Effective prime factorization via quantum annealing by modular locally-structured embedding

Jingwen Ding, Giuseppe Spallitta, Roberto Sebastiani

Department of Information Engineering and Computer Science (DISI) - University of Trento

Based on the paper:

Jingwen Ding, Giuseppe Spallitta, Roberto Sebastiani.

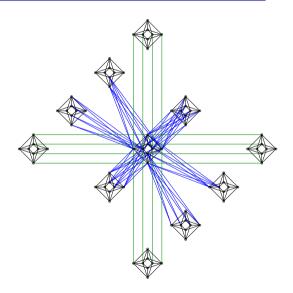
"Effective Prime Factorization via Quantum Annealing
by Modular Locally-structured Embedding"

Nature Scientific Reports. Vol. 14, n. 3518. February 2024.
https://doi.org/10.1038/s41598-024-53708-7

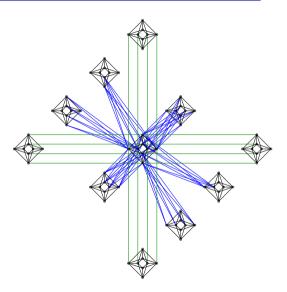
Outline

- 1. The Pegasus Topology
- Problem and state of the art
- 3. Encoding
- 4. Solving
- 5. Conclusion and future work

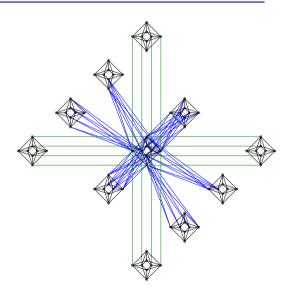
- qubits pairwise-linked
 - 3- and 4-cliques
 - qubit duplication



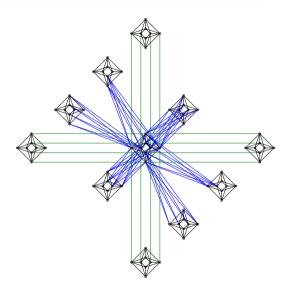
- qubits pairwise-linked
 - 3- and 4-cliques
 - qubit duplication
- 15 couplers/qubit



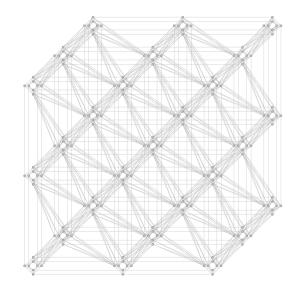
- qubits pairwise-linked
 - 3- and 4-cliques
 - qubit duplication
- 15 couplers/qubit
- more interleavings and less modular than Chimera



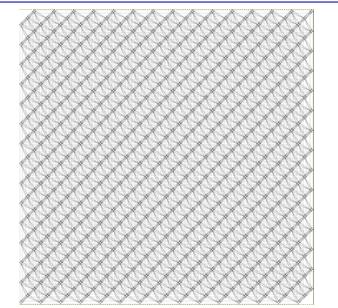
- qubits pairwise-linked
 - 3- and 4-cliques
 - qubit duplication
- 15 couplers/qubit
- more interleavings and less modular than Chimera
- wider ranges:
 - [-4, 4] for biases
 - [-2,1] for couplings



- qubits pairwise-linked
 - 3- and 4-cliques
 - qubit duplication
- 15 couplers/qubit
- more interleavings and less modular than Chimera
- wider ranges:
 - [-4,4] for biases
 - [-2,1] for couplings
- P_N : 24N(N-1) qubits
 - e.g P₄: 288 qubits
 - a few borderline qubits wasted



"Advantage": Current 5760-qubit P_{16} Architecture



Outline

- 1. The Pegasus Topology
- 2. Problem and state of the art
- 3. Encoding
- 4. Solving
- 5. Conclusion and future work

Prime Factorization (PF)

Prime Factorization (PF)

Given a number k, find the two prime numbers n and m such that $k = n \times m$

Example

Given k = 35, then n = 7 and m = 5 is a solution.

- **Computationally hard**: the state-of-the-art classical algorithm to solve PF has sub-exponential time complexity!
- Fundamental problem in many applications, in particular cryptoanalysis.

Solving PF via quantum computing (1)

Shor's Algorithm

- Factors numbers into primes in poly-logarithmic time.
- Implemented on gate-based quantum computers, but limited to small instances (order of a few thousand).
- \bullet Large-scale simulation on a GPU-based classical supercomputer achieved factorization up to 549,755,813,701. 2

Hybrid Quantum-Classical Methods

- Hybrid classical-quantum procedures that use parameterized quantum circuits.
- Quantum computation interleaved with external classical search or preprocessing procedures
- Successful factorization attempts on IBMQ hardware for numbers like 91 and bi-primes 3127, 6557, 1,099,551,473,989.
- However, the last numbers can be easily factorized through Fermat's factorization method in linear time.

 $^{^1}$ Amico et al.. Experimental study of Shor's factoring algorithm using the IBM Q Experience. Physical Review A

²Willsch et al., Large-Scale Simulation of Shor's Quantum Factoring Algorithm, Mathematics, 2023

 $^{^3}$ Karamlou et al.. Analyzing the performance of variational quantum factoring on a superconducting quantum processor. Quantum Information

Solving PF via quantum computing (2)

Quantum Annealing (QA)

- High-degree cost functions reduced to quadratic using Groebner bases or equivalent models.
- The largest problem mapped to D-Wave 2000Q is 376,289 4.
- It was possible to solve all bi-primes up to 200,000 on D-Wave 2X processors relying on QA only ⁵.
- D-Wave hybrid Classical-QA approaches factored 1,005,973 ⁶.
- Important: all approaches rely on minor embedding, making it difficult to scale.

⁴Dridi, Alghassi Prime factorization using quantum annealing and computational algebraic geometry Nature Scientific Reports, 2017

⁵ Jiang, Britt, McCaskey, Humble, Kais. Quantum annealing for prime factorization. Nature Scientific Reports, 2018

⁶Wang et al.. Prime factorization algorithm based on parameter optimization of Ising model. Nature Scientific Reports, 2020

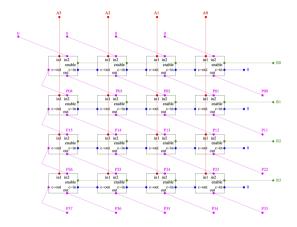
Outline

- 1. The Pegasus Topology
- 2. Problem and state of the art
- 3. Encoding
- 4. Solving
- 5. Conclusion and future work

• Based on the idea of binary multiplier

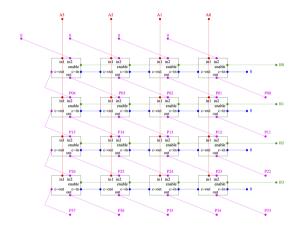
[0	0	0	0	1	+
ĺ					A3	A2	A1	A0	$] \times B0$	
				P04	P03	P02	P01	P00		+
[A3	A2	A1	A0		$] \times B1$	
T			P15	P14	P13	P12	P11			+
ĺ			A3	A2	A1	A0			$] \times B2$	
T		P26	P25	P24	P23	P22				+
[A3	A2	A1	A0				$] \times B3$	
\neg	P37	P36	P35	P34	P33	[P22]	[P11]	[P00]		

- Based on the idea of binary multiplier
- A binary multiplier consists of a matrix of interconnected Controlled Full Adders (CFAs);



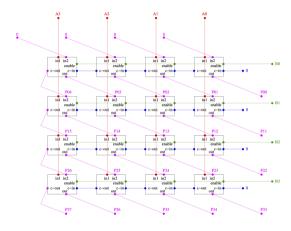
$$\begin{aligned} \textit{CFA}(\textit{in2}, \textit{in1}, \textit{enable}, \textit{c_in}, \textit{c_out}, \textit{out}) &\stackrel{\text{def}}{=} \left(\textit{c_out} \leftrightarrow \left(\left(\textit{c_in} \land \left(\left(\textit{enable} \land \textit{in1}\right) \lor \textit{in2}\right)\right) \lor \left(\left(\textit{enable} \land \textit{in1}\right) \land \textit{in2}\right)\right) \\ & \land \left(\textit{out} \leftrightarrow \left(\left(\textit{enable} \land \textit{in1}\right) \oplus \textit{in2} \oplus \textit{c_in}\right)\right) \end{aligned}$$

- Based on the idea of binary multiplier
- A binary multiplier consists of a matrix of interconnected Controlled Full Adders (CFAs);
- Modularity can be achieved by providing an efficient encoding for a single CFA that can fit into a single 8-qubit Pegasus tile;



$$\begin{aligned} \textit{CFA}(\textit{in2}, \textit{in1}, \textit{enable}, \textit{c_in}, \textit{c_out}, \textit{out}) &\stackrel{\text{def}}{=} \left(\textit{c_out} \leftrightarrow \left(\left(\textit{c_in} \land \left(\left(\textit{enable} \land \textit{in1}\right) \lor \textit{in2}\right)\right) \lor \left(\left(\textit{enable} \land \textit{in1}\right) \land \textit{in2}\right)\right) \\ & \land \left(\textit{out} \leftrightarrow \left(\left(\textit{enable} \land \textit{in1}\right) \oplus \textit{in2} \oplus \textit{c_in}\right)\right) \end{aligned}$$

- Based on the idea of binary multiplier
- A binary multiplier consists of a matrix of interconnected Controlled Full Adders (CFAs);
- Modularity can be achieved by providing an efficient encoding for a single CFA that can fit into a single 8-qubit Pegasus tile;
- Trivial to extend for larger architectures when available, obtaining larger multipliers;



$$\begin{aligned} \textit{CFA}(\textit{in2}, \textit{in1}, \textit{enable}, \textit{c_in}, \textit{c_out}, \textit{out}) &\stackrel{\text{\tiny def}}{=} \left(\textit{c_out} \leftrightarrow \left(\left(\textit{c_in} \land \left(\left(\textit{enable} \land \textit{in1}\right) \lor \textit{in2}\right)\right) \lor \left(\left(\textit{enable} \land \textit{in1}\right) \land \textit{in2}\right)\right) \\ & \land \left(\textit{out} \leftrightarrow \left(\left(\textit{enable} \land \textit{in1}\right) \oplus \textit{in2} \oplus \textit{c_in}\right)\right) \end{aligned}$$

Encoding: key idea

How to compute $k = m \times n$

• Compute **offline** via Optimization Modulo Theories (OMT) an Ising model P_{CFA} for a CFA, compatible with Pegasus graph (V,E):

$$P_{F}(\underbrace{\mathbf{x}}, \underbrace{\mathbf{a}}_{\mathbf{z}} | \underline{\theta}) \stackrel{\text{def}}{=} \theta_{0} + \sum_{z_{i} \in V} \theta_{i} z_{i} + \sum_{(z_{i}, z_{j}) \in E, i < j} \theta_{ij} z_{i} z_{j}; \ z_{i} \in \{-1, 1\};$$
(1)

$$\forall \underline{\mathbf{x}} \quad \min_{\{\underline{\mathbf{a}}\}} P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\boldsymbol{\theta}}) \begin{cases} = 0 & \text{if } F(\underline{\mathbf{x}}) = \top \\ \geq g_{min} & \text{if } F(\underline{\mathbf{x}}) = \bot \end{cases}$$
 (2)

- Encode variable equivalences $(x_k \leftrightarrow x_k')$ as chain penalty functions $2 2z_k z_k'$
- ullet Sum P_{CFA} 's and chains into a single penalty function $P_{multiplier}$.
- Force the values of the output qubits to mimic the value of product k

Encoding: topology limitations

- Generating P_{CFA} using an 8-qubit Pegasus tile and embedding them into a Pegasus grid is not as trivial as it seems:
 - the connections among different Pegasus tiles are limited, so it is not always the case a chain among two qubits does exist;
 - Since a CFA has four input bits and two output bits, we can have at most 2 ancillas, s.t. there exists no penalty function which fits into a Pegasus tile

How to address topology limitations?

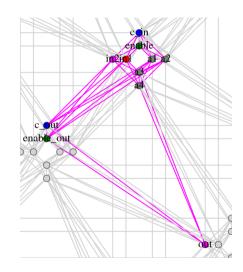
We propose three novel techniques:

- qubit sharing
- alternating CFAs
- virtual chaining

Encoding: qubit sharing

Qubit sharing

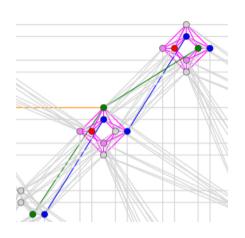
- Rather than connecting two qubits from different CFAs with a chain, we use a single qubit that is *shared* between the two CFAs, partially overlapping them.
- Example: The qubit is used for the encoding of one CFA as an output variable (c_out) and as an input variable for the subsequent CFA (c_in).
- **Important:** we must force the sum of the biases of the shared qubits to stay in the range [-4, 4], otherwise automatic rescaling would negatively affect the annealer performances.



Encoding: alternating CFAs

Alternating CFAs

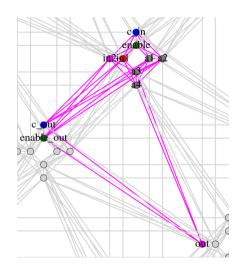
- Useful to deal with missing coupling for 45° direction chains;
- We compute two different CFAS, forcing the qubits that must be chained to have a coupling among them;
- Example: the *enable* qubit (green) is placed in the first vertical qubit on the upper tile and the third horizontal qubit in the 45°-degree bottom-left tile.
- **Important:** two different CFA encodings are **not** guaranteed to have the same gap!



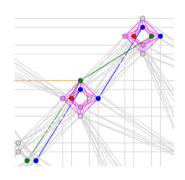
Encoding: virtual chaining

Virtual chaining

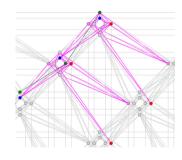
- Similar to qubit sharing, but to simulate the connection of qubits with missing couplings.
- Example: to chain enable, we add enable_out in the encoding, add the constraint (enable ↔ enable_out) and then generate the CFA by OMT.
- Important: we must force the sum of couplings c_in enable and c_out enable_out to stay in the range [-2,1] to avoid rescaling.



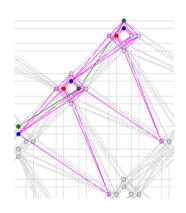
Multiplier version	V1	
Multiplier Max. Size	22×8	
# of ancillae per CFA	2	
# of different CFA encodings	2	
Gap of CFA penalty functions	$(1, \frac{4}{9})$	
Connection $in1(i,j) - in1(i+1,j-1)$	Chain (90°)	
Connection $enable(i,j) - enable(i,+1)$	Chain (45°)	
Connection $c_in(i,j) - c_out(i,j+1)$	Chain (45°)	
Connection $out(i,j) - in2(i+1,j-1)$	Chain (45°)	



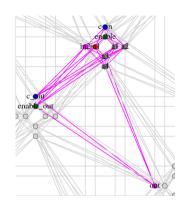
Multiplier version	V2		
Multiplier Max. Size	21×12		
# of ancillae per CFA	4		
# of different CFA encodings	2		
Gap of CFA penalty functions	$(2, \frac{4}{3})$		
Connection $in1(i,j) - in1(i+1,j-1)$	Virtual chain (120°)		
Connection $enable(i, j) - enable(i, +1)$	Chain (45°)		
Connection $c_in(i,j) - c_out(i,j+1)$	Qubit sharing		
Connection $out(i,j) - in2(i+1,j-1)$	Qubit sharing		



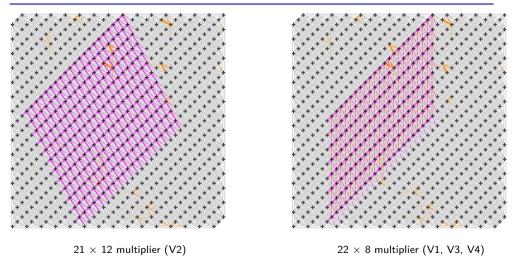
Multiplier version	V3	
Multiplier Max. Size	22×8	
# of ancillae per CFA	2	
# of different CFA encodings	2	
Gap of CFA penalty functions	(2, 2)	
Connection $in1(i,j) - in1(i+1,j-1)$	Chain (90°)	
Connection $enable(i,j) - enable(i,+1)$	Chain (45°)	
Connection $c_in(i,j) - c_out(i,j+1)$	Qubit sharing	
Connection $out(i,j) - in2(i+1,j-1)$	Qubit sharing	



Multiplier version	V4
Multiplier Max. Size	22×8
# of ancillae per CFA	4
# of different CFA encodings	1
Gap of CFA penalty functions	2
Connection $in1(i,j) - in1(i+1,j-1)$	Chain (90°)
Connection $enable(i,j) - enable(i,+1)$	Virtual chain (45°)
Connection $c_in(i,j) - c_out(i,j+1)$	Qubit sharing
Connection $out(i,j) - in2(i+1,j-1)$	Qubit sharing



Multipliers on Pegasus architecture



To the best of our knowledge, these are the largest factorization problems ever embedded on a quantum annealer!

Which CFA should we use?

All 4 proposed CFAs work to solve prime factorization. However, **V4** is the best option among the four since:

- It only uses one single CFA, so it is easier to scale for bigger multipliers;
- It has a single physical chain, thus optimizing the penalty function by the QA turns out to be more effective.

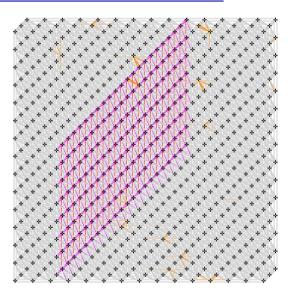
All the experiments from now on rely on the V4 CFA encoding.

Outline

- 1. The Pegasus Topology
- 2. Problem and state of the art
- 3. Encoding
- 4. Solving
- 5. Conclusion and future work

D-wave Advantage system limitations

- Results in the previous section do not take into account quantum annealer limitations.
- Hardware faults, such as faulty qubits and faulty couplings, are widespread (marked in orange in the figure on the right).
- After an empirical evaluation we identified a suitable, fault-free area for testing up to 17×8 bits multipliers.



Main results

Size	Input N	#	$\mid T_p \mid$	$ S_p $	$min(P_F)$	$min(P_F)_{new}$
13 × 8	$2,055,941 \ (8191 \times 251)$	1 2	100 100	0.38 0.42	14.083 6.083	6.083 0[216]
14 × 8	4,111,631 (16381 × 251)	1 2	200 200	0.39 0.44	16.167 6.083	6.083 0 [467]
15 × 8	8,219,999 (32749 × 251)	1 2 3 4 5	1 100 200 200 200	0.4 0.43 0.43 0.44 0.43	20.333 12.167 8.000 6.000 4.083	12.167 8.000 6.000 4.083 0[329]

We solved biprime factoring problems up to $8,219,999=32,749\times251$ \Longrightarrow the largest biprime factoring problems ever solved on a quantum device without using hybrid quantum-classical techniques

Outline

- 1. The Pegasus Topology
- 2. Problem and state of the art
- 3. Encoding
- 4. Solving
- 5. Conclusion and future work

Main Achievements

We introduced a novel approach for prime factorization via quantum annealing

- Modularity: our approach easily scales for bigger multipliers, bounded to current quantum technologies
- We encoded the largest biprime factoring problem ever embedded on a QA $(1,052,769,551=4,194,301\times251,\,22\times8$ bits multiplier)
- We solved the largest biprime factoring problems ever solved on a quantum device without using hybrid quantum-classical techniques (8,219,999 = $32,749 \times 251$)

Possible future directions

- Explore and empirically investigate other solving strategies within the annealing process.
- Test encoding algorithms on D-Wave's upcoming Zephyr processors, with enhanced connectivity, for better penalty functions and solving capabilities.
- Conceive more efficient techniques to produce monolithic encoding of sub-circuits.
- Investigate the encoding of other circuits of interest

©Warner Bros. Inc.