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ABSTRACT 

This paper advocates a rigorously formal and compositional style 
for obtaining key performance and/or interface metrics of systems 
with real-time constraints. We propose a hierarchical approach 
that couples the independent and different by nature frameworks 
of Modular Performance Analysis with Real-time Calculus (MPA­
RTC) and Parametric Feasibility Analysis (PFA). Recent work on 
Real-time Calculus (RTC) has established an embedding of state­
based component models into RTC-driven performance analysis 
for dealing with more expressive component models. However, 
with the obtained analysis infrastructure it is possible to analyze 
components only for a fixed set of parameters, e. g., fixed CPU 
speeds, fixed buffer sizes etc., such that a big space of parameters 
remains unstudied. In this paper, we overcome this limitation by 
integrating the method of parametric feasibility analysis in an RTC­
based modeling environment. Using the PFA tool-flow, we are able 
to find regions for component parameters that maintain feasibility 
and worst-case properties. As a result, the proposed analysis infras­
tructure produces a broader range of valid design candidates, and 
allows the designer to reason about the system robustness. 

Categories and Subject Descriptors 

[Embedded systems]: analysis techniques for embedded system 
including design space exploration, co-simulation; 

General Terms 

Design, Performance, and Verification 

Keywords 

Tool integration, System-level Design, Feasibility areas, Worst-case 
Analysis 

1. INTRODUCTION 
System level analysis plays an essential role in the design of 

hard real-time embedded systems at early stage. Several different 
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methodologies that address the problem of  system-level analysis of 
embedded systems have been presented recently [4, 7, 1 1 , 1 4, 1 6, 
1 8, 28, 29]. These methodologies are typically based on some form 
of abstraction and can often be applied to only a specific or lim­
ited set of system architectures or parameter space. Abstraction 
comes in the form of analytical and executable models. Analyt­
ical models are advantageous in that they generally provide good 
scalability, particularly if they are compositional as in case of the 
Real-time Calculus. On the other hand, executable models can of­
ten be more accurate as a more general semantic model is inherent 
to them. Because of the complementary nature of analytical and 
executable methods, there has been a trend recently in trying to 
combine techniques from these domains and thereby taking advan­
tage of their respective strengths [27]. In this paper, we present a 
new approach that allows performance analysis of parameterized 
systems by combining two standalone methods of Real-Time Cal­
culus [29, 30] and of Parametric Feasibility Analysis [ 1 2] and by 
integrating their respective tool flows. Designers benefit from this 
integration because a larger portion of the design space can be ex­
plored, while still maintaining feasibility and worst-case properties. 

The Modular Performance Analysis Toolbox [30], based on the 
Real-Time Calculus (MPA-RTC) [29], makes use of functions on 
the time-interval domain to represent both system workload and 
availability of computation and communication resources. Com­
ponent interaction is abstractly modeled by sets of functions, in­
stead of signals, tokens or other activity triggers. As this features 
compositionality also on the level of the formal analysis, MPA­
RTC supports a wide and efficient performance evaluation of key 
metrics of component-based real-time systems. Pessimism con­
tained in the obtained guarantees w. r. t. worst-case system behav­
iors, e. g., burst-sizes, backlog-sizes and delays, can be avoided as 
long as the system under analysis matches the model of computa­
tion inherent to RTC. However, it may be difficult to adequately 
model components having state-dependent behaviors, e. g., CPUs 
whose speed changes with the size of the backlog buffer. For less 
pessimistic results in such situations, a methodology for embedding 
Timed Automata (TA) [ 1 ]  based component models into a MPA­
RTC-based system model [20, 2 1 ]  was developed recently. How­
ever, with this approach it is possible to study only fixed values of 
parameters, e. g., a fixed CPU speed, fixed buffer sizes, and fixed 
parameters of functions modeling the component/environment in­
teraction. Hence, a big space of feasible parameters values remains 
unstudied. 

On the contrary, Parametric Feasibility Analysis (PFA) performs 
feasibility analysis for a system associated with a set of parame­
ters for their full range of possible values. These parameters can 
describe the activation pattern, the real-time constraints and the ex-



ecution parameters of the concurrent software entities (or tasks) 
scheduled on one or more shared CPUs. Schedulers and activation 
patterns are represented with Parametric Timed Automata (PTA). 
Some of the parameters are known, others are known with a lim­
ited precision (e. g., computation times and activation rates). PFA 
allows one to find the region of the set of parameters that make the 
system feasible, i. e., it satisfies the real-time constraints expressed 
by the model. 

The main contribution of this paper lays in the coupling of the 
PFA and the MPA-RTC frameworks which enables one to find the 
feasibility area for the set of parameters of the MPA-RTC-based 
component through its TA extension. This leads to optimized im­
plementations both in terms of performance and in terms of their 
robustness. We organized the paper as follows. In Section 2 we 
report on related and preliminary work. Section 3 describes the 
fundamental aspects of the underlying theories. The tool integra­
tion is introduced in Section 4. Section 5 presents a case study to 
demonstrate the effectiveness of the proposed approach and Sec­
tion 6 concludes the paper. 

2. RELATED WORK 
The literature on classical real-time feasibility theory is vast [6, 

8,22]. Wang Yi et al. [24] were the first to use a Timed Automaton 
(TA) to represent a system resource (CPU or communication ele­
ment) as a scheduler model together with a notion of discrete events 
that trigger the execution of a real-time tasks executable on this 
scheduler. In this work they also show that the feasibility problem 
ofthis extended model can be transformed into a reachability prob­
lem for a standard TA. This approach allows one to check whether 
a system is feasible for some fixed set of parameters. However, 
in early system design phases some of the parameters can be un­
known or known with a limited precision. Therefore, this idea was 
extended by using Parametric Timed Automata (PTA) [12] manip­
ulated by Uppaal [5] and NuSMV [10]. As a part of our tool inte­
gration we have extended the approach based on PTA to compute 
the feasibility region of systems characterized by not only periodic 
tasks, but also periodic tasks with j itter. We refer to this extension 
as Parametric Feasibility Analysis (PFA). 

In another line of work [3], Andre shows how given a certain 
known parameter valuation, one can compute the relaxed constraint 
on the parameter space that will have the same trace. This ap­
proach depends on the input, is not maximal and not guaranteed 
to terminate. In [33], the authors present a method to model check 
a real time system using parametric timed automata when a con­
straint over the parameter is given. This problem is referred to as 
the "emptiness" problem for PTA and has been proven undecid­
able, in the general case, in [2]. Interestingly, in [17] a subclass of 
PTA called L/u PTA is identified for which the problem is decid­
able, and a solution strategy based on Parametric Difference Bound 
Matrices is proposed. The solution to the emptiness problem is ac­
tually part of our method in getting the reachability of the error 
state that we use to solve a more general problem. 

The above techniques are well accepted methodologies for ana­
lyzing real-time systems, e. g., see [23] for a recent example. How­
ever, the finite state/transition system to be derived from some high­
level model tends to grow exponentially with the number of clocks 
and clock constants. Therefore, the detailed analysis of a complex 
system may be hampered in practice, if not impossible at all. In 
contrast, purely analytic (or stateless) methods such as provided 
by the Real-Time Calculus [29,31], SymTAlS [16] or MAST [15] 
solely depend on solutions of closed form expressions, yielding a 
very good scalability with the size of systems to be analyzed. But 
this advantage has its costs : (a) analytic methods are limited to the 
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computation of a few specific system measures and (b) each method 
is restricted to a specific model to which the system specification 
under analysis must be translated, which in general may lead to 
overly conservative analysis results. 

To overcome these shortcomings, recent research has made an 
attempt at comparing tools that do similar type of analysis [25], 
as well as elaborated on a combination of purely analytic and state­
based performance analysis methods [13]. In one proposed method, 
Phan et al. [26] elaborate on an embedding of event count automata 
(ECA) [9] into RTC-driven performance analysis. In this approach, 
the user must specify, for each location of the ECA, the mini­
mum and maximum number of event arrivals taking place while the 
ECA resides in that location. As a consequence of the implicit no­
tion of time, the modeling of systems with time dependencies may 
yield a severe blow up of the computational effort for their state­
space oriented analysis. To interface ECA to MPA-RTC framework 
and vice versa, one needs to derive abstract stream representations, 
i. e., their bounding RTC-curves. In this approach, this is accom­
plished through the use of observer ECA. The analysis uses binary 
search for extracting the maximum and minimum number of events 
seen in a window size � via reachability analysis. A set of point 
values obtained from the binary search allows one to construct a 
(pessimistic) RTC-curve. While one may potentially analyze para­
metric systems in this way, binary search relies on certain mono­
tonicity properties of the model, a limitation which is not present 
in our approach based on parametric feasibility analysis. 

Krcal et al. [19] also address the combination of RTC-based 
components and timed automata. For including the abstract stream 
representation used in RTC into TA-based system models one oper­
ates on an array of clocks. Each clock is associated with the number 
of events produced so far, as well as with a minimal and maximal 
number of events to be generated within the respective time inter­
val length. For deriving an RTC-based stream representations from 
the combined model, the authors suggest the usage of observer au­
tomata and binary search on the maximal and minimal number of 
events that appear within any time interval of length �, which is in 
fact similar to the idea cited previously [26], and suffers from the 
same limitations. 

In this paper, we exploit the pattern, recently presented in [21], 
for embedding TA-based model descriptions into RTC-driven per­
formance analysis. This provides us with a translation path between 
the PTA-based feasibility analysis and the RTC-based performance 
analysis of the MPA-framework [30,31], since PTA is an extension 
of classical TA. Contrary to the existing work, the usage of PTA 
proposed here allows one to obtain regions of RTC-curve parame­
ters rather than individual values. This of course holds also for the 
features of the embedded component model, as regions or bounds 
on execution speeds, buffer sizes etc. can also be obtained, rather 
than point-estimates as detected by binary search when carrying out 
the techniques presented in [19,21,26]. 

3. BACKGROUND THEORY 
In this paper we present a hybrid methodology that unifies two 

different approaches to complex real-time system analysis. This 
section briefly introduces the background theory necessary to better 
understand the main ideas. 

The two techniques employed in this work, Real-Time Calculus 
(RTC) and Parametric Feasibility Analysis (PFA), share the view of 
the system as a composition of computational and communication 
components (resources). Tasks are executed on the computational 
elements and data packets are sent through the communication ele­
ment. The order oftask execution or data transmission is defined by 
a chosen scheduling policy, which is implemented inside the com-



ponents. In our representation, we do not distinguish between the 
computational and communication elements, as well as between 
tasks and data packets, and model each resource as a Greedy Pro­
cessing Component (GPC) which is never idle unless there are no 
more tasks to be scheduled. The task activation, whether it is pro­
cessed directly or added to the scheduling buffer for further pro­
cessing, is marked with a start or input event, while the end of the 
task execution is marked with an end or output event. 

Timed event traces for input and output events (see Section 3.1) 
are used to represent both the task activation pattern of a compo­
nent and the pattern of output events. In multi-component systems 
such a pattern of output events may become an input pattern to 
down-streamed components. Timed event traces can be charac­
terized by a pair (Q;�w, Q�:) of arrival curves in the analytic ap­
proach. The translation of these curves into event-emitting coop­
erating Timed Automata (TA) [ I ]  is presented in Section 3.3, as 
TA form the foundation of the state-based component model de­
scriptions. Finally, Section 3.4 presents the Parametric Feasibility 
Analysis (PFA) framework and Parametric Timed Automata (PTA) 
as the underlying model of the PFA. 

3.1 Arrival curves of Real-time Calculus 
A timed T-event is a pair (t, T) where T E Act is some event 

label or type from a set Act of event labels or types, and t E 
1R>0 is some non-negative time stamp. A timed trace or stream 
tr --== (tl, T); (t2, T); . . .  is a sequence of timed T-events ordered 
by increasing time stamps, i.e., such that ti ::; ti+l. A stream 
tr can be abstractly characterized by a pair (Q;�w, Q�:), of arrival 
curves [29]. These arrival curves bound the number of events seen 
on tr for any interval � E [0, (0) . Let R(t) denote the number of 
events that arrived on the stream tr in the time interval [0, t). The 
upper and lower arrival curves must satisfy the following equation 

Q;�W(t-s)::;R(t)-R(s)::;Q�:(t-s) withO::;s::;t. (1) 

As each event from a stream may trigger some behavior within a 
component, the arrival curves Q;�w and Q�: can be seen as abstract 
lower and upper bounds of the amount of resources demanded for 
processing the events within a time interval � := t -s. Further­
more, a given pair (Q;�w, Q�:) represents a (possibly infinite) set 
of streams of input events, task activations resp., as it includes all 
streams whose counting function R satisfies (1). For simplicity, we 
denote the pair (Q;�w, Q�n as Qin. A stream whose cumulative 
counting function satisfies (1) is said to be bound by Qin. Arrival 
curves are a generic way for characterizing standard real-time traf­
fic models ranging from strictly periodic event arrivals over P1D­
streams (traces where event arrivals are periodic with j itter and with 
a minimum distance), up to sporadic event arrivals. In this work 
we restrict our attention to the case of complete amounts of events 
only, i. e., the case in which the number of events to be processed is 
an integer value. In RTC, such scenarios are modeled by staircase 
curves, as those shown in Fig. 1. 

In this paper we model a staircase curve as the combination of el­
ementary staircase curves composed via nested minimum and max­
imum operations. For the sake of clearness, we restrict the nesting 
of minimum and maximum operations and assume that upper ar­
rival curves are always obtained as the minimum over a set I of 
staircase curves, and lower arrival curves as the maximum over a 
set J of staircase curves: 

where the elementary staircase curves Q�P (�) and Q;ow (�) are of 
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Figure 1: Upper and lower (staircase) arrival curves 

the form 

{up,low}( A ) ._ N {up,low} + Q {i,j} U .- {i,j} l O {UP�IOW} J . 
{t,] } 

(3) 

The fact that upper (and lower) RTC curves are constructed by a 
single minimum (and maximum) operation (not nested minimax 
computations) considerably reduces the complexity of embedding 
TA into the RTC-driven performance analysis. 

Example. An example is given in Fig. 1: the upper arrival curve 
Q�: results from the minimum of two staircase curves. Its parame­
ter N�P models the (burst) capacity, i. e., it is the number of events 
that can arrive at the same instant of time in any stream bounded 
from above by Q�:. Its parameter o�P yields than the minimum 
distance of two events once a burst had occurred. The lower curve 
Q;�w consists of the maximum of the constant a-function and some 
staircase function Q�ow. Its step widths define the maximum dis­
tances between successive events bounded from below by Q;�w. 

3.2 Timed Verification 
Let C be a set of clocks and let ClockCons be a set of con­

straints on these clocks. The constraints are conjunctions, dis­
junctions and negations of atomic (clock) guards, where the later 
are of the form x C><l n,x E C,n E No for C><lE {<,::;,>,2 
, = } . A timed automaton (TA) [ I )  is defined by a tuple T A = 
(Loc, Loco, Act, C, '-+, 1) with Loc as the finite set of locations, 
Loco <;;: Loc as the set of initial locations, Act as a the set of ac­
tion (or edge) labels, C as the finite set of clocks, '-+<;;: Loc x 
Clock Cons ( C) x Act x 2c x x Loc as its edge relation and with 
I : Loc -t ClockCons( C) as the map of invariants which maps 
locations to clock constraints. 

Let the active location be the location the TA currently resides in. 
The operational semantics associated with a TA can be informally 
characterized as follows: 

Delay transitions. While location invariants ofthe active location(s) 
hold time may progress with all clocks increase at the same 
speed. 

Edge executions. Traversal of an edge within a TA potentially changes 
the set of active locations; self-loops are possible. Such an 
edge "execution" is instantaneous and possible at any time, 
given that the source location of the edge is marked active 
and its guard evaluates to true. Upon edge executions clocks 
can be reset. 



The above setting yields infinitely many behaviors, because an edge 
execution may occur at any time within the bounded interval of re­
als defined by location invariants and (clock) guards. However, 
with the concept of clock regions [ I ]  it is possible to capture all 
possible behaviors in a finite state graph, such that timed reachabil­
ity is decidable. In fact, modem timed model checkers incorporate 
clock zones as they often result in a coarser partitioning ofthe clock 
evaluation space in comparison to the original definition of clock 
regions. For conciseness we omit further details, and refer the in­
terested reader to the literature on this topic [ 1 , 32]. 

We exploit the timed model checker Uppaal [5], which implements 
timed safety automata extended with variables. Similarly to clocks, 
variables can be used within guards of edges and location invari­
ants. Upon an edge execution, a variable can be updated, where the 
used values must built a finite set, which, however, does not need 
to be known on beforehand, i. e., it can be constructed on-the-fly 
upon the state space traversal. As we are also exploiting Uppaal 's 
cooperation mechanisms we briefly recapitulate them. 

Mechanisms of cooperation 
A system model can be composed from a set of cooperating TA. 
These TA may either share (global) variables or may jointly exe­
cute dedicated edges, denoted as rendez-vous or synchronization: 

(AJ Cooperation via shared variables. 
Variables can be declared on the level of a network of TA, allowing 
the individual TA to read and manipulate them. In this context, it 
is important to note that the manipulation of variables which takes 
place upon the traversal of synchronizing edges needs to be com­
mutative, as the order of the edge traversal of the participating TA 
is non-deterministic. 

(BJ Rendez-vous mechanisms. 
Uppaal makes use of channels and signals. In fact this implements 
different rendez-vous mechanisms. TA may jointly execute their 
enabled edges if the involved edges carry the same (channel) iden­
tifier followed by a question or exclamation mark. The TA provid­
ing an edge labeled with a exclamation mark is commonly denoted 
sender, whereas the TA providing the edge with the question mark 
is denoted receiver. As the number of senders and receivers may 
vary, different rules apply : 

Binary synchronization. Ifthere are n senders and k receivers the 
state space generation engine picks non-deterministically a 
pair of sender and receiver and jointly executes their resp. 
edges. A sending or receiving edge is not allowed to be ex­
ecuted in isolation, i. e., if a sender or receiver has no resp. 
counterpart its sending/receiving edge is blocked from exe­
cution. 

Arbitrary, n-ary synchronization. A broadcasting send is non­
blocking, i. e., a broadcasting sender TA executes its sending 
edge and between 0 and n receivers execute one of their resp. 
receiving edge at the very same time. It is important to note, 
that each receiver with at least one enabled receiving edge 
has to execute the latter. 

Full, 1 : n synchronization. Global variables and broadcast chan­
nels allow one to enforce a joint execution among one sender 
and n receivers which is achieved as follows: each receiver 
increments a global counter. The sender requires that after 
executing the sending edge the global counter equals some 
predefined constant. This is guarded by the location invari­
ant of the target location of the resp. (broadcasting) edge. 

1 5 8  

x = 0 ,  b++ 
x == Delta 

x <= Delta 
&& 

b <= BMAX 
if (b==O) x = 0, 
b = max(b-l, 0) 
(a) LTA for lower curve aj 

System Dec/arations 
broadcast channel evenJ� 
int BuJ JerSz = 0; 
Local Dec/arations for ioTA. UTA 
canst int BMAX = IN{i,j) I; 
clock x; 
int b = 0; 
canst int Delta = 8{i,j) 

(c) Declarations 

x = 0, 
b = min(b+l, BMAX) 

if (b==BMAX) x = 0, 
b--, 
Sync++ 
(b) UTA for upper curve ai 

event! 

Sync = 0 Sync == K 

The location marked with c is 
a committed location, i. e., time 
does not pass while this location 
is active and it has to be left on 
the next edge execution. 

(d) Full synchronization 

Figure 2: TA-based implementation of RTC-based curves 

3.3 From RTC-curves to event emitting TA 
Upper and lower RTC-based staircase curves can be implemented 

by sets of cooperating TA, where the emitted event signals serve as 
input stimuli to the down-stream TA-based scheduler model. The 
different TA are coordinated by making use of broadcast channels 
as implemented in Uppaal. With our approach, we translate RTC 
staircase curves into an event-emitting TA as follows: 

I. Curve parameters b{i,j} and N{i,j} employed in Eq. 3 are ei­
ther chosen fixed or are in the parameter set of the TA. Each 

staircase curve a {
{UP,

}IOW} (Eq. 2) is implemented by its own t,J 
event emitting TA, where in case of an upper curve a�P we 
speak of a timed automaton UTA i and in case of a lower 
curve a;ow of a timed automaton LTA j. The generic imple­
mentation of a UTA and LTA within the timed model checker 
Uppaal is shown in Fig. 2 (a) and (b). 

2. Full synchronization on the UTA which implements mini­
mum computation on the set of upper event arrival curves 
(cf. Eq. 2) is enforced by the event emitting TA as depicted 
in part (d) of Fig. 2.Full synchronization means that all UTA 
have to execute their event-labeled edge in order to allow the 
event-emitter (TA of Fig. 2 (d)) to release an event inEvent !. 
If not all UTA can participate in the synchronization, event 
emission is blocked. 

3. Maximum building on lower staircase curves (cf. Eq. 2) is 
realized by enforcing event emission whenever one of the 
involved LTA has reached its local threshold Nj, which is 
achieved by defining the respective invariant for each LTA. 

A set of LTA and UTA cooperating via the event emitting TA im­
plements an input generator 9 which produces streams w. r. t. a ded­
icated event type, e. g., of type inEvent. Generator 9 (ain) allows 
to produce all streams whose cumulative bounding functions are 
bounded in the sense of Eq. I (the proof is provided in our previ­
ous work [20]). The events emitted by generator 9(ain) can now 
be employed for triggering subsequent behavior in any downstream 
TA, e. g., the scheduler model. 

Example. An example is shown in Fig. I and 2. For translating 
upper curve a�::' one needs 2 UTA instantiated with EM AX := 
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UG 

Figure 3: PFA tool chain 

NuSMV 
region generalizer 

Feasibility area of 
parametric system 

N(,i,2} and Delta := 6{'i,2}' For the event generator (Fig. 2 (d)) 

constant K is set to 2. For implementing the lower curve only a 
single LTA is needed. 

3.4 Parametric Feasibility Analysis (PFA) 
Parametric Feasibility Analysis (PFA) performs an analysis of 

schedulability for a collection of processes running on a CPU. This 
method identifies the feasibility region over the space of parame­
ters of the processes. To do this, the system is modeled as software 
components (sets of tasks) that compete for one or more shared 
CPU. Each component is associated with a set of parameters that 
describe the activation pattern, the real-time constraints and the ex­
ecution parameters of the different tasks. Some of the parameters 
are known. Others are known with a limited precision (e. g., com­
putation times and activation rate). The objective is to find the re­
gion of the set of parameters that make the components feasible, or 
schedulable. The proposed technique has been described in [ 1 2]. 

The main idea behind the parametric feasibility analysis is the 
Parametric Timed Automata (PTA). Parametric Timed Automata 
extends standard Timed Automata [ I ]  as follows: let X be the dis­
joint union of the finite set of clocks and the finite set of state vari­
ables that could be boolean or real variables. Moreover, let P be a 
finite set of parameters. The finite set C (X U P) contains the (com­
plex) constraints over the variables and clocks of set X and the pa­
rameters of set P, once again formed by disjunction, conjunction 
and negation of atomic guards. A Parametric Timed Automaton 
is defined by a tuple PTA := (Lac, Loco, Act, X, P, r, Y, J) 
where Lac, Loco and Act are defined as before and where the sets 
X and P are defined as above. r � B(P) is  the parameter space, 
where B(P) denotes the set of boolean combinations of constraints 

over P. The set of edges Y� Lac x Act x C(XUP) x 2U(X) xL 
is now enriched with complex constraints on clocks, state variables 
and parameters (elements of C (X U P)) and sets of update state­
ment from U(X) that can reset the clocks to any value (not just 
o as in classical TA) or term. Alternatively, the clock can simply 
grow linearly in time in each location. The value of state variables 
can be changed only as a result of a reset action, i. e., when an edge 
is executed. Last, I : Lac --t C(X U P) is now the invariant 
map between locations and constraints over clocks, variables and 
parameters. 

We first construct a model for the feasibility problem based on 
Timed Automata, along the lines defined by Wang Yi [24]. Some 
details are presented in Section 4.1. In PFA, we extend this ap­
proach by using cooperating Parametric Timed Automatae (PTA), 
which are manipulated by Uppaal and by the NuSMV tool [ 1 0]. 
The analysis performed by the tools goes through three phases: 
trace generation, trace analysis, and trace projection. During trace 
generation, traces from the initial to the error state in the PTA are 
generated. Each of these traces is an instantiation of a parameter 
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Figure 4: Overview of analysis approach 

valuation in which the system is unfeasible. During trace analy­
sis, these traces are evaluated in the context of the symbolic repre­
sentation of the PTA and a symbolic formula describing the PTA 
reaching an error state is formulated. The trace projection phase 
projects this symbolic formula into the parametric space to de­
rive constraints that describe an unfeasible region around the point. 
Thus, a single trace is generalized into a potentially large region, 
increasing the efficiency of the method. Because the region is un­
feasible (since the system reaches an error state), it is ruled out from 
subsequent searches. In this way, the feasibility region is iteratively 
bounded. For a particular but important case it has been shown that 
this algorithm terminates in a finite number of steps [ 1 2]. 

The flow of the method that we currently employ is shown in 
Fig. 3. Given a PTA, and the parameter boundaries (the parame­
ters space has to be limited for termination), we perform a quick 
feasibility check on a set of sample points in the parameter space {po, PI, ... ,Pn} using non-parametric model checking of Uppaal. 
If a point Pi is unfeasible, an error trace is produced. Trace analy­
sis and projection with NuSMV results in a region Gi. We collect 
this result as the set of unfeasible regions UG. Then we repeat this 
process for all sample points {PHl,PH2, ... ,Pn} that are not yet 
contained in uG. When the sample point search no longer returns 
new unfeasible regions, NuSMV is used to search for more error 
traces using Bounded Model Checking (BMC) in the remaining 
area, until no more error traces can be found. The feasible region 
of the PTA is then obtained from the negation of the collected un­
feasible regions. 

4. TOOL INTEGRATION 
The tool integration flow is presented on Fig. 4. The figure is 

divided into three sections. Section A and B refer to the system 
model, while Section C shows how the tools are integrated. 

4.1 System model 
The top section A presents a system composed of three process­

ing components connected in a dataflow manner. Two of these 
components, the first and the last, are RTC-based, while the middle 
component is TA-based. The output curves of the first component 
act as the input curves for the second one. Because the second com­
ponent is TA-based, these curves are translated into the equivalent 
TA-based event generator (see Section 3.3), shown in the middle 
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section B of Fig. 4. The tasks are then processed by the second 
components represented by a TA-based scheduler. The end of each 
task processing is marked with an output event that is then cap­
tured by two observer TAs, which model the output curves. These 
TAs set constraints on the output events in terms of burst sizes and 
minimum/maximum distance of events. An example of an upper 
observer automaton is given in Fig. 5, where the error state models 
the violation of the currently tested output event curve. 

Similarly to the observer TA, in order to verify that the constrains 
on task scheduling and execution are satisfied, the scheduler TA of 
the second component needs to be extended with a check and an 
error states. A simplified generalized scheduler model required by 
the PFA tool is presented in Fig. 6. Let us first discuss only a part 
(idle and busy states) of the generalized scheduler model. The main 
idea behind this model is that we may represent any resource as a 
two-state TA. In one of its state the TA is idle, i. e., available for 
the tasks, while in the other state it is busy, locked for all tasks or 
tasks with lower priority for non-preemptive or preemptive priority­
based scheduling policies, respectively. This TA is idle in its initial 
state until a first event (inEvent?) from the event generator de­
scribed above arrives. Then it switches to the busy state, resetting 
on the transition the clock used to account for the time passed in 
the busy state. Since other events may arrive while the resource is 
busy executing the current task, the total remaining execution time 
will be recalculated and/or event counters incremented. The end of 
each task execution is marked with an output event broadcast to the 
system through the outEvent channel. Emission of output events is 
hereby tracked the observers TA described above (cf. Fig. 5). The 
scheduler can not go back to the idle state unless no more events 
are stored in the buffer and the system clock is equal to the total ex­
ecution time. The self-transitions of the busy state (task switching 
conditions) are specific for a chosen scheduling policy. 

To conduct feasibility analysis, the two-state idle-busy model 
should be extended with two more states :  check and error. In the 
check state, the model functions similarly to when it is in the busy 
state, i. e., reacting to the arrival of new events, accounting for the 
remaining execution time and switching among tasks. In addition 
to that, it checks the violation of critical conditions (e. g., task dead­
line violation). When the condition of the critical cases is satisfied, 
the transition to the error state will be taken. The example shown 
in Fig. 6 refers to the extended model of a scheduler with load­
dependent frequency adaptation. 

4.2 Integrated Tool Chain 
The set of TA-based models includes a number of parameters 

that characterize the performance of the system in terms of dead­
lines, execution times, and in terms of the shape of the input and 
output arrival curves. The system is feasible for a given choice of 
parameters if the error state of the timed automata in the model is 
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Error 

unreachable. We use the parametric feasibility analysis tool to find 
out the region of parameters for which the system is feasible. 

The tool chain is shown in Fig. 4, Section C. In this chain we 
make use of the Uppaal toolbox as part of the MPA-RTC/PFA in­
tegration flow, used as one of the translation chain links. Three 
TA-based models, the input event generator, the generalized sched­
uler and the two observer automata, are initially represented in the 
Uppaal toolbox. However, the PFA tool requires a symbolic rep­
resentation of the TA using the NuSMV language. The conversion 
from the Uppaal model into the NuSMV model is achived through 
the Java Uppaal to NuSMV Translator (JUNT, which was devel­
oped for this application. The .XML file containing the Uppaal 
model is taken as input by the JUNT translator. The JUNT output 
file (.SMV) is the executable NuSMV file that is accepted by the 
PFA tool. The translation is done in "offline" mode and the .SMV 
file is then given to the PFA tool. 

In order to speed up the analysis, the PFA tool employs both 
the NuSMV engine and the Uppaal engine. Thus, it is essential 
to be able to run slightly modified TA models back in Uppaal. We 
have therefore established a feedback loop from NuSMV to Uppaal 
that assigns the PFA defined values to the variables of the initial 
Uppaal models that were chosen as parameters for the PFA. This 
feedback loop is graphically represented in Fig. 4. The modified 
Uppaal model with changed variables values is then executed on 
the Uppaal model checking engine. After that, the traces to the 
error sates (if reachable) are translated back to NuSMV traces for 
further analysis. 

The first step of the feedback loop to Uppaal is implemented as 
a Perl script that takes as input an initial Uppaal model and a .txt 
configuration file that includes a list of parameters (Uppaal vari­
ables) names and the fixed values that need to be assigned to them. 
The backward step is easier, since only a trace must be translated 
between two rather similar formats. 

The results of the PFA analysis is actually a simple set of con­
strains on the set of parameters that can be then manually translated 
into a graph of a feasibility region. Any point of the feasible region 
(e.g., specific values of N1..k, D1..k, NObs, and/or DObs) can then be 
given back to the MPA-RTC toolbox to adjust the system according 
to the given constrains. 

From a user point of view, the use of U ppaal in the tool chain has 
the additional advantage of providing a graphical interface, which 
is more attractive over the text based NuSMV language for some­
one who would like to build new TA models. The JUNT translator 
is therefore useful in its own right, and has been designed to be 
more generic than simply translating event generators and sched­
ulers. An XML file is used as a native Uppaal file format. We 
made use of the internal Uppaal XML parser in order to translate 
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Figure 7: Analyzed System 

the graphical user interface TA representation into an executable 
NuSMV file. The challenge in developing the translator was to 
match the explicit state model used in Uppaal to an equivalent im­
plicit constraint based model, as used in NuSMY. Some difficulties 
arise since clocks and integer variables of Uppaal are represented 
in NuSMV as real values. Arrays are particularly challenging to 
translate, because array support in NuSMV is very limited. For 
example, when arrays are used to represent the transition guards 
or assignments in Uppaal, we are forced to introduce a number of 
transitions equal to the array size in the NuSMV module. An even 
more difficult situation occurs when the array size is defined by a 
template parameter that can vary from one instantiation to another. 
In that case, different instantiations of the same template must be 
translated into different NuSMV modules, increasing the size ofthe 
code. 

4.3 Analysis flows 
As discussed, parameters may appear in any part ofthe timed au­

tomata system model. Typically, the analysis is conducted by fixing 
the value of some of the parameters, and determining the region of 
feasibility of the remaining free parameters. For example, we can 
fix parameters of the input curves (Nl..k, 81..k) and find the region 
of the output curves parameters (Nabs , 80bs) that make the sys­
tem satisfY the constraints, or vice versa. We call the analysis type 
performed while fixing the input curves parameters Forward Anal­
ysis. Likewise, one can fix the parameters of the output curves, and 
find the feasible region ofthe parameters ofthe input arrival curves. 
We call this type of analysis Backward Analysis. It is also possi­
ble to fix both input and output parameter values in order to find 
an area for such parameters as the buffer size, maximum execution 
latency and/or max execution time, which characterize the sched­
uler model. We call this Processing Element Analysis. Points in the 
feasible regions can then be selected, based on the desired perfor­
mance metrics and robustness to parameter variations, to derive the 
appropriate actual curves conforming to the RTC formalism. 

5. CASE STUDY 
The example that we are going to show in this section is a simpli­

fied version of the general case presented in Section 4.2 and is pre­
sented in Fig. 7. We consider a system with one type of task having 
an input arrival pattern that is periodic with jitter. The curve char­
acterizing this pattern can be modeled by the TA shown on Fig. 2. 
The load-dependent frequency adaptation scheduler for the compu­
tational element is adapted from [20]. The CPU represented by this 
scheduler operates at frequency II if the number of events in the 
input buffer is less then a threshold value and switches to frequency 
12 otherwise, where II < 12. This scheduler model was general­
ized and extended with a check and error state, as described above. 
The TA of the generalized scheduler is shown in Fig. 8. Basically, 
the adapted scheduler can change its processing speed when the 
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Table 1: Experiments values and parameters 
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number of tasks in the buffer exceeds a certain threshold. Thus, we 
define two different worst-case execution times for the task: one 
for when the number of tasks in the buffer is equal or below the 
threshold (Cl) and another for when it is above the threshold (C2). 
For the observer we use the UTA observer presented in Fig. 5. 

We have a set of three different experiments for this case study. 
The result of the experiments are regions of parameters expressed 
as a set of linear constraints in the parameter space. The dimension­
ality of the space is equal to the number of parameters used. For 
visualization, we typically limit our study to sets of at most two 
or three free parameters. The symbolic representation of the con­
straints, however, does not have this limitation, and can be used as 
an input for further automatic analysis, such as robustness analysis. 

For our experiments we evaluated the system for groups of two 
parameters at a time. The settings for the simulations are as follows. 
For all three cases we have fixed the threshold value for switching 
CPU speed equal to 4. Upon the change in the CPU speed, the 
task computation time changes from Cl = 4, when the number 
of events in the buffer is below the threshold, to C2 = 2, other­
wise. The rest of the parameters and values for the experiments are 
summarized in Table I. 

In experiment I we have performed a Processing Element Anal­
ysis where we have studied the feasibility area for the maximum 
buffer size (Max Buffer) and the maximum latency (Max Latency) 
within a range of [0, ...  , 10] for both parameters. The latency 
refers to the maximum time a task may spend in the processing 
state (starting from its insertion in the buffer) until it completes, 
and corresponds to the relative deadline of the task. The feasibil­
ity area of this experiment is presented in Fig. 9 and was obtained 
in only 18 seconds using 64 sample points in the parameter space. 
This experiment was executed on an AMD Athlon(trn) 64 X2 Dual 
Core Processor 5000+ CPU I GHz machine. The results of this ex­
periment show that the minimum buffer size should be equal to or 
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greater than 4 elements, and that the maximum latency, or deadline, 
must be at least 5 time units with this system configuration. This 
kind of analysis is important in the early phases of design when we 
would like to choose a buffer size that will guarantee that no over­
flow will occur, without being too conservative. The parametric 
analysis also highlights the relationships between the values of the 
parameters. The estimate of the maximum latency values in tum is 
important for real-time analysis. If it is too large, we can decrease 
the execution time of the task by choosing a CPU with higher pro­
cessing speed, therefore, choose the processing element that fits the 
system requirements. 

The graph yields that the optimal point, i. e., the point that corre­
sponds to the best choice of the parameter values, is the one with 
buffer size equal to 4 and latency equal to 5. The other points at the 
border are found automatically by the PFA tool using a combina­
tion of Uppaal and NuSMV, and could also be found by theoretical 
analysis or using a binary search algorithm for one of the parame­
ters while the other is fixed to a certain value. The rest of the points 
that belong to the feasibility area are still valid points. For a fully 
deterministic systems, e. g., when we are sure that the worst-case 
execution time of the tasks is never violated, the best values of the 
parameters lies at the border of the feasibility graph. 

Some of the parameters, however, may be affected by estimation 
errors, or may fail to provide the absolute worst case to avoid overly 
large pessimism. For example, in this paper we talk about the pro­
cessing elements taking into account not only computational pro­
cessing units (CPUs) but also the communication elements with an 
arbiter that manages packet transmission. The communication may 
introduce packet losses that are induced by some external physical 
factors. Thus, the packets that were lost should be added back to 
the buffer to be retransmitted. If this is the case, we can not as­
sure that choosing the buffer size equal to 4 and the deadline to 5 
will never result in a constraint violation. Choosing a point which 
is further away from the border of the feasibility area will give us 
parameters values that make the system more robust. 

For experiment 2 we perform a Backward Analysis, where Nin 
and 8in are chosen to have values within a bounded range, in this 
case [0, ... , 10] for both of them. The values for the other variables 
should be chosen such that they do not affect the result in a nega­
tive way. For example, if we choose the values of the buffer size 
equal to 0 we will never find any feasible region for the proposed 
set of parameters, since the maximum buffer size will be immedi­
ately exceeded, which will provoke a violation of the constraints. 
Taking into account the results of the previous experiment, we set 
the buffer size to 1 0  and maximum latency to 20 making sure that 

1 62 

PI 

Unfeasible region 
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they will never be violated. The resulting feasibility area is pre­
sented in Fig. 1 0. In this case, the PFA tool was unable to properly 
generalize unfeasible points in the vicinity of the border between 
the feasible and unfeasible region. This is due to both the structure 
of the model, and the chosen set of parameters. The problem arises 
because the traces that lead to the error state for unfeasible points 
become increasingly unique as we move towards the border of the 
region, while generalization requires that nearby points share the 
same trace. The generalization of the points eventually degenerates 
into a line. 

Nonetheless, the information provided by the analysis is useful 
despite the incompleteness of the areas. In particular, we can plot 
several points on the graph that were found feasible and can help 
define a safe border between the two regions. Points that fall be­
tween two unfeasible areas are considered not safe. In simple cases, 
a fully symbolic search could be run to complete the areas. The re­
sult for experiment 2 that is depicted on Fig. 1 0  was obtained in 
1 32 minutes and 9 seconds. The experiment was executed on an 
Intel(R) Pentium(R) 4 CPU 2.80GHz machine. 

The found feasibility regions of the Backward Analysis are then 
used to build the RTC-based input curves. We have chosen three 
points from the border of the feasible region and one far from it 
and constructed the RTC-based curves using the parameters values 
from these points. The first three curves have the following param­
eters: 81 = 2, N1 = 4, 82 = 4, N2 = 4 and 83 = 4, N3 = 7; 
as for the fourth curve, we have chosen 84 = 5 and N4 = 3.  The 
set of curves is presented in Fig. 1 I .  From this graph we can see 
that the curves built using the parameter values of the point that lies 
further from the border is located below all the curves built out of 
the border point parameters values. This curve corresponds to the 
lower load of the system with input events, which makes the sys­
tem more robust. The choice among points that are at the border 
depends on the particular application, since the resulting curves are 
incomparable and each constitutes a different trade-off between the 
parameters. 

In experiment 3 we have performed the Forward Analysis. Here 
Nabs and 80bs are chosen as parameters with a bounded range of 
[0, . . .  , 10] for both of them. The feasibility area is presented on 
Fig. 1 2. For this experiment, similar to experiment 2, we encounter 
the degeneration ofthe generalized areas into lines and points while 
approaching the border between the feasible and unfeasible regions. 
Nabs represents the number of events that can arrive at the same 
time, and thus has an integer nature. Therefore, we set the step of 
the grid along Nabs axis equal to 1. The result for experiment 3 
that is depicted on Fig. 1 2  was obtained in 7 hours and 56 minutes. 
The experiment was executed on an Intel(R) Pentium(R) 4 CPU 
2.80GHz machine. 



1 2  # events 
I I  
1 0 

8 .---_---fI.. ........ .J 
....-'i-l_--,,0.::...3 ---,I ............ , t 
1 G 0 1 

r···········; 1 
: 5  

N� 
: 4 � 
1 3 H;-------,.,--' 

! 2 
i I 
� 

Figure 1 1 :  Set of input curves bui lt by using values for Nin and 
8in from the feasibility region. 

Nobs 10 

s 

• 
p, 

� Unfeasible region 
_ . . . - '-------

• 
p< 

· . ···p�9�---------------
· .. ------------------P2 

PJ··-
----------------------------------

L--c--'�+. :'---+--0-3 ----c---cc----o-----=-----o-S ----0-------,170 --> 
2.20 2 .75 
2 .44 /jobs 

Figure 12: Feasibility region, experiment 3 

For this experiment we have chosen four points from the border 
of the found feasible region and one far from it and constructed the 
RTC-based output curves using the feasible parameters values from 
this points. The chosen point are summarized in Table 2. There (b) 
next to the point number stands for a border point and (r) means 
the point taken from the feasibility area away from the border. The 
output curves built using the parameters values from the feasibility 
area are depicted in Fig. 1 3. 

From this graph we can see that the curve built from the param­
eters values of the point that lies further from the border is located 
above all the curves built out of the border point values. This curve 
corresponds to the higher expected output rate of the events pro­
cessed by the system. In this case, unpredictable events due to 
uncertainties in the estimation as discussed above are less impor­
tant, as they tend to decrease the output rate of the system. Thus, 
the "real" curve may actually lie below the one built using the data 
points of the resulting area. This is an important observation when 
studying a system composed of a number of processing elements 

Point 1 (b) 2 (b) 3 (b) 4 (b) 5(r) 

Nabs 1 2 4 5 6 

80bs 2 2.44 2.75 3 2 

Table 2: Chosen points 
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Figure 13: Set of input curves built by using values for Nabs 
and 80bs from the feasibility region. 

with limited resources when even a small reduction of the input 
rate can play en essential role in system robustness. 

6. CONCLUSION 
In this paper we presented a hybrid design and analysis method­

ology for distributed real-time systems. The proposed approach 
integrates Modular Performance Analysis (MPA-RTC) with Para­
metric Feasibility Analysis (PFA). It uses a simplified representa­
tion of arrival curves to interface heterogeneous modeling compo­
nents. More specifically, the method automatically converts arrival 
curves as used by MPA-RTC to Timed Automata models, and uses 
these models to trigger a state-based and parameterized model of a 
processing or communication component. In a similar fashion, the 
output of the component is characterized by appropriate observer 
automata and automatically converted to arrival curves. The nov­
elty of our approach consists in deriving feasible regions for vari­
ous component parameters such as tolerable data rates or bursts for 
the input or the output of the component, and tolerable fill levels 
for its activation buffer. Our results extend previous analysis meth­
ods which permitted the evaluation of single design points only. 
For automatically deriving the region of feasible parameters for a 
component, we implemented a dedicated tool-chain which employs 
Uppaal and NuSMV. The resulting tool permits us to efficiently ex­
plore large design spaces and hence directly supports the design of 
complex distributed systems. 
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