Solving SAT with a Quantum Annealer: Foundations, Encodings and a Preliminary Report

Roberto Sebastiani

DISI, University of Trento, Italy

joint work with:

William Macready, Zhengbing Bian, Fabian Chudak, Aidan Roy formerly at D-Wave Systems Inc., Burnaby, Canada

Stefano Varotti

formerly at DISI, University of Trento, Italy

Based on the paper:

Zhengbing Bian, Fabian Chudak, William Macready, Aidan Roy, Roberto Sebastiani, Stefano Varotti "Solving SAT (and MaxSAT) with a Quantum Annealer: Foundations, Encodings and a Preliminary Report".

Information and Computation, vol 275, December 2020.

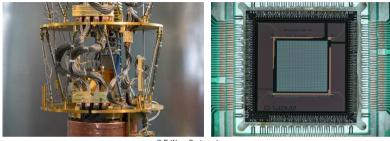
https://doi.org/10.1016/j.ic.2020.104609

Outline

- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

Outline

- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

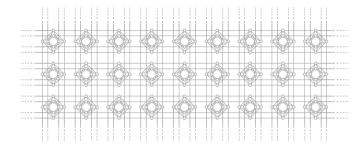


© D-Wave Systems Inc.

• specialized chips using quantum effects (superposition, tunneling) to find minimum energy configurations over binary variables (qubits) $z_i \in \{-1, 1\}$ (aka Ising Hamiltonian):

$$H(\underline{\mathbf{z}}) \stackrel{\text{def}}{=} \sum_{i \in V} h_i z_i + \sum_{\langle i,j \rangle \in E} J_{ij} z_i z_j$$

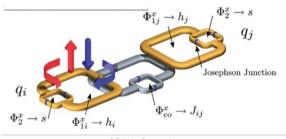
⟨V, E⟩ connection graph of the qubits
 (e.g. 16 × 16 grid of 8-qubit tiles in Chimera architecture)



• specialized chips using quantum effects (superposition, tunneling) to find minimum energy configurations over binary variables (qubits) $z_i \in \{-1, 1\}$ (aka Ising Hamiltonian):

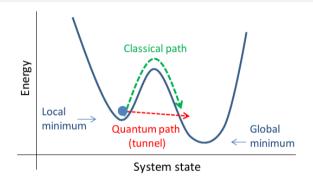
$$H(\underline{\mathbf{z}}) \stackrel{\text{def}}{=} \sum_{i \in V} h_i z_i + \sum_{\langle i,j \rangle \in E} J_{ij} z_i z_j$$

⟨V, E⟩ connection graph of the qubits
 (e.g. 16 × 16 grid of 8-qubit tiles in Chimera architecture)



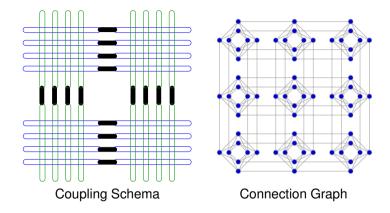
© D-Wave Systems Inc.

- qubits are super-conducting rings
 - qubit value $\{-1,1\}$ is the direction of circulating current
 - superposition of clockwise and counterclockwise (!)
 - we can apply bias h_i to each qubit z_i , and a coupling J_{ij} to connected pairs of qubits $\langle z_i, z_j \rangle$
- Quantum system transition: when measuring (sampling), system ends in low energy state $H_{final}(\mathbf{z}) \stackrel{\text{def}}{=} \sum_{i \in V} h_i z_i + \sum_{\langle i,j \rangle \in E} J_{ij} z_i z_j$ (ideally, a minimum-energy state)



- H(z) defines a problem by inducing an energy landscape s.t. the lowest point is the best solution
 - "classical" annealing can only walk over this landscape
 - Q.A. uses quantum effects (tunneling) to go through the hills
- ⇒ can reach global minima
 - works well with tall & narrow energy barriers separating minima

Chimera Tale-based architecture



- 8-qubit "tiles"
- low inter-tile connections
- 6 couplings/qubit overall
- no cliques

Outline

- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

General Motivations & Goals

NP-complete problems

- Problems intrinsically computationally hard for classic computers
 - No polynomial-time algorithm believed to exist
 - ⇒ CPU time blows up wrt. problem size in worst case
 - NP-complete problems can be polynomially reduced to each other
 - => [s]he who polynomially solved one, would polynomially solve all
 - Huge amount of industrial applications (HW/SW synthesis & verification, cryptography & security, scheduling, planning, ...)
- Any major advance in efficiently solving NP-complete problems will have a huge application impact.

Big research question

Can quantum technologies bring to one such major advance?

Holy Grail: Quantum Supremacy on NP-complete problems

Solve via quantum devices (useful) NP-complete problems that no classical computer can solve in any feasible amount of time

General Motivations & Goals

NP-complete problems

- Problems intrinsically computationally hard for classic computers
 - No polynomial-time algorithm believed to exist
 - ⇒ CPU time blows up wrt. problem size in worst case
 - NP-complete problems can be polynomially reduced to each other
 - ⇒ [s]he who polynomially solved one, would polynomially solve all
 - Huge amount of industrial applications (HW/SW synthesis & verification, cryptography & security, scheduling, planning, ...)
- Any major advance in efficiently solving NP-complete problems will have a huge application impact.

Big research question

Can quantum technologies bring to one such major advance?

Holy Grail: Quantum Supremacy on NP-complete problems

Solve via quantum devices (useful) NP-complete problems that no classical computer can solve in any feasible amount of time

General Motivations & Goals

NP-complete problems

- Problems intrinsically computationally hard for classic computers
 - No polynomial-time algorithm believed to exist
 - ⇒ CPU time blows up wrt. problem size in worst case
 - NP-complete problems can be polynomially reduced to each other
 - ⇒ [s]he who polynomially solved one, would polynomially solve all
 - Huge amount of industrial applications (HW/SW synthesis & verification, cryptography & security, scheduling, planning, ...)
- Any major advance in efficiently solving NP-complete problems will have a huge application impact.

Big research question

Can quantum technologies bring to one such major advance?

Holy Grail: Quantum Supremacy on NP-complete problems

Solve via quantum devices (useful) NP-complete problems that no classical computer can solve in any feasible amount of time

Our Goals

Our Goal: SAT-to-QUBO

SAT solving via Quantum Annealing (Q.A.):

find a way to encode Boolean formulas into an Ising Hamiltonian (aka QUBO) to be fed to and minimized by the Q.A.

- effectively: the QUBO fits into and can be solved by the Q.A.
- efficiently: the encoding process should be resource efficient

Focus: small-but-hard problems

Problems which are small enough to fit into the Q.A. architecture, but hard enough to be challenging for standard SAT solvers

• Ex: problems from cryptanalysis, HW arithmetical circuits, parity/cardinality constraints ...

Our Goals

Our Goal: SAT-to-QUBO

SAT solving via Quantum Annealing (Q.A.):

find a way to encode Boolean formulas into an Ising Hamiltonian (aka QUBO) to be fed to and minimized by the Q.A.

- effectively: the QUBO fits into and can be solved by the Q.A.
- efficiently: the encoding process should be resource efficient

Focus: small-but-hard problems

Problems which are small enough to fit into the Q.A. architecture, but hard enough to be challenging for standard SAT solvers

• Ex: problems from cryptanalysis, HW arithmetical circuits, parity/cardinality constraints ...

Outline

- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- 3 Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

Outline

- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- 3 Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

Quantum Annealers from a CS Perspective

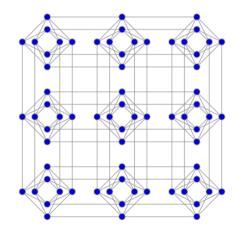
 A "magic" blackbox device solving a (very-restricted form of) Quadratic Unconstrained Binary Optimization (QUBO) problem:

$$\textit{argmin}_{[\underline{\textbf{z}} \in \{-1,1\}^{|V|}]} \; (\theta_0 + \textstyle \sum_{i \in V} \; \theta_i z_i \; + \; \textstyle \sum_{\langle i,j \rangle \in E} \; \theta_{ij} z_i z_j)$$

- Each $z_i \in \{-1, 1\}$ is the value of the *i*-th qubit
- programmable numerical values:

$$\theta_0 \in (-\infty, +\infty)$$
 (offset), $\theta_i \in [-2, 2]$ (biases), $\theta_{ij} \in [-1, 1]$ (couplings) ($\theta_{ij} = 0$ if $\langle i, j \rangle \notin E$)

- $(\dot{\theta}_{ij}=0 \text{ if } \langle i,j \rangle \not\in E)$ • $\langle V,E \rangle$ is the connectivity graph:
 - e.g. N×N grid of 8-qubit clusters (tiles) in Chimera architecture
 - e.g.(D-Wave 2000Q):
 16×16×8 = 2048 qubits
- NP-complete
- \(V, E \)\) undirected and sparse:
 each \(z_i \) has \(< 6 \) connections



Quantum Annealers from a CS Perspective

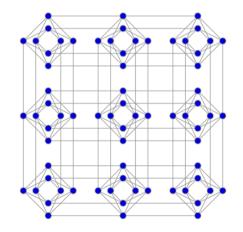
 A "magic" blackbox device solving a (very-restricted form of) Quadratic Unconstrained Binary Optimization (QUBO) problem:

$$argmin_{[\underline{z} \in \{-1,1\}^{|V|}]} P(\underline{z}|\underline{\theta})$$
 "penalty function"

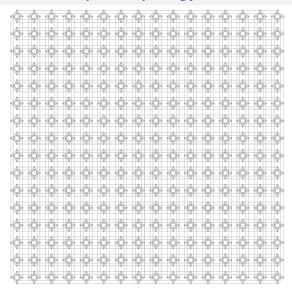
- Each $z_i \in \{-1, 1\}$ is the value of the *i*-th qubit
- programmable numerical values:

```
\theta_0 \in (-\infty, +\infty) (offset),
     \theta_i \in [-2, 2] (biases),
     \theta_{ii} \in [-1, 1] (couplings)
(\hat{\theta}_{ij} = 0 \text{ if } \langle i, j \rangle \not\in E)
• \langle V, E \rangle is the connectivity graph:
```

- - e.g. $N \times N$ grid of 8-qubit clusters (tiles) in Chimera architecture
 - e.g.(D-Wave 2000Q): $16 \times 16 \times 8 = 2048$ qubits
- NP-complete
- \bullet $\langle V, E \rangle$ undirected and sparse: each z_i has < 6 connections



The D-Wave 2000Q 2046-qubit topology



- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}} = \mathbf{z}$ and values for the θ 's s.t.

$$min_{[\underline{a} \in \{-1,1\}^k]} P_F(\underline{\mathbf{x}} \underline{a} | \underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ > 0 & \text{otherwise} \end{cases} \{\top, \bot\} \stackrel{\text{def}}{=} \{1, -1\}$$

- \implies if the Q.A. returns 0, then F(x) is satisfiable
- P_F called Exact Penalty Function
- Oritical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - ullet sensitivity: a big-enough gap $g_{min}>0$ necessary
 - problem is over-constrained:
 - must discriminate between O(2|X|) models & countermodels
 - $O(|\mathbf{z}|)$ degrees of freedom θ_i , θ_{ij}
 - \implies need ancillary Boolean variables **a** s.t. $\mathbf{z} = \mathbf{x} \cup \mathbf{a}$

- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}}_{\underline{a}} \mapsto \underline{\mathbf{z}}$ and values for the θ 's s.t.

$$min_{[\underline{a} \in \{-1,1\}^K]} P_F(\underline{\mathbf{x}},\underline{a}|\underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ > 0 & \text{otherwise} \end{cases} \{\top,\bot\} \stackrel{\text{def}}{=} \{1,-1\}$$

- \implies if the Q.A. returns 0, then F(x) is satisfiable
- P_F called Exact Penalty Function
- Critical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - ullet sensitivity: a big-enough gap $g_{min}>0$ necessary
 - problem is over-constrained:
 - must discriminate between O(2^{|x|}) models & countermodels
 - $O(|\mathbf{z}|)$ degrees of freedom θ_i , θ_{ii}
 - \implies need ancillary Boolean variables **a** s.t. $\mathbf{z} = \mathbf{x} \cup \mathbf{a}$

- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}}_{1} = \mathbf{z}$ and values for the θ 's s.t.

$$min_{[\underline{a} \in \{-1,1\}^k]} P_F(\underline{\mathbf{x}} \ \underline{a} | \underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ > 0 & \text{otherwise} \end{cases} \{\top, \bot\} \stackrel{\text{def}}{=} \{1, -1\}$$

- \implies if the Q.A. returns 0, then F(x) is satisfiable
- P_F called Exact Penalty Function
- Critical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - sensitivity: a big-enough gap $g_{min} > 0$ necessary
 - problem is over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels
 - $O(|\mathbf{z}|)$ degrees of freedom θ_i , θ_{ij}
 - \implies need ancillary Boolean variables $\underline{\mathbf{a}}$ s.t. $\underline{\mathbf{z}} = \underline{\mathbf{x}} \cup \underline{\mathbf{a}}$

- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}}$, $\underline{\mathbf{a}} \mapsto \underline{\mathbf{z}}$ and values for the θ 's s.t.

$$min_{[\underline{a} \in \{-1,1\}^k]} P_F(\underline{\mathbf{x}} \ \underline{a} | \underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ > 0 & \text{otherwise} \end{cases} \{\top, \bot\} \stackrel{\text{def}}{=} \{1, -1\}$$

- \implies if the Q.A. returns 0, then F(x) is satisfiable
- P_F called Exact Penalty Function
- Critical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - sensitivity: a big-enough gap $g_{min} > 0$ necessary
 - problem is over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels
 - $O(|\mathbf{z}|)$ degrees of freedom θ_i , θ_{ij}
 - \implies need ancillary Boolean variables $\underline{\mathbf{a}}$ s.t. $\underline{\mathbf{z}} = \underline{\mathbf{x}} \cup \underline{\mathbf{a}}$

- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}}_{\underline{a}} \mapsto \underline{\mathbf{z}}$ and values for the θ 's s.t.

$$min_{[\underline{a} \in \{-1,1\}^k]} P_F(\underline{\mathbf{x}} \ \underline{a} | \underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ \geq g_{min} & \text{otherwise} \end{cases} \{\top, \bot\} \stackrel{\text{def}}{=} \{1, -1\}$$

- \implies if the Q.A. returns 0, then F(x) is satisfiable
- P_F called Exact Penalty Function
- Critical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - sensitivity: a big-enough gap $g_{min} > 0$ necessary
 - problem is over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels
 - $O(|\mathbf{z}|)$ degrees of freedom θ_i , θ_{ij}
 - \implies need ancillary Boolean variables $\underline{\mathbf{a}}$ s.t. $\underline{\mathbf{z}} = \underline{\mathbf{x}} \cup \underline{\mathbf{a}}$

- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}}_{1} = \mathbf{z}$ and values for the θ 's s.t.

$$min_{[\underline{a} \in \{-1,1\}^k]} P_F(\underline{\mathbf{x}} \ \underline{a} | \underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ \geq g_{min} & \text{otherwise} \end{cases} \{\top, \bot\} \stackrel{\text{def}}{=} \{1, -1\}$$

 \implies if the Q.A. returns 0, then F(x) is satisfiable

- P_F called Exact Penalty Function
- Critical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - sensitivity: a big-enough gap $g_{min} > 0$ necessary
 - problem is over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels
 - $O(|\underline{\mathbf{z}}|)$ degrees of freedom θ_i , θ_{ij}
 - \implies need ancillary Boolean variables $\underline{\mathbf{a}}$ s.t. $\underline{\mathbf{z}} = \underline{\mathbf{x}} \cup \underline{\mathbf{a}}$

- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}}, \underline{\mathbf{a}} \mapsto \underline{\mathbf{z}}$ and values for the θ 's s.t.

$$\min_{[\underline{\mathbf{a}} \in \{-1,1\}^k]} P_F(\underline{\mathbf{x}},\underline{\underline{\mathbf{a}}}|\underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ \geq g_{min} & \text{otherwise} \end{cases} \{\top,\bot\} \stackrel{\text{def}}{=} \{1,-1\}$$

- \implies if the Q.A. returns 0, then F(x) is satisfiable
- P_F called Exact Penalty Function
- Critical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - ullet sensitivity: a big-enough gap $g_{min}>0$ necessary
 - problem is over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels
 - $O(|\underline{\mathbf{z}}|)$ degrees of freedom θ_i , θ_{ij}
 - \implies need ancillary Boolean variables $\underline{\mathbf{a}}$ s.t. $\underline{\mathbf{z}} = \underline{\mathbf{x}} \cup \underline{\mathbf{a}}$

- Goal (SAT-to-QUBO): find a general procedure to encode a Boolean formula $F(\underline{x})$ into a such model
- \iff find a variable placement $\underline{\mathbf{x}}, \underline{\mathbf{a}} \mapsto \underline{\mathbf{z}}$ and values for the θ 's s.t.

$$min_{[\underline{\mathbf{a}} \in \{-1,1\}^k]} P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) \begin{cases} = 0 & \text{if } \underline{\mathbf{x}} \models F \\ = g_{min} & \text{otherwise} \end{cases} \{\top,\bot\} \stackrel{\text{def}}{=} \{1,-1\}$$

- \implies if the Q.A. returns 0, then F(x) is satisfiable
- P_F called Exact Penalty Function
- Critical issues:
 - limited number of qubits (currently 2048)
 - low number of connections between qubits (currently 6), no cliques
 - sensitivity: a big-enough gap $g_{min} > 0$ necessary
 - problem is over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels
 - $O(|\underline{\mathbf{z}}|)$ degrees of freedom θ_i , θ_{ij}
 - \implies need ancillary Boolean variables $\underline{\mathbf{a}}$ s.t. $\underline{\mathbf{z}} = \underline{\mathbf{x}} \cup \underline{\mathbf{a}}$

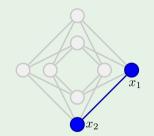
Simple examples of penalty functions

- 1. if $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} (x_1 \leftrightarrow x_2)$, then $P_F(\underline{\mathbf{x}}|\underline{\theta}) \stackrel{\text{def}}{=} 1 x_1 x_2$
 - $\implies \theta_0 = 1, \, \theta_1 = \theta_2 = 0, \, \theta_{12} = -1, \, g_{min} = 2$
 - exact
 - no ancilla needed
- 2. if $F(\mathbf{x}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \wedge x_2)$, then

$$P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 - x_1x_3 - x_2a - x_3a$$

$$\implies ..., g_{min} = 2$$

- non-exact
- one ancilla a needed
- 3. if $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \oplus x_2)$, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = 5 + x_3 + a_2 a_3 + x_1 a_1 x_1 a_2 x_1 a_3 x_2 a_1 x_2 a_2 x_2 a_3 + x_3 a_2 a_3 + x_3 a_2 a_3 + x_3 a_3 a_3 + a_3 a_3 a_3 a_3 + a_3 a_3 a_3 a_3 + a_3 -$



$$\implies ..., g_{min} = 2$$

- non-exact
- 3 ancillas a_1, a_2, a_3 needed

Simple examples of penalty functions

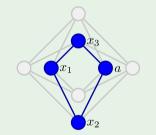
1. if
$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} (x_1 \leftrightarrow x_2)$$
, then $P_F(\underline{\mathbf{x}}|\underline{\theta}) \stackrel{\text{def}}{=} 1 - x_1 x_2$

$$\implies \theta_0 = 1, \, \theta_1 = \theta_2 = 0, \, \theta_{12} = -1, \, g_{min} = 2$$

- exact
- no ancilla needed
- 2. if $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \land x_2)$, then

$$P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 - x_1x_3 - x_2a - x_3a$$

- \implies ..., $g_{min} = 2$
 - non-exact
 - one ancilla a needed
- 3. if $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \oplus x_2)$, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = 5 + x_3 + a_2 a_3 + x_1 a_1 x_1 a_2 x_1 a_3 x_2 a_1 x_2 a_2 x_2 a_3 + x_3 a_2 x_3 a_3 x_3 a$



$$\implies ..., g_{min} = 2$$

- non-exact
- 3 ancillas a_1 , a_2 , a_3 needed

Simple examples of penalty functions

1. if
$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} (x_1 \leftrightarrow x_2)$$
, then $P_F(\underline{\mathbf{x}}|\underline{\theta}) \stackrel{\text{def}}{=} 1 - x_1 x_2$

$$\implies \theta_0 = 1, \, \theta_1 = \theta_2 = 0, \, \theta_{12} = -1, \, g_{min} = 2$$

- exact
- no ancilla needed

2. if
$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \land x_2)$$
, then

$$P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{2} - \frac{1}{2}X_1 - \frac{1}{2}X_2 + X_3 + \frac{1}{2}X_1X_2 - X_1X_3 - X_2\mathbf{a} - X_3\mathbf{a}$$

$$\implies$$
 ..., $g_{min}=2$

- non-exact
- one ancilla a needed

3. if
$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \oplus x_2)$$
, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = 5 + x_3 + a_2 - a_3 + x_1 a_1 - x_1 a_2 - x_1 a_3 - x_2 a_1 - x_2 a_2 - x_2 a_3 + x_3 a_2 - x_3 a_3$

$$\implies$$
 ..., $g_{min} = 2$

- non-exact
- 3 ancillas a_1 , a_2 , a_3 needed

Normal Penalty Functions & Normalization

Definition

A penalty function $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta})$ is normal if $|\theta_i|=2$ for at least one θ_i or $|\theta_{ij}|=1$ for at least one θ_{ij} .

Examples

- ② $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{4} \frac{1}{4}x_1 \frac{1}{4}x_2 + \frac{1}{2}x_3 + \frac{1}{4}x_1x_2 \frac{1}{2}x_1x_3 \frac{1}{2}x_2\mathbf{a} \frac{1}{2}x_3\mathbf{a}$ is not normal
- ① $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\underline{\theta}) = 5 x_1 x_2 + 2x_3 + x_1x_2 2x_1x_3 2x_2a 2x_3a$ is not correct (out of ranges
 - To maximize g_{min} , use normal penalty functions \implies exploit the full range of the θ parameters.
 - A penalty function $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta})$ can be normalized by multiplying all its coefficients by a normalization factor:

$$c \stackrel{\mathsf{def}}{=} \min \left\{ \min_{i} \left(\frac{2}{|\theta_{i}|} \right), \min_{\langle ij \rangle} \left(\frac{1}{|\theta_{ij}|} \right)
ight\}$$

• E.g., normalize (2) by multiplying all coefficients by 2.

Normal Penalty Functions & Normalization

Definition

A penalty function $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta})$ is normal if $|\theta_i|=2$ for at least one θ_i or $|\theta_{ij}|=1$ for at least one θ_{ij} .

Examples

- $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{2} \frac{1}{2}x_1 \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 x_1x_3 x_2a x_3a$ is normal (e.g. $\theta_{x_1x_3} = -1$)
- ② $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{4} \frac{1}{4}x_1 \frac{1}{4}x_2 + \frac{1}{2}x_3 + \frac{1}{4}x_1x_2 \frac{1}{2}x_1x_3 \frac{1}{2}x_2a \frac{1}{2}x_3a$ is not normal
- **3** $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = 5 x_1 x_2 + 2x_3 + x_1x_2 2x_1x_3 2x_2a 2x_3a$ is not correct (out of ranges)
 - To maximize g_{min} , use normal penalty functions \Rightarrow exploit the full range of the θ parameters.
 - A penalty function $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta})$ can be normalized by multiplying all its coefficients by a normalization factor:

$$c \stackrel{\text{\tiny def}}{=} \min \left\{ \min_{i} \left(\frac{2}{|\theta_{i}|} \right), \min_{\langle ij \rangle} \left(\frac{1}{|\theta_{ij}|} \right) \right\}$$

• E.g., normalize (2) by multiplying all coefficients by 2.

Normal Penalty Functions & Normalization

Definition

A penalty function $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta})$ is normal if $|\theta_i|=2$ for at least one θ_i or $|\theta_{ij}|=1$ for at least one θ_{ij} .

Examples

- $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{2} \frac{1}{2}x_1 \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 x_1x_3 x_2a x_3a$ is normal (e.g. $\theta_{x_1x_3} = -1$)
- ② $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = \frac{5}{4} \frac{1}{4}x_1 \frac{1}{4}x_2 + \frac{1}{2}x_3 + \frac{1}{4}x_1x_2 \frac{1}{2}x_1x_3 \frac{1}{2}x_2a \frac{1}{2}x_3a$ is not normal
- **3** $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = 5 x_1 x_2 + 2x_3 + x_1x_2 2x_1x_3 2x_2a 2x_3a$ is not correct (out of ranges)
- To maximize g_{min} , use normal penalty functions \Rightarrow exploit the full range of the θ parameters.
- A penalty function $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta})$ can be normalized by multiplying all its coefficients by a normalization factor:

$$c \stackrel{ ext{def}}{=} \min \left\{ \min_i \left(rac{2}{| heta_i|}
ight), \min_{\langle ij
angle} \left(rac{1}{| heta_{ij}|}
ight)
ight\}.$$

• E.g., normalize (2) by multiplying all coefficients by 2.

Properties of penalty functions: NPN-Equivalence

Let $F(\underline{\mathbf{x}})$ be a Boolean function, and let $F^*(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} F(x_1, ..., x_{i-1}, \neg x_i, x_{i+1}, ..., x_n)$ for some index i. Suppose also that $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\underline{\theta})$ is a penalty function for $F(\underline{\mathbf{x}})$ under some placement. Then $P_{F^*}(\mathbf{x}, \mathbf{a}|\theta) = P_F(\mathbf{x}, \mathbf{a}|\theta^*)$, where θ^* is s.t., for every $z, z' \in \mathbf{x}$, \mathbf{a} :

$$\theta_{z}^{*} = \begin{cases} -\theta_{z} & \text{if } z = x_{i} \\ \theta_{z} & \text{otherwise} \end{cases} \qquad \theta_{zz'}^{*} = \begin{cases} -\theta_{zz'} & \text{if } z = x_{i} \text{ or } z' = x_{i} \\ \theta_{zz'} & \text{otherwise} \end{cases}$$

Example

if
$$F(\underline{\mathbf{x}}) \stackrel{\text{\tiny def}}{=} x_3 \leftrightarrow (x_1 \land x_2)$$
, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 - x_1x_3 - x_2a - x_3a$ if $F(\underline{\mathbf{x}}) \stackrel{\text{\tiny def}}{=} x_3 \leftrightarrow (\neg x_1 \land x_2)$, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} + \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}x_1x_2 + x_1x_3 - x_2a - x_3a$

Two Boolean functions $F(\underline{\mathbf{x}})$, $F^*(\underline{\mathbf{x}})$ that become equivalent by permuting or negating some of their input variables $\underline{\mathbf{x}}$ are called NPN-equivalent.

 \Longrightarrow given a penalty function for F, computing one for F^* is trivial

$$x_3 \leftrightarrow (x_1 \land x_2), \ \neg x_3 \leftrightarrow (\neg x_1 \land \neg x_2), \ x_3 \leftrightarrow (x_1 \lor x_2), \ x_3 \leftrightarrow (x_1 \rightarrow x_2), \ ... \ are \ \mathsf{NPN-equivalent}$$

Properties of penalty functions: NPN-Equivalence

Let $F(\underline{\mathbf{x}})$ be a Boolean function, and let $F^*(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} F(x_1, ..., x_{i-1}, \neg x_i, x_{i+1}, ..., x_n)$ for some index i. Suppose also that $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta})$ is a penalty function for $F(\underline{\mathbf{x}})$ under some placement. Then $P_{F^*}(\mathbf{x}, \mathbf{a} | \theta) = P_F(\mathbf{x}, \mathbf{a} | \theta^*)$, where θ^* is s.t., for every $z, z' \in \mathbf{x}$, \mathbf{a} :

$$\theta_{z}^{*} = \begin{cases} -\theta_{z} & \text{if } z = x_{i} \\ \theta_{z} & \text{otherwise} \end{cases} \qquad \theta_{zz'}^{*} = \begin{cases} -\theta_{zz'} & \text{if } z = x_{i} \text{ or } z' = x_{i} \\ \theta_{zz'} & \text{otherwise} \end{cases}$$

Example

if
$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \land x_2)$$
, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 - x_1x_3 - x_2a - x_3a$ if $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (\neg x_1 \land x_2)$, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} + \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}x_1x_2 + x_1x_3 - x_2a - x_3a$

Two Boolean functions $F(\underline{\mathbf{x}})$, $F^*(\underline{\mathbf{x}})$ that become equivalent by permuting or negating some of their input variables $\underline{\mathbf{x}}$ are called NPN-equivalent.

$$x_3 \leftrightarrow (x_1 \land x_2), \neg x_3 \leftrightarrow (\neg x_1 \land \neg x_2), x_3 \leftrightarrow (x_1 \lor x_2), x_3 \leftrightarrow (x_1 \rightarrow x_2), \dots$$
 are NPN-equivalent

Properties of penalty functions: NPN-Equivalence

Let $F(\underline{\mathbf{x}})$ be a Boolean function, and let $F^*(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} F(x_1, ..., x_{i-1}, \neg x_i, x_{i+1}, ..., x_n)$ for some index i. Suppose also that $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\underline{\theta})$ is a penalty function for $F(\underline{\mathbf{x}})$ under some placement. Then $P_{F^*}(\mathbf{x}, \mathbf{a}|\theta) = P_F(\mathbf{x}, \mathbf{a}|\theta^*)$, where θ^* is s.t., for every $z, z' \in \mathbf{x}$, \mathbf{a} :

$$\theta_{z}^{*} = \begin{cases} -\theta_{z} & \text{if } z = x_{i} \\ \theta_{z} & \text{otherwise} \end{cases} \qquad \theta_{zz'}^{*} = \begin{cases} -\theta_{zz'} & \text{if } z = x_{i} \text{ or } z' = x_{i} \\ \theta_{zz'} & \text{otherwise} \end{cases}$$

Example

if
$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \land x_2)$$
, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 - x_1x_3 - x_2a - x_3a$ if $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (\neg x_1 \land x_2)$, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} + \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}x_1x_2 + x_1x_3 - x_2a - x_3a$

Two Boolean functions $F(\underline{\mathbf{x}})$, $F^*(\underline{\mathbf{x}})$ that become equivalent by permuting or negating some of their input variables $\underline{\mathbf{x}}$ are called NPN-equivalent.

 \implies given a penalty function for F, computing one for F^* is trivial.

 $x_3 \leftrightarrow (x_1 \land x_2), \neg x_3 \leftrightarrow (\neg x_1 \land \neg x_2), x_3 \leftrightarrow (x_1 \lor x_2), x_3 \leftrightarrow (x_1 \rightarrow x_2), \dots$ are NPN-equivalent

Properties of penalty functions: NPN-Equivalence

Let $F(\underline{\mathbf{x}})$ be a Boolean function, and let $F^*(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} F(x_1,...,x_{i-1},\neg x_i,x_{i+1},...,x_n)$ for some index i. Suppose also that $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta})$ is a penalty function for $F(\underline{\mathbf{x}})$ under some placement. Then $P_{F^*}(\mathbf{x},\mathbf{a}|\theta)=P_F(\mathbf{x},\mathbf{a}|\theta^*)$, where θ^* is s.t., for every $z,z'\in\mathbf{x},\mathbf{a}$:

$$\theta_{z}^{*} = \begin{cases} -\theta_{z} & \text{if } z = x_{i} \\ \theta_{z} & \text{otherwise} \end{cases} \qquad \theta_{zz'}^{*} = \begin{cases} -\theta_{zz'} & \text{if } z = x_{i} \text{ or } z' = x_{i} \\ \theta_{zz'} & \text{otherwise} \end{cases}$$

Example

if
$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (x_1 \land x_2)$$
, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} - \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 + \frac{1}{2}x_1x_2 - x_1x_3 - x_2a - x_3a$ if $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_3 \leftrightarrow (\neg x_1 \land x_2)$, then $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \frac{5}{2} + \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}x_1x_2 + x_1x_3 - x_2a - x_3a$

Two Boolean functions $F(\underline{\mathbf{x}})$, $F^*(\underline{\mathbf{x}})$ that become equivalent by permuting or negating some of their input variables $\underline{\mathbf{x}}$ are called NPN-equivalent. \Longrightarrow given a penalty function for F, computing one for F^* is trivial.

$$x_3 \leftrightarrow (x_1 \land x_2), \neg x_3 \leftrightarrow (\neg x_1 \land \neg x_2), x_3 \leftrightarrow (x_1 \lor x_2), x_3 \leftrightarrow (x_1 \to x_2), \dots$$
 are NPN-equivalent

Properties of penalty functions: And-Decomposition

Given $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} \bigwedge_k F_k(\underline{\mathbf{x}}^k)$, each F_k with p.f. $P_{F_k}(\underline{\mathbf{x}}^k, \underline{\mathbf{a}}^k | \underline{\boldsymbol{\theta}}^k)$ and gap g_{min}^k s.t. $\underline{\mathbf{x}} = \bigcup_k \underline{\mathbf{x}}^k$, $\underline{\mathbf{a}} = \bigcup_k \underline{\mathbf{a}}^k$, the $\underline{\mathbf{a}}^k$ s all disjoint, the $\underline{\mathbf{x}}^k$ s not disjoint; if $\theta_i = \sum_k \theta_i^k \in [-2, 2]$ and $\theta_{ij} = \sum_k \theta_{ij}^k \in [-1, 1]$. $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\boldsymbol{\theta}}) \stackrel{\text{def}}{=} \sum_k P_{F_k}(\underline{\mathbf{x}}^k, \underline{\mathbf{a}}^k | \underline{\boldsymbol{\theta}}^k)$ p.f. for $F(\underline{\mathbf{x}})$, $g_{min} = \min_k (g_{min}^k)$.

If $\sum_k \theta_i^k$ and $\sum_k \theta_{ij}$ on shared x_i s x_j s violate the ranges weights w_k may be introduced \Longrightarrow the gap is weakened

rename the second occurrence with a fresh one x_i' , conjoining $(x_i \leftrightarrow x_i')$

$$F^*(\underline{\mathbf{x}}^*) \stackrel{\text{def}}{=} \bigwedge_k F_k(\underline{\mathbf{x}}^{k*}) \wedge \bigwedge_{\{x_i \text{ shared}\}} (x_i \leftrightarrow x_i')$$

$$\Longrightarrow P_{F^*}(\underline{\mathbf{x}}^*,\underline{\mathbf{a}}|\underline{\theta}) \stackrel{\text{def}}{=} \sum_k P_{F_k}(\underline{\mathbf{x}}^k,\underline{\mathbf{a}}^k|\underline{\theta}^k) + \sum_{\{x_i \text{ shared}\}} (1-x_ix_i')$$

 $\Longrightarrow g_{min} = \min_k(g_{min}^k, 2).$

Properties of penalty functions: And-Decomposition

Given $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} \bigwedge_k F_k(\underline{\mathbf{x}}^k)$, each F_k with p.f. $P_{F_k}(\underline{\mathbf{x}}^k, \underline{\mathbf{a}}^k | \underline{\boldsymbol{\theta}}^k)$ and gap g_{min}^k s.t. $\underline{\mathbf{x}} = \bigcup_k \underline{\mathbf{x}}^k$, $\underline{\mathbf{a}} = \bigcup_k \underline{\mathbf{a}}^k$, the $\underline{\mathbf{a}}^k$ s all disjoint, the $\underline{\mathbf{x}}^k$ s not disjoint; given $w_k > 0$ s.t. $\theta_i = \sum_k \theta_i^k w_k \in [-2, 2]$ and $\theta_{ij} = \sum_k \theta_{ij}^k w_k \in [-1, 1]$. $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\boldsymbol{\theta}}) \stackrel{\text{def}}{=} \sum_k P_{F_k}(\underline{\mathbf{x}}^k, \underline{\mathbf{a}}^k | \underline{\boldsymbol{\theta}}^k) w_k$ p.f. for $F(\underline{\mathbf{x}})$, $g_{min} = \min_k (g_{min}^k w_k)$.

If $\sum_k \theta_i^k$ and $\sum_k \theta_{ij}$ on shared x_i s x_j s violate the ranges weights w_k may be introduced \Longrightarrow the gap is weakened

rename the second occurrence with a fresh one x_i' , conjoining $(x_i \leftrightarrow x_i')$

$$F^*(\underline{\mathbf{x}}^*) \stackrel{\text{def}}{=} \bigwedge_k F_k(\underline{\mathbf{x}}^{k*}) \wedge \bigwedge_{\{x_i \text{ shared}\}} (x_i \leftrightarrow x_i')$$

$$\Longrightarrow P_{F^*}(\underline{\mathbf{x}}^*,\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \stackrel{\text{def}}{=} \sum_k P_{F_k}(\underline{\mathbf{x}}^k,\underline{\mathbf{a}}^k|\underline{\boldsymbol{\theta}}^k) + \sum_{\{x_i \text{ shared}\}} (1-x_ix_i')$$

 $\Longrightarrow g_{min} = \min_k(g_{min}^k, 2).$

Properties of penalty functions: And-Decomposition

Given $F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} \bigwedge_k F_k(\underline{\mathbf{x}}^k)$, each F_k with p.f. $P_{F_k}(\underline{\mathbf{x}}^k, \underline{\mathbf{a}}^k | \underline{\boldsymbol{\theta}}^k)$ and gap g_{min}^k s.t. $\underline{\mathbf{x}} = \bigcup_k \underline{\mathbf{x}}^k$, the $\underline{\mathbf{a}}^k$ s all disjoint, the $\underline{\mathbf{x}}^k$ s not disjoint; if $\theta_i = \sum_k \theta_i^k \in [-2, 2]$ and $\theta_{ij} = \sum_k \theta_{ij}^k \in [-1, 1]$. $P_F(\mathbf{x}, \underline{\mathbf{a}} | \underline{\boldsymbol{\theta}}) \stackrel{\text{def}}{=} \sum_k P_{F_k}(\mathbf{x}^k, \underline{\mathbf{a}}^k | \underline{\boldsymbol{\theta}}^k)$ p.f. for $F(\mathbf{x})$, $g_{min} = \min_k (g_{min}^k)$.

If $\sum_k \theta_i^k$ and $\sum_k \theta_{ij}$ on shared x_i s x_j s violate the ranges weights w_k may be introduced \Longrightarrow the gap is weakened

When two conjuncts F_k , $F_{k'}$ share one variable x_i , rename the second occurrence with a fresh one x_i' , conjoining $(x_i \leftrightarrow x_i')$: $F^*(\mathbf{x}^*) \stackrel{\text{def}}{=} \bigwedge_k F_k(\mathbf{x}^{k*}) \wedge \bigwedge_{\{x_i \text{ shared}\}} (x_i \leftrightarrow x_i')$

$$\Longrightarrow P_{F^*}(\underline{\mathbf{x}}^*,\underline{\mathbf{a}}|\underline{\theta}) \stackrel{\text{def}}{=} \sum_k P_{F_k}(\underline{\mathbf{x}}^k,\underline{\mathbf{a}}^k|\underline{\theta}^k) + \sum_{\{x_i \text{ shared}\}} (1-x_ix_i')$$

$$\Longrightarrow g_{min} = \min_k (g_{min}^k, 2).$$

 $(x_i \leftrightarrow x_i')$ produces $1 - x_i x_i'$ of gap $2 \Longrightarrow$ no parameter range issue

Formula decomposition

1 Tseitin-style decompose $F(\underline{\mathbf{x}})$ into an equi-satisfiable formula:

$$F^*(\underline{\mathbf{x}},\underline{\mathbf{y}}) \stackrel{\text{def}}{=} \bigwedge_{i=1}^{m-1} (y_i \leftrightarrow F_i(\underline{\mathbf{x}}^i,\underline{\mathbf{y}}^i)) \wedge F_m(\underline{\mathbf{x}}^m,\underline{\mathbf{y}}^m) \qquad (y_i \text{ fresh})$$

- 2 when two conjuncts F_1 , F_2 share one variable y_j , rename the second with a fresh one y_i' , conjoining $(y_i \leftrightarrow y_i')$
- 3 compute separately the penalty functions of the conjuncts
- 4 sum them

$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_4 \leftrightarrow (x_3 \land (x_1 \oplus x_2))$$

$$\Rightarrow F^*(\underline{\mathbf{x}}, y) \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y \leftrightarrow (x_1 \oplus x_2))$$

$$\Rightarrow F^{**}(\underline{\mathbf{x}}, y, y') \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y' \leftrightarrow (x_1 \oplus x_2)) \land (y \leftrightarrow y')$$

$$\Rightarrow P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \begin{pmatrix} \frac{5}{2} - \frac{1}{2}x_3 - \frac{1}{2}y' + x_4 + \frac{1}{2}x_3y' - x_3x_4 - y'a_4 - x_4a_4 + \\ 5 + y + a_2 - a_3 + x_1a_1 - x_1a_2 - x_1a_3 - x_2a_1 - x_2a_2 - x_2a_3 + ya_2 - ya_3 \end{pmatrix}$$

$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_4 \leftrightarrow (x_3 \land (x_1 \oplus x_2))$$

$$\Rightarrow F^*(\underline{\mathbf{x}}, y) \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y \leftrightarrow (x_1 \oplus x_2))$$

$$\Rightarrow F^{**}(\underline{\mathbf{x}}, y, y') \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y' \leftrightarrow (x_1 \oplus x_2)) \land (y \leftrightarrow y')$$

$$\Rightarrow P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \begin{pmatrix} \frac{5}{2} - \frac{1}{2}x_3 - \frac{1}{2}y' + x_4 + \frac{1}{2}x_3y' - x_3x_4 - y'a_4 - x_4a_4 + \\ 5 + y + a_2 - a_3 + x_1a_1 - x_1a_2 - x_1a_3 - x_2a_1 - x_2a_2 - x_2a_3 + ya_2 - ya_3 \end{pmatrix}$$

$$\bullet F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_4 \leftrightarrow (x_3 \land (x_1 \oplus x_2))
\Rightarrow F^*(\underline{\mathbf{x}}, y) \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y \leftrightarrow (x_1 \oplus x_2))
\Rightarrow F^{**}(\underline{\mathbf{x}}, y, y') \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y' \leftrightarrow (x_1 \oplus x_2)) \land (y \leftrightarrow y')
\Rightarrow P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\underline{\theta}) = \begin{pmatrix} \frac{5}{2} - \frac{1}{2}x_3 - \frac{1}{2}y' + x_4 + \frac{1}{2}x_3y' - x_3x_4 - y'a_4 - x_4a_4 + \\ 5 + y + a_2 - a_3 + x_1a_1 - x_1a_2 - x_1a_3 - x_2a_1 - x_2a_2 - x_2a_3 + ya_2 - ya_3 \\ + 1 - yy' \end{pmatrix}$$

$$F(\underline{\mathbf{x}}) \stackrel{\text{def}}{=} x_4 \leftrightarrow (x_3 \land (x_1 \oplus x_2))$$

$$\Rightarrow F^*(\underline{\mathbf{x}}, y) \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y \leftrightarrow (x_1 \oplus x_2))$$

$$\Rightarrow F^{**}(\underline{\mathbf{x}}, y, y') \stackrel{\text{def}}{=} (x_4 \leftrightarrow (x_3 \land y)) \land (y' \leftrightarrow (x_1 \oplus x_2)) \land (y \leftrightarrow y')$$

$$\Rightarrow P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \begin{pmatrix} \frac{5}{2} - \frac{1}{2}x_3 - \frac{1}{2}y' + x_4 + \frac{1}{2}x_3y' - x_3x_4 - y'a_4 - x_4a_4 + \\ 5 + y + a_2 - a_3 + x_1a_1 - x_1a_2 - x_1a_3 - x_2a_1 - x_2a_2 - x_2a_3 + ya_2 - ya_3 \\ +1 - yy' \end{pmatrix}$$

$$\Rightarrow P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = \begin{pmatrix} x_1 & x_2 & x_3 & x_1 & x_2 & x_3 & x$$

Outline

- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- 3 Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

General "Monolithic" Encoding Problem

Assume some bit-to-qubit map $\underline{\mathbf{x}}, \underline{\mathbf{a}} \longmapsto \underline{\mathbf{z}}$ (placement) and let:

$$P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) \stackrel{\text{def}}{=} \theta_{0} + \sum \theta_{ij}x_{i} + \sum \theta_{ij}x_{i}x_{j} + \sum \theta_{ij}a_{i} + \sum \theta_{ij}a_{i}x_{j} + \sum \theta_{ij}a_{i}a_{j}$$

$$find \ \underline{\theta} \ s.t. \ \forall \underline{\mathbf{x}}. \begin{bmatrix} (F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) \geq 0)) \land \\ (F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = 0)) \land \\ (\neg F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) \geq g_{min})) \land \\ (\neg F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\theta}) = g_{min})) \end{bmatrix}$$

$$and \ s.t. \ \theta_{i} \in [-2,2], \ \theta_{ii} \in [-1,1], \ \forall i,i$$

if we want $P_F(\mathbf{x}, \mathbf{a}|\underline{\theta})$ to be exact

ullet Quantifiers can be Shannon-expanded into a SMT(\mathcal{LRA}) formula (SMT-based encoding)

part without ancillas

part with ancillas

General "Monolithic" Encoding Problem

Assume some bit-to-qubit map $\underline{\mathbf{x}}, \underline{\mathbf{a}} \longmapsto \underline{\mathbf{z}}$ (placement) and let:

$$P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \qquad \stackrel{\text{def}}{=} \qquad \theta_{0} \qquad + \qquad \stackrel{\text{part without ancillas}}{\sum \theta_{i}x_{i}} + \sum \theta_{ij}x_{i}x_{j} + \sum \theta_{ij}a_{i}x_{j} + \sum \theta_{ij}a_{i}x_{j} + \sum \theta_{ij}a_{i}a_{j}}$$

$$find \ \underline{\boldsymbol{\theta}} \ s.t. \ \forall \underline{\mathbf{x}}. \qquad \begin{bmatrix} (F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \geq 0)) \land \\ (F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) = 0)) \land \\ (\neg F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \geq g_{min})) \land \\ (\neg F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \geq g_{min})) \end{cases}$$

$$and \ s.t. \ \theta_{i} \in [-2,2], \ \theta_{ij} \in [-1,1], \ \forall i,j$$

if we want $P_F(\mathbf{x}, \mathbf{a}|\underline{\theta})$ to be exact

• Quantifiers can be Shannon-expanded into a SMT(\mathcal{LRA}) formula (SMT-based encoding)

General "Monolithic" Encoding Problem

Assume some bit-to-qubit map $\underline{\mathbf{x}}, \underline{\mathbf{a}} \longmapsto \underline{\mathbf{z}}$ (placement) and let:

$$P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \qquad \stackrel{\text{def}}{=} \qquad \theta_{0} \qquad + \qquad \stackrel{\text{part without ancillas}}{\sum \theta_{i}x_{i}} + \sum \theta_{ij}x_{i}x_{j} + \sum \theta_{ij}a_{i}x_{j} + \sum \theta_{ij}a_{i}x_{j} + \sum \theta_{ij}a_{i}a_{j}}$$

$$find \ \underline{\boldsymbol{\theta}} \ s.t. \ \forall \underline{\mathbf{x}}. \qquad \begin{bmatrix} (F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \geq 0)) \land \\ (F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) = 0)) \land \\ (\neg F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \geq g_{min})) \land \\ (\neg F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) = g_{min})) \end{bmatrix}$$

$$and \ s.t. \ \theta_{i} \in [-2,2], \ \theta_{ij} \in [-1,1], \ \forall i,j$$

if we want $P_F(\mathbf{x}, \mathbf{a}|\underline{\theta})$ to be exact

Quantifiers can be Shannon-expanded into a SMT(LRA) formula (SMT-based encoding)

General "Monolithic" Encoding Problem

Assume some bit-to-qubit map $\underline{\mathbf{x}}, \underline{\mathbf{a}} \longmapsto \underline{\mathbf{z}}$ (placement) and let:

$$P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \qquad \stackrel{\text{def}}{=} \qquad \theta_{0} \qquad + \qquad \stackrel{\text{part without ancillas}}{\sum \theta_{i}x_{i}} + \sum \theta_{ij}x_{i}x_{j} + \sum \theta_{ij}a_{i}x_{j} + \sum \theta_{ij}a_{i}x_{j} + \sum \theta_{ij}a_{i}a_{j}}$$

$$find \ \underline{\boldsymbol{\theta}} \ s.t. \ \forall \underline{\mathbf{x}}. \qquad \begin{bmatrix} (F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \geq 0)) \land \\ (F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) = 0)) \land \\ (\neg F(\underline{\mathbf{x}}) \to \forall \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) \geq g_{min})) \land \\ (\neg F(\underline{\mathbf{x}}) \to \exists \underline{\mathbf{a}}.(P_{F}(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}}) = g_{min})) \end{bmatrix}$$

$$and \ s.t. \ \theta_{i} \in [-2,2], \ \theta_{ij} \in [-1,1], \ \forall i,j$$

if we want $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}})$ to be exact

• Quantifiers can be Shannon-expanded into a SMT(\mathcal{LRA}) formula (SMT-based encoding)

• Given a placement $\underline{\mathbf{x}}, \underline{\mathbf{a}} \longmapsto \underline{\mathbf{z}}$, finding $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta})$ (i.e., the θ 's) reduces to the $\frac{\mathsf{SMT}(\mathcal{LRA})}{\mathsf{problem}}$:

$$\begin{split} \Phi(\underline{\theta}) &\stackrel{\text{def}}{=} & \bigwedge_{z_{i} \in \mathbf{X}, \underline{\mathbf{a}}} (-2 \leq \theta_{i}) \wedge (\theta_{i} \leq 2) \\ & \wedge & \bigwedge_{z_{i}, z_{j} \in \underline{\mathbf{X}}, \underline{\mathbf{a}}, \ i < j} (-1 \leq \theta_{ij}) \wedge (\theta_{ij} \leq 1) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = T\}} & \bigwedge_{\underline{\mathbf{a}} \in \{-1, 1\}^{n}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) \geq 0) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = T\}} & \bigvee_{\underline{\mathbf{a}} \in \{-1, 1\}^{n}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = 0) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = \bot\}} & \bigwedge_{\underline{\mathbf{a}} \in \{-1, 1\}^{n}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) \geq g_{min}) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = \bot\}} & \bigvee_{\underline{\mathbf{a}} \in \{-1, 1\}^{n}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = g_{min}). \end{split}$$

if we want $P_F(\mathbf{x}, \mathbf{a}|\underline{\theta})$ to be exact

 \implies Finding a maximum-gap $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}})$ reduces to a problem in optimization modulo theories $(\mathsf{OMT}(\mathcal{LRA})): \langle \Phi(\underline{\boldsymbol{\theta}}), g_{min} \rangle$

• Given a placement $\underline{\mathbf{x}}, \underline{\mathbf{a}} \longmapsto \underline{\mathbf{z}}$, finding $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\underline{\theta})$ (i.e., the θ 's) reduces to the $\underline{\mathsf{SMT}}(\mathcal{LRA})$ problem:

$$\begin{split} \Phi(\underline{\theta}) &\stackrel{\text{def}}{=} & \bigwedge_{z_{i} \in \underline{\mathbf{x}}, \underline{\mathbf{a}}} (-2 \leq \theta_{i}) \wedge (\theta_{i} \leq 2) \\ & \wedge & \bigwedge_{z_{i}, z_{j} \in \underline{\mathbf{x}}, \underline{\mathbf{a}}, \ i < j} (-1 \leq \theta_{ij}) \wedge (\theta_{ij} \leq 1) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = \top\}} & \bigwedge_{\underline{\mathbf{a}} \in \{-1, 1\}^{h}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) \geq 0) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = \top\}} & \bigvee_{\underline{\mathbf{a}} \in \{-1, 1\}^{h}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = 0) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = \bot\}} & \bigwedge_{\underline{\mathbf{a}} \in \{-1, 1\}^{h}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) \geq g_{min}) \\ & \wedge & \bigwedge_{\{\underline{\mathbf{x}} \in \{-1, 1\}^{n} | F(\underline{\mathbf{x}}) = \bot\}} & \bigvee_{\underline{\mathbf{a}} \in \{-1, 1\}^{h}} (P_{F}(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \underline{\theta}) = g_{min}). \end{split}$$

if we want $P_F(\mathbf{x}, \mathbf{a} | \boldsymbol{\theta})$ to be exact

 \implies Finding a maximum-gap $P_F(\underline{\mathbf{x}},\underline{\mathbf{a}}|\underline{\boldsymbol{\theta}})$ reduces to a problem in optimization modulo theories $(\mathsf{OMT}(\mathcal{LRA})): \langle \Phi(\underline{\boldsymbol{\theta}}), g_{min} \rangle$

- Let $\underline{\mathbf{z}} \stackrel{\text{def}}{=} \{x_1, ..., x_n, a_1, ..., a_h\}, \ V \stackrel{\text{def}}{=} \{1, ..., n+h\}$ the target qubits
- Introduce a set of n + h integer variables $\underline{\mathbf{v}} \stackrel{\text{def}}{=} \{v_1, ..., v_{n+h}\}$
 - v_j : the vertex into which z_j is placed.
 - add $Distinct(v_1,...,v_{n+h}) \land \bigwedge_{1 \le j \le n+h} (1 \le v_j) \land (v_j \le n+h)$
- Introduce $b: V \mapsto \mathbb{Q}$ ("bias") and $c: V \times V \mapsto \mathbb{Q}$ ("coupling"), rewrite $\Phi(\underline{\theta})$ into the $\mathcal{LRIA} \cup \mathcal{UF}$ formula $\Phi(\theta_0, b, c, \underline{\mathbf{v}})$:
 - in $\Phi(\underline{\theta})$, replace θ_j and θ_{ij} by $b(v_j)$ and $c(v_i, v_j)$: $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\theta_0, b, c, \underline{\mathbf{v}}) = \theta_0 + \sum_i b(v_i) \cdot z_i + \sum_{i,j} c(v_i, v_j) \cdot z_i \cdot z_j$
 - add connectivity graph description (plus few other constraints) : $\bigwedge_{(i,j) \notin \mathcal{E}} (\mathbf{c}(i,j) = 0)$
- Feed $\Phi(\theta_0, \mathbf{b}, \mathbf{c}, \underline{\mathbf{v}})$ to a SMT/OMT($\mathcal{LRIA} \cup \mathcal{UF}$) solver \Longrightarrow solution provides both the placement $\underline{\mathbf{v}}$ and the values for offset θ_0 , biases $\mathbf{b}(v_j)$ and couplings $\mathbf{c}(v_i, v_j)$
- Placement improved by adding symmetry-breaking constraints (e.g., from 8! = 40320 to $\binom{7}{3} = 35$ candidate placements in 1 tile)

- Let $\underline{\mathbf{z}} \stackrel{\text{def}}{=} \{x_1, ..., x_n, a_1, ..., a_h\}, \ V \stackrel{\text{def}}{=} \{1, ..., n+h\}$ the target qubits
- Introduce a set of n + h integer variables $\underline{\mathbf{v}} \stackrel{\text{def}}{=} \{v_1, ..., v_{n+h}\}$
 - v_j : the vertex into which z_j is placed.
 - add $Distinct(v_1, ..., v_{n+h}) \land \bigwedge_{1 < j < n+h} (1 \le v_j) \land (v_j \le n+h)$
- Introduce $b: V \mapsto \mathbb{Q}$ ("bias") and $c: V \times V \mapsto \mathbb{Q}$ ("coupling"), rewrite $\Phi(\underline{\theta})$ into the $\mathcal{LRIA} \cup \mathcal{UF}$ formula $\Phi(\theta_0, b, c, \underline{\mathbf{v}})$:
 - in $\Phi(\underline{\theta})$, replace θ_i and θ_{ij} by $b(v_i)$ and $c(v_i, v_j)$: $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\theta_0, b, c, \underline{\mathbf{v}}) = \theta_0 + \sum_i b(v_i) \cdot z_i + \sum_{i,j} c(v_i, v_j) \cdot z_i \cdot z_j$
 - add connectivity graph description (plus few other constraints) : $\bigwedge_{i \in NaE} (\mathbf{c}(i,j) = 0)$
- Feed $\Phi(\theta_0, \mathbf{b}, \mathbf{c}, \underline{\mathbf{v}})$ to a SMT/OMT($\mathcal{LRIA} \cup \mathcal{UF}$) solver \Longrightarrow solution provides both the placement $\underline{\mathbf{v}}$ and the values for offset θ_0 , biases $\mathbf{b}(v_j)$ and couplings $\mathbf{c}(v_i, v_j)$
- Placement improved by adding symmetry-breaking constraints (e.g., from 8! = 40320 to $\binom{7}{3} = 35$ candidate placements in 1 tile)

- Let $\underline{\mathbf{z}} \stackrel{\text{def}}{=} \{x_1, ..., x_n, a_1, ..., a_h\}, \ V \stackrel{\text{def}}{=} \{1, ..., n+h\}$ the target qubits
- Introduce a set of n + h integer variables $\underline{\mathbf{v}} \stackrel{\text{def}}{=} \{v_1, ..., v_{n+h}\}$
 - v_j : the vertex into which z_j is placed.
 - add $Distinct(v_1, ..., v_{n+h}) \land \bigwedge_{1 \le j \le n+h} (1 \le v_j) \land (v_j \le n+h)$
- Introduce $b: V \mapsto \mathbb{Q}$ ("bias") and $c: V \times V \mapsto \mathbb{Q}$ ("coupling"), rewrite $\Phi(\underline{\theta})$ into the $\mathcal{LRIA} \cup \mathcal{UF}$ formula $\Phi(\theta_0, b, c, \underline{v})$:
 - in $\Phi(\underline{\theta})$, replace θ_j and θ_{ij} by $b(v_j)$ and $c(v_i, v_j)$: $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}}|\theta_0, b, c, \underline{\mathbf{v}}) = \theta_0 + \sum_i b(v_j) \cdot z_j + \sum_{i,j} c(v_i, v_j) \cdot z_i \cdot z_j$
 - add connectivity graph description (plus few other constraints) : $\bigwedge_{(i,j)\not\in\mathcal{E}}(\mathsf{c}(i,j)=0)$
- Feed $\Phi(\theta_0, \mathbf{b}, \mathbf{c}, \underline{\mathbf{v}})$ to a SMT/OMT($\mathcal{LRIA} \cup \mathcal{UF}$) solver \Longrightarrow solution provides both the placement $\underline{\mathbf{v}}$ and the values for offset θ_0 , biases $\mathbf{b}(v_j)$ and couplings $\mathbf{c}(v_i, v_j)$
- Placement improved by adding symmetry-breaking constraints (e.g., from 8! = 40320 to $\binom{7}{3} = 35$ candidate placements in 1 tile)

- Let $\underline{\mathbf{z}} \stackrel{\text{def}}{=} \{x_1, ..., x_n, a_1, ..., a_h\}, \ V \stackrel{\text{def}}{=} \{1, ..., n+h\}$ the target qubits
- Introduce a set of n + h integer variables $\underline{\mathbf{v}} \stackrel{\text{def}}{=} \{v_1, ..., v_{n+h}\}$
 - v_j : the vertex into which z_j is placed.
 - add $Distinct(v_1, ..., v_{n+h}) \land \bigwedge_{1 \le j \le n+h} (1 \le v_j) \land (v_j \le n+h)$
- Introduce $b: V \mapsto \mathbb{Q}$ ("bias") and $c: V \times V \mapsto \mathbb{Q}$ ("coupling"), rewrite $\Phi(\underline{\theta})$ into the $\mathcal{LRIA} \cup \mathcal{UF}$ formula $\Phi(\theta_0, b, c, \underline{\mathbf{v}})$:
 - in $\Phi(\underline{\theta})$, replace θ_j and θ_{ij} by $b(v_j)$ and $c(v_i, v_j)$: $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \theta_0, b, c, \underline{\mathbf{v}}) = \theta_0 + \sum_j b(v_j) \cdot z_j + \sum_{i,j} c(v_i, v_j) \cdot z_i \cdot z_j$
 - add connectivity graph description (plus few other constraints) : $\bigwedge_{(i,j) \notin E} (c(i,j) = 0)$
- Feed $\Phi(\theta_0, \mathbf{b}, \mathbf{c}, \underline{\mathbf{v}})$ to a SMT/OMT($\mathcal{LRIA} \cup \mathcal{UF}$) solver \Longrightarrow solution provides both the placement $\underline{\mathbf{v}}$ and the values for offset θ_0 , biases $\mathbf{b}(v_j)$ and couplings $\mathbf{c}(v_i, v_j)$
- Placement improved by adding symmetry-breaking constraints (e.g., from 8! = 40320 to $\binom{7}{3} = 35$ candidate placements in 1 tile)

- Let $\underline{\mathbf{z}} \stackrel{\text{def}}{=} \{x_1, ..., x_n, a_1, ..., a_h\}, \ V \stackrel{\text{def}}{=} \{1, ..., n+h\}$ the target qubits
- Introduce a set of n + h integer variables $\underline{\mathbf{v}} \stackrel{\text{def}}{=} \{v_1, ..., v_{n+h}\}$
 - v_j : the vertex into which z_j is placed.
 - add $Distinct(v_1, ..., v_{n+h}) \land \bigwedge_{1 \le j \le n+h} (1 \le v_j) \land (v_j \le n+h)$
- Introduce $b: V \mapsto \mathbb{Q}$ ("bias") and $c: V \times V \mapsto \mathbb{Q}$ ("coupling"), rewrite $\Phi(\underline{\theta})$ into the $\mathcal{LRIA} \cup \mathcal{UF}$ formula $\Phi(\theta_0, b, c, \underline{v})$:
 - in $\Phi(\underline{\theta})$, replace θ_j and θ_{ij} by $b(v_j)$ and $c(v_i, v_j)$: $P_F(\underline{\mathbf{x}}, \underline{\mathbf{a}} | \theta_0, b, c, \underline{\mathbf{v}}) = \theta_0 + \sum_j b(v_j) \cdot z_j + \sum_{i,j} c(v_i, v_j) \cdot z_i \cdot z_j$
 - add connectivity graph description (plus few other constraints) : $\bigwedge_{\langle i,j\rangle \not\in \mathcal{E}} (\mathsf{c}(i,j) = 0)$
- Feed $\Phi(\theta_0, \mathbf{b}, \mathbf{c}, \underline{\mathbf{v}})$ to a SMT/OMT($\mathcal{LRIA} \cup \mathcal{UF}$) solver \Longrightarrow solution provides both the placement $\underline{\mathbf{v}}$ and the values for offset θ_0 , biases $\mathbf{b}(v_j)$ and couplings $\mathbf{c}(v_i, v_j)$
- Placement improved by adding symmetry-breaking constraints (e.g., from 8! = 40320 to $\binom{7}{3} = 35$ candidate placements in 1 tile)

SMT/OMT-based "monolithic" encoding: limitations

Complexity/size

- General formula is $\exists \forall \exists$ -quantified \Longrightarrow solving worse than NP!
- SMT-based encoding $\Phi(\underline{\theta})$ exponential wrt. $|\underline{\mathbf{x}},\underline{\mathbf{a}}|$
- Improvements: symmetry break, variable elimination (see paper)

Over-constrainedness

- The monolithic encoding problem is very over-constrained:
 - must discriminate between $O(2^{|\underline{x}|})$ models & countermodels $O(2^{|\underline{x}|})$ equalities $O(2^{|\underline{x}|})$ inequalities)
 - $O(|\mathbf{x}| + |\mathbf{a}|)$ degrees of freedom: θ_i , θ_{ii}
 - \implies to have a satisfiable $\Phi(\underline{\theta})$, the number of ancillas $|\underline{\mathbf{a}}|$ grows
 - ⇒ large waste of qubits
- \implies works only for small input Boolean formulas $F(\underline{\mathbf{x}})$
- medium/large formulas need decomposing

SMT/OMT-based "monolithic" encoding: limitations

Complexity/size

- General formula is $\exists \forall \exists$ -quantified \Longrightarrow solving worse than NP!
- SMT-based encoding $\Phi(\underline{\theta})$ exponential wrt. $|\underline{\mathbf{x}},\underline{\mathbf{a}}|$
- Improvements: symmetry break, variable elimination (see paper)

Over-constrainedness

- The monolithic encoding problem is very over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels $(O(2^{|\underline{\mathbf{x}}|})$ equalities + $O(2^{|\underline{\mathbf{x}}|+|\underline{\mathbf{a}}|})$ inequalities)
 - $O(|\underline{\mathbf{x}}| + |\underline{\mathbf{a}}|)$ degrees of freedom: θ_i , θ_{ij}
 - \Longrightarrow to have a satisfiable $\Phi(\underline{\theta})$, the number of ancillas $|\underline{\mathbf{a}}|$ grows
 - \Longrightarrow large waste of qubits

 \implies works only for small input Boolean formulas $F(\underline{\mathbf{x}})$ \implies medium/large formulas need decomposing

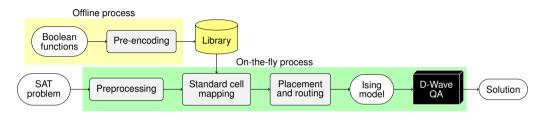
SMT/OMT-based "monolithic" encoding: limitations

Complexity/size

- General formula is $\exists \forall \exists$ -quantified \Longrightarrow solving worse than NP!
- SMT-based encoding $\Phi(\underline{\theta})$ exponential wrt. $|\underline{\mathbf{x}},\underline{\mathbf{a}}|$
- Improvements: symmetry break, variable elimination (see paper)

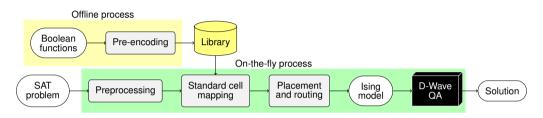
Over-constrainedness

- The monolithic encoding problem is very over-constrained:
 - must discriminate between $O(2^{|\underline{\mathbf{x}}|})$ models & countermodels $(O(2^{|\underline{\mathbf{x}}|})$ equalities + $O(2^{|\underline{\mathbf{x}}|+|\underline{\mathbf{a}}|})$ inequalities)
 - $O(|\underline{\mathbf{x}}| + |\underline{\mathbf{a}}|)$ degrees of freedom: θ_i , θ_{ij}
 - \Longrightarrow to have a satisfiable $\Phi(\underline{\theta})$, the number of ancillas $|\underline{\mathbf{a}}|$ grows
 - \Longrightarrow large waste of qubits
- \implies works only for small input Boolean formulas $F(\underline{\mathbf{x}})$
- → medium/large formulas need decomposing



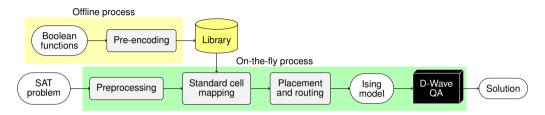
Offline process

- Pre-encoding: produce a library of penalty functions of small and useful Boolean sub-formulas (modulo NPN equivalence)
 - based on SMT/OMT
 - resource-intensive



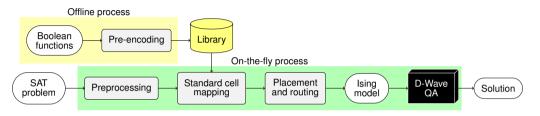
On-the-fly translation

- Preprocessing
 - Boolean formula simplifying & rewriting
 - relatively fast



On-the-fly translation

- Cell mapping
 - decompose F into $\bigwedge_k F_k$ available from the library (modulo NPN-equivalence)
 - natural choice: F_ks typically fitting in 1 tile
 - efficient heuristics from logic synthesis for NPN-matching & technology mapping [Huang et al. 2013, Mishchenko et al 2005,07]



On-the-fly translation

- Placement & Routing
 - placement: each p.f. P_{F_k} is assigned a disjoint subgraph of the QA graph (typically 1 tile)
 - routing: equivalence chains of qubits (p.f. $1 x_i x_i'$) built to connect variables shared by P_{F_k} s
 - efficient heuristics from design of digital circuits [Betz & Rose, 1997; Gester et al. 2013; ...]
 - currently our computational bottleneck
 - produces long chains: waste of qubits, make annealing less stable

Outline

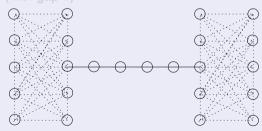
- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- 3 Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

• Given $F(x,..) \wedge G(x,...)$, w. shared variable x, with p.f. P_F , P_G

$$\implies F(x_0,..) \wedge G(x_n,...) \wedge \bigwedge_{i=1}^n (x_{i-1} \leftrightarrow x_i)$$

$$\implies P_{F \wedge G}(...) = P_F(x_0, ...) + P_G(x_n, ...) + \sum_{i=1}^n (1 - x_{i-1}x_i)$$

- place $F(x_0,...)$, $G(x_n,...)$
- an equivalence chain $\bigwedge_{i=1}^n (x_{i-1} \leftrightarrow x_i)$ links the two x instances
- Alternatively, if extended coupling range [-2, 1] applied, then $P_{F \wedge G}(...) = P_F(x_0, ...) + P_G(x_n, ...) + \sum_{i=1}^n (2 2x_{i-1}x_i)$ \Rightarrow "stronger" chains (with gap 4)

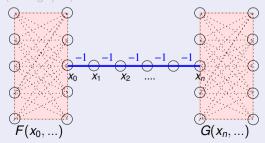


• Given $F(x,...) \wedge G(x,...)$, w. shared variable x, with p.f. P_F , P_G

$$\implies F(x_0,..) \wedge G(x_n,...) \wedge \bigwedge_{i=1}^n (x_{i-1} \leftrightarrow x_i)$$

$$\implies P_{F \wedge G}(...) = P_F(x_0, ...) + P_G(x_n, ...) + \sum_{i=1}^n (1 - x_{i-1}x_i)$$

- place $F(x_0,..), G(x_n,...),$
- an equivalence chain $\bigwedge_{i=1}^{n} (x_{i-1} \leftrightarrow x_i)$ links the two x instances
- Alternatively, if extended coupling range [-2, 1] applied, then $P_{F \wedge G}(...) = P_F(x_0, ...) + P_G(x_n, ...) + \sum_{i=1}^n (2 2x_{i-1}x_i)$ \Longrightarrow "stronger" chains (with gap 4)



• Given $F(x,...) \wedge G(x,...)$, w. shared variable x, with p.f. P_F , P_G

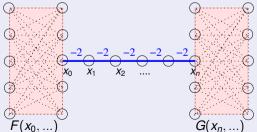
$$\implies F(x_0,..) \land G(x_n,...) \land \bigwedge_{i=1}^n (x_{i-1} \leftrightarrow x_i)$$

$$\implies P_{F \wedge G}(...) = P_F(x_0, ...) + P_G(x_n, ...) + \sum_{i=1}^n (1 - x_{i-1}x_i)$$

- place $F(x_0,..)$, $G(x_n,...)$,
- an equivalence chain $\bigwedge_{i=1}^{n} (x_{i-1} \leftrightarrow x_i)$ links the two x instances
- Alternatively, if extended coupling range [-2, 1] applied, then

$$P_{F \wedge G}(...) = P_F(x_0, ...) + P_G(x_n, ...) + \sum_{i=1}^n (2 - 2x_{i-1}x_i)$$

⇒ "stronger" chains (with gap 4)



Problem: Equivalence chains "hard" for a Q.A. to deal with

- Unlike Boolean solvers, Q.A.s do not have equality propagation (BCP, ect.)
 - to "solve" $\bigwedge_{i=1}^{n} (x_{i-1} \leftrightarrow x_i)$, must minimize $\sum_{i=1}^{n} (1 x_{i-1}x_i)$ in $\dots + P_F(x_0, \dots) + P_G(x_n, \dots) + \sum_{i=1}^{n} (1 x_{i-1}x_i) + \dots$
- Two typical failure scenarios:
 - 1. if gap of P_F 's dominate over that of $\sum_{i=1}^{n} (1 x_{i-1}x_i)$'s $[2 2x_ix_j]$,
 - then Q.A. tends to "break" chains (e.g. $x_i = 1, x_{i+1} = -1$)
 - 2. If gap of $\sum_{i=1}^{n} (1 x_{i-1}x_i) [2 2x_ix_j]$ dominate over that of P_F 's, then Q.A. tends to "break" P_F 's
- Problem: The bigger the qubits # in a chain ("chain strenght"), the harder for the Q.A. to toggle its value (without breaking it)
 - toggling a chain value moves from one state to another state whose Hamming dinstance is the strenght n of the chain, not 1!
 - ⇒ affects tunnelling
 - the Q.A. tends to assign values to stronger chains first, hard to modify eventually
 it is desirable to have chains of homogeneous strength

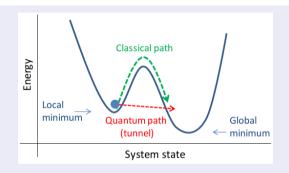
Problem: Equivalence chains "hard" for a Q.A. to deal with

- Unlike Boolean solvers, Q.A.s do not have equality propagation (BCP, ect.)
 - to "solve" $\bigwedge_{i=1}^{n} (x_{i-1} \leftrightarrow x_i)$, must minimize $\sum_{i=1}^{n} (1 x_{i-1}x_i)$ in $\dots + P_F(x_0, \dots) + P_G(x_n, \dots) + \sum_{i=1}^{n} (1 x_{i-1}x_i) + \dots$
- Two typical failure scenarios:
 - 1. if gap of P_F 's dominate over that of $\sum_{i=1}^n (1 x_{i-1}x_i)$'s $[2 2x_ix_j]$, then Q.A. tends to "break" chains (e.g. $x_i = 1, x_{i+1} = -1$)
 - 2. if gap of $\sum_{i=1}^{n} (1 x_{i-1}x_i) [2 2x_ix_j]$ dominate over that of P_F 's, then Q.A. tends to "break" P_F 's
- Problem: The bigger the qubits # in a chain ("chain strenght"), the harder for the Q.A. to toggle its value (without breaking it)
 - toggling a chain value moves from one state to another state whose Hamming dinstance is the strength n of the chain, not 1!
 - the Q.A. tends to assign values to stronger chains first, hard to modify eventually
 it is desirable to have chains of homogeneous strength

Problem: Equivalence chains "hard" for a Q.A. to deal with

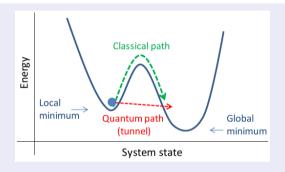
- Unlike Boolean solvers, Q.A.s do not have equality propagation (BCP, ect.)
 - to "solve" $\bigwedge_{i=1}^{n} (x_{i-1} \leftrightarrow x_i)$, must minimize $\sum_{i=1}^{n} (1 x_{i-1}x_i)$ in $\dots + P_F(x_0, \dots) + P_G(x_n, \dots) + \sum_{i=1}^{n} (1 x_{i-1}x_i) + \dots$
- Two typical failure scenarios:
 - 1. if gap of P_F 's dominate over that of $\sum_{i=1}^{n} (1 x_{i-1}x_i)$'s $[2 2x_ix_j]$, then Q.A. tends to "break" chains (e.g. $x_i = 1, x_{i+1} = -1$)
 - 2. if gap of $\sum_{i=1}^{n} (1 x_{i-1}x_i) [2 2x_ix_j]$ dominate over that of P_F 's, then Q.A. tends to "break" P_F 's
- Problem: The bigger the qubits # in a chain ("chain strenght"), the harder for the Q.A. to toggle its value (without breaking it)
 - toggling a chain value moves from one state to another state whose Hamming dinstance is the strength n of the chain, not 1!
 - ⇒ affects tunnelling
 - the Q.A. tends to assign values to stronger chains first, hard to modify eventually
 it is desirable to have chains of homogeneous strength

Why equivalence chains affect quantum tunneling?



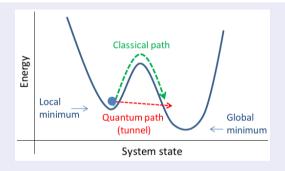
- (...)
- works well with tall & narrow energy barriers separating minima
- toggling a chain value moves from one state to another state whose Hamming dinstance is the strenght of the chain
- \implies strong chains may drastically enlarge the distance of minima
- → reduce/hinder the effect of tunneling

Why equivalence chains affect quantum tunneling?



- (...)
- works well with tall & narrow energy barriers separating minima
- toggling a chain value moves from one state to another state whose Hamming dinstance is the strenght of the chain
- \Rightarrow strong chains may drastically enlarge the distance of minima
- → reduce/hinder the effect of tunneling

Why equivalence chains affect quantum tunneling?



- (...)
- works well with tall & narrow energy barriers separating minima
- toggling a chain value moves from one state to another state whose Hamming dinstance is the strenght of the chain
- ⇒ strong chains may drastically enlarge the distance of minima
- reduce/hinder the effect of tunneling

Remark

- Sometimes the Q.A. can break a chain $\bigwedge_{i=1}^{n} (x_{i-1} \leftrightarrow x_i)$ twice (or 2k times)
 - \implies x_0 and x_n have the same value
 - \implies correct solution, although energy 4k > 0!
- Check the results for (unexpected) solutions!

Outline

- Background: D-Wave's Quantum Annealers
- Motivations & Goals
- 3 Solving SAT with Quantum Annealers: Foundations
 - Penalty Functions
 - Encoding SAT into Penalty Functions
 - Some Issues
- Preliminary Empirical Results

Preliminary Empirical Results

Problem choice

- Used a variant of the sgen generator tool [Spence 2010]
 - generates very hard and small satisfiable Boolean formulas
 - parametric in the number of variables N
 - 100 sample formulas for each N
- Encoder uses OPTIMATHSAT OMT solver [Sebastiani & Trentin, 2015]

Remark

Distinct samples are statistically independent, so the probability $P_{\min}[N]$ of obtaining at least one minimum solution over N samples converges exponentially to 1 with N:

$$P_{\min}[N] = 1 - (1 - P_{\min}[1])^{N}.$$

D-Wave 2000Q assessment on SAT

D-Wave 2000Q (2048 qubits)			
Problem size	# solved	% optimal samples	
32 vars	100	97.4	
36 vars	100	96.4	
40 vars	100	94.8	
44 vars	100	93.8	
48 vars	100	91.4	
52 vars	100	93.4	
56 vars	100	91.4	
60 vars	100	88.2	
64 vars	100	84.6	
68 vars	100	84.4	
72 vars	100	84.6	
76 vars	100	86.6	
80 vars	100	86.0	

UBCSAT (SAPS)		
Problem size	Avg time (ms)	
32 vars		
36 vars	0.2157	
40 vars		
44 vars		
48 vars		
52 vars		
56 vars	1.4788	
60 vars	2.2542	
64 vars		
68 vars	4.8058	
72 vars	6.2484	
76 vars		
80 vars	12.4141	

w. >80 vars could not fit in the QA graph

SAT problem instances

- 20 annealing samples per formula, $10\mu s$ each sample
 - \Longrightarrow 200 μ s total annealing time per formula

D-Wave 2000Q assessment on SAT

D-Wave 2000Q (2048 qubits)			
Problem size	# solved	% optimal samples	
32 vars	100	97.4	
36 vars	100	96.4	
40 vars	100	94.8	
44 vars	100	93.8	
48 vars	100	91.4	
52 vars	100	93.4	
56 vars	100	91.4	
60 vars	100	88.2	
64 vars	100	84.6	
68 vars	100	84.4	
72 vars	100	84.6	
76 vars	100	86.6	
80 vars	100	86.0	

UBCSAT (SAPS)		
Problem size	Avg time (ms)	
32 vars	0.1502	
36 vars	0.2157	
40 vars	0.3555	
44 vars	0.5399	
48 vars	0.8183	
52 vars	1.1916	
56 vars	1.4788	
60 vars	2.2542	
64 vars	3.1066	
68 vars	4.8058	
72 vars	6.2484	
76 vars	8.2986	
80 vars	12.4141	

w. >80 vars could not fit in the QA graph

w. >260 vars not solved by UBCSAT in 1000s

SAT problem instances

s.o.a. SLS SAT solver UBCSAT with SAPS algorithm
 8-core Intel Xeon E5-2407 CPU, 2.20GHz.

D-Wave 2000Q assessment on SAT

D-Wave 2000Q (2048 qubits)		
Problem size	# solved	% optimal samples
32 vars	100	97.4
36 vars	100	96.4
40 vars	100	94.8
44 vars	100	93.8
48 vars	100	91.4
52 vars	100	93.4
56 vars	100	91.4
60 vars	100	88.2
64 vars	100	84.6
68 vars	100	84.4
70	100	24.2

UBCSAT (SAPS)		
Problem size	Avg time (ms)	
32 vars	0.1502	
36 vars	0.2157	
40 vars	0.3555	
44 vars	0.5399	
48 vars	0.8183	
52 vars	1.1916	
56 vars	1.4788	
60 vars	2.2542	
64 vars	3.1066	
68 vars	4.8058	
	0.0404	

Disclaimer

- Not a "comparison" wrt. UBCSAT / s.o.a. SAT solvers:
 - specialized HW vs. off-the-shelf HW
 - different timing mechanism & timing granularities
 - cost of encoding not considered here
- ⇒ An empirical assessment of current Q.A. potentials