
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 66, NO. 12, DECEMBER 2019 2067

SPAD-Based Quantum Random Number Generator
With an Nth-Order Rank Algorithm on FPGA

Alessandro Tontini , Leonardo Gasparini , Member, IEEE, Nicola Massari, Member, IEEE,

and Roberto Passerone , Member, IEEE

Abstract—We present a compact, all-solid-state, low-cost
quantum random number generator (QRNG) based on a single-
photon avalanche diode (SPAD) and a field programmable gate
array (FPGA). A new algorithm for random bit generation
is described, ranking the inter-arrival times of a group of M
photons detected by the SPAD device, and processed directly
on the FPGA. The proposed approach improves the efficiency
of generated random bits per detected photon, spanning from
0.5 bits/photon in case of 0 order rank, up to 0.875 bits/photon
for second order rank. By extending the algorithm to higher
orders, the proposed system approaches the maximum theoret-
ical value of 1.0 bit/photon. The rate of generation of random
numbers is limited by the SPAD minimum deadtime, achieving
an experimentally proven bit rate of 7.3 Mbps. The standard ran-
domness statistical tests are passed for a wide range of photon
fluxes and for all the implemented rank orders with no additional
post-processing on the generated sequence.

Index Terms—Random number generator, single-photon
avalanche diode (SPAD), field programmable gate array (FPGA).

I. INTRODUCTION AND RELATED WORK

THE AVAILABILITY of Random Numbers Generators
(RNG) is a fundamental requirement in a wide range of

critical applications, such as the encryption of sensitive data,
the simulation of physical or economic models and the lot-
tery industry. In these scenarios, the quality of the employed
random numbers is of paramount importance for reliable oper-
ation. The best results are achieved by True RNGs (TRNGs),
which rely on unpredictable physical phenomena, as opposed
to Pseudo RNGs (PRNGs) which use complex yet determinis-
tic algorithms. Challenges in the design of TRNGs include the
selection of a reliable source and the development of robust
methods to efficiently harvest its randomness. Several physical
sources can be used to generate random numbers in the context
of a digital circuit implementation. Mixed solutions employ

Manuscript received February 6, 2019; accepted March 29, 2019. Date
of publication April 3, 2019; date of current version December 6, 2019.
This work was supported by the Autonomous Province of Trento, Grandi
Progetti 2012, through Project “On silicon chip quantum computing and secure
communications-SiQuro.” This brief was recommended by Associate Editor
W. N. N. Hung. (Corresponding author: Alessandro Tontini.)

A. Tontini, L. Gasparini, and N. Massari are with the Integrated Radiation
and Image Sensor Research Unit, Fondazione Bruno Kessler, 38123 Trento,
Italy (e-mail: tontini@fbk.eu; gasparini@fbk.eu; massari@fbk.eu).

R. Passerone is with the Department of Information Engineering and
Computer Science, University of Trento, 38123 Trento, Italy (e-mail:
roberto.passerone@unitn.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2019.2909013

discrete-time chaotic (DTC) maps but require analog compo-
nents as a source of randomness [1], [2]. Likewise, noise and
other nanoscale phenomena can be used to generate random
values [3]. Fully digital implementations [4] make use of the
resolve state or resolve time of flip flops driven into metasta-
bility [5], or the random jitter from ring oscillators [6]–[8] or
of integrated clock sources [9]. However, the statistical proper-
ties of these systems typically suffer from the effect of process
variations, which negatively affect the available entropy. In this
brief, we explore methods to extract randomness from light
sources. Due to the quantum nature of light, such TRNGs are
often called Quantum-RNGs (QRNGs). Most QRNGs make
use of photon counters [10] or timestamping circuits [11] to
generate uncorrelated true random bits, relying on the inde-
pendence of photons from a Poissonian light source. QRNGs
based on photon counting exhibit very low efficiency, gen-
erating a random bit after M detected events. On the other
hand, QRNGs based on the detection of the photon arrival
time extract multiple bits per single detection, thus increas-
ing the final bit rate. Despite the achieved efficiency of up to
8 bits per single event [11], these solutions typically rely on
complex systems to force a uniform distribution of codes and
to reduce temporal correlation [12], or on high performance
detectors [10], [11] to reduce noise, thus limiting the possibil-
ity of a silicon integration. Alternatively, some non-idealities
can be removed by comparing rather than simply measuring
photon arrival times. For example, Xu et al. compare the arrival
times detected by two neighboring Single Photon Avalanche
Diodes (SPAD) using an integrated arbiter that avoids a direct
measurement [13]. However, a certain level of data reduc-
tion is enforced to reduce the correlations caused by detector
mismatch. These mismatch problems can be eliminated by
comparing the arrival time of two consecutive photons onto
the same detector, with the use of a photon time-stamping
circuit [14]–[16]. In this brief we present a new algorithm
for the generation of random bits that extends the comparison
among photon pairs to groups of M photons based on their
arrival time. The algorithm has been implemented on a simple
and low-cost system that includes a SPAD as a detector and an
FPGA that extracts the random sequence. Our method achieves
a generation efficiency that approaches 1 bit per detected pho-
ton without affecting the quality of the random bit stream. The
goal is to demonstrate the robustness of the approach using a
SPAD in standard CMOS technology, with the potential of
full integration which would benefit in terms of both speed
and cost [17], [18].

1549-7747 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0364-7558
https://orcid.org/0000-0003-2622-1488
https://orcid.org/0000-0001-6315-1023

2068 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 66, NO. 12, DECEMBER 2019

II. RANK ALGORITHM

Our bit generation algorithm is inspired by the Von
Neumann criterion [17] and is based on the comparison of
non-overlapping pairs of photon inter-arrival times, or times-
tamps, generated by a single detector. The basic case, referred
to as 0-order algorithm, considers two consecutive timestamps,
�ti−1 and �ti , and generates a random ‘0’ or ‘1’ according to:

bit =
⎧
⎨

⎩

1 if (|�ti−1 − �ti | > ε) ∧ (�ti−1 > �ti)

0 if (|�ti−1 − �ti | > ε) ∧ (�ti−1 < �ti)

discard if (|�ti−1 − �ti | < ε)

(1)

where ε is the time measurement resolution which limits the
ability to discriminate timestamps. Neglecting the case where
�ti−1 and �ti are within the resolution ε, 2n timestamps, or
2n + 1 photons, are needed to generate n random bits. Thus,
the random number generation efficiency η, defined as the
number of generated random bits per detected photon for n
sufficiently large, approaches 1/2 (limn→∞ n/(2n+1) = 1/2).
To increase the efficiency, we further select the largest of each
pair of intervals, and generate an additional bit using the same
criteria (see Fig. 1). Thus, from the propagated n timestamps,
n/2 additional bits are generated and the efficiency η increases
to 3/4. The algorithm works like a N-level rank: each round of
timestamp comparison propagates the winner to the next rank
level. For a generic number N of rank levels the generation
efficiency behaves as a geometric series

ηN =
N∑

i=1

1

2i
= 1 − 1

2N
(2)

which converges to 1 when N is large, doubling the effi-
ciency relative to the 0-order algorithm. From a statistical
point of view, there is no difference between propagating the
largest (winner) or smallest (loser) timestamp of each pair of
intervals, as long as this is done consistently. Other choices,
such as always propagating the first timestamp, may instead
lead to unwanted correlation. In fact, each random bit contains
information about the size relationship between two times-
tamps. Hence, if timestamps A, B, C, D produce the sequence
10 at one rank level, and we propagate A and C, it is more
likely that A > C, since A > B (A was “large”) and C < D
(C was “small”). Hence, the next random bit is more likely
to be 0. The same holds if the lower rank order sequence is
01. Figure 2 shows the evolution of η with increasing number
of rank levels. It also shows the relative rank gain, defined
as the improvement in generation efficiency, from one rank
order to the next. The largest improvement occurs from order
0 (1 rank level) to order 1 (2 rank levels), since the generation
efficiency increases inversely with the rank order. An example
of random bit generation using a 2-order rank is provided in
Figure 1.

III. DESIGN OVERVIEW

The presented QRNG is implemented using a free-running
SPAD connected to an Opal Kelly XEM 6001 FPGA board
that time-stamps the detected photons. The random bit gen-
eration, based on the comparison of non-overlapping pairs of

Fig. 1. Random bit generation with a 2nd order rank algorithm. The first
level provides 4 random bits (0100). Among each pair of timestamps, the
largest values B, C, F and H are selected as winners and propagated to the
next level. Then, 2 additional bits (01) are generated and intervals C and F
are further propagated, eventually generating the last random bit (0).

Fig. 2. Left axis: generation efficiency as a function of the number of rank
levels. Right axis: relative gain in terms of generation efficiency from one
rank level to the next one.

intervals, is performed inside the FPGA. Figure 3 shows a sim-
plified schematic diagram of the proposed system. We used a
10 μm diameter SPAD, realized in a standard 0.15 μm CMOS
technology, with on-chip passive quenching [19] as quantum
random source. This choice is motivated by the prospect of
integrating the presented approach into a single chip con-
taining both detection and signal processing for random bit
extraction. The output of the SPAD device is fed to the FPGA
which measures the intervals between the incoming photons,
using a � 26 ps resolution Time-to-Digital Converter (TDC)
implemented inside the FPGA fabrics [20]. To extend the mea-
surement range to cope with long inter-arrival times, the TDC
is coupled with a clock-driven counter. In this way, intervals
are composed of an 8-bit fine-grained code, which measures
the amount of time the SPAD pulse occurred before the cur-
rent FPGA clock cycle, and a 16-bit coarse-grained code that
counts the number of clock cycles before the next photon
arrival. Both the TDC and the clock-driven counter are man-
aged by a finite state machine (FSM), while the measured
intervals are sent to the random bit extraction block. The
rank algorithm is implemented by cascading many elemen-
tary blocks to produce the desired rank order. A more detailed
representation is shown in Figure 4. Each time a new interval
is acquired, it is shifted inside a two-slot register. Then, a ran-
dom bit is generated accordingly. Depending on the generated
bit, interval A or interval B is sent to the next block, which
implements the next rank order. This block can be replicated
to arbitrarily increase the rank depth. The implemented design

TONTINI et al.: SPAD-BASED QRNG WITH NTH-ORDER RANK ALGORITHM ON FPGA 2069

Fig. 3. Schematic overview of the proposed system.

Fig. 4. Details of the rank level implementation.

runs with a clock frequency of 230 MHz. After place and
route, the occupancy in terms of slices of the entire design,
including the TDC, is 517/2278, 533/2278 and 570/2278 for
rank order 0, 1 and 2, respectively. Despite having plenty of
room for additional rank levels, we restrict our analysis to
a second-order algorithm (N = 3 rank levels) since adding
more hardware reduces the achievable clock frequency below
the 230 MHz required to properly sample the TDC delay
line [20]. A faster FPGA, or one supporting a longer delay line
(thus relaxing the clock requirement) should be used to imple-
ment higher rank orders. The TDC used in this brief has been
proven robust against extreme temperature variations, with a
LSB deviation of less than 1 ps [20]. However, the approach
is robust also against other TDC variations due to process or
supply voltage, since our bit generation strategy is based on
the relative difference rather than the absolute value of arrival
times.

IV. SYSTEM MODELING

We developed a Monte Carlo simulator with a 0-order algo-
rithm to estimate which between TDC resolution (ε) and SPAD
deadtime (TDEAD) acts as bottleneck limiting the maximum
achievable bitrate. We first evaluate the behavior of different
TDCs with an ideal SPAD, i.e., a SPAD with no deadtime
between detections. Three TDCs have been simulated, with ε

of 100 ps, 1 ns and 10 ns. The TDCs were modeled as syn-
chronous counters with a deadtime equal to the clock period.
The results are shown in Figure 5, as a function of photon
count rate. As expected, the highest bitrate is achieved with
the 100 ps TDC, since a better time accuracy reduces the prob-
ability of having pairs of identical intervals (as indicated in
Equation (1)), which would be discarded by our comparison
algorithm. For each TDC, the maximum bitrate is achieved
when the incoming count rate is comparable to its time-
stamping accuracy. Beyond this point, the higher count rate
increases the probability of having equal intervals, reducing
the bitrate. Next, we consider SPADs with different deadtimes,

Fig. 5. Simulated bitrate vs input photon flux, considering multiple TDC
resolutions (0.1, 1 and 10 ns) and SPAD dead times (0, 22, 42, 62, 82 ns).
The plot shows that the system is limited by the SPAD dead time, while the
impact of the TDC resolution is limited.

setting the TDC ε to 100 ps. In this conditions, the SPAD
deadtime, usually in the range of some tens up to hundreds
or thousands of nanoseconds, limits the maximum achievable
bitrate. We tailored our simulation with the actual quenching
scheme implemented in the SPAD chip we used. In particu-
lar, we have a passive quenching solution where the SPAD
deadtime could be enlarged if, during the SPAD charge time,
another avalanche is triggered [19]. We simulated this behavior
for four different SPAD deadtimes equally spaced from 22 to
82 ns. The results clearly show that the SPAD deadtime is the
bottleneck in the maximum achievable bitrate of the system.

V. EXPERIMENTAL RESULTS

A. Generation Efficiency and Bitrate

The proposed system was tested to assess the performance
of both bitrate and quality of the generated random numbers.
The SPAD device was set with a deadtime of � 42 ns. The
first set of laboratory tests were aimed at measuring the effec-
tiveness of the rank order to improve the generation efficiency.
Through a � 445 nm CW LED (which in a first approxima-
tion can be considered Poissonian [21]) we forced different
photon rates and collected statistics about bitrate for all rank
levels. The results, shown in Figure 6, agree with the sim-
ulations. As expected, the bitrate increases with the number
of rank levels and linearly with the SPAD count rate, until
we reach the maximum value limited by the SPAD deadtime.
With the maximum count rate of �8.3 Mcnts/s, we measured
a maximum bitrate of �4.2 Mbps, �6.2 Mbps and �7.3 Mbps
for rank orders 0, 1 and 2, respectively. Figure 7 shows the
gain in terms of bitrate that we obtain with rank orders 1 and
2 with respect to rank order 0. The results show an average
gain in random bit generation rate of +48.5% between rank
order 0 and 1 and +74.2% between rank order 0 and 2, in line
with the values predicted by the theory (+50.0% and +75.0%,
respectively).

B. Random Quality Assessment

Bias, entropy and joint probability mass function have been
computed for multiple random binary sequences obtained with
different rank orders and at different illumination conditions.

2070 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 66, NO. 12, DECEMBER 2019

TABLE I
WORST NIST RESULTS FOR EACH RANK ORDER

Fig. 6. Measured bitrate for rank order 0, 1 and 2. After the maximum value
of �8.3 Mcnts/s, the SPAD count rate decreases limited by the deadtime. For
rank order 0, simulation results are superimposed with measured data.

Fig. 7. Measured gain of rank orders 1 and 2 with respect to rank order 0.

Among several statistical tests for randomness in the litera-
ture [22]–[25], we have selected a two-level NIST Statistical
Test Suite to assess the randomness of the proposed generator.
The SPAD device we used exhibits an afterpulsing probability
of 2.1% at 30 ns deadtime [19]. However, due to the nature
of our bit generation system, SPAD afterpulsing has no neg-
ative effect on the randomness of the generated bits. In fact,
afterpulsing events are equally distributed between the first
and second intervals which are compared, thus their effect

Fig. 8. Entropy across different rank orders with increasing count rates.

is distributed across the entire random bit sequence with no
predominance of correlated zeros or ones.

The bias of a random sequence is a measure of uniformity
between zeros and ones. In a perfect random sequence, the
proportion of zeros and ones should match 50%. Bias can be
computed as the difference between the number of zeros and
ones relative to the number of bits, expected to match 0%. Any
deviation from the ideal value could be a symptom of non-
randomness of the sequence under test. We measured the bias
for each implemented rank order under four different SPAD
count rates (0.2, 1.2, 5.2 and 7.8 Mcnts/s). For each random
sequence we collected � 108 bits. The measured maximum
and minimum bias was 408 and -398 ppm, respectively.

Figure 8 shows the Shannon entropy calculated by parsing
random sequences with byte precision in each test condi-
tion. The minimum entropy exhibits 2 ppm distance from the
ideal value of 8 bits/symbol. In order to check correlations
among bits we computed the joint probability mass function
(JPMF) [26], which gives the probability that a given symbol
follows another. For a perfect random source, the JPMF should
be the same for all possible pairs of symbols. We parsed a ran-
dom bit sequence with nibble precision, thus the JPMF in this
case should match (1/16) × (1/16) = 0.00390625. We obtain
a maximum/minimum deviation from the theoretical value in
the order of 10−5, showing absence of correlation.

TONTINI et al.: SPAD-BASED QRNG WITH NTH-ORDER RANK ALGORITHM ON FPGA 2071

TABLE II
COMPARISON TABLE

Results of the two-level NIST Statistical Test Suite are
reported in Table I up to the 2nd rank order. We run the two-
level test over 100 sequences of n = 106 bits each. The NIST
tests were passed for all SPAD count rates. For each rank
order, the worst result is reported.

A detailed comparison with other quantum random number
generators is provided in Table II, showing that our solu-
tion generally outperforms previous work in terms of bitrate.
Considering resource utilization, we refer the reader to the
table comparing other FPGA-based solutions recently reported
by Wieczorek and Golofit [5]. While somewhat larger, our
implementation is still small relative to the available resource
in state-of-the-art devices.

VI. CONCLUSION

A low-cost SPAD-based QRNG has been presented and
an algorithm based on the ranking of photon inter-arrival
times reaching the theoretical bit generation efficiency has
been tested and validated. The maximum achieved bitrate is
7.3 Mbps with a 2nd order rank algorithm. The most important
statistical tests are passed for a wide range of photon fluxes
and for all the implemented rank orders. The presented QRNG
is suitable to be integrated as a compact single pixel to take
advantage of standard CMOS technology scaling to increase
the random bitrate and drastically reduce the system size.

REFERENCES

[1] I. Cicek, A. E. Pusane, and G. Dundar, “An integrated dual entropy
core true random number generator,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 64, no. 3, pp. 329–333, Mar. 2017.

[2] F. Pareschi, G. Setti, and R. Rovatti, “Implementation and testing of
high-speed CMOS true random number generators based on chaotic
systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 12,
pp. 3124–3137, Dec. 2010.

[3] S. Sahay, A. Kumar, V. Parmar, and M. Suri, “OxRAM RNG circuits
exploiting multiple undesirable nanoscale phenomena,” IEEE Trans.
Nanotechnol., vol. 16, no. 4, pp. 560–566, Jul. 2017.

[4] M. Bakiri, C. Guyeux, J.-F. Couchot, and A. Oudjida, “Survey on hard-
ware implementation of random number generators on FPGA: Theory
and experimental analyses,” Comput. Sci. Rev., vol. 27, pp. 135–153,
Feb. 2018.

[5] P. Z. Wieczorek and K. Golofit, “True random number generator based
on flip-flop resolve time instability boosted by random chaotic source,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 4, pp. 1279–1292,
Apr. 2018.

[6] Y. Liu, R. C. C. Cheung, and H. Wong, “A bias-bounded digital true
random number generator architecture,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 64, no. 1, pp. 133–144, Jan. 2017.

[7] P. Z. Wieczorek, “Lightweight TRNG based on multiphase timing of
bistables,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 7,
pp. 1043–1054, Jul. 2016.

[8] D. Liu, Z. Liu, L. Li, and X. Zou, “A low-cost low-power ring oscillator-
based truly random number generator for encryption on smart cards,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 6, pp. 608–612,
Jun. 2016.

[9] A. P. Johnson, R. S. Chakraborty, and D. Mukhopadyay, “An improved
DCM-based tunable true random number generator for Xilinx FPGA,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 4, pp. 452–456,
Apr. 2017.

[10] J.-M. Wang et al., “A bias-free quantum random number generation
using photon arrival time selectively,” IEEE Photon. J., vol. 7, no. 2,
pp. 1–8, Apr. 2015.

[11] Q. Yan, B. Zhao, Z. Hua, Q. Liao, and H. Yang, “High-speed quantum-
random number generation by continuous measurement of arrival time
of photons,” Rev. Sci. Instrum., vol. 86, no. 7, 2015, Art. no. 073113.

[12] M. A. Wayne and P. G. Kwiat, “Low-bias high-speed quantum random
number generator via shaped optical pulses,” Opt. Exp., vol. 18, no. 9,
pp. 9351–9357, Apr. 2010.

[13] H. Xu, D. Perenzoni, A. Tomasi, and N. Massari, “A 16×16 pixel post-
processing free quantum random number generator based on SPADs,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 5, pp. 627–631,
May 2018.

[14] M. Stipc̆ević and B. M. Rogina, “Quantum random number genera-
tor based on photonic emission in semiconductors,” Rev. Sci. Instrum.,
vol. 78, no. 4, 2007, Art no. 045104.

[15] A. Khanmohammadi, R. Enne, M. Hofbauer, and H. Zimmermanna, “A
monolithic silicon quantum random number generator based on mea-
surement of photon detection time,” IEEE Photon. J., vol. 7, no. 5,
pp. 1–13, Oct. 2015.

[16] M. Nicola, L. Gasparini, A. Meneghetti, and A. Tomasi, “A SPAD-based
random number generator pixel based on the arrival time of photons,” in
Proc. New Gener. CAS (NGCAS), Genoa, Italy, Sep. 2017, pp. 213–216.

[17] S. Burri et al., “Jailbreak imagers: Transforming a single-photon image
sensor into a true random number generator,” in Proc. IISW, 2013,
pp. 1–4.

[18] N. Massari et al., “16.3 A 16×16 pixels SPAD-based 128-Mb/s
quantum random number generator with −74dB light rejection ratio
and −6.7ppm/◦C bias sensitivity on temperature,” in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), San Francisco, CA, USA, Jan. 2016,
pp. 292–293.

[19] L. Pancheri and D. Stoppa, “Low-noise single photon avalanche diodes
in 0.15 μm CMOS technology,” in Proc. Eur. Solid-State Device Res.
Conf. (ESSDERC), Helsinki, Finland, 2011, pp. 179–182.

[20] A. Tontini, L. Gasparini, L. Pancheri, and R. Passerone, “Design and
characterization of a low-cost FPGA-based TDC,” IEEE Trans. Nucl.
Sci., vol. 65, no. 2, pp. 680–690, Feb. 2018.

[21] M. Wahl et al., “An ultrafast quantum random number genera-
tor with provably bounded output bias based on photon arrival
time measurements,” Appl. Phys. Lett., vol. 98, no. 17, 2011,
Art. no. 171105.

[22] A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, Rev. 1a, document
SP 800-22, Nat. Inst. Stand. Technol., Gaithersburg, MD, USA,
Apr. 2010.

[23] F. Pareschi, R. Rovatti, and G. Setti, “On statistical tests for randomness
included in the NIST SP800-22 test suite and based on the bino-
mial distribution,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2,
pp. 491–505, Apr. 2012.

[24] F. Pareschi, R. Rovatti, and G. Setti, “Second-level NIST ran-
domness tests for improving test reliability,” in Proc. IEEE
Int. Symp. Circuits Syst., New Orleans, LA, USA, May 2007,
pp. 1437–1440.

[25] H. Haramoto and M. Matsumoto, “Checking the quality of approxima-
tion of p-values in statistical tests for random number generators by
using a three-level test,” Math. Comput. Simulat., vol. 161, pp. 66–75,
Aug. 2018.

[26] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes,
vol. 80. Oxford, U.K.: Oxford Univ. Press, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

