ;"

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

54/220

Incrementally building an OBDD (cont.)

@ apply (op, O;,0)) == (0; 0p O;) if(0;, 0 € {1,0})
@ apply (-, ite(Ai, ¢/ , i) =
ite(A;, apply (=, ¢), apply (=, 7))
o apply (op, ite(Ar, o] o), ite(A,,so,-Tw#)) =
if (A; = A;) then ite(A;, apply (op, @, 45 bl
)

apply (op, 99, ,%7))
if (A; < A)) then ite(A;, apply (op, 99, | ite(A; Lr 1),
apply (op, ;- ite(A o #P,)
if (4 > A)) then ite(4;, apply (op, ite(A ,,c,o, ¥)0)y
apply (op. ite(Ai, ¢/ . ¢}),)

op € {A,V,—, <}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 55/220

Incrementally building an OBDD (cont.)

@ Ex: build the obdd for A; VV A, from those of Ay, As (order: Ay, Ao):
Ay Az
apply(V,ite(Ay, T, L), ite(Az, T, 1))
= ite(Aq, apply(Vv, T,ite(A,T,L)), apply(V, L, ite(A2, T, 1)))
= ite(Ay, T, ite(As, T, 1))
@ Ex: build the obdd for (A; v A2) A (A vV =Az) from those of
(A1 V Az), (A Vv —A) (order: Ay, Ay):
(A1VAz) (A1V—Az)
apply (A, ite(Aq, T,ite(Az, T, 1)), ite(Aq, T,ite(Az, L, T)),
= ite(Aq, apply(A, T,T), apply(A, ite(As, T, L), ite(Az, L, T))
= ite(Ay, T, ite(Az, apply(N, T,L1), apply(A, L, T)))
= te(Ay, T, ite(Az, L, 1))
= /te(A1 1)
Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 56/220

Basic SAT-Solving techniques

OBBD incremental building — example
Y= (A1 V A2) A (A1 V —\Ag) A (—\A1 V Ag) A (—\A1 V —\Ag)

(AlvA2) (Alv -A2) (-A1VA2) (-A2 v -A2)

@, @

(Al v A2)~ (Al v -A2) (AL v A2) A (-Alv -A2)

(ALv A2) A (ALV -A2) A (-AlvA2) A (-Al v -A2)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 57/220

Basic SAT-Solving techniques

Critical choice of variable Orderings in OBDD’s

(31 > b1) VAN (32 — bg) A (83 — b3)

Linear size Exponential size
Sebastiani Cap. 1: Propositional Satisfiability (SAT) Friday 22nd May, 2020 58/220

Basic SAT-Solving techniques

OBDD’s as canonical representation of Boolean
formulas

@ An OBDD is a canonical representation of a Boolean formula:
once the variable ordering is established, equivalent formulas are
represented by the same OBDD:

01 ¢ p <= OBDD(p1) = OBDD(y)

@ equivalence check requires constant time!
—validity check requires constant time! (¢ < T)
=—(un)satisfiability check requires constant time! (¢ +> 1)

@ the set of the paths from the root to 1 represent all the models of
the formula

@ the set of the paths from the root to 0 represent all the
counter-models of the formula

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 59/220

Exponentiality of OBDD’s

@ The size of OBDD’s may grow exponentially wrt. the number of
variables in worst-case

@ Consequence of the canonicity of OBDD’s (unless P = co-NP)

@ Example: there exist no polynomial-size OBDD representing the
electronic circuit of a bitwise multiplier

Note

The size of intermediate OBDD’s may be bigger than that of the final
one (e.g., inconsistent formula

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 60/220

Useful Operations over OBDDs

@ the equivalence check between two OBDDs is simple
e are they the same OBDD? (= constant time)

@ the size of a Boolean composition is up to the product of the size
of the operands: |f op g| = O(|f| - |g|)

AT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 61/220

Basic SAT-Solving techniques

Boolean quantification

Shannon’s expansion:

@ If vis a Boolean variable and f is a Boolean formula, then
dv.f = f‘vzo\/f‘v:1

@ v does no more occur in 3v.f and Vv.f !l

@ Multi-variable quantification: J(wy, ..., wy).f == Jwy ... 3w,.f

@ Intuition:
o u E3Jv.fiffexists tvalue € {T, 1} s.t. pU{v:=tvalue} = f
o u E=Vv.fiffforall tvalue € {T, L}, pU{v := tvalue} = f

@ Example: 3(b,c).((anb)Vv(cAd)) = avd

Note

Naive expansion of quantifiers to propositional logic may cause a
blow-up in size of the formulae

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 62/220

Basic SAT-Solving techniques

OBDD’s and Boolean quantification

@ OBDD’s handle quantification operations quite efficiently

o if fis a sub-OBDD labeled by variable v, then f|,—y and f|,—o are
the “then” and “else” branches of f

— lots of sharing of subformulae!

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 63/220

OBDD — summary

@ Factorize common parts of the search tree (DAG)
@ Require setting a variable ordering a priori (criticall)
@ Canonical representation of a Boolean formula.

@ Once built, logical operations (satisfiability, validity, equivalence)
immediate.

@ Represents all models and counter-models of the formula.
@ Require exponential space in worst-case

@ Very efficient for some practical problems (circuits, symbolic
model checking).

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 64/220

Incomplete SAT techniques: GSAT, WSAT [53, 52]

@ Hill-Climbing techniques: GSAT, WSAT

@ looks for a complete assignment;

@ starts from a random assignment;

@ Greedy search: looks for a better “neighbor” assignment
@ Avoid local minima: restart & random walk

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 65/220

The GSAT algorithm [53]

function GSAT(p)
for i := 1 to Max-tries do
1 = rand-assign(y);
for j := 1 to Max-flips do
if (score(p, 1) = 0)
then return True;
else Best-flips := hill-climb(y, 1);
A; := rand-pick(Best-flips);
p = flip(A;, p);
end
end
return “no satisfying assignment found”.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

66/220

The WalkSAT algorithm(s) [52]

function WalkSAT(p)
for i := 1 to Max-tries do
u = rand-assign(y);
for j := 1 to Max-flips do
if (score(p, 1) = 0)
then return True;
else C := randomly-pick-clause(unsat-clauses(y,));
A, = heuristically-select-variable(C);
w = flip(Aj, 1);
end
end
return “no satisfying assignment found”.

@ many variants available [27, 58, 5]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 67/220

Basic SAT-Solving techniques

SLS SAT solvers — summary

Handle only CNF formulas.

Incomplete

Extremely efficient for some (satisfiable) problems.
Require polynomial space

Used in Artificial Intelligence (e.g., planning)

Lots of variants (see e.g. [31])

Non-CNF Variants: [50, 51, 6]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 68/220

Variants of DPLL

DPLL is a family of algorithms.
@ backjumping & learning
@ preprocessing: (subsumption, 2-simplification, resolution)
@ different branching heuristics
@ restarts
@ (horn relaxation)
° ..

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 70/220

“Classic” chronological backtracking

DPLL implements “classic” chronological backtracking:
@ variable assignments (literals) stored in a stack
@ each variable assignments labeled as “unit”, “open”, “closed”

@ when a conflict is encountered, the stack is popped up to the most
recent open assignment /

@ /is toggled, is labeled as “closed”, and the search proceeds.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 71/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

C1

Co :
C3:
Cy4 :
Cs :
. —As V —Ag
Ay VAV A
t Ay V Ag

Cs
c7
Cs

Co :

Cap. 1: Propositional Satisfiability (SAT)

i AV A

-Ai V A3V Ag
-A> VvV —A3V Ay
=AsV As V Aqg
—AsV As V Aqq

—A7 V —Ag V —Aj3

A
ﬁA{O\
AN

Friday 22" May, 2020

72/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

Cq:
Co :
C3:
Cyq :
Cs :
Cs :

cy
Cs
Cg

V Ao ﬁA&f
V As Vv BALN
=AsV —A3 V Ay ﬂAﬁ\
—AsV Ag Vv :
-AsV Ag V A132/
—As V —Ag Ay
c AV A7V v :
t Ay VvV Ag \/
i A7V —Ag Vv A/

{.-s2Ag, 7A10, 7A11, A1z, Az, oy At}
... (branch on Ay)

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

73/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

Cq:
Co :
C3:
Cyq :
Cs :
1 A5 V - Ag
AT VAV
t AV Ag

Cs
cy
Cs

Co :

V Ao

V Az VvV

V
—AsV Ag VvV
—AsV A V

-A7 vV —Ag

V Ag

V

Vv
N

N
Vv

—As,
—AN
AN

A

A

A .
A
As

{...; A9, 2A10, 7A11, At2, A1, .., A1, Az, A3}
(unit Ag,A3)

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

74/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

Cq:
Co :
C3:
Cyq :
Cs :

Cs
cy
Cs
o]

VA vi
V Az VvV V
V VAL
V As V
V Ag V
1 A5 V - Ag
AT VAV V
t AV Ag V
i A7V —Ag Vv

—As,
—AN
AN

A

A/

{..;7Ag, 2A10, A1, At2, A1, o, At, Az, As, Ag)
(unit Ay)

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

75/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

Cq: V Ao \/ ﬁA&i
Co . V Az V v ﬁA1k
C3: Vv VA, AR\
Cy : V As V \/ A 2/
Cs : V As V V 3
Cs : V X A1?/
cr: AV AV v :
Cg: A1V Ag v
Co: "A7V —AgV AA

A;

n

2

X

{...,7Ag, —A10, ~A1-p,1, A12, A1z, ..., A1, Ao, Ag, Ay, As, As}
(unit As, Ag)=—> conlflict

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 76/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

Cy

Co .
AV —Az VA

C3

Cy4 :
Cs :
Cs :
A VAV
t AV Ag

c7
Cs

Co :

{.-s2Ag, 7A10, = A11, Ar2, Atz ..
— backtrack up to A,

Cap. 1: Propositional Satisfiability (SAT)

1 —AV A

-Ai VA3V
=AsV As VvV

=AsV A V
-As V —Ag

-A7V -Ag VvV

ﬁAA:
ﬁA{O\
ﬁA1;\
A1/
A1/

}

Friday 22" May, 2020

771220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

Cy

Co .
: AV —A3 VA

C3

Cy4 :
Cs :
Cs :
C7:
Cs :
Co :

{.-s2Ag, 7A10, = A11, Ar2, Atz ..

1 —AV A \/

-A; VA3V vV

—AsV As VvV
—AsV Ag V
—As V ~Ag
VA7V
v Ag
-A7V -Ag VvV

(unit —Ay)

Cap. 1: Propositional Satisfiability (SAT)

—As,
~AN
AN

A

A1/

Friday 22" May, 2020

78/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

Cy

Co .
: AV —A3 VA

C3

Cy4 :
Cs :
Cs :
C7:
Cs :
Co :

{.-s2Ag, 7A10, = A11, Ar2, Atz ..
(unit A7, Ag) = conflict

Cap. 1: Propositional Satisfiability (SAT)

1 —AV A

-Ai VA3V

=AsV As VvV
=AsV A V
—As V ~Ag
VA7V
V Ag
V \%

J
Vv

X <

—As,
—AN
AN

A

A

A —\A1
A

A3 A;

Al X

,0A1, A7, Ag}

Friday 22" May, 2020

79/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

C1

Co :
:=AV —A3 VAL

C3

Cyq :
Cs :
Cs :
AT VAV DA
c Ay V Ag

c7
Cs

Co :

{.-s A9, A1, = A11, Ar2, Ags, ..

:—ALV A

-Ai VA3V
—=AsV As VvV

—AsV A V
=As V —Ag

-A7 VvV —Ag V —Aj3

ﬂAA:
ﬁA{O\
ﬁA1;\
A1/
Ay

}

—> backtrack to the most recent open branching point

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

80/220

Modern CDCL SAT Solvers

Classic chronological backtracking — example

C1

Co :
:=AV —A3 VAL

C3

Cyq :
Cs :
Cs :
AT VAV DA
c Ay V Ag

c7
Cs

Co :

{.-s A9, A1, = A11, Ar2, Ags, ..

:—ALV A

-Ai VA3V
—=AsV As VvV

—AsV A V
=As V —Ag

-A7 VvV —Ag V —Aj3

ﬂAA:
ﬁA{O\
ﬁA1}\
A/

}

= lots of useless search before backtracking up to Aq3!

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

81/220

Modern CDCL SAT Solvers

Classic chronological backtracking: drawbacks

@ often the branch heuristic delays the “right” choice

@ chronological backtracking always backtracks to the most recent
branching point, even though a higher backirack could be possible
= lots of useless search!

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 82/220

Conflict-Driven Clause-Learning SAT solvers
Conflict-Driven Clause-Learning (CDCL) SAT solvers

Conflict-Driven Clause-Learning (CDCL) SAT solvers [54, 43, 18, 37]
@ Evolution of Davis-Putnam-Longeman-Loveland (DPLL) [15, 14]
@ non-recursive: stack-based representation of data structures
@ Perform conflict-directed backtracking (backjumping) and learning

o efficient data structures for doing and undoing assignments
(e.g., two-watched-literal scheme)

@ perform search restarts
o ...

Dramatically efficient: solve industrial-derived problems with ~ 10’
Boolean variables and ~ 107 — 108 clauses!

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 84/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Stack-based representation of a truth assignment

3]01 - i --> Co

@ assign one truth-value at a time (add one l°2 T C°2
literal to a stack representing 1) __dec.levelO;

@ stack partitioned into decision levels: ey,

thg -+ --> Cy2
dec.level 1 | ... | .

@ one decision literal

o its implied literals

e each implied literal tagged with the
clause causing its unit-propagation ‘
(antecedent clause)

decision literal 'ly

tng =+ - -> Cp

implied literals

tnz =+ - == Cpg

dec. level N |-~

@ equivalent to an implication graph

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 85/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Implication graph

@ An implication graph is a DAG s.t.:
each node represents a variable assignment (literal)
each edge /; > | is labeled with a clause
the node of a decision literal has no incoming edges
all edges incoming into a node / are labeled with the same clause
C, st v oy s liffc ==l vV ..V =l V
(c is said to be the antecedent clause of /)
e when both / and —/ occur in the graph, we have a conflict.
@ Intuition:
e representation of the dependencies between literals in
e the graph contains /; — I,...,I, — [iff | has been obtained from
l, ..., I by unit propagation on ¢
e a partition of the graph with all decision literals on one side and the
conflict on the other represents a conflict set

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 86/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Implication graph - example

Ci:
Co:
C3:
Cy :
Cs:
Cs :
Cc7:
Cs :
: A7V —Ag V

Co

Cap. 1: Propositional Satisfiability (SAT)

V Ao
VA3V
\Y Vv Ay
V Ags Vv
V Ag V
V

A VAV

A1V Ag

LU XL

ﬁAA:
ﬂA{O\
ﬁA1;\
"
#y/

Friday 22" May, 2020 87/220

Conflict-Driven Clause-Learning SAT solvers
Unique implication point - UIP [63]

@ A node /in an implication graph is an unique implication point
(UIP) for the last decision level iff every path from the last decision
node to both the conflict nodes passes through /.

e the most recent decision node is an UIP (last UIP)
e all other UIP’s have been assigned after the most recent decision

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 88/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Unique implication point - UIP - example

Ct: V Ao \/
Co: VAV \/ ﬁAA}
Cs VoAV AL RAN
Cy: V Ag Vv \/ my»
Cs: V Ag vV V 2> . @
Cs : V X
¢ Ay VAV v An/
Cg: Ay V Ag V
Cg: A7V -AgV
A
Ay
. ﬁ?' C2 Cs
@ A is the last UIP A

@ A, is the 15t UIP Ag, @ ﬂ

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 89/220

Conflict-Driven Clause-Learning SAT solvers
Schema of a CDCL DPLL solver [54, 64]

Function CDCL-SAT (formula: ¢, assignment & pu) {

status := preprocess (p,u);
while (1) {
while (1) {
status := deduce (p,pu) ;
if (status == Sat)
return sSat;
if (status == Conflict) {
(blevel,n) := analyze_conflict (p,pu);
//n is a conflict set
if (blevel == 0)
return Unsat;
else backtrack (blevel, o, u);
}

else break;

}

decide_next_branch (o, pu) ;

} }

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

90/220

Conflict-Driven Clause-Learning SAT solvers
Schema of a CDCL DPLL solver [54, 64]

@ preprocess (¢, u) simplifies ¢ into an easier equisatisfiable
formula (and updates . if it is the case)

@ decide_next_branch (¢, 1) chooses a new decision literal
from ¢ according to some heuristic, and adds it to i

@ deduce (p, u) performs all deterministic assignments (unit), and
updates ¢, u accordingly.

@ analyze_conflict (p,) Computes the subset n of 1 causing
the conflict (conflict set), and returns the “wrong-decision” level
suggested by 7 (“0” means that 7 is entirely assigned at level 0,
i.e., a conflict exists even without branching);

@ backtrack (blevel, ¢,) undoes the branches up to blevel,
and updates ¢, i accordingly

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 91/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Example
ci: A1V A
Co: A1V A3V Ag
C3: AV A3V Ay
C4: A4V A5V A
Cs: A4V Ag V Ay
Cs : A5V —Ag
c7: A1 VAV —As
cg: AV Ag
Cg : mA7V —Ag V —Aj3

—As\,
AN
AN (A

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

92/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Example
A

Cq: V A &

Co: VA3V _‘A1N
C3: —\Ag V ﬂA3 V A4 ﬁA1N
Cs: Ay V As VvV A :
C5: A4V Ag Vv 1/
Cs : —As V —Ag A‘?/
ALV A7V Y, 1
Cg: A1V Ag v

Cy: A7V —AgV A/

{.-s2Ag, 7As0, A1, Ar2, Az, o, At}
... (decide Aj)

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

93/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Example
| ao
Cq: V Ao V :
Co: V A3z Vv vV _‘A1N
C3: V V Ag ﬁA1N
Cq: Ay V AV A1/
C5: A4V Ag VvV 3 (el
Cs : ~As V —Ag A‘?/ @
c7: A VAV vV . o
Ccg: AV Ag Vv

Co :

-A7 V —Ag V A/
7V A e (4

A
3 /oy

{.-s7Ag, 7As0, A1, Ar2, Az, s Ar, Ao, A}
(unit Ag,A3)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

94/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Example

Cq: V Ao \/
Co: V A3z Vv vV
C3: Vv VAL
Cy : V As V

Cs : V Ag V

Cs : ~As5 V —Ag

i ALV A7V .
cg: AV Ag Vv
Co: "A7V —AgV

S

ﬁA{O\

ECC

A1/

3
. (4)
Cs

C2
A (4)
Az
As
A4l C2

{.s7Ag, 7As0, A1, Ar, Arz, o, At Ao, Ag, Ag)
(unit Ag)

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

95/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Example
A
Cq: V A \/ &
Co: V A3z Vv \/ _‘A1&3
Cs3: Y VAy SN
Cy : V As Vv \/ A1/ @
Cs : V As V Vv ! e
Cs : \ X A‘?/ @
or Ay A7 v v .
Cg: A1V Ag v
Co : A7V —Ag V Alj @
ﬂi L 4
5|
A OIS,
{1y A9, =As0, 7As-p1, Atz Ara, o A1, Ag, Az, Ay, As, As)

(unit As, Ag)=> conlflict

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 96/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Backjumping and learning: general ideas [4, 54]

@ When a branch fails:
(i) conflict analysis: reveal the sub-assignment n C p causing the
failure (conflict set n)
(ii) learning: add the conflict clause C & - to the clause set
(iii) backjumping: use 7 to decide the point where to backtrack
@ may jump back up much more than one decision level in the stack
= may avoid lots of redundant search!!.
@ we illustrate two main backjumping & learning strategies:

o the original strategy presented in [54]
e the state-of-the-art 15!UIP strategy of [63]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 97/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Conflict analysis

1. C := falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of the
last unit-propagated literal /in C
until C verifies some given termination criteria

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 98/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Conflict analysis and implication graph - example

Ci: V Ao vV
Co: VA3V V ﬁAﬁ Ist UIP
C3: V V Ay \/ ﬂA1N lastUIP_ -+ Gy
Cy: Vv As VvV V 1 ‘
-A
Cs : V Ag V v 1\
Co : V X A‘?/ 6
c7: A VAV \/ A1$/)
Cs : A1 V A8 \/ Conflict!
Gy - ~A7V ~Ag V e /e
p ,
i
Note: in this case decision ﬁj
and last-UIP criteria produce js
the same partition %

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 99/220

Conflict-Driven Clause-Learning SAT solvers
The original backjumping and learning strategy of [54]

@ Idea: when a branch y fails,
(i) conflict analysis: find the conflict set n C 1 by generating the

conflict clause C £ —) via resolution from the falsified clause
(conflicting clause) using the “Decision” criterion;

(ii) learning: add the conflict clause C to the clause set

(iii) backjumping: backtrack to the most recent branching point s.t.
the stack does not fully contain n, and then unit-propagate the
unassigned literal on C

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 100/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

2N

Cq: V Ao \/ :
Co: VA3V V _‘A1&1
C3: V VA, ﬁA1N
Cy : V As VvV \/ A1/
Cs : V Ag V V (o]
Cs : \ X Ay @
ALV A7V J
Cg: A1V Ag v
Co: "A7V —AgV A
Ay
ﬂi C> Cs

As

%, CRL,
{1y A9, As0, 7As-p1, Atz Ara, s A1, Ag, Az, Ay, As, As}
(unit As, Ag) —> conflict

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 101/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

A
Cq: Vv A \/ A
Co: AV AV Vi Ao\
C3: AV A3V Ay \/ ﬁA1N
Cy : V As V vV A :
Cs: /i VAgV Vv id
Ces : V X A1?/
c7:Ai VAV \/ ‘
cg: AV Ag V :
Cg: A7V -Ag V AA

As

Ay

ﬂs

%

— Conflict set: {—Ag, ~Aqg, 7A11, A1} (last-UIP schema)
— learn the conflict clause cig := Ag V A1g V A1q V —A;

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 102/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

—A1V A ﬁAAg\

Cy: 3
Co: A VAV ﬁA‘k
C3 1 AV —Ag V Ay SASN
Cs: Ay V AsV A /
1‘
C5: A4V Ag VvV 1
Cs : —As V —Ag As/
c7:Af VAV ;
Ccg: AV Ag
Co: "A7V —AgV s @ @
Cio : \Y \Y V —A4 As :

{.-., 7Ag, 2A10, “A11, A2, A3, ... }
— backtrack up to A,

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 103/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

C1

Co :

C3

Cq :
Cs :
Cs :
C7 .
Cs :
Co :
Ci0 :

{..

:—ALV A
-AiV A3V
: AV —A3 V Ay
—-AsV As Vv
-AsV Ag V
“As VA

VA7V

V Ag
-A7 VvV —Ag VvV

V V

, 7 Ag, A10, ~A11, A1z, A1s, ...

(unit =A;)

Cap. 1: Propositional Satisfiability (SAT)

v
Vi

vV -ArY

A A
_‘A1N Cio
RN
A1/ ﬁo
5
Cio
o @
A
Aj
Ay

ﬂs
4

, DAt}

Friday 22" May, 2020 104/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

C1

Co :

C3

Cq :
Cs :
Cs :
C7 .
Cs :
Co :
Ci0 :

{..., 7Ag, 2A10, 7A11, A12, A13, ...

:—ALV A \/
-Ai VA3V V
: AV —A3 V Ay
—-AsV As Vv
-AsV Ag V
“As VA
VA7V \/
V Ag vi
V V
V V vV —A1y/

(unit A7, Ag)

Cap. 1: Propositional Satisfiability (SAT)

AN
ﬁA{O\

A/

,mA1, A7, Ag}

Cio
Cio
Cg
(%4
Cio
&
o/

Friday 22" May, 2020 105/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

c1: A VA \/ ﬂA&f @

Co: A VAV vV ﬁA1N Cio

C3: AV A3V Ay —|A1N @

C4: ALV A5V A12/ Cro Cg

C5: A4V Ag Vv 3 Cg

Cs : A5V —Ag A';3/ Conﬂlct'

cy: VA7V V :,‘-.1

Cg: /1 VAg v

Co : V \% X AA —A;
\/ 2 Ag

Cio : V V V —A; Al | A

Ag

A &
{.-s 7Ag, 7As0, A1, Ar2, Az, oo, mAYL, A7, Ag)
Conflict!

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 106/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

Cy

Co .
C3:
:=ALV Ag Vv

Cs

Cs :
Cs :
C7:
Cs :
Co :
Cio :

:—ALV A

-Ai VA3V
=As VvV —A3 V Ay

—AsV Ag V
SAs V —Ag
VA7V
V Ag
V \%
V V

v
Vv

ﬂAA

— conflict set: {—\Ag, —|A107 —\A11,A12, A13} .
— learn Cy1 := Ag V Ajg V A11 V 2A12 V —Aj3

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 107/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

ci: A VA ﬂAA
Co . —|A1 \/A3 vV ﬁA{O\‘
C3: AV —Az V Ay ﬁA\
Cs: ALV A5V B
C5: ALV Ag V A1?/
Cs : ~As5 V —Ag A‘/V“-,
c7:Af VAV .
Ccg: AV Ag
Co : A7V —Ag V A ‘.—|A1 ’
Cio : \% V V —A; ﬂg ‘ A,
C1q : V V V V —\Awi XA&'"
As
B

— backtrack to Ai3 = Lots of search saved!

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

108/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

The original backjumping strategy — example

ci: A1V A ﬂ/@g
Co: Ay VA3V J\A{O
Cc3: AV -Az3 VA 3
3 2 3 4 _‘A1N
Cs:—AsV AV :
C5: ALV Ag V A1?/
Cs : A5V —Ag A134ﬁA1
Cy: VA7V s 1A
Cg : V Ag
Cg : mA7V —Ag V —Aj3 A,
Cio : V V V —A; A A
Ci1: AoV AN AV v ~ARY/L %
Ag
Ag
X

— backtrack to Aq3, set Az and Aq to L,...

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 109/220

Conflict-Driven Clause-Learning SAT solvers
State-of-the-art backjumping and learning [63]

@ Idea: when a branch y fails,
(i) conflict analysis: find the conflict set n C 1 by generating the

conflict clause C £ - via resolution from the falsified clause,
according to the 15!UIP strategy

(ii) learning: add the conflict clause C to the clause set

(iii) backjumping: backirack to the highest branching point s.t. the
stack contains all-but-one literals in 7, and then unit-propagate
the unassigned literal on C

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 110/220

Conflict-Driven Clause-Learning SAT solvers
1st UIP strategy — example (7)

~AdN Ist UIP

Ci: V A2 \/ 3
Co: V A3V i W‘HN} last UIP.. \§4
ANV o N
Cs : V < A1?/
c7:Af VAV v
Ccg: A1V Ag Vv X
Cg : A7V —Ag V A

As

Ay

ﬂ4

o)

— Conflict set: {=Aq0, 2A11, A4}, learn cqg := Ao V A11 V —Ay

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 111/220

Conflict-Driven Clause-Learning SAT solvers
1st UIP strategy and backjumping [63]

@ The added conflict clause states the reason for the conflict

@ The procedure backtracks to the most recent decision level of the
variables in the conflict clause which are not the UIP.

@ then the conflict clause forces the negation of the UIP by unit
propagation.

Eg Cig := Ao VA1 VA
— backtrack to Ay, then assign —A,

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 112/220

Conflict-Driven Clause-Learning SAT solvers
1st UIP strategy — example (7)

~AdN Ist UIP

Ci: V A2 \/ 3
Co: V A3V i W‘HN} last UIP.. \§4
ANV o N
Cs : V < A1?/
c7:Af VAV v
Ccg: A1V Ag Vv X
Cg : A7V —Ag V A

As

Ay

ﬂ4

o)

— Conflict set: {=Aq0, 2A11, A4}, learn cqg := Ao V A11 V —Ay

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 113/220

Conflict-Driven Clause-Learning SAT solvers
1st UIP strategy — example (8)

Cy

Co :
C3:
:=ALV As Vv

Cy

Cs :
Cs :
Ay VAV A
AV Ag

1 A7V —Ag V —Agg

cy
Cs
Cy

Cio :

— backtrack up to A1 = {...,

:—ALV A

-Ai VA3V
=As VvV —A3V Ay

—AsV Ag V
-As V —Ag

\Y V —Ay

A
ﬁA1\
ﬂA1\
A12/ .
Ay

~Ag, ~Ar0, <A1}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

114/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

1st UIP strategy — example (9)

c1: A VA ﬁAA
Co: Ay VA3V ﬁA{o\
Cc3: AV —AsV AE
C4:_|A4\/A5\/ \/ DB_‘A“
Cs: ~ALV Ag V Vv A
Cs : A5 V —Ag A13/ '
c7: AtV A7V A2 :
cg: A1V Ag
Cg : A7V —Ag V —Aj3 A p
Cio : V V —Ag/ Ao

Ay

ﬂ4

A

— unit propagate —A; = {..., 7Ag, “Ayp, A

Cap. 1: Propositional Satisfiability (SAT)

~A;

Cio

&

11, Ag ...

Friday 22" May, 2020

115/220

Conflict-Driven Clause-Learning SAT solvers
1st UIP strategy and backjumping — intuition

@ An UIP is a single reason implying the conflict at the current level
@ substituting the 1st UIP for the last UIP

e does not enlarge the conflict
e requires less resolution steps to compute C
e may require involving less decision literals from other levels

@ by backtracking to the most recent decision level of the variables
in the conflict clause which are not the UIP:
e jump higher
o allows for assigning (the negation of) the UIP as high as possible in
the search tree.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 116/220

Conflict-Driven Clause-Learning SAT solvers
Learning [4, 54]

Idea: When a conflict set 1) is revealed, then C & -n added to ¢
= the solver will no more generate an assignment containing 7:
when |n| — 1 literals in n are assigned, the other is set L by
unit-propagation on C

= Drastic pruning of the search!

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 117/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Learning — example

c1: A VA R
Co: Ay VA3V ﬁAA
C3: AV A3V Ay ﬁA1&
Cy4 : _\A4 V A5 V “A1N
C5: A4V Ag VvV A12/
Cs : A5V —Ag ﬁA1
c7:Ai VAV ﬁAwﬁ
cg: A1V Ag
Co : A7V —Ag V —Aj3 vV A QA1

. Al | A
C10 : V V V —A4 \/ Ad | As
Ci1: AV AV ALV V =A13v/ 23 X

— Unit: {_\A1 , —\A13}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 118/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Drawbacks of Learning & Clause discharging

Problem with Learning

Learning can generate exponentially-many clauses
@ may cause a blowup in space
@ may drastically slow down BCP

A solution: clause discharging

Techniques to drop learned clauses when necessary
@ according to their size
@ according to their activity.

A clause is currently active if it occurs in the current implication graph
(i.e., it is the antecedent clause of a literal in the current assignment).

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 119/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Drawbacks of Learning & Clause discharging

@ Is clause-discharging safe?
@ Yes, if done properly.

Property (see, e.g., [45])

In order to guarantee correctness, completeness & termination of a
CDCL solver, it suffices to keep each clause until it is active.

—> CDCL solvers require polynomial space

“Lazy” Strategy
@ when a clause is involved in conflict analisis, increase its activity
@ when needed, drop the least-active clauses

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 120/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

State-of-the-art backjumping and learning: intuitions

@ Backjumping: allows for climbing up to many decision levels in the
stack
@ intuition: “ go back to the oldest decision where you’d have done

something different if only you had known C”
= may avoid lots of redundant search

@ Learning: in future branches, when all-but-one literals in n are
assigned, the remaining literal is assigned to false by
unit-propagation:

e intuition: “when you’re about to repeat the mistake, do the opposite

of the last step”
—> avoid finding the same conflict again

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 121/220

Modern CDCL SAT Solvers Conflict-Driven Clause-Learning SAT solvers

Remark: the “quality” of conflict sets

@ Different ideas of “good” conflict set

e Backjumping: if causes the highest backjump (“local” role)
e Learning: if causes the maximum pruning (“global” role)

@ Many different strategies implemented (see, e.g., [4, 54, 63])

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 122/220

Modern CDCL SAT Solvers Further Improvements

Preprocessing: (sorting plus) subsumption

@ Detect and remove subsumed clauses:

ot AN(bVE)ANpa AV BV E)Aes
I
01 AN (hVE)ApaAps

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

124/220

Preprocessing: detect & collapse equivalent literals
[11]

Repeat:
(i) build the implication graph induced by binary clauses
(ii) detect strongly connected cycles = equivalence classes of literals
(iii) perform substitutions
(iv) perform unit and pure literal.
Until (no more simplification is possible).
e Ex:

P1 A (V) ANpa A=V R) A g A(=h Vi) A s
Vhosboh
(1 N2 A3 A pg)llo <l < k]
@ Very effective in many application domains.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 125/220

Modern CDCL SAT Solvers Further Improvements

Preprocessing: resolution (and subsumption) [3]

@ Apply some basic steps of resolution (and simplify):

1A (V) ANpa ARV =) Aps
Uresolve
1 A () A2 A s
Uunitfpropagate
(1 N2 A pa)[lo < T]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

126/220

Modern CDCL SAT Solvers Further Improvements

Branching heuristics

@ Branch is the source of non-determinism for DPLL
= critical for efficiency

@ many branch heuristics conceived in literature.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 127/220

Modern CDCL SAT Solvers Further Improvements

Some example heuristics

@ MOMS heuristics: pick the literal occurring most often in the
minimal size clauses
— fast and simple, many variants

@ Jeroslow-Wang: choose the literal with maximum
score(l) := Ljce g cep 271°

— estimates /’s contribution to the satisfiability of ¢

@ Satz [33]: selects a candidate set of literals, perform unit
propagation, chooses the one leading to smaller clause set
= maximizes the effects of unit propagation

@ VSIDS [43]: variable state independent decaying sum

e “static”: scores updated only at the end of a branch
o “local”: privileges variable in recently learned clauses

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

128/220

Restarts [26]

(according to some strategy) restart DPLL
@ abandon the current search tree and reconstruct a new one

@ The clauses learned prior to the restart are still there after the
restart and can help pruning the search space

@ may significantly reduce the overall search space

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 129/220

Tractable subclasses of SAT

Tractable subclasses of SAT

@ SAT in general is an NP-complete problem

@ Some subclasses of SAT are tractable
@ Two noteworthy tractable subclasses of SAT:

e Horn Formulas (Horn-SAT)
e 2-CNF formulas (2-SAT)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

131/220

Tractable subclasses of SAT

Horn Formulas

@ A Horn formula is a CNF Boolean formula s.t. each clause
contains at most one positive literal.
A1V -A
AoV —Az VvV —Ay
—As V A3 V —A4
Az
@ Intuition: implications between positive Boolean variables:
A2 — A1
(Az NAg) = A
(A5/\A3/\A4) — 1
A3

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

132/220

Formulas reducible to Horn

@ Remark: Some non-Horn formulas can be reduced to Horn by
simply renaming literals

A1V A A v -B
=A> V A3V —A, — BV -AzV -A
A5V = Az V — A4 B="Ae A5 v —Ag v Ay

Az Az

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 133/220

Tractability of Horn Formulas

Property
Checking the satisfiability of Horn formulas requires polynomial time J

Hint:

(i) Eliminate unit clauses by propagating their value;
= Every clause contains at least one negative literal.

(i) Assign all variables to | ;

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 134/220

A simple polynomial procedure for Horn-SAT

function Horn_SAT(formula », assignment & 1) {
Unit_Propagate(p,);
if (p==1)
then return UNSAT,
else {
pi=pUUgg {0A}
return SAT;

I

function Unit_Propagate(formula & ¢, assignment &)
while (¢ # T and ¢ # L and {a unit clause (/) occurs in ¢}) do {
p = assign(y, 1);
pi=pU{l};

I

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 135/220

Example

-A; V A VA3
A V=As3 VA,

—-As VA4
Az V—As
Aq

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 136/220

Tractable subclasses of SAT

Example
-A; V A VA3
Ay V-As V
-As V
Az V
Aq
p={Ay:=T}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 137/220

Example

-A; V A V
AV Vv
-As V
Az Vv
Aq

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 138/220

Example

-A; V V
AV v
-As V
Az Vv
Aq

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 139/220

Example

V vV X
Al V vV
-As V
Az Vv
Aq

W= {A4 = —|—7A3 = T7A2 = J_,A1 = T} = UNSAT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 140/220

Example 2

A VA

Ay V-A; VAL
Ay VA3

As

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 141/220

Example 2

A VA

Ay V-A; VAL
Ay vV

As

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 142/220

Example 2

A VA

A V-As VvV
Ay vV

A3

p={A3:=T,A =T}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 143/220

Example 2

A VA

A V-As VvV
Ay vV

A3

po={As:=T,As:=T} = SAT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 144/220

2-CNF Formulas

@ A 2-CNF formula is a CNF formula in which each clause has (at
most) two literals.
A1V -A
AoV —A3
—As V —A3
Az V A4
As
@ Checking the satisfiability of 2-CNF formulas requires polynomial
time

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 145/220

Tractability of 2-CNF Formulas

Graph-based approach:
(i) Build the implication graph of the formula

(ii) check if it has a cycle containing both A; and —A; for some i
(e.g., by Tarjan’s algorithm)
— the formula is unsatisfiable iff such cycle exists

@ requires linear time

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

146/220

Tractable subclasses of SAT

Example:
Al VvV A /,,,7—7\,,\\
A V-A
B, ORGSR e
Az VA, L/ Cyele
Aq K md
—As vV Ag VAR
As VvV A
A5 \/_\Ag . @ .
-As V—-As —

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 147/220

Tractability of 2-CNF Formulas

ldea
Let p,/s.t. var(l) e pand (¢ A) Fepep L.
@ ¢': clauses remained after BCP
@ ": clauses removed by BCP
Suppose ¢’ is UNSAT. Can we conclude anything about ¢?

@ Case ¢ is >2-CNF: No!
e there may be (non-unit) clauses C € ¢’ s.t. (=/V C) € ¢
= pFo AN and' ELlF = pEL
—> we must check also p A =/
@ Case ¢ is 2-CNF: Yes!
e there cannot be clause C € ¢’ s.t. (=/V C) € ¢
= p=¢' AN and 'L = p L
= ¢ is UNSAT

Note: we need to check first that (o A [) Fepep L:

If (o A1) Egep L, then ¢’ E L #= ¢ | L (see later Example 2).

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

148/220

Tractable subclasses of SAT

A simple polynomial procedure for 2-SAT
function 2_SAT(formula p, assignment & p) {
Unit_Propagate(p, 1);
if (0 == L) then return UNSAT,
if (p == T) then return SAT;
while True do {
{choose some literal / occurring in ¢};
save(y, 1);
=Nl
Unit_Propagate(y, 11);
if (p == 1) then {
retrieve(y, u);
o =p Al
Unit_Propagate(y, 1); }
if (0 == L) then return UNSAT,
if (p == T) then return SAT;

b
Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 149/220

Tractable subclasses of SAT

Example

A vV A
Ai VA3
-As VA,
Az V-A,
Ay

-As V Ag
As V Ag
As V-Ag
As VA

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 150/220

Tractable subclasses of SAT

Example
A vV A
Ai VA3
-As VvV
Az VvV
Ay
-As V Ag
As V Ag
As V-Ag
-As V-Ag
pi={Ay:=T}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 151/220

Tractable subclasses of SAT

Example

A vV A
AV
-As VvV
Az VvV
Ay

-As V Ag
As V Ag
As V-Ag
“As VAg

pi={Ay:=T,A3:=T}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 152/220

Tractable subclasses of SAT

Example

AV
AV
-As VvV
Az VvV
Ay
-As V Ag
As V Ag
As V-Ag
“As VAg

pi={Ay:=T,A3 =T, A =1}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 153/220

Example

AV

AV
-As VvV

Az VvV

Ay
-As V

As V

As V-Ag
As VA

p={As:=T,A3:=T,A:= 1L, As := L} (Select —Ag)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 154/220

Tractable subclasses of SAT

Example

AV

A Vv
-As VvV

Az VvV

Ay
-As V

\ X

As V-Ag

“As VAg

pi={Ag:=T,A3:=T,A:= 1, As .= L, As .= L} = backtrack

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 155/220

Example

AV
AV
-As VvV
Az VvV
Ay
-As V Ag
As VvV Ag
As V
-As V

p={As:=T,A3:=T,A:= L, As := T} (Select Ag)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 156/220

Tractable subclasses of SAT

Example

< <<

<< <L

= {A4 = T,AS = —|—7A2 = J_,A(-; = T,A5 = T} — UNSAT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 157/220

Example 2

A vV A
Ay VA3
-As VA,
Az VA,
Ay

-As V Ag
As Vv Ag
As V-Ag

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 158/220

Tractable subclasses of SAT

Example 2
A vV A
Ay VA3
-A> V
As V
Ay
-As V Ag
As Vv Ag
As V-Ag
p={Ay:=T}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 159/220

Example 2

A vV A
Ay VvV
-A> V
As Vv
Ay

-As V Ag
As Vv Ag
As V-Ag

p={Ay:=T,A3:=T}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 160/220

Example 2

AV

Ay VvV
-A> V
As v
Ay

-As V Ag
As Vv Ag
As V-Ag

p={Ag:=T,A3:=T,A =1}

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 161/220

Example 2

AV

Ay VvV
-A> V

As v

Ay
-As V

As V

As V—Ag

= {A4 = T,A3 = T,Ag = J_,AG = J_} (SeleCt ﬁAe)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 162/220

Example 2

AV
Ay VvV
-A> V
As v
Ay
-As V
\ X
As V-Ag

pi={Ag:=T,A3:=T,A:= 1, As ;= L, As .= L} = backtrack

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 163/220

Example 2

AV

Ay VvV
-A> V
As Vv
Ay

-As V Ag
As VvV Ag
As V

= {A4 =T,A3:=T,A = 1,A6 := T} (SeleCt Ag)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 164/220

Example 2

AV

Ay VvV
-A> V
As Vv
Ay

-As V Ag
As Vv Ag
As V

p={Ag:=T,A3:=T,A =1, Ag:=T,As := T} = SAT

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 165/220

The satisfiability of k-CNF (k-SAT) [20]

@ k-CNF: CNF s.t. all clauses have k literals

@ the satisfiability of 2-CNF is polynomial

@ the satisfiability of k-CNF is NP-complete for k > 3
@ every k-CNF formula can be converted into 3-CNF:

hvbv..Vik_1VI
\
(hVvkVvB)A
(—|B1 ViV Bg)/\

(=Bk—4 V Ik—2 V Bk_3) A
(—Bk—3V k-1 V Ix)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 167/220

Random k-SAT and Phase Transition

Random K-CNF formulas generation

Random k-CNF formulas with N variables and L clauses:
DO

(i) pick with uniform probability a set of k atoms over N
(i) randomly negate each atom with probability 0.5
(iii) create a disjunction of the resulting literals

UNTIL L different clauses have been generated;

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 168/220

Random k-SAT plots

o fix kand N

@ for increasing L, randomly generate and solve
(500,1000,10000,...) problems with k, L, N

@ plot

e satisfiability percentages
e median/geometrical mean CPU time/# of steps

against L/N

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 169/220

Random k-SAT and Phase Transition

The phase transition phenomenon: SAT % Plots
[41, 32]

@ Increasing L/N we pass from 100% satisfiable to 100%
unsatisfiable formulas

@ the decay becomes steeper with N

o for N — oo, the plot converges to a step in the
cross-over point (L/N ~ 4.28 for k=3)

@ Revealed for many other NP-complete problems
@ Many theoretical models [59, 21, 32, 16, 42]
@ Strong relation with Thermodynamics

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 170/220

Random k-SAT and Phase Transition

SAT%
4 '-H_‘_‘.+ T T II\I=50 —o—
Sl N=100 -+
o N=200 -3~

CLAUSE#/ VAR #

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 171/220

Random k-SAT and Phase Transition

The phase transition phenomenon: CPU times/step #

Using search algorithms (DPLL):
@ Increasing L/N we pass from easy problems, to very hard
problems down to hard problems
@ the peak is centered in the 50% satisfiable point
@ the decay becomes steeper with N

@ for N — oo, the plot converges to an impulse in the
cross-over point (L/N ~ 4.28 for k=3)

@ easy problems (L/N <= 3.8) increase polynomially with N, hard
problems increase exponentially with N

@ Increasing L/N, satisfiable problems get harder,
unsatisfiable problems get easier.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 172/220

Random k-SAT and Phase Transition
MEDIAN

T T T T T
N=50 —%—
I'EI% N=100 --+--
;o N=200 --8--
- [_
"o
- : 4 _
o .
N , & i
' v
. [
N | = |
|
AR IS
- II ++ ++ o+ [2d O _|
A +
/.-0'- RRREE Bem
B4]
3 3.5 4 4.5 5 5.5 6
CLAUSE #/ VAR #
173/220

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

Random k-SAT and Phase Transition

GEOMEAN

CLAUSE #/ VAR #

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 174/220

optimization |

Advanced functionalities

Advanced SAT functionalities (very important in formal verification):
@ Computing SAT under assumptions & Incremental SAT solving
@ Building proofs of unsatisfiability
@ Extracting unsatisfiable Cores
@ Computing Craig Interpolants

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 176/220

optimization |

SAT under assumptions: SAT (p,{h,...,I}) [18]

@ Many SAT solvers allow for solving a CNF formula ¢ under a set of
assumption literals A< {iy, ..., In}: SAT (¢, {h, ..., In})
o SAT(p,{h,...,In}): same result as SAT(p A AT 1)
e often useful to call the same formula with different assumption lists:
SAT (¢, A1), SAT (p, A2), ...
@ |dea:
e I,..., I, “decided” at decision level 0 before starting the search

o if backjump to level 0 on C £ - s.t. n C A, then return UNSAT
o if the “decision” strategy for conflict analysis is used, then 7 is the
subset of assumptions causing the inconsistency

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 177/220

optimization |

Selection of sub-formulas

Let ¢ be A, C..

Idea [18, 35]
@ let Sq...S;, be fresh Boolean atoms (selection variables).
o let A¥(S;,....S;,} C{Si,..., Sn}
® SAT(ALL{(=S;V C;), A): same as SAT(A, (C;))
— allows for “selecting” (activating) only a subset of the clauses in ¢
at each call.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 178/220

optimization

Incremental SAT solving [18, 17]

@ Many CDCL solvers provide a stack-based incremental interface
e it is possible to push/pop ¢; into a stack of formulas ¢ o {D1, s Pk}
o check incrementally the satisfiability of A, ¢;.

@ Maintains the status of the search from one call to the other
e in particular it records the learned clauses (plus other information)

— reuses search from one call to another

@ Very useful in many applications (in particular in FV)
@ Simple idea [18, 17]: incremental calls SAT (¢, A4), SAT (¢, As),...

o 0 ENGA V), A C{A1, ..., A}V,
o stack-based interface for A & {A1, Az, ...}

learned clauses safely reused from call to call even if assumptions
have been removed

@ learned clauses C; s.t. ¢ = G;
@ C; may be in the form —A; v C/’ s.t. Aj ¢ A = C; not reused

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 179/220

optimization |

Building Proofs of Unsatisfiability

@ When ¢ is unsat, it is very important to build a (resolution) proof of
unsatisfiability:
o to verify the result of the solver
e to understand a “reason” for unsatisfiability
o to build unsatisfiable cores and interpolants
@ can be built by keeping track of the resolution steps performed
when constructing the conflict clauses.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 180/220

optimization |

Building Proofs of Unsatisfiability

@ recall: each conflict clause C; learned is computed from the
conflicting clause C;_x by backward resolving with the antecedent

clause of one literal conflicting clause
~ =~
Ck Ci_«k
G G-
G G
Ci
~—~

conflict clause

@ Cy,..., Ck, and C;_k can be original or learned clauses
@ each resolution (sub)proof can be easily tracked:
k i-k —> i-k-1

2 i-2 —> i-1
1 1i-1 —> i

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 181/220

optimization |

Building Proofs of Unsatisfiability

@ ... in particular, if ¢ is unsatisfiable, the last step produces “false”
as conflict clause:

conflicting clause

Ny
Ck Ci_k
Co Ci_z
C; Ci_1
iR

@ note: Cy =/, Cj_1 = —/ for some literal /
@ Cy, ..., Ck, and C;j_x can be original or learned clauses...

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 182/220

optimization |

Building Proofs of Unsatisfiability

Starting from the previous proof of unsatisfiability, repeat recursively:
@ for every learned leaf clause C;, substitute C; with the resolution

proof generating it

until all leaf clauses are original clauses

Cii1

C11 C1,‘

Ci ifii

Ci

Ck1 ijk C,',k1 Cifkj,,k

Ck Cix

Co Ciz

Ci_1

= we obtain a resolution proof of unsatisfiability for (a subset of) the

clauses in ¢

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 183/220

dptimization |

Building Proofs of Unsatisfiability: example

(Bo V =B Vv A1) A\ (Bo Vv By Vv A2) A\ (ﬁBo vV By Vv Ag) A\ (ﬁBo V ﬁB1) N (ﬁBg V ﬁB4)/\
(ﬁAg vV Bz) A (ﬁA1 vV B3) A By A (A2 \ 55) AN (ﬁBﬁ \ ﬁB4) A (Be vV ﬁA1) A By

(~By v ~By) (B V By V Ay) (BoV —By v Ar) (ByV By Ap)
/ \

(=By V Az) (Bo VAV A)

— /
(—A1 V Bs) (ArV Ag)

™~ /

(Bs V Ay) (=Bs V —By)
~
(A2 \ “34) (“Ag \ Bg)
N e
(=BzV —By) (—BsV Br)
\ /
By (—Bs)

\/

€

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 184/220

optimization

Extraction of unsatisfiable cores

@ Problem: given an unsatisfiable set of clauses, extract from it a
(possibly small/minimal/minimum) unsatisfiable subset

— unsatisfiable cores (aka (Minimal) Unsatisfiable Subsets, (M)US)

@ Lots of literature on the topic [65, 36, 39, 46, 62, 28, 22, 10]
@ We recognize two main approaches:

e Proof-based approach [65]: byproduct of finding a resolution proof
e Assumption-based approach [36]: use extra variables labeling
clauses

@ many optimizations for further reducing the size of the core:

repeat the process up to fixpoit

e remove clauses one-by one, until satisfiability is obtained
e combinations of the two processed above
(]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 185/220

dptimization |

The proof-based approach to unsat-core extraction
[63]

Unsat core: the set of leaf clauses of a resolution proof

(Bo V =B V A)/\(Bo V By v Ag)/\(ﬁBo V By v Ag)/\(ﬁBo Vv =B)/\(ﬁBg vV ﬁB4)/\
(—\Ag V Bg) A\ (—‘A1 V B3) A Bg A (A2 \Y B5) A\ ("Be V —|B4) N (Be V —|A1) A By

(=By vV —By) (ByV =By Vv Ap) (BoV =By V Ay) (ByVByV A)
/ ~
(=Boy V Az) (Bo VAV A)
\

(—A V Bs) (ArV Az)

™~ /

(Bs v A) (=Bs V —Bs)
~

(A2 Vv —By) (=A2V Bo)
AN e
(=B V ~B4) (B4 V By)
~_ /

B, (=Bs)

T~

1

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 186/220

optimization |

The assumption-based approach to unsat-core
extraction [36]

Based on the following process:
(i) each clause C; is substituted by =S, v Cj, s.t. S; fresh “selector”
variable
(ii) before starting the search each S; is forced to true.
@iii) final conflict clause at dec. level O: \/jﬁS/
= {G;}; is the unsat core!

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 187/220

optimization |

The assumption-based approach to unsat-core
extraction

(BoV—-BiVA)A(ByV By VA)A(—ByV By Vv A)N
(ﬂBo vV —|B1) VAN (—|Bg V —\54) A (_\A2 V Bg) VAN (—|A1 \Y B3)/\
By A (A2 V Bs) A (—Bg VvV —By) A (Bg VvV —A1) A\ By
(i) add selector variables:
(—\81 V By VvV —ByV A1) A\ (ﬁSg V ByV ByVv Ag) A (—\83 V-=ByV BV AQ)A
(—|S4 V =By Vv —|B1) A (—|S5 VB Vv —\B4) A (—\Ss V —As Vv Bg)/\
(ﬁS7 V —A; Vv B3) A\ (ﬁSg \Y B4) A (ﬁSg VAV BS) A\ (ﬁSm V —Bg Vv ﬁB4)/\
(ﬁ811 V Bg VvV ﬁA1) A (ﬁ812 V B7)
(i) The conflict analysis returns:
=S4V S V=83V a8V aSsV—Sg VvV Sg V=S VS,
(iii) corresponding to the unsat core:
(Bo V =B; Vv A1) A (Bo V B \/Az) A (—|Bo V By \/AQ)A
(=Bo V =B1) A (B2 V =By) A (mA2 V Ba)A
By A (—|Be \Y ﬁB4) A\ (Be V ﬁA1)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 188/220

optimization

Computing Craig Interpolants in SAT

Let “X < Y”, X, Y being Boolean formulas, denote the fact that all
Boolean atoms in X occur also in Y.
Definition: Craig Interpolant
Given an ordered pair (A, B) of formulas such that AA B = L,
a Craig interpolant is a formula / s.t.:
a) AE|,
b) INBE 1,
c) IAand /=< B.

@ Very important in many Formal Verification applications
@ A few works presented [47, 38, 40]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 189/220

optimization

Computing Craig Interpolants in SAT: a General
Algorithm [47]

Algorithm: Interpolant generation (for SAT)

(i) Generate a resolution proof of unsatisfiability P for AA B.

@) ...

(iii) For every leaf clause Cin P, set Ic £ C | Bif C € A, and Io & T if
CeB.

(iv) For every inner node C of P obtained by resolution from C;4 e pV o1
and C; £ —p V ¢y, set Ic £ Ig, V Ig, if p does not occur in B, and
Ic £ Ig, A lg, otherwise.

(v) Output /; as an interpolant for (A, B).

“n\ B” [resp. “n | B"]is the set of literals in n whose atoms do not
[resp. do] occur in B.

@ optimized versions for the purely-propositional case [38, 40]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 190/220

optimization |

Computing Craig Interpolants in SAT: example

—A1 V 2AV
B3 V —By

AL (B VA) A A A (—Bo V =A2) A (mAr V =As V =By V —By)

def

B = (ﬂBg V 54) A (—\51 \Y Bg) A (B1 \Y B3)

-B; B,V B;

/

—A vV -AV By

B, vA|\ /

-A; V By
\\ -Bi VB,
/
-AV By
Az A

originalL proof

B,V A,

—B3 vV —By
\ T
/
—B3 vV —Bs
T
B3 v By
By
N
(By vV =BsV —By)
T
/
(Bi V—BsV —By)
-B,
/
n (Bi V=B3V ~By) A =B,

AN

(B1 VB3V -B;) A B,
interpolant proof

= (B VB3V —Bs) A =B is an interpolant

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

191/220

optimization |

MaxSAT (hints)

@ MaxSAT: given a pair of CNF formulas (pp, ¢s) S.t. on A s = L,
s 2 {Cy, ..., C}, find a truth assignment 1 satisfying ¢, and
maximizing the amount of the satisfied clauses in .

@ Weighted MaxSAT: given also the positive integer penalties
{wi, ..., W}, p must satisfy ¢, and maximize the sum of penalties
of the satisfied clauses in ¢s

@ Generalization of SAT to optimization
= much harder than SAT

@ Many different approaches (see e.g. [34])

e EX:
» o (A1 vV —|A2) A\ [4]
©h = (A1 V A2) Ps = (ﬁA1 V A2) A [3]

(A1 V-A2) A 2]

= pu = {Aq, A} (penalty = 2)
Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 192/220

Many applications of SAT

@ Many successful applications of SAT:

e Boolean circuits

e (Bounded) Planning

o (Bounded) Model Checking
o Cryptography

e Scheduling

o ...
@ All NP-complete problem can be (polynomially) converted to SAT.
@ Key issue: find an efficient encoding.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 194/220

The problem [30, 29, 48]

@ Problem Given a set of action operators OP, (a representation of)
an initial state | and goal state G, and a bound n, find a sequence
of operator applications o4, .., 05, leading from the initial state to
the goal state.

@ |dea: Encode it into satisfiability problem of a Boolean formula ¢

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 196/220

Some Applications Appl. #1: (Bounded) Planning

Example
INITIAL GOAL
A C
_
B = B
C A
T

Move(b, s, d)

Precond : Block(b) A Clear(b) A On(b, s)A
(Clear(d) v Table(d))A
b#sAnb#dANs#d

Effect Clear(s) A =On(b, s)A
On(b,d) N —Clear(d)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 197/220

Encoding

@ Initial states:

Ony(A, B), Onyg(B, C),0nyg(C, T), Cleary(A).

@ Goal states:

On2n(C7 B) A On2n(87 A) N OnZH(Av T)

@ Action preconditions and effects:

Move(A, B, C) —
Clear;_1 (A) A Ong_4 (A7 B) A Clear;_1 (C)/\
Clear;,1(B) A =Ons, 1 (A, B)A
On;;1(A, C) A —=Clear,1(C).

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

198/220

Some Applications Appl. #1: (Bounded) Planning

Encoding: Frame axioms

@ Classic

Move:(A, B, T) A Clear;_1(C) — Clear;,1(C),
Movei(A, B, T) A —Clear;_1(C) — —Clear;.1(C).

“At least one action” axiom:

\ Movey(b, s, d).

b,s,de{AB,C, T}
b#sb#d s#d,b#T

@ Explanatory

—Clear;,1(C) A Clear;_1(C) —
Movei(A, B, C) v Move(A, T, C) v Move(B, A, C) vV Movet(B, 1

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 199/220

Some Applications Appl. #1: (Bounded) Planning

Planning strategy

@ Sequential for each pair of actions « and 3, add axioms of the
form —a; vV —3; for each odd time step. For example, we will have:

—Movey(A, B, C) vV —-Movei(A, B, T).

@ parallel for each pair of actions a and 3, add axioms of the form
-y V 3¢ for each odd time step if « effects contradict 5
preconditions. For example, we will have

—Movei(B, T, A) v =Move(A, B, C).

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 200/220

Encoding into SAT

@ Assumption: the possible values of all the variables are bounded.

@ Naive idea: Encode all possible ground predicates as Boolean
variables.
E.g.: Move{(B, T,A) = Movel _B_T_A

@ much more efficient encodings have been presented [29, 19]
@ customizations of SAT solvers [23].

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 201/220

The problem [8, 7]

Ingredients:

@ A system written as a Kripke structure M := (S, [, T, L)
e S: set of states
o |: set of initial states
e T: transition relation
e L: labeling function

@ A property f written as a LTL formula:
e a propositional literal p
e hng, hv g, Xg, Gg, Fg,hUg and hRg,

X, G, F, U, R “next”, “globally”, “eventually”, “until” and “releases”

@ an integer k (bound)

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 203/220

Appl. #2: Bounded Model Checking
The problem (cont.)

Problem:
Is there an execution path of M of length k satisfying the temporal
property f?:

M = f

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 204/220

Some Applications Appl. #2: Bounded Model Checking

The encoding

Equivalent to the satisfiability problem of a Boolean formula [[M, f]],
defined as follows:

(M,]l = [IMllx A [fllk (1)
k-1
[Mllx = I(so) A /\ T(si, Sit1),)
P - P
(e = =V T(ses)A 1AV N (T(sks0) A IR, (3)
10 1=0

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 205/220

Appl. #2: Bounded Model Checking
The encoding of [[f]]i and /[[f]];

LF T Ik [k [
p i Pi
P —Pi —pi
hAg | A A (gl RIAIER
hvg | ALV gl NIRIRRIER
X [olli™ ifi<k Qo™ i<k
g il otherwise. llgllk otherwise.
Gg |1 /\j,‘(:min(i,l) i[9l
Fg V/,'(:i [[g]]]k ' \/]I‘(:min(i,/) /[[Q]]jk _
g | VI (ligll A Ny A7) | Vi (gl A A DA) v
Ve (gl A N TR A N TR
Rg | VI, (A A Nocy TGNE) | Al illgllk v
Ve (Al A Ny 1llgl) v
Ve (A A by llglIE A Ny 1llG1E)

Cap. 1: Propositional Satisfiability (SAT)

Friday 22" May, 2020

206/220

Appl. #2: Bounded Model Checking
Example: Fp (reachability)

@ f:= Fp: is there a reachable state in which p holds?
o [[M,f]],is:

k1 k
I(so) A N\ T(sisim1) A\ by
=0 j=0

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

207/220

Example: Gp

o f:= Gp: is there a path where p holds forever?
® [[M,f]],is:

k1 K K
I(so) A N\ T(sisis1) A\ T(sks) A A\ by
i=0 1=0 j=0

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

208/220

Appl. #2: Bounded Model Checking
Example: GFg A Fp (fair reachability)

@ f:= GFq A Fp: is there a reachable state in which p holds
provided that g holds infinitely often?

o [[M.f]],is:

k—1 k
I(so) A /\ (s, Sit+1) \/ pj A \/ ((Sk: S1) \/ CI)
i=0 J=1

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 209/220

Appl. #2: Bounded Model Checking
Bounded Model Checking

@ very efficient for some problems
@ lots of enhancements [8, 1, 56, 60, 13]

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

210/220

Some Applications Appl. #2: Bounded Model Checking

References |

[

[2]

[3]

[4]

5]

6]

7

18]

P. A. Abdullah, P. Bjesse, and N. Een.
Symbolic Reachability Analysis based on SAT-Solvers.
In Sixth Int.nl Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’00), 2000.

A. Armando and E. Giunchiglia.
Embedding Complex Decision Procedures inside an Interactive Theorem Prover.
Annals of Mathematics and Atrtificial Intelligence, 8(3—4):475-502, 1993.

F. Bacchus and J. Winter.
Effective Preprocessing with Hyper-Resolution and Equality Reduction.
In Proc. Sixth International Symposium on Theory and Applications of Satisfiability Testing, 2003.

R. J. Bayardo, Jr. and R. C. Schrag.
Using CSP Look-Back Techniques to Solve Real-World SAT instances.
In Proc. AAAI'97, pages 203—-208. AAAI Press, 1997.

A. Belov and Z. Stachniak.
Improving variable selection process in stochastic local search for propositional satisfiability.
In SAT'09, LNCS. Springer, 2009.

A. Belov and Z. Stachniak.
Improved local search for circuit satisfiability.
In SAT, volume 6175 of LNCS, pages 293-299. Springer, 2010.

A. Biere.
Bounded Model Checking, chapter 14, pages 455—481.
In Biere et al. [9], February 2009.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic Model Checking without BDDs.
In Proc. TACAS'99, pages 193-207, 1999.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

211/220

Some Applications Appl. #2: Bounded Model Checking

References Il

[9] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability.
10S Press, February 2009.

[10] Booleforce, http://fmv. jku.at/booleforce/.

[11] R. Brafman.
A simplifier for propositional formulas with many binary clauses.
In Proc. IJCAIO1, 2001

[12] R.E.Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677—-691, Aug. 1986.

[13] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani.
Improving the Encoding of LTL Model Checking into SAT.
In Proc. VMCAI'02, volume 2294 of LNCS. Springer, January 2002.

[14] M. Davis, G. Longemann, and D. Loveland.
A machine program for theorem proving.
Journal of the ACM, 5(7), 1962.

[15] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201-215, 1960.

[16] E. Friedgut.
Sharp thresholds of graph properties, and the k-sat problem.
Journal of the American Mathematical Society, 12(4), 1998.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

212/220

http://fmv.jku.at/booleforce/

Some Applications Appl. #2: Bounded Model Checking

References llI

[17] N. Eénand N. Sérensson.
Temporal induction by incremental sat solving.
Electr. Notes Theor. Comput. Sci., 89(4):543-560, 2003.

[18] N. Eén and N. Sérensson.
An extensible SAT-solver.
In Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of LNCS, pages 502-518. Springer, 2004.

[19] M. Ernst, T. Millstein, and D. Weld.
Automatic SAT-compilation of planning problems.
In Proc. IJCAI-97, 1997.

[20] M. R. Garey and D. S. Johnson.
Computers and Intractability.
Freeman and Company, New York, 1979.

[21] I P. Gent, E. Maclintyre, P. Prosser, and T. Walsh.
The constrainedness of search.
In Proceedings of AAAI-96, pages 246-252, Menlo Park, 1996. AAAI Press / MIT Press.

[22] R. Gershman, M. Koifman, and O. Strichman.
Deriving Small Unsatisfiable Cores with Dominators.
In Proc. CAV'06, volume 4144 of LNCS. Springer, 2006.

[23] E. Giunchiglia, A. Massarotto, and R. Sebastiani.
Act, and the Rest Will Follow: Exploiting Determinism in Planning as Satisfiability.
In Proc. AAAI'98, pages 948-953, 1998.

[24] E. Giunchiglia, M. Narizzano, A. Tacchella, and M. Vardi.
Towards an Efficient Library for SAT: a Manifesto.
In Proc. SAT 2001, Electronics Notes in Discrete Mathematics. Elsevier Science., 2001.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 213/220

Some Applications Appl. #2: Bounded Model Checking

References IV

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

E. Giunchiglia and R. Sebastiani.
Applying the Davis-Putnam procedure to non-clausal formulas.
In Proc. AI*IA’99, volume 1792 of LNAI. Springer, 1999.

C. Gomes, B. Selman, and H. Kautz.
Boosting Combinatorial Search Through Randomization.
In Proceedings of the Fifteenth National Conference on Atrtificial Intelligence, 1998.

H. H. Hoos and T. Stutzle.
Stochastic Local Search Foundation And Application.
Morgan Kaufmann, 2005.

J. Huang.
MUP: a minimal unsatisfiability prover.
In Proc. ASP-DAC '05. ACM Press, 2005.

H. Kautz, D. McAllester, and B. Selman.
Encoding Plans in Propositional Logic.
In Proceedings International Conference on Knowledge Representation and Reasoning. AAAI Press, 1996.

H. Kautz and B. Selman.
Planning as Satisfiability.
In Proc. ECAI-92, pages 359-363, 1992.

H. A. Kautz, A. Sabharwal, and B. Selman.
Incomplete Algorithms, chapter 6, pages 185-203.
In Biere et al. [9], February 2009.

S. Kirkpatrick and B. Selman.
Critical behaviour in the satisfiability of random boolean expressions.
Science, 264:1297-1301, 1994.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

214/220

Some Applications Appl. #2: Bounded Model Checking

References V

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

C. M. Li and Anbulagan.
Heuristics based on unit propagation for satisfiability problems.
In Proceedings of the 15th International Joint Conference on Atrtificial Intelligence (IJCAI-97), pages 366371, 1997

C. M. Li and F. Manya.
MaxSAT, Hard and Soft Constraints, chapter 19, pages 613-631.
In Biere et al. [9], February 2009.

I. Lynce and J. Marques-Silva.
On Computing Minimum Unsatisfiable Cores.
In 7th International Conference on Theory and Applications of Satisfiability Testing, 2004.

I. Lynce and J. P. Marques-Silva.
On computing minimum unsatisfiable cores.
In SAT, 2004.

J. P. Marques-Silva, I. Lynce, and S. Malik.
Conflict-Driven Clause Learning SAT Solvers, chapter 4, pages 131-153.
In Biere et al. [9], February 2009.

K. McMillan.
Interpolation and SAT-based model checking.
In Proc. CAV, 2003.

K. McMillan and N. Amla.
Automatic abstraction without counterexamples.
In Proc. of TACAS, 2003.

K. L. McMillan.
An interpolating theorem prover.
Theor. Comput. Sci., 345(1):101-121, 2005.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 215/220

Some Applications Appl. #2: Bounded Model Checking

References VI

[41]

[42]

[43]

[44]

[49]

[46]

[47]

D. Mitchell, B. Selman, and H. Levesque.
Hard and Easy Distributions of SAT Problems.
In Proc. of the 10th National Conference on Artificial Intelligence, pages 459-465, 1992.

M.Mezard, G.Parisi, and R. Zecchina.
Analytic and Algorithmic Solution of Random Satisfiability Problems.
Science, 297(812), 2002.

M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Design Automation Conference, 2001.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

Abstract DPLL and abstract DPLL modulo theories.

In F. Baader and A. Voronkov, editors, Proceedings of the 11th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452 of LNCS, pages 36-50. Springer, 2005.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, November 2006.

Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov.
Amuse: A Minimally-Unsatisfiable Subformula Extractor.
In Proc. DAC'04. ACM/IEEE, 2004.

P. Pudlak.
Lower bounds for resolution and cutting planes proofs and monotone computations.
J. of Symb. Logic, 62(3), 1997.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 216/220

Some Applications Appl. #2: Bounded Model Checking

References VII

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Rintanen.
Planning and SAT, chapter 15, pages 483-504.
In Biere et al. [9], February 2009.

A. Robinson.
A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23-41, 1965.

R. Sebastiani.
Applying GSAT to Non-Clausal Formulas.
Journal of Artificial Intelligence Research, 1:309-314, 1994.

B. Selman and H. Kautz.
Domain-Independent Extension to GSAT: Solving Large Structured Satisfiability Problems.
In Proc. of the 13th International Joint Conference on Atrtificial Intelligence, pages 290-295, 1993.

B. Selman, H. Kautz, and B. Cohen.
Local Search Strategies for Satisfiability Testing.
In Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 521-532, 1996.

B. Selman, H. Levesque., and D. Mitchell.
A New Method for Solving Hard Satisfiability Problems.
In Proc. of the 10th National Conference on Artificial Intelligence, pages 440446, 1992.

J. P. M. Silva and K. A. Sakallah.
GRASP - A new Search Algorithm for Satisfiability.
In Proc. ICCAD’96, 1996.

R. M. Smullyan.
First-Order Logic.
Springer-Verlag, NY, 1968.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

217/220

Some Applications Appl. #2: Bounded Model Checking

References VIl

[56]

[57]

[58]

[59]

[60]

[61]

[62]

O. Strichmann.
Tuning SAT checkers for Bounded Model Checking.
In Proc. CAV00, volume 1855 of LNCS, pages 480—494. Springer, 2000.

C. Tinelli.
A DPLL-based Calculus for Ground Satisfiability Modulo Theories.
In Proc. JELIA-02, volume 2424 of LNAI, pages 308-319. Springer, 2002.

D. Tompkins and H. Hoos.
UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT.
In SAT, volume 3542 of LNCS. Springer, 2004.

C. P. Williams and T. Hogg.
Exploiting the deep structure of constraint problems.
Atrtificial Intelligence, 70:73-117, 1994.

P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta.
Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking.
In Proc. CAV2000, volume 1855 of LNCS, pages 124—138, Berlin, 2000. Springer.

H. Zhang and M. Stickel.
Implementing the Davis-Putnam algorithm by tries.
Technical report, University of lowa, August 1994.

J. Zhang, S. Li, and S. Shen.
Extracting Minimum Unsatisfiable Cores with a Greedy Genetic Algorithm.
In Proc. ACAI, volume 4304 of LNCS. Springer, 2006.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020

218/220

Some Applications Appl. #2: Bounded Model Checking

References IX

[63] L.Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.
Efficient conflict driven learning in a boolean satisfiability solver.
In ICCAD '01: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pages 279-285,
Piscataway, NJ, USA, 2001. IEEE Press.

[64] L.Zhang and S. Malik.

The quest for efficient boolean satisfiability solvers.

In Proc. CAV'02, number 2404 in LNCS, pages 17-36. Springer, 2002.
[65] L. Zhang and S. Malik.

Extracting small unsatisfiable cores from unsatisfiable boolean formula.
In Proc. of SAT, 2003.

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 219/220

Disclaimer

The list of references above is by no means intended to be all-inclusive. The author of
these slides apologizes both with the authors and with the readers for all the relevant
works which are not cited here.

The papers (co)authored by the author of these slides are availlable at:
http://disi.unitn.it/rseba/publist.html.

Related web sites:
@ Combination Methods in Automated Reasoning

http://combination.cs.uiowa.edu/
@ The SAT Association
http://satassociation.org/
@ SATLive! - Up-to-date links for SAT
http://www.satlive.org/index. jsp
@ SATLIB - The Satisfiability Library
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

Cap. 1: Propositional Satisfiability (SAT) Friday 22" May, 2020 220/220

http://disi.unitn.it/rseba/publist.html

	Basics on SAT
	Basic SAT-Solving techniques
	Modern CDCL SAT Solvers
	Conflict-Driven Clause-Learning SAT solvers
	Further Improvements

	Tractable subclasses of SAT
	Random k-SAT and Phase Transition
	Advanced Functionalities: proofs, unsat cores, interpolants, optimization
	Some Applications
	Appl. #1: (Bounded) Planning
	Appl. #2: Bounded Model Checking

