
Enabling Parametric Feasibility Analysis in Real-time
Calculus Driven Performance Evaluation

Alena Simalatsar
EPFL, Switzerland alena.simalatsar@epfl.ch

Yusi Ramadian
University of Trento, Italy ramadian@disi.unitn.it

Roberto Passerone
University of Trento, Italy roberto. passerone@unitn.it

Kai Lampka Simon Perathoner Lothar Thiele
ETH Zurich, Switzerland lampka@tik.ee.ethz.ch ETH Zurich, Switzerland perathoner@tik.ee.ethz.ch ETH Zurich, Switzerland thiele@tik.ee.ethz.ch

ABSTRACT

This paper advocates a rigorously formal and compositional style
for obtaining key performance and/or interface metrics of systems
with real-time constraints. We propose a hierarchical approach
that couples the independent and different by nature frameworks
of Modular Performance Analysis with Real-time Calculus (MPA­
RTC) and Parametric Feasibility Analysis (PFA). Recent work on
Real-time Calculus (RTC) has established an embedding of state­
based component models into RTC-driven performance analysis
for dealing with more expressive component models. However,
with the obtained analysis infrastructure it is possible to analyze
components only for a fixed set of parameters, e. g., fixed CPU
speeds, fixed buffer sizes etc., such that a big space of parameters
remains unstudied. In this paper, we overcome this limitation by
integrating the method of parametric feasibility analysis in an RTC­
based modeling environment. Using the PFA tool-flow, we are able
to find regions for component parameters that maintain feasibility
and worst-case properties. As a result, the proposed analysis infras­
tructure produces a broader range of valid design candidates, and
allows the designer to reason about the system robustness.

Categories and Subject Descriptors

[Embedded systems]: analysis techniques for embedded system
including design space exploration, co-simulation;

General Terms

Design, Performance, and Verification

Keywords

Tool integration, System-level Design, Feasibility areas, Worst-case
Analysis

1. INTRODUCTION
System level analysis plays an essential role in the design of

hard real-time embedded systems at early stage. Several different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES']], October 9-14,2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0713-0/11/10 ... $10.00.

1 5 5

methodologies that address the problem of system-level analysis of
embedded systems have been presented recently [4, 7, 1 1 , 1 4, 1 6,
1 8, 28, 29]. These methodologies are typically based on some form
of abstraction and can often be applied to only a specific or lim­
ited set of system architectures or parameter space. Abstraction
comes in the form of analytical and executable models. Analyt­
ical models are advantageous in that they generally provide good
scalability, particularly if they are compositional as in case of the
Real-time Calculus. On the other hand, executable models can of­
ten be more accurate as a more general semantic model is inherent
to them. Because of the complementary nature of analytical and
executable methods, there has been a trend recently in trying to
combine techniques from these domains and thereby taking advan­
tage of their respective strengths [27]. In this paper, we present a
new approach that allows performance analysis of parameterized
systems by combining two standalone methods of Real-Time Cal­
culus [29, 30] and of Parametric Feasibility Analysis [1 2] and by
integrating their respective tool flows. Designers benefit from this
integration because a larger portion of the design space can be ex­
plored, while still maintaining feasibility and worst-case properties.

The Modular Performance Analysis Toolbox [30], based on the
Real-Time Calculus (MPA-RTC) [29], makes use of functions on
the time-interval domain to represent both system workload and
availability of computation and communication resources. Com­
ponent interaction is abstractly modeled by sets of functions, in­
stead of signals, tokens or other activity triggers. As this features
compositionality also on the level of the formal analysis, MPA­
RTC supports a wide and efficient performance evaluation of key
metrics of component-based real-time systems. Pessimism con­
tained in the obtained guarantees w. r. t. worst-case system behav­
iors, e. g., burst-sizes, backlog-sizes and delays, can be avoided as
long as the system under analysis matches the model of computa­
tion inherent to RTC. However, it may be difficult to adequately
model components having state-dependent behaviors, e. g., CPUs
whose speed changes with the size of the backlog buffer. For less
pessimistic results in such situations, a methodology for embedding
Timed Automata (TA) [1] based component models into a MPA­
RTC-based system model [20, 2 1] was developed recently. How­
ever, with this approach it is possible to study only fixed values of
parameters, e. g., a fixed CPU speed, fixed buffer sizes, and fixed
parameters of functions modeling the component/environment in­
teraction. Hence, a big space of feasible parameters values remains
unstudied.

On the contrary, Parametric Feasibility Analysis (PFA) performs
feasibility analysis for a system associated with a set of parame­
ters for their full range of possible values. These parameters can
describe the activation pattern, the real-time constraints and the ex-

ecution parameters of the concurrent software entities (or tasks)
scheduled on one or more shared CPUs. Schedulers and activation
patterns are represented with Parametric Timed Automata (PTA).
Some of the parameters are known, others are known with a lim­
ited precision (e. g., computation times and activation rates). PFA
allows one to find the region of the set of parameters that make the
system feasible, i. e., it satisfies the real-time constraints expressed
by the model.

The main contribution of this paper lays in the coupling of the
PFA and the MPA-RTC frameworks which enables one to find the
feasibility area for the set of parameters of the MPA-RTC-based
component through its TA extension. This leads to optimized im­
plementations both in terms of performance and in terms of their
robustness. We organized the paper as follows. In Section 2 we
report on related and preliminary work. Section 3 describes the
fundamental aspects of the underlying theories. The tool integra­
tion is introduced in Section 4. Section 5 presents a case study to
demonstrate the effectiveness of the proposed approach and Sec­
tion 6 concludes the paper.

2. RELATED WORK
The literature on classical real-time feasibility theory is vast [6,

8,22]. Wang Yi et al. [24] were the first to use a Timed Automaton
(TA) to represent a system resource (CPU or communication ele­
ment) as a scheduler model together with a notion of discrete events
that trigger the execution of a real-time tasks executable on this
scheduler. In this work they also show that the feasibility problem
ofthis extended model can be transformed into a reachability prob­
lem for a standard TA. This approach allows one to check whether
a system is feasible for some fixed set of parameters. However,
in early system design phases some of the parameters can be un­
known or known with a limited precision. Therefore, this idea was
extended by using Parametric Timed Automata (PTA) [12] manip­
ulated by Uppaal [5] and NuSMV [10]. As a part of our tool inte­
gration we have extended the approach based on PTA to compute
the feasibility region of systems characterized by not only periodic
tasks, but also periodic tasks with j itter. We refer to this extension
as Parametric Feasibility Analysis (PFA).

In another line of work [3], Andre shows how given a certain
known parameter valuation, one can compute the relaxed constraint
on the parameter space that will have the same trace. This ap­
proach depends on the input, is not maximal and not guaranteed
to terminate. In [33], the authors present a method to model check
a real time system using parametric timed automata when a con­
straint over the parameter is given. This problem is referred to as
the "emptiness" problem for PTA and has been proven undecid­
able, in the general case, in [2]. Interestingly, in [17] a subclass of
PTA called L/u PTA is identified for which the problem is decid­
able, and a solution strategy based on Parametric Difference Bound
Matrices is proposed. The solution to the emptiness problem is ac­
tually part of our method in getting the reachability of the error
state that we use to solve a more general problem.

The above techniques are well accepted methodologies for ana­
lyzing real-time systems, e. g., see [23] for a recent example. How­
ever, the finite state/transition system to be derived from some high­
level model tends to grow exponentially with the number of clocks
and clock constants. Therefore, the detailed analysis of a complex
system may be hampered in practice, if not impossible at all. In
contrast, purely analytic (or stateless) methods such as provided
by the Real-Time Calculus [29,31], SymTAlS [16] or MAST [15]
solely depend on solutions of closed form expressions, yielding a
very good scalability with the size of systems to be analyzed. But
this advantage has its costs : (a) analytic methods are limited to the

156

computation of a few specific system measures and (b) each method
is restricted to a specific model to which the system specification
under analysis must be translated, which in general may lead to
overly conservative analysis results.

To overcome these shortcomings, recent research has made an
attempt at comparing tools that do similar type of analysis [25],
as well as elaborated on a combination of purely analytic and state­
based performance analysis methods [13]. In one proposed method,
Phan et al. [26] elaborate on an embedding of event count automata
(ECA) [9] into RTC-driven performance analysis. In this approach,
the user must specify, for each location of the ECA, the mini­
mum and maximum number of event arrivals taking place while the
ECA resides in that location. As a consequence of the implicit no­
tion of time, the modeling of systems with time dependencies may
yield a severe blow up of the computational effort for their state­
space oriented analysis. To interface ECA to MPA-RTC framework
and vice versa, one needs to derive abstract stream representations,
i. e., their bounding RTC-curves. In this approach, this is accom­
plished through the use of observer ECA. The analysis uses binary
search for extracting the maximum and minimum number of events
seen in a window size � via reachability analysis. A set of point
values obtained from the binary search allows one to construct a
(pessimistic) RTC-curve. While one may potentially analyze para­
metric systems in this way, binary search relies on certain mono­
tonicity properties of the model, a limitation which is not present
in our approach based on parametric feasibility analysis.

Krcal et al. [19] also address the combination of RTC-based
components and timed automata. For including the abstract stream
representation used in RTC into TA-based system models one oper­
ates on an array of clocks. Each clock is associated with the number
of events produced so far, as well as with a minimal and maximal
number of events to be generated within the respective time inter­
val length. For deriving an RTC-based stream representations from
the combined model, the authors suggest the usage of observer au­
tomata and binary search on the maximal and minimal number of
events that appear within any time interval of length �, which is in
fact similar to the idea cited previously [26], and suffers from the
same limitations.

In this paper, we exploit the pattern, recently presented in [21],
for embedding TA-based model descriptions into RTC-driven per­
formance analysis. This provides us with a translation path between
the PTA-based feasibility analysis and the RTC-based performance
analysis of the MPA-framework [30,31], since PTA is an extension
of classical TA. Contrary to the existing work, the usage of PTA
proposed here allows one to obtain regions of RTC-curve parame­
ters rather than individual values. This of course holds also for the
features of the embedded component model, as regions or bounds
on execution speeds, buffer sizes etc. can also be obtained, rather
than point-estimates as detected by binary search when carrying out
the techniques presented in [19,21,26].

3. BACKGROUND THEORY
In this paper we present a hybrid methodology that unifies two

different approaches to complex real-time system analysis. This
section briefly introduces the background theory necessary to better
understand the main ideas.

The two techniques employed in this work, Real-Time Calculus
(RTC) and Parametric Feasibility Analysis (PFA), share the view of
the system as a composition of computational and communication
components (resources). Tasks are executed on the computational
elements and data packets are sent through the communication ele­
ment. The order oftask execution or data transmission is defined by
a chosen scheduling policy, which is implemented inside the com-

ponents. In our representation, we do not distinguish between the
computational and communication elements, as well as between
tasks and data packets, and model each resource as a Greedy Pro­
cessing Component (GPC) which is never idle unless there are no
more tasks to be scheduled. The task activation, whether it is pro­
cessed directly or added to the scheduling buffer for further pro­
cessing, is marked with a start or input event, while the end of the
task execution is marked with an end or output event.

Timed event traces for input and output events (see Section 3.1)
are used to represent both the task activation pattern of a compo­
nent and the pattern of output events. In multi-component systems
such a pattern of output events may become an input pattern to
down-streamed components. Timed event traces can be charac­
terized by a pair (Q;�w, Q�:) of arrival curves in the analytic ap­
proach. The translation of these curves into event-emitting coop­
erating Timed Automata (TA) [I] is presented in Section 3.3, as
TA form the foundation of the state-based component model de­
scriptions. Finally, Section 3.4 presents the Parametric Feasibility
Analysis (PFA) framework and Parametric Timed Automata (PTA)
as the underlying model of the PFA.

3.1 Arrival curves of Real-time Calculus
A timed T-event is a pair (t, T) where T E Act is some event

label or type from a set Act of event labels or types, and t E
1R>0 is some non-negative time stamp. A timed trace or stream
tr --== (tl, T); (t2, T); . . . is a sequence of timed T-events ordered
by increasing time stamps, i.e., such that ti ::; ti+l. A stream
tr can be abstractly characterized by a pair (Q;�w, Q�:), of arrival
curves [29]. These arrival curves bound the number of events seen
on tr for any interval � E [0, (0) . Let R(t) denote the number of
events that arrived on the stream tr in the time interval [0, t). The
upper and lower arrival curves must satisfy the following equation

Q;�W(t-s)::;R(t)-R(s)::;Q�:(t-s) withO::;s::;t. (1)

As each event from a stream may trigger some behavior within a
component, the arrival curves Q;�w and Q�: can be seen as abstract
lower and upper bounds of the amount of resources demanded for
processing the events within a time interval � := t -s. Further­
more, a given pair (Q;�w, Q�:) represents a (possibly infinite) set
of streams of input events, task activations resp., as it includes all
streams whose counting function R satisfies (1). For simplicity, we
denote the pair (Q;�w, Q�n as Qin. A stream whose cumulative
counting function satisfies (1) is said to be bound by Qin. Arrival
curves are a generic way for characterizing standard real-time traf­
fic models ranging from strictly periodic event arrivals over P1D­
streams (traces where event arrivals are periodic with j itter and with
a minimum distance), up to sporadic event arrivals. In this work
we restrict our attention to the case of complete amounts of events
only, i. e., the case in which the number of events to be processed is
an integer value. In RTC, such scenarios are modeled by staircase
curves, as those shown in Fig. 1.

In this paper we model a staircase curve as the combination of el­
ementary staircase curves composed via nested minimum and max­
imum operations. For the sake of clearness, we restrict the nesting
of minimum and maximum operations and assume that upper ar­
rival curves are always obtained as the minimum over a set I of
staircase curves, and lower arrival curves as the maximum over a
set J of staircase curves:

where the elementary staircase curves Q�P (�) and Q;ow (�) are of

157

#events
r

········R(t)-R(s)

",low ' =
\....{. 'l. n •

max(O, a/OW)
J:=l J

r-��---------------------------------�� �

Figure 1: Upper and lower (staircase) arrival curves

the form

{up,low}(A) ._ N {up,low} + Q {i,j} U .- {i,j} l O {UP�IOW} J .
{t,] }

(3)

The fact that upper (and lower) RTC curves are constructed by a
single minimum (and maximum) operation (not nested minimax
computations) considerably reduces the complexity of embedding
TA into the RTC-driven performance analysis.

Example. An example is given in Fig. 1: the upper arrival curve
Q�: results from the minimum of two staircase curves. Its parame­
ter N�P models the (burst) capacity, i. e., it is the number of events
that can arrive at the same instant of time in any stream bounded
from above by Q�:. Its parameter o�P yields than the minimum
distance of two events once a burst had occurred. The lower curve
Q;�w consists of the maximum of the constant a-function and some
staircase function Q�ow. Its step widths define the maximum dis­
tances between successive events bounded from below by Q;�w.

3.2 Timed Verification
Let C be a set of clocks and let ClockCons be a set of con­

straints on these clocks. The constraints are conjunctions, dis­
junctions and negations of atomic (clock) guards, where the later
are of the form x C><l n,x E C,n E No for C><lE {<,::;,>,2
, = } . A timed automaton (TA) [I) is defined by a tuple T A =
(Loc, Loco, Act, C, '-+, 1) with Loc as the finite set of locations,
Loco <;;: Loc as the set of initial locations, Act as a the set of ac­
tion (or edge) labels, C as the finite set of clocks, '-+<;;: Loc x
Clock Cons (C) x Act x 2c x x Loc as its edge relation and with
I : Loc -t ClockCons(C) as the map of invariants which maps
locations to clock constraints.

Let the active location be the location the TA currently resides in.
The operational semantics associated with a TA can be informally
characterized as follows:

Delay transitions. While location invariants ofthe active location(s)
hold time may progress with all clocks increase at the same
speed.

Edge executions. Traversal of an edge within a TA potentially changes
the set of active locations; self-loops are possible. Such an
edge "execution" is instantaneous and possible at any time,
given that the source location of the edge is marked active
and its guard evaluates to true. Upon edge executions clocks
can be reset.

The above setting yields infinitely many behaviors, because an edge
execution may occur at any time within the bounded interval of re­
als defined by location invariants and (clock) guards. However,
with the concept of clock regions [I] it is possible to capture all
possible behaviors in a finite state graph, such that timed reachabil­
ity is decidable. In fact, modem timed model checkers incorporate
clock zones as they often result in a coarser partitioning ofthe clock
evaluation space in comparison to the original definition of clock
regions. For conciseness we omit further details, and refer the in­
terested reader to the literature on this topic [1 , 32].

We exploit the timed model checker Uppaal [5], which implements
timed safety automata extended with variables. Similarly to clocks,
variables can be used within guards of edges and location invari­
ants. Upon an edge execution, a variable can be updated, where the
used values must built a finite set, which, however, does not need
to be known on beforehand, i. e., it can be constructed on-the-fly
upon the state space traversal. As we are also exploiting Uppaal 's
cooperation mechanisms we briefly recapitulate them.

Mechanisms of cooperation
A system model can be composed from a set of cooperating TA.
These TA may either share (global) variables or may jointly exe­
cute dedicated edges, denoted as rendez-vous or synchronization:

(AJ Cooperation via shared variables.
Variables can be declared on the level of a network of TA, allowing
the individual TA to read and manipulate them. In this context, it
is important to note that the manipulation of variables which takes
place upon the traversal of synchronizing edges needs to be com­
mutative, as the order of the edge traversal of the participating TA
is non-deterministic.

(BJ Rendez-vous mechanisms.
Uppaal makes use of channels and signals. In fact this implements
different rendez-vous mechanisms. TA may jointly execute their
enabled edges if the involved edges carry the same (channel) iden­
tifier followed by a question or exclamation mark. The TA provid­
ing an edge labeled with a exclamation mark is commonly denoted
sender, whereas the TA providing the edge with the question mark
is denoted receiver. As the number of senders and receivers may
vary, different rules apply :

Binary synchronization. Ifthere are n senders and k receivers the
state space generation engine picks non-deterministically a
pair of sender and receiver and jointly executes their resp.
edges. A sending or receiving edge is not allowed to be ex­
ecuted in isolation, i. e., if a sender or receiver has no resp.
counterpart its sending/receiving edge is blocked from exe­
cution.

Arbitrary, n-ary synchronization. A broadcasting send is non­
blocking, i. e., a broadcasting sender TA executes its sending
edge and between 0 and n receivers execute one of their resp.
receiving edge at the very same time. It is important to note,
that each receiver with at least one enabled receiving edge
has to execute the latter.

Full, 1 : n synchronization. Global variables and broadcast chan­
nels allow one to enforce a joint execution among one sender
and n receivers which is achieved as follows: each receiver
increments a global counter. The sender requires that after
executing the sending edge the global counter equals some
predefined constant. This is guarded by the location invari­
ant of the target location of the resp. (broadcasting) edge.

1 5 8

x = 0 , b++
x == Delta

x <= Delta
&&

b <= BMAX
if (b==O) x = 0,
b = max(b-l, 0)
(a) LTA for lower curve aj

System Dec/arations
broadcast channel evenJ�
int BuJ JerSz = 0;
Local Dec/arations for ioTA. UTA
canst int BMAX = IN{i,j) I;
clock x;
int b = 0;
canst int Delta = 8{i,j)

(c) Declarations

x = 0,
b = min(b+l, BMAX)

if (b==BMAX) x = 0,
b--,
Sync++
(b) UTA for upper curve ai

event!

Sync = 0 Sync == K

The location marked with c is
a committed location, i. e., time
does not pass while this location
is active and it has to be left on
the next edge execution.

(d) Full synchronization

Figure 2: TA-based implementation of RTC-based curves

3.3 From RTC-curves to event emitting TA
Upper and lower RTC-based staircase curves can be implemented

by sets of cooperating TA, where the emitted event signals serve as
input stimuli to the down-stream TA-based scheduler model. The
different TA are coordinated by making use of broadcast channels
as implemented in Uppaal. With our approach, we translate RTC
staircase curves into an event-emitting TA as follows:

I. Curve parameters b{i,j} and N{i,j} employed in Eq. 3 are ei­
ther chosen fixed or are in the parameter set of the TA. Each

staircase curve a {
{UP,

}IOW} (Eq. 2) is implemented by its own t,J
event emitting TA, where in case of an upper curve a�P we
speak of a timed automaton UTA i and in case of a lower
curve a;ow of a timed automaton LTA j. The generic imple­
mentation of a UTA and LTA within the timed model checker
Uppaal is shown in Fig. 2 (a) and (b).

2. Full synchronization on the UTA which implements mini­
mum computation on the set of upper event arrival curves
(cf. Eq. 2) is enforced by the event emitting TA as depicted
in part (d) of Fig. 2.Full synchronization means that all UTA
have to execute their event-labeled edge in order to allow the
event-emitter (TA of Fig. 2 (d)) to release an event inEvent !.
If not all UTA can participate in the synchronization, event
emission is blocked.

3. Maximum building on lower staircase curves (cf. Eq. 2) is
realized by enforcing event emission whenever one of the
involved LTA has reached its local threshold Nj, which is
achieved by defining the respective invariant for each LTA.

A set of LTA and UTA cooperating via the event emitting TA im­
plements an input generator 9 which produces streams w. r. t. a ded­
icated event type, e. g., of type inEvent. Generator 9 (ain) allows
to produce all streams whose cumulative bounding functions are
bounded in the sense of Eq. I (the proof is provided in our previ­
ous work [20]). The events emitted by generator 9(ain) can now
be employed for triggering subsequent behavior in any downstream
TA, e. g., the scheduler model.

Example. An example is shown in Fig. I and 2. For translating
upper curve a�::' one needs 2 UTA instantiated with EM AX :=

Cottectedregions
UG

Figure 3: PFA tool chain

NuSMV
region generalizer

Feasibility area of
parametric system

N(,i,2} and Delta := 6{'i,2}' For the event generator (Fig. 2 (d))

constant K is set to 2. For implementing the lower curve only a
single LTA is needed.

3.4 Parametric Feasibility Analysis (PFA)
Parametric Feasibility Analysis (PFA) performs an analysis of

schedulability for a collection of processes running on a CPU. This
method identifies the feasibility region over the space of parame­
ters of the processes. To do this, the system is modeled as software
components (sets of tasks) that compete for one or more shared
CPU. Each component is associated with a set of parameters that
describe the activation pattern, the real-time constraints and the ex­
ecution parameters of the different tasks. Some of the parameters
are known. Others are known with a limited precision (e. g., com­
putation times and activation rate). The objective is to find the re­
gion of the set of parameters that make the components feasible, or
schedulable. The proposed technique has been described in [1 2].

The main idea behind the parametric feasibility analysis is the
Parametric Timed Automata (PTA). Parametric Timed Automata
extends standard Timed Automata [I] as follows: let X be the dis­
joint union of the finite set of clocks and the finite set of state vari­
ables that could be boolean or real variables. Moreover, let P be a
finite set of parameters. The finite set C (X U P) contains the (com­
plex) constraints over the variables and clocks of set X and the pa­
rameters of set P, once again formed by disjunction, conjunction
and negation of atomic guards. A Parametric Timed Automaton
is defined by a tuple PTA := (Lac, Loco, Act, X, P, r, Y, J)
where Lac, Loco and Act are defined as before and where the sets
X and P are defined as above. r � B(P) is the parameter space,
where B(P) denotes the set of boolean combinations of constraints

over P. The set of edges Y� Lac x Act x C(XUP) x 2U(X) xL
is now enriched with complex constraints on clocks, state variables
and parameters (elements of C (X U P)) and sets of update state­
ment from U(X) that can reset the clocks to any value (not just
o as in classical TA) or term. Alternatively, the clock can simply
grow linearly in time in each location. The value of state variables
can be changed only as a result of a reset action, i. e., when an edge
is executed. Last, I : Lac --t C(X U P) is now the invariant
map between locations and constraints over clocks, variables and
parameters.

We first construct a model for the feasibility problem based on
Timed Automata, along the lines defined by Wang Yi [24]. Some
details are presented in Section 4.1. In PFA, we extend this ap­
proach by using cooperating Parametric Timed Automatae (PTA),
which are manipulated by Uppaal and by the NuSMV tool [1 0].
The analysis performed by the tools goes through three phases:
trace generation, trace analysis, and trace projection. During trace
generation, traces from the initial to the error state in the PTA are
generated. Each of these traces is an instantiation of a parameter

1 59

B

-
'='='=�ff���'='='=T='=��������'= '= ':y::'='='::-o�i�:'='='='='='='l -

1 lixXML. constraints rJU r 1,' i r--. '",,,,,,,, ,,., .. ,,, , ; i� (OC*MaJLat."'YIl&

Q
"

,i", � �PFA ' , , "" : ic INVAR !W((7 u MaxLat.ncy!I & � 1
(UIc*MaJute",yl& 1 1

Trace Translale (�"'B::::�:·:!I��
I
:))�: 1 �

1
1 1110'-"'"1

1
Toolchain Par.uneters Ii" ;

� ... :

Figure 4: Overview of analysis approach

valuation in which the system is unfeasible. During trace analy­
sis, these traces are evaluated in the context of the symbolic repre­
sentation of the PTA and a symbolic formula describing the PTA
reaching an error state is formulated. The trace projection phase
projects this symbolic formula into the parametric space to de­
rive constraints that describe an unfeasible region around the point.
Thus, a single trace is generalized into a potentially large region,
increasing the efficiency of the method. Because the region is un­
feasible (since the system reaches an error state), it is ruled out from
subsequent searches. In this way, the feasibility region is iteratively
bounded. For a particular but important case it has been shown that
this algorithm terminates in a finite number of steps [1 2].

The flow of the method that we currently employ is shown in
Fig. 3. Given a PTA, and the parameter boundaries (the parame­
ters space has to be limited for termination), we perform a quick
feasibility check on a set of sample points in the parameter space {po, PI, ... ,Pn} using non-parametric model checking of Uppaal.
If a point Pi is unfeasible, an error trace is produced. Trace analy­
sis and projection with NuSMV results in a region Gi. We collect
this result as the set of unfeasible regions UG. Then we repeat this
process for all sample points {PHl,PH2, ... ,Pn} that are not yet
contained in uG. When the sample point search no longer returns
new unfeasible regions, NuSMV is used to search for more error
traces using Bounded Model Checking (BMC) in the remaining
area, until no more error traces can be found. The feasible region
of the PTA is then obtained from the negation of the collected un­
feasible regions.

4. TOOL INTEGRATION
The tool integration flow is presented on Fig. 4. The figure is

divided into three sections. Section A and B refer to the system
model, while Section C shows how the tools are integrated.

4.1 System model
The top section A presents a system composed of three process­

ing components connected in a dataflow manner. Two of these
components, the first and the last, are RTC-based, while the middle
component is TA-based. The output curves of the first component
act as the input curves for the second one. Because the second com­
ponent is TA-based, these curves are translated into the equivalent
TA-based event generator (see Section 3.3), shown in the middle

outEvent?
bucket;; BM
NumSync++,

bucket--, x;o

out Event?
bucket> 0 && bucket < BMAX

x;; Delta

bucket ;; 0
outEvent?

u;O

x;O
bucket; «bucket+1)<BMAX)? bucket+1:BMAX

Figure 5: Observer UTA

section B of Fig. 4. The tasks are then processed by the second
components represented by a TA-based scheduler. The end of each
task processing is marked with an output event that is then cap­
tured by two observer TAs, which model the output curves. These
TAs set constraints on the output events in terms of burst sizes and
minimum/maximum distance of events. An example of an upper
observer automaton is given in Fig. 5, where the error state models
the violation of the currently tested output event curve.

Similarly to the observer TA, in order to verify that the constrains
on task scheduling and execution are satisfied, the scheduler TA of
the second component needs to be extended with a check and an
error states. A simplified generalized scheduler model required by
the PFA tool is presented in Fig. 6. Let us first discuss only a part
(idle and busy states) of the generalized scheduler model. The main
idea behind this model is that we may represent any resource as a
two-state TA. In one of its state the TA is idle, i. e., available for
the tasks, while in the other state it is busy, locked for all tasks or
tasks with lower priority for non-preemptive or preemptive priority­
based scheduling policies, respectively. This TA is idle in its initial
state until a first event (inEvent?) from the event generator de­
scribed above arrives. Then it switches to the busy state, resetting
on the transition the clock used to account for the time passed in
the busy state. Since other events may arrive while the resource is
busy executing the current task, the total remaining execution time
will be recalculated and/or event counters incremented. The end of
each task execution is marked with an output event broadcast to the
system through the outEvent channel. Emission of output events is
hereby tracked the observers TA described above (cf. Fig. 5). The
scheduler can not go back to the idle state unless no more events
are stored in the buffer and the system clock is equal to the total ex­
ecution time. The self-transitions of the busy state (task switching
conditions) are specific for a chosen scheduling policy.

To conduct feasibility analysis, the two-state idle-busy model
should be extended with two more states : check and error. In the
check state, the model functions similarly to when it is in the busy
state, i. e., reacting to the arrival of new events, accounting for the
remaining execution time and switching among tasks. In addition
to that, it checks the violation of critical conditions (e. g., task dead­
line violation). When the condition of the critical cases is satisfied,
the transition to the error state will be taken. The example shown
in Fig. 6 refers to the extended model of a scheduler with load­
dependent frequency adaptation.

4.2 Integrated Tool Chain
The set of TA-based models includes a number of parameters

that characterize the performance of the system in terms of dead­
lines, execution times, and in terms of the shape of the input and
output arrival curves. The system is feasible for a given choice of
parameters if the error state of the timed automata in the model is

160

in Event?
Counter++,
ExecTime += Ci

No violation &&
clock == ExecTime &&
Counter == 0

In Event?
clock = 0 && Counter = 1

inEvent?
Non deterministic
transitions
to "check" location

Switches among tasks
if (taskEnded) (

Counter··;
outEvent!

)

Figure 6: Generalized Scheduler Model

Error

unreachable. We use the parametric feasibility analysis tool to find
out the region of parameters for which the system is feasible.

The tool chain is shown in Fig. 4, Section C. In this chain we
make use of the Uppaal toolbox as part of the MPA-RTC/PFA in­
tegration flow, used as one of the translation chain links. Three
TA-based models, the input event generator, the generalized sched­
uler and the two observer automata, are initially represented in the
Uppaal toolbox. However, the PFA tool requires a symbolic rep­
resentation of the TA using the NuSMV language. The conversion
from the Uppaal model into the NuSMV model is achived through
the Java Uppaal to NuSMV Translator (JUNT, which was devel­
oped for this application. The .XML file containing the Uppaal
model is taken as input by the JUNT translator. The JUNT output
file (.SMV) is the executable NuSMV file that is accepted by the
PFA tool. The translation is done in "offline" mode and the .SMV
file is then given to the PFA tool.

In order to speed up the analysis, the PFA tool employs both
the NuSMV engine and the Uppaal engine. Thus, it is essential
to be able to run slightly modified TA models back in Uppaal. We
have therefore established a feedback loop from NuSMV to Uppaal
that assigns the PFA defined values to the variables of the initial
Uppaal models that were chosen as parameters for the PFA. This
feedback loop is graphically represented in Fig. 4. The modified
Uppaal model with changed variables values is then executed on
the Uppaal model checking engine. After that, the traces to the
error sates (if reachable) are translated back to NuSMV traces for
further analysis.

The first step of the feedback loop to Uppaal is implemented as
a Perl script that takes as input an initial Uppaal model and a .txt
configuration file that includes a list of parameters (Uppaal vari­
ables) names and the fixed values that need to be assigned to them.
The backward step is easier, since only a trace must be translated
between two rather similar formats.

The results of the PFA analysis is actually a simple set of con­
strains on the set of parameters that can be then manually translated
into a graph of a feasibility region. Any point of the feasible region
(e.g., specific values of N1..k, D1..k, NObs, and/or DObs) can then be
given back to the MPA-RTC toolbox to adjust the system according
to the given constrains.

From a user point of view, the use of U ppaal in the tool chain has
the additional advantage of providing a graphical interface, which
is more attractive over the text based NuSMV language for some­
one who would like to build new TA models. The JUNT translator
is therefore useful in its own right, and has been designed to be
more generic than simply translating event generators and sched­
ulers. An XML file is used as a native Uppaal file format. We
made use of the internal Uppaal XML parser in order to translate

RTC-conformant input curve RTC-conformant output curve

! i----------------------------------��:���;��--�----:�-----i 1 : r_Cl g--l,c ... O :
I
-

UTAL;;;e-;'i-! i r-UTA -'
I Pattern I ' � I L- _____ i �EVf_'nl j L.���e� 1

old I. 0 :

i c r &&" EE i : r .. C2.9-..: 1.c .. O : � __________________________________ .0!!!I _'i.'::.!l1 � ______ • ________ 2
Load-dependent frequency adaptation scheduler

Figure 7: Analyzed System

the graphical user interface TA representation into an executable
NuSMV file. The challenge in developing the translator was to
match the explicit state model used in Uppaal to an equivalent im­
plicit constraint based model, as used in NuSMY. Some difficulties
arise since clocks and integer variables of Uppaal are represented
in NuSMV as real values. Arrays are particularly challenging to
translate, because array support in NuSMV is very limited. For
example, when arrays are used to represent the transition guards
or assignments in Uppaal, we are forced to introduce a number of
transitions equal to the array size in the NuSMV module. An even
more difficult situation occurs when the array size is defined by a
template parameter that can vary from one instantiation to another.
In that case, different instantiations of the same template must be
translated into different NuSMV modules, increasing the size ofthe
code.

4.3 Analysis flows
As discussed, parameters may appear in any part ofthe timed au­

tomata system model. Typically, the analysis is conducted by fixing
the value of some of the parameters, and determining the region of
feasibility of the remaining free parameters. For example, we can
fix parameters of the input curves (Nl..k, 81..k) and find the region
of the output curves parameters (Nabs , 80bs) that make the sys­
tem satisfY the constraints, or vice versa. We call the analysis type
performed while fixing the input curves parameters Forward Anal­
ysis. Likewise, one can fix the parameters of the output curves, and
find the feasible region ofthe parameters ofthe input arrival curves.
We call this type of analysis Backward Analysis. It is also possi­
ble to fix both input and output parameter values in order to find
an area for such parameters as the buffer size, maximum execution
latency and/or max execution time, which characterize the sched­
uler model. We call this Processing Element Analysis. Points in the
feasible regions can then be selected, based on the desired perfor­
mance metrics and robustness to parameter variations, to derive the
appropriate actual curves conforming to the RTC formalism.

5. CASE STUDY
The example that we are going to show in this section is a simpli­

fied version of the general case presented in Section 4.2 and is pre­
sented in Fig. 7. We consider a system with one type of task having
an input arrival pattern that is periodic with jitter. The curve char­
acterizing this pattern can be modeled by the TA shown on Fig. 2.
The load-dependent frequency adaptation scheduler for the compu­
tational element is adapted from [20]. The CPU represented by this
scheduler operates at frequency II if the number of events in the
input buffer is less then a threshold value and switches to frequency
12 otherwise, where II < 12. This scheduler model was general­
ized and extended with a check and error state, as described above.
The TA of the generalized scheduler is shown in Fig. 8. Basically,
the adapted scheduler can change its processing speed when the

161

clk __ r&&
.--0

Exp
1

2

3

outfvenl'
I'IEvent? .,,0&&
clk-O, .<- EE&&

d-O,
c-O,

r -Cl(id),
._1,
acc_.-O,
acc_r-r,
clk_O,
acc_rl_0,

idle acc_a-O

clk--lce_r&&
d<-MaKutency

outEvenl'
.-- EE&&
C-t&&

lce_."O

rwCl!idl,
c-O,

• __ 1,

outfvent'
,"EE&&
c--r&&
ace_.--O

r-ClrldJ,
c-O,
'--1,
ace l,

:�:�::gl�'
lce.-- l,
lce-t-lce t-(ace a-C2(idJ) :�:�::g]�,

" .,"
Y'!�:M;f;=----=="D , = 0

• "Ma�BufferSIZI

Figure 8: Generalized case-study scheduler

Nin Oin BujJerSize Latency Nabs
0 .. 10 0 .. 10 10 20 5

4 3 0 .. 10 0 .. 10 5
4 3 10 20 1 .. 10

Table 1: Experiments values and parameters

Oobs
2
2

0 .. 10

number of tasks in the buffer exceeds a certain threshold. Thus, we
define two different worst-case execution times for the task: one
for when the number of tasks in the buffer is equal or below the
threshold (Cl) and another for when it is above the threshold (C2).
For the observer we use the UTA observer presented in Fig. 5.

We have a set of three different experiments for this case study.
The result of the experiments are regions of parameters expressed
as a set of linear constraints in the parameter space. The dimension­
ality of the space is equal to the number of parameters used. For
visualization, we typically limit our study to sets of at most two
or three free parameters. The symbolic representation of the con­
straints, however, does not have this limitation, and can be used as
an input for further automatic analysis, such as robustness analysis.

For our experiments we evaluated the system for groups of two
parameters at a time. The settings for the simulations are as follows.
For all three cases we have fixed the threshold value for switching
CPU speed equal to 4. Upon the change in the CPU speed, the
task computation time changes from Cl = 4, when the number
of events in the buffer is below the threshold, to C2 = 2, other­
wise. The rest of the parameters and values for the experiments are
summarized in Table I.

In experiment I we have performed a Processing Element Anal­
ysis where we have studied the feasibility area for the maximum
buffer size (Max Buffer) and the maximum latency (Max Latency)
within a range of [0, ... , 10] for both parameters. The latency
refers to the maximum time a task may spend in the processing
state (starting from its insertion in the buffer) until it completes,
and corresponds to the relative deadline of the task. The feasibil­
ity area of this experiment is presented in Fig. 9 and was obtained
in only 18 seconds using 64 sample points in the parameter space.
This experiment was executed on an AMD Athlon(trn) 64 X2 Dual
Core Processor 5000+ CPU I GHz machine. The results of this ex­
periment show that the minimum buffer size should be equal to or

1 0

= Unfeasible region

MaxBuffer
10

Figure 9: Feasibility region, experiment 1

greater than 4 elements, and that the maximum latency, or deadline,
must be at least 5 time units with this system configuration. This
kind of analysis is important in the early phases of design when we
would like to choose a buffer size that will guarantee that no over­
flow will occur, without being too conservative. The parametric
analysis also highlights the relationships between the values of the
parameters. The estimate of the maximum latency values in tum is
important for real-time analysis. If it is too large, we can decrease
the execution time of the task by choosing a CPU with higher pro­
cessing speed, therefore, choose the processing element that fits the
system requirements.

The graph yields that the optimal point, i. e., the point that corre­
sponds to the best choice of the parameter values, is the one with
buffer size equal to 4 and latency equal to 5. The other points at the
border are found automatically by the PFA tool using a combina­
tion of Uppaal and NuSMV, and could also be found by theoretical
analysis or using a binary search algorithm for one of the parame­
ters while the other is fixed to a certain value. The rest of the points
that belong to the feasibility area are still valid points. For a fully
deterministic systems, e. g., when we are sure that the worst-case
execution time of the tasks is never violated, the best values of the
parameters lies at the border of the feasibility graph.

Some of the parameters, however, may be affected by estimation
errors, or may fail to provide the absolute worst case to avoid overly
large pessimism. For example, in this paper we talk about the pro­
cessing elements taking into account not only computational pro­
cessing units (CPUs) but also the communication elements with an
arbiter that manages packet transmission. The communication may
introduce packet losses that are induced by some external physical
factors. Thus, the packets that were lost should be added back to
the buffer to be retransmitted. If this is the case, we can not as­
sure that choosing the buffer size equal to 4 and the deadline to 5
will never result in a constraint violation. Choosing a point which
is further away from the border of the feasibility area will give us
parameters values that make the system more robust.

For experiment 2 we perform a Backward Analysis, where Nin
and 8in are chosen to have values within a bounded range, in this
case [0, ... , 10] for both of them. The values for the other variables
should be chosen such that they do not affect the result in a nega­
tive way. For example, if we choose the values of the buffer size
equal to 0 we will never find any feasible region for the proposed
set of parameters, since the maximum buffer size will be immedi­
ately exceeded, which will provoke a violation of the constraints.
Taking into account the results of the previous experiment, we set
the buffer size to 1 0 and maximum latency to 20 making sure that

1 62

PI

Unfeasible region

Figure 10: Feasibility region, experiment 2

Oin ----. 1 0

they will never be violated. The resulting feasibility area is pre­
sented in Fig. 1 0. In this case, the PFA tool was unable to properly
generalize unfeasible points in the vicinity of the border between
the feasible and unfeasible region. This is due to both the structure
of the model, and the chosen set of parameters. The problem arises
because the traces that lead to the error state for unfeasible points
become increasingly unique as we move towards the border of the
region, while generalization requires that nearby points share the
same trace. The generalization of the points eventually degenerates
into a line.

Nonetheless, the information provided by the analysis is useful
despite the incompleteness of the areas. In particular, we can plot
several points on the graph that were found feasible and can help
define a safe border between the two regions. Points that fall be­
tween two unfeasible areas are considered not safe. In simple cases,
a fully symbolic search could be run to complete the areas. The re­
sult for experiment 2 that is depicted on Fig. 1 0 was obtained in
1 32 minutes and 9 seconds. The experiment was executed on an
Intel(R) Pentium(R) 4 CPU 2.80GHz machine.

The found feasibility regions of the Backward Analysis are then
used to build the RTC-based input curves. We have chosen three
points from the border of the feasible region and one far from it
and constructed the RTC-based curves using the parameters values
from these points. The first three curves have the following param­
eters: 81 = 2, N1 = 4, 82 = 4, N2 = 4 and 83 = 4, N3 = 7;
as for the fourth curve, we have chosen 84 = 5 and N4 = 3. The
set of curves is presented in Fig. 1 I . From this graph we can see
that the curves built using the parameter values of the point that lies
further from the border is located below all the curves built out of
the border point parameters values. This curve corresponds to the
lower load of the system with input events, which makes the sys­
tem more robust. The choice among points that are at the border
depends on the particular application, since the resulting curves are
incomparable and each constitutes a different trade-off between the
parameters.

In experiment 3 we have performed the Forward Analysis. Here
Nabs and 80bs are chosen as parameters with a bounded range of
[0, . . . , 10] for both of them. The feasibility area is presented on
Fig. 1 2. For this experiment, similar to experiment 2, we encounter
the degeneration ofthe generalized areas into lines and points while
approaching the border between the feasible and unfeasible regions.
Nabs represents the number of events that can arrive at the same
time, and thus has an integer nature. Therefore, we set the step of
the grid along Nabs axis equal to 1. The result for experiment 3
that is depicted on Fig. 1 2 was obtained in 7 hours and 56 minutes.
The experiment was executed on an Intel(R) Pentium(R) 4 CPU
2.80GHz machine.

1 2 # events
I I
1 0

8 .---_---fI..J
....-'i-l_--,,0.::...3 ---,I , t
1 G 0 1

r···········; 1
: 5

N�
: 4 �
1 3 H;-------,.,--'

! 2
i I
�

Figure 1 1 : Set of input curves bui lt by using values for Nin and
8in from the feasibility region.

Nobs 10

s

•
p,

� Unfeasible region
_ . . . - '-------

•
p<

· . ···p�9�---------------
· .. ------------------P2

PJ··-

L--c--'�+. :'---+--0-3 ----c---cc----o-----=-----o-S ----0-------,170 -->
2.20 2 .75
2 .44 /jobs

Figure 12: Feasibility region, experiment 3

For this experiment we have chosen four points from the border
of the found feasible region and one far from it and constructed the
RTC-based output curves using the feasible parameters values from
this points. The chosen point are summarized in Table 2. There (b)
next to the point number stands for a border point and (r) means
the point taken from the feasibility area away from the border. The
output curves built using the parameters values from the feasibility
area are depicted in Fig. 1 3.

From this graph we can see that the curve built from the param­
eters values of the point that lies further from the border is located
above all the curves built out of the border point values. This curve
corresponds to the higher expected output rate of the events pro­
cessed by the system. In this case, unpredictable events due to
uncertainties in the estimation as discussed above are less impor­
tant, as they tend to decrease the output rate of the system. Thus,
the "real" curve may actually lie below the one built using the data
points of the resulting area. This is an important observation when
studying a system composed of a number of processing elements

Point 1 (b) 2 (b) 3 (b) 4 (b) 5(r)

Nabs 1 2 4 5 6

80bs 2 2.44 2.75 3 2

Table 2: Chosen points

1 63

Figure 13: Set of input curves built by using values for Nabs
and 80bs from the feasibility region.

with limited resources when even a small reduction of the input
rate can play en essential role in system robustness.

6. CONCLUSION
In this paper we presented a hybrid design and analysis method­

ology for distributed real-time systems. The proposed approach
integrates Modular Performance Analysis (MPA-RTC) with Para­
metric Feasibility Analysis (PFA). It uses a simplified representa­
tion of arrival curves to interface heterogeneous modeling compo­
nents. More specifically, the method automatically converts arrival
curves as used by MPA-RTC to Timed Automata models, and uses
these models to trigger a state-based and parameterized model of a
processing or communication component. In a similar fashion, the
output of the component is characterized by appropriate observer
automata and automatically converted to arrival curves. The nov­
elty of our approach consists in deriving feasible regions for vari­
ous component parameters such as tolerable data rates or bursts for
the input or the output of the component, and tolerable fill levels
for its activation buffer. Our results extend previous analysis meth­
ods which permitted the evaluation of single design points only.
For automatically deriving the region of feasible parameters for a
component, we implemented a dedicated tool-chain which employs
Uppaal and NuSMV. The resulting tool permits us to efficiently ex­
plore large design spaces and hence directly supports the design of
complex distributed systems.

Acknowledgments

This work was supported in part by the EU project COMBEST n.
2 1 5543 and the EU NoE ArtistDesign n. 2 14373. We thank Prof.
Palopoli and Dr. Cimatti for useful discussions.

7. REFERENCES
[I] R. Alur and D. L. DilL Automata For Modeling Real-Time

Systems. In M. Paterson, editor, ICALP '90, LNCS 443 ,
pages 322-335. Springer, 1 990.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric
real-time reasoning. In STOC '93, pages 592-601 , New York,
NY, USA, 1 993. ACM.

[3] E. Andre, T. Chatain, L. Fribourg, and E. Encrenaz. An
Inverse Method for Parametric Timed Automata. Electron.

Notes Theor. Comput. Sci. , 223 :29-46, December 2008.

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous
Real-time Components in BIP. In Proc. of the Fourth IEEE
Inti. Coriference on Software Engineering and Formal
Methods, pages 3-12, Washington, DC, USA, 2006. IEEE
Computer Society.

[5] G. Behrmann, R. David, and K. G. Larsen. A tutorial on
Uppaal. In Formal Methods for the Design of Real- Time
Systems: 4th Inti. School on Formal Methods for the Design
of Computer, Communication, and Software Systems,
SFM-RT 2004, pages 200-236. Springer, 2004.

[6] E. Bini and G. C. Buttazzo. Schedulability Analysis of
Periodic Fixed Priority Systems. IEEE Trans. Comput. ,
53(1 1) : 1 462-1473, 2004.

[7] M. Bilker, A. Metzner, and I. Stierand. Testing real-time task
networks with functional extensions using model-checking.
In Proc. of the 1 4th IEEE into conference on Emerging
technologies & factory automation, ETFA'09, pages
564-573, Piscataway, NJ, USA, 2009. IEEE Press.

[8] G. C. Buttazzo. Hard Real- Time Computing Systems:

Predictable Scheduling A lgorithms and Applications.
Kluwer Academic Publishers, Norwell, MA, USA, 1 997.

[9] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan. Event
Count Automata: A State-Based Model for Stream
Processing Systems. In RTSS '05, pages 87-98, 2005.

[1 0] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: A New Symbolic Model Verifier. In N. Halbwachs
and D. Peled, editors, CAV '99, volume 1 633 of Lecture Notes
in Computer Science, pages 495-499. Springer, 1 999.

[1 1] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic
Computation of Schedulability Regions Using Parametric
Timed Automata. RTSS '08, 0 :80-89, 2008.

[1 2] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic
Computation of Schedulability Regions Using Parametric
Timed Automata. In RTSS '08, Nov. 30 - Dec. 3 2008.

[1 3] H. Dierks, A. Metzner, and I. Stierand. Efficient
Model-Checking for Real-Time Task Networks. In Proc. of
the 2009 Inti. Conference on Embedded Software and
Systems, pages 1 1-18 , Washington, DC, USA, 2009.

[14] L. Doyen, T. A. Henzinger, A. Legay, and D. Nickovic.
Robustness of Sequential Circuits. In ACSD ' 1 0, pages
77-84, 20 1 0.

[1 5] M. Gonzalez Harbour, 1. 1. Gutierrez Garcia, 1. C.
Palencia Gutierrez, and 1. M. Drake Moyano. MAST:
Modeling and Analysis Suite for Real Time Applications. In
Proc. of 13th Euromicro Conference on Real-Time Systems,
pages 1 25-1 34. IEEE Computer Society, 200 1.

[1 6] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System Level Performance Analysis-The SymTAlS
Approach. IEEE Proc. -Computers and Digital Techniques,
1 52(2) : 1 48-1 66, 2005.

[1 7] T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager.
Linear Parametric Model Checking of Timed Automata. In
TACAS 'Ol, pages 1 89-203, London, UK, 200 1.
Springer-Verlag.

[1 8] K. Keutzer, S. Malik, A. R. Newton, 1. Rabaey, and
A. Sangiovanni-Vincentelli. System Level Design:
Orthogonolization of Concerns and Platform-Based Design.
IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19 (12), December 2000.

[1 9] P. Krcal, L. Mokrushin, and W. Yi. A tool for compositional
analysis of timed systems by abstraction (extended abstract).

1 64

In Proc. of 1 9th Nordic Workshop on Programming Theory

(NWPT0 7), October 2007.

[20] K. Lampka, S. Perathoner, and L. Thiele. Analytic Real-Time
Analysis and Timed Automata: A Hybrid Method for
Analyzing Embedded Real-Time Systems. In EMSOFT '09:

Proc. of the 7th ACM into coriference on Embedded software,
pages 1 07-1 1 6, New York, NY, USA, 2009. ACM.

[2 1] K. Lampka, S. Perathoner, and L. Thiele. Analytic
Real-Time Analysis and Timed Automata: A Hybrid
Methodology for the Performance Analysis of Embedded
Real-Time Systems. Design Automation for Embedded
Systems, 1 4(3) : 1 93-227, 20 1 0.

[22] C. Lu, 1. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son,
and M. Marley. Performance Specifications and Metrics for
Adaptive Real-Time Systems. In RTSS 'OO. IEEE Computer
Society, 2000.

[23] M. Lv, G. Nan, W. Yi, and G. Yu. Combining Abstract
Interpretation with Model Checking for Timing Analysis of
Multicore Software. In RTSS 'JO, pages 339-349,
Washington, DC, USA, 20 1 0. IEEE Computer Society.

[24] c. Norstrom, A. Wall, and W. Yi. Timed Automata as Task
Models for Event-Driven Systems. In RTCSA '99, page 1 82,
Washington, DC, USA, 1 999. IEEE Computer Society.

[25] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann,
S. Schliecker, R. Henia, R. Racu, R. Ernst, and M. G.
Harbour. Influence of different system abstractions on the
performance analysis of distributed real-time systems. In
Proc. of the 7th ACM & IEEE into coriference on Embedded
software, EMS OFT '07, pages 1 93-202, New York, NY,
USA, 2007. ACM.

[26] L. T. X. Phan, S. Chakraborty, P. S. Thiagaraj an, and
L. Thiele. Composing Functional and State-Based
Performance Models for Analyzing Heterogeneous
Real-Time Systems. In RTSS '07, pages 343-352,
Washington, DC, USA, 2007. IEEE Computer Society.

[27] A. L. Sangiovanni-Vincentelli. Quo Vadis, SLD? Reasoning
About the Trends and Challenges of System Level Design.
Proc. of the IEEE, 95(3) :467-506, March 2007.

[28] K. Sen, M. Viswanathan, and G. Agha. Statistical Model
Checking of Black-Box Probabilistic Systems. In CAV '04,
LNCS 3 1 14, pages 202-2 1 5. Springer, 2004.

[29] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In Proc. Inti.
Symposium on Circuits and Systems, volume 4, pages
1 0 1-104, 2000.

[30] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System
Architecture Evaluation Using Modular Performance
Analysis: A Case Study. STTT, 8(6) :649-667, 2006.

[3 1] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System
Architecture Evaluation Using Modular Performance
Analysis: A Case Study. STTT, 8(6) :649-667, 2006.

[32] S. Yovine. Model Checking Timed Automata. In
G. Rozenberg and F. W. Vaandrager, editors, European
Educational Forum: School on Embedded Systems, volume
1494 of Lecture Notes in Computer Science, pages 1 1 4-1 52.
Springer, 1 996.

[33] D. Zhang and R. Cleaveland. Fast On-the-Fly Parametric
Real-Time Model Checking. In RTSS '05, pages 1 57-1 66,
Washington, DC, USA, 2005. IEEE Computer Society.

