UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38100 Povo — Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A Case Study in Performance Estimation and
Analysis for SDR: UMTS Data-Link Layer

Alena Simalatsar and Roberto Passerone
August 2007

Technical Report Number: DIT-07-057

A Case Study in Performance Estimation and Analysis
for SDR: UMTS Data-Link Layer

Alena Simalatsar and Roberto Passerone
Dipartimento di Informatica e Telecomunicazioni
University of Trento
{simalats, roby } @dit.unitn.it

Abstract

The evolution of technology in the wireless industry has
brought a proliferation of different communication proto-
cols and standards. To support a wider range of services
and to sustain technical innovation, protocol interoperabil-
ity is essential. Software Defined Radio (SDR) is emerging
as a key integration technology in this area. Defining the
appropriate system architecture for SDR is, however, com-
plex, and requires extensive analysis and performance eval-
uation. In this paper, we consider UMTS as a case-study
of a mobile standard that utilizes several high-layer proto-
cols to enable multiple services delivery for mobile users.
We develop a SystemC functional model for a subset of the
Data Link Layer for UMTS, and analyze its performance as
software running on several architectures. The results are a
first step in understanding the system requirements to com-
bine UMTS with other wireless communication protocols,
such as WiFi and WiMax.

1. Introduction

The construction of a distributed communication infras-
tructure, and the use of highly connected embedded sys-
tems, makes it possible today to realize new and innova-
tive applications and services, often context-aware, that can
leverage the mobility afforded by wireless connectivity [5].
While these services are interesting in their own right, their
integration could potentially lead to a much greater added
value. However, the wide variety of different communica-
tion requirements, together with the evolution of technol-
ogy, have resulted in a proliferation of mostly incompatible
and often competing communication standards, that make
integration hard and expensive. The result is that users are
forced to carry multiple devices, and manually synchronize
and duplicate information, a potentially onerous and error-
prone task.

One solution to the integration problem is the use of a
Software Defined Radio (SDR) [19]. In a pure SDR, all the
required processing, i.e., tuning, modulation and demodu-
lation and the handling of the higher levels of the protocols,
is done in the digital domain by software running on a gen-
eral purpose processor, while a slim RF front-end remains
in the analog domain. Because the task is highly demand-
ing in computation power, most platforms include dedicated
hardware components that can be configured and rewired by
software to adapt to the required functionality. These archi-
tectures are very flexible and allow one to switch between
different communication standards by simply uploading a
new version of the software in the device, and potentially
support several protocols at the same time. Not only does
this make integration simpler, but it also allows the devices
to be updated to support new standards in a way that is
mostly transparent to the user.

The implementation of a SDR requires the development
of highly optimized computing platforms. However, the
tight real-time requirements of communication systems, to-
gether with constraints on cost, physical size and perfor-
mance of the devices, results in increased design complex-
ity and system heterogeneity that yield a large design space.
Tools based on Register Transfer Level (RTL) and evalua-
tion boards are too detailed for an effective exploration of
system design alternatives, and are typically biased towards
specific implementation styles. In addition, the lack of ab-
straction makes the design, as well as the validation process,
difficult.

In this paper, we propose to raise the level of abstraction
for the design of SDR platforms using the Platform-Based
Design (PBD) [10,20] methodology. PBD is based on the
formation of different layers, called platforms, which repre-
sent different levels of the design abstraction. Each platform
is a well separated library of computational and communi-
cation components. Platforms at higher levels abstract the
details of lower level platforms, and can be used for fast
architectural exploration and performance estimation. This
is essential for quickly converging toward a platform that is

not only optimized for the desired functionality, but can also
support its future extensions. For the methodology to work,
each domain and application area requires the development
of distinct libraries of components, abstraction layers, and
thus architectural, performance and functional models. The
effectiveness and the acceptance of the PBD methodology
is therefore tied to the availability of these models and to
the development of use cases that can prove their accuracy.

In particular, in this paper, we strengthen the PBD
methodology by developing, using existing tools [13, 22],
appropriate functional and architectural models for SDR.
These model are used in a case study to explore the im-
pact of higher protocol layers on the utilization of a general
purpose CPU, and derive performance metrics that can be
used to optimize the parameters of an architecture, based
on the forseen mix of concurrent protocols. We show that
PBD is particularly well suited for the design of SDR, since
the requirements in terms of performance and adaptability
are high, and the definition of the best architecture for this
kind of systems is hard.

This paper is organized as follows. After discussing
some related work in Section 1.1, we give an overview of
our methodology and of the domain of application in Sec-
tion 2. Section 3 discusses in detail the functional and ar-
chitectural model. Finally, simulations and results are dis-
cussed in Section 4.

1.1. Related Work

The literature on design space exploration is vast. In this
section, we will limit our exposition to the work that appears
to be closer to our defined area of application.

In the area of enabling technologies for reconfigurable
wireless terminals, the XiRisc group of the University of
Bologna in collaboration with STMicroelectronics [23] fo-
cuses on the development of next generation mobile tech-
nologies based on reconfigurable terminals [4,7]. The archi-
tecture for reconfigurable terminals presented by this group
is able to support some important mobile technologies
(GSM, WCDMA, UMTS, WLAN and Bluetooth) and al-
lows software driven switching between these technologies.
However, the aim of this work is to provide an application-
specific architecture, rather than a design methodology.
Nevertheless, this architecture may be a potential target for
our design space exploration.

Boni et al. have proposed a technique for the efficient im-
plementation of support vector machine (SVM) algorithms
on dynamically reconfigurable systems [8]. Specifically,
they have proposed a reconfigurable system to solve the
inverse modeling problem for telecommunication applica-
tions by the use of SVMs. While they do not address the
problem of design exploration in general, the solutions pre-
sented in their work for the dynamic mapping of algorithms

onto reconfigurable FPGA-based architectures can be used
in our future work.

Bonivento et al. are also working on several projects
related to design space exploration, including the area of
wireless communication in the form of wireless sensor net-
works [9]. In particular, they are developing a new method-
ology for the design of Wireless Sensor Networks (WSN)
applying PBD principles, which is well correlated with the
nature of our research work. However, they focus on high
level operating system services, while we will focus on
lower level hardware architectures.

Of particular interest for our research is the work of
Densmore et al. which is focused mainly on system level ar-
chitecture modeling based on the PBD methodology. In par-
ticular, they are working on performance analysis of FPGA-
based architectures [12]. While we can take advantage of
these results in our architecture models, our research work
is not just focused on such kind of architectures and we will
need to consider other alternatives for architecture imple-
mentations.

Davare et al. propose a methodology for enabling au-
tomated synthesis within PBD. Their work is mainly fo-
cused on concurrent embedded design for multimedia ap-
plications [11]. In this context, they propose functional op-
timization using design space exploration for multimedia
applications by applying the process of mapping of these
applications onto FPGA-based architectures [14]. To do
this, they use the Metropolis design framework [6]. Our
approach will be similar. What distinguishes our research
work from theirs is that we will do design space exploration
for architectures that can support concurrent protocols in-
stead of multimedia applications.

The research work of Meyerowitz et al. is the most re-
lated to our project [18]. Their work focuses on high level
modeling of embedded micro-architectures retargetable
for different instruction sets. The modeling of micro-
architectural performance is done within the Metropolis
framework. Recent presentations suggest the use of this
technique for Software Defined Radio, an approach similar
to ours (in SystemC) for architecture design space explo-
ration [17]. The lack of specific publications in this area
from the authors, however, makes a comparison difficult at
this point. Nevertheless, the availability of future results
will be instrumental to validate our architecture exploration
methodology and models.

2. Overview

A Software Defined Radio (SDR) is a technology in
which both modulation and demodulation are performed in
software or using a programmable device [19]. The major
advantages of an SDR is its flexibility and ease of adapta-
tion, since the radio function can easily be changed. Pro-

grammability also promises economy of scale for manufac-
turers, who can rely on standard platforms reused across
different domains of applications. A typical architecture for
an SDR platform is shown in Figure 4.

The design of reusable platforms is, however, hard. The
designer must carefully consider several different scenarios
in the choice of the architectural components, and in the
way they are connected. For instance, Shono et al. report
that the arrangement of CPUs, DSPs and FPGAs seriously
influences system performance, and that the software as-
signment to each processor is difficult [21].

To define an effective system design flow for SDR, we
apply the PBD paradigm [20], by evaluating different archi-
tectures against the specification constraints, and by map-
ping the desired functionality on the elements of the plat-
form. The main objective of the design exploration process
for each particular architecture is to define what and how
many protocols can be supported by the platform. To facil-
itate this process, it is important to separate the architecture
specification from the functionality. This way, changes in
functionality (or in the architecture) will not cause the re-
design of the entire system, and vice versa. In addition, this
allows us to model function and architecture at two different
levels of abstraction, and enable fast annotated functional
simulation to quickly provide performance metrics for a va-
riety of design choices.

Our particular implementation of the platform-based de-
sign methodology follows the steps presented in Figure 1.
We first build an abstract SystemC model of the functional-

Untimed level		Profiler level
I		
s ;		
ystemC		
: untimed model	[" C code - Profiler I

-
i |
I Timed level | Time information

|
SystemC /

timed model | |
|

L———O———_

Abstract model

A

Performance
of overall
system

Figure 1. Design exploration methodology

ity, with no notion of time (the Untimed level in the figure),
which is used to verify its correctness and to study concur-
rency issues. SystemC was chosen because it supports dif-
ferent models of computation and allows the design of het-
erogeneous systems. In addition, it provides the possibility
to refine high level specification models (both hardware and

software) into low level implementations and to build ex-
ecutable models. Finally, because SystemC is based on a
standard language (C++), it is easy to share models with the
other members of the research group, such as developers of
applications, UI and baseband.

In order to create a SystemC performance model for a
particular architecture we need to know the performance of
each functional block executed on this architecture. To do
so, we extract the C code from our SystemC model and run
simulations on several emulated ARM processors using the
Keil ARM Development Tool [15]. We use Keil’s embed-
ded profiler to obtain information about the execution time
of each function run on each emulated microcontroller. Keil
implements a lower level of abstraction (the Profiler level),
which we use to extract the relevant performance data. We
then use the timing information to build a complete Sys-
temC timed model (the Timed level), which we use to deter-
mine the performance of the overall system, and to compute
the utilization of the microcontroller for data transmission
with several bit rates.

This scheme has several advantages over the use of the
profiler alone, which by itself can provide the system per-
formance. First, the simulation run in evaluation mode are
very time consuming and depend on the complexity of the
microcontroller architecture. In contrast, SystemC simula-
tions are relatively fast and independent of the microcon-
troller architecture (see Section 4). Second, SystemC is
more flexible and makes it easier to partition the functional-
ity onto different processor cores, and to combine their per-
formance. This is essential as platforms evolve to include
more processing elements. This trend also requires the ex-
ploration of different concurrency models, from dataflow
to synchronized execution, which is natively supported by
SystemC but typically not by architecture profilers.

In this paper we focus on the UMTS communication
standard [2]. At the top level, the network architecture is
divided into a User Equipment Domain and an Infrastruc-
ture Domain, which communicate through the radio inter-
face. We focus on the User Equipment Domain, which is of
greater interest to mobile devices which are subject to more
stringent implementation constraints.

The protocol stack for the user domain is shown on Fig-
ure 2, and is divided into three different layers, correspond-
ing to the Physical (PHY), the Data Link (DLL) and the
Network Layer [3]. In addition to the usual addressing func-
tions, the Network Layer controls the operations of the Data
Link and of the Physical Layer by responding to changes in
the transmission parameters. The Data Link Layer performs
general packet forming and quality of service support. It in-
cludes a Radio Link Control (RLC) and a Medium Access
Control (MAC) sublayer. The RLC communicates with the
MAC through different logical channels, to distinguish be-
tween user data, signaling and control data. Depending on

L3 Network layer |
______ o

| PDCP MBC !

L2 : (of DLL) (of DLL) :
oo~ o~ o~ T T T 0

| |

|

: RLC Tr - Entity UM - Entity AM - Entity | |

| (of DLL) |

|

1
| |
I MAC 1
| (of DLL) [swicn [|1
! !
| Y l l i
| I
| :
| MAC - esle MAC - hs MAC - c/sh/m MAC-d' :
| : |
| |

Transport channels

L1 | PHY

ermreeeras B !

Figure 2. Layer diagram for the User Equip-
ment Domain of the UMTS protocol

the required quality of service, the MAC layer maps the log-
ical channels into a set of transport channels, which are then
passed onto the Physical Layer. Finally, the Physical Layer
handles lower level coding and modulation, and communi-
cates with the radio interface through a series of physical
channels, each optimized to different time and coding re-
quirements.

The architecture of the protocol stack is very complex
due to the high number of different logical and transport
channels. In this work we focus on a subset of the function-
ality, described in the next section together with the archi-
tecture chosen for performance estimation.

3. Functional and Architecture Model

In this section, we describe in more detail the functional-
ity of UMTS that we modeled, and the class of architectures
that we have considered as target for the performance anal-
ysis. Detail results are presented later, in Section 4.

3.1. Functional Model

The subset of the protocol stack that we have modeled is
the section highlighted on Figure 2, and corresponds to the
bidirectional Dedicated Channel that, in our case, is lim-
ited to point-to-point uplink user data transmission. The
RLC is divided into three separate entities for Transpar-
ent (Tr), Unacknowledged (UM) and Acknowledged (AM)

transmission modes. We have limited our analysis to the
Unacknowledged mode, corresponding to the UM-Entity,
since this is a superset of the Transparent mode, and can be
used to a certain degree to estimate the performance of the
Acknowledged mode, which would otherwise require the
downlink model. Thus, the results of performance analysis
of the UM-Entity can allow us to make approximate estima-
tions of the performance of the complete RLC layer.

Likewise, the MAC sublayer is divided into different en-
tities that handle the mapping between the logical and the
transport channels. Of these, we model the MAC-d entity
which is the only one involved with the baseline (not en-
hanced) Dedicated Channel. The other blocks, which were
introduced in more recent versions of the standard, are in-
stead required for high speed and quality of service support.

Our SystemC untimed functional model is shown on
Figure 3 and is composed of seven modules, or actors,
of a dataflow process network: four are related to the
UM RLC entity (i.e., Transmission Buffer, Segmenta-
tion/Concatenation, RLC Header Add and Ciphering) and
three to MAC-d (i.e., Transport Channel Type switch, C/T
MUX and Transport Format Combination (TFC) selec-
tion).'

|
I P
| Traréslrgf:rslon ==~1 Segmentation/ [==— RLC =rr
! FIFO| ©%9 "' IFIFO| header [FIFO| Ciphering
| | (packets from |—— Concatenation |——] —
. add |
| | higher layers) |
I_ _________________________________ - F
S 1!
| MAC-d | F
| 1 19
Display |
Transport |
(packet | | Transport format CT
transmission to selection FIFO MUX FIFO C::RE:I |
the PHY) | |

Figure 3. Block diagram of the functional
model

Each block signals to the next the availability of a packet
to be processed, by depositing it into a FIFO queue with
blocking read and blocking write. The scheduling of the
network is then left to the simulator.

SystemC timed functional model has the same composi-
tion of block. We assume that all the blocks are executed on
the same processor (ARM processor) that means than while
one of the blocks is executed others are waiting for it to be
finished. Execution of each process takes a particular time
which we add to the SystemC simulation time while pro-
cessing each of the blocks and we assume that this time is
already known from running the functionality on an emula-
tor of explored processor. This way, the beginning and the

IMAC-d typically includes also a ciphering module, but since encryp-
tion is already done at the RLC layer, this module need not be imple-
mented.

end of each process execution has its own time stamps.

This model can be extended by including more entities
of the RLC and the MAC sublayers to obtain more accu-
rate results. Our future work includes also extensions to the
network layer and higher level application such as MPEG
decoding and the User Interface (UI).

3.2. Architecture Model

To design an optimal architecture we need to decide what
elements should be available on the platform to achieve
the best trade-off between the metrics of interest. These
elements include general-purpose processors, Digital Sig-
nal Processors (DSP), Field Programming Gate Arrays (FP-
GAs), or their mix. This step also includes identifying the
kind of processors to be used (and their performance), as
well as their number and general interconnection topology.
To begin with, we surveyed several architectures proposed
by the industry for SDR, and finally decided to take the
Small Form Factor SDR (SFF SDR) Development Platform
from Lyrtech [16] as our baseline model. We can then use
the architecture of this platform as a starting point and mod-
ify it for the design space exploration of an SDR.

The SFF SDR platform consists of three separate mod-
ules, the Radio Frequency (RF), Data Conversion and Base-
band Processing modules, combined together, and is shown
in Figure 4. Each of these modules can be replaced in or-

[~] AC FPoA
ARM
TR DAC k— 10
LR s
Data
RF Conversion Baseband Processing

Figure 4. Block diagram of the SFF SDR

der to satisfy the requirements of the target product. The
Baseband Processing module works in the digital domain,
and is the main focus of our studies. This module em-
ploys a TMS320DM6446 system-on-chip (SoC) from Texas
Instruments and a Virtex-4 SX35 FPGA from Xilinx for
modulation. The SoC consists of one C64x+7" DSP and
one ARM926EJ-S™™ general-purpose processor. The DSP
is typically used for processing the baseband, while the
general-purpose processor is reserved for the upper layers
of the communication protocols and other higher level ap-
plications.

In this paper, we restrict our attention to the ARM fam-
ily of processors, since the functionality that we are testing
is limited to a subset of the UMTS DLL layer. We con-
sider less performing processors than the one available on
the SFF SDR platform (which we only take as a template),
because of the limitations imposed by the profiler that we

have used. Our future work includes extending the perfor-
mance analysis to higher performance processors (such as
the one used on the SFF SDR), and integrating the baseband
processing, currently under development, which we assume
is realized partly on the FPGA, and partly on the DSP.

4. Simulations and Results

This section is devoted to presenting the results of the
performance analysis for the RLC and the MAC sublayers.
We use three kinds of metrics to characterize the perfor-
mance of different architectures, to determine the distribu-
tion of resources within the protocol function, and to mea-
sure the efficiency of the performance analysis itself.

Our first results, depicted in Figure 5, show the percent-
age of utilization (load) of the general-purpose processor
under different transfer rates, and for different architectures.
We have analyzed five different ARM microcontrollers that

B 12.2 kbps
[28.8 kbps
504 I 57.6 kbps
[1 384 kbps

40 H

30

% of used resources

104

LPC2119
60 MHz

LPC2194 STR912FW44 STR750FV2 STR736FV1
60 MHz 60 MHz 25 MHz 36 MHz

Figure 5. Architecture performances

include the STRO12FW44, STR750FV2 and STR736FV1
from STMicroelectronics, and the LPC2119 and LPC2194
from NXP. These have been analyzed at their maximum
clock frequency (shown in Figure 5 under the name of
the architecture), with the exception of the STR912FW44
and the STR750FV2. The first (STR912FW44) was sim-
ulated at 60 MHz, instead of 96 MHz, for an easier direct
comparison with the NXP microcontrollers. The second
(STR750FV?2) was simulated at 25 MHz, instead of its max-
imum 60 MHz, to obtain roughly the same performance re-
sults as the STR736FV 1, and therefore show the savings in
clock frequency.

For each microcontroller, we have computed the
load for the four most common transmission data rates,
i.e., 12.2kbps for voice communication, 28.8 kbps and
57.6 kbps used by modems and faxes, and 384 kbps for high
speed data transmission. For each data rate we use a fixed,
though different, packet size for the Transport channel. For

instance, we use a Transport block size of 576 bits for
modems and faxes, and of 336 bits for high speed data trans-
mission [1]. Each packet has a 16-bit overhead for RLC
and MAC headers. In addition to that, information data de-
livered by the Dedicated Transport Channels (DTCHs) are
accompanied by control packets delivered through the Ded-
icated Control Channels (DCCHs). In our simulations, we
have assumed that each DTCH packet is accompanied by
one DCCH packet. For a bit rate of = kbps, the load is com-
puted as the ratio between the actual time it takes to transmit
x bits, and one second, the maximum time allowed for the
transmission. Formally, we have

(Tap + Tep) - /8 1

— . 100%,

L=
Pdp+Pcp 1s

where T4, and T, is the time to transmit a data and a con-
trol packet, and Py, and P, is the size, in bytes, of data
and control packets, respectively. For the control packet we
have assumed a constant size of 100 bits.

The results of the analysis presented in Figure 5 show
considerable variability, both across architectures, and, as
expected, for different data rates. This analysis gives us a
measure of the residual computing power available to the
rest of the protocol, to potential other protocols running
concurrently, and to higher level applications, which is an
essential information for the correct architecture choice and
sizing of the system. In the case of the STR736FV1 and
STR750FV?2, the load for 384 kbps exceeds 100%, and is
therefore not shown on the figure.

A second class of results is devoted to the analysis of
the resources required by each of the functions of the model
shown in Figure 6. These results are for the STRO12FW44

80
70
60—-
50 -
40
30
20

104

% of used resources by each function

o~
W

. N
o e &2
o5 o «¥ « o oS

529‘«\

Figure 6. Resource distribution by function

ARMY9 microcontroller from STMicroelectronics and the
packet size of 70 bytes, which we have taken as representa-
tive, since the analysis for the other architectures and packet
sizes are qualitatively and quantitatively similar. The func-
tions on Figure 6 are sorted by the amount of resources that

they require. As we can see from the graph the Ciphering
function is in general the most resource consuming func-
tion. This kind of result is very useful for taking the pre-
liminary decision about resource distribution between the
functions.

Our last group of results is concerned with a measure of
the efficiency of the performance analysis. In Table 1, we
show, for each architecture, the time in seconds required to
simulate the transmission of 7,000 packets, with a packet
size of 70 bytes, for both the Keil profiler and SystemC.
The simulations were performed on a Pentium’* M proces-
sor running at 1.70 GHz, with 512 MB of RAM. For Sys-
temC, we have used the reference implementation version
2.1.v1, available at the SystemC web site [22].

Architecture Keil | SystemC | Speed-up
LPC2119 28.1 4.2 6.7
LPC2194 25.8 4.2 6.1
STRI912FW44 | 255 4.2 6.1
STR750FV2 26.6 4.2 6.3
STR736FV1 25.9 4.2 6.2
Average | 264] 42 | 63

Table 1. Efficiency of performance analysis

The performance of the SystemC simulation is indepen-
dent from the architecture, since it is referred to the same
model. In contrast, Keil shows variability depending on
the microcontroller. The last column of the table shows
the speed-up obtained by using the more abstract SystemC
models. On average, the SystemC simulation is more than
6 times faster than the profiler, which justifies the use of the
profiler for data gathering, and the use of the abstract simu-
lator for performance analysis. This methodology becomes
even more compelling as the complexity of the model in-
creases, and several protocols are run concurrently, since
the simulation time will correspondibly increase. The per-
formance of the SystemC simulation can potentially be in-
creased by using an optimized simulator rather than the ref-
erence implementation.

5. Conclusions and Future Work

We have presented a case study of a design space explo-
ration problem for a Software Defined Radio. We have se-
lected a subset of the Data Link layer of the UMTS commu-
nication standard, and evaluated its performance on several
architectures, and for different data rates and packet sizes.
Our methodology uses separated functional and architec-
tural models. The functional models run at a high level of
abstraction, and can be used for functional verification and
fast performance analysis through execution time annota-

tion. The performance model is used to derive accurate per-
formance data, and uses a profiler to simulate the exact be-
havior of the architecture. The analysis shows considerable
variability in performance, both as a function of architec-
ture, and as a function of data rate. This justifies the use
of the PBD approach to design this kind of systems, which
must be fine tuned to be able to support different standards.

Our future work is focused towards concretizing the
PBD approach into a specialized methodology for the de-
sign space exploration of communication hardware archi-
tectures. This includes automating the process of annota-
tion through the use of dedicated components, able to also
determine the share of CPU in the case of multi-threaded
execution. In addition, we will develop interaction com-
ponents for the estimation of communication overhead in
multi-component architectures, which are common in SDR
to achieve the desired performance. Our future work also
includes the extension of the functional model to integrate
the baseband processing (on the DSP), higher levels of the
protocol, and other protocols of interest such as WiMax,
WiFi and GSM.

6. Acknowledgments

The authors would also like to thank Fernando Piane-
giani and Fabrizio Stefani for stimulating discussions and
suggestions. This work was supported in part by a grant
from ArsLogica, s.r.1.

References

[1] 3" Generation Partnership Project. Channel conding and
multiplexing examples. Technical Specification TS 25.944,
3GPP, June 2001.

[2] 3" Generation Partnership Project. General universal mo-
bile telecommunications system (UMTS) architecture (re-
lease 6). Technical Specification TS 23.101, 3GPP, Decem-
ber 2004.

[3] 3" Generation Partnership Project. Radio interface protocol
architecture (release 7). Technical Specification TS 25.301,
3GPP, March 2006.

[4] F. Agnelli, G. Albasini, I. Bietti, A. Gnudi, A. Lacaita,
D. Manstretta, R. Rovatti, E. Sacchi, P. Savazzi, E. Svelto,
E. Temporiti, S. Vitali, and R. Castello. Wireless multi-
standard terminals: system analysis and design of a recon-
figurable rf front-end. /EEE Circuits and Systems magazine,
Special Issue on Wireless Reconfigurable Terminals, 6(1):38
- 59, 2006.

[5]1 C. Andersson. GPRS and 3G Wireless Applications. John
Wiley & Sons, April 2001.

[6] E. Balarin, L. Lavagno, C. Passerone, A. L. Sangiovanni-
Vincentelli, M. Sgroi, and Y. Watanabe. Modeling and
designing heterogeneous systems. In J. Cortadella and
A. Yakovlev, editors, Advances in Concurrency and System
Design. Springer-Verlag, 2002.

(71

[8]

(91

[10]

(1

[12]

[13]

[14]

[15]
[16]

(171

[18]

[19]

[20]

[21]

[22]
[23]

A. Baschirotto, F. Campi, R. Castello, G. Cesura, R. Guerri-
eri, L. Lavagno, A. Lodi, P. Malcovati, and M. Toma. Base-
band analog front-end and digital back-end for reconfig-
urable multi-standard terminals. IEEE Circuits and Systems
magazine, Special Issue on Wireless Reconfigurable Termi-
nals, 6(1):8 — 28, 2006.

A. Boni, F. Pianegiani, and D. Petri. Inverse modeling
with SVM-based dynamically reconfigurable systems. In
Proceedings of the IEEE Instrumentation and Measurement
Technology Conference (IMTC), pages 2036-2040, Como,
Italy, May 2004.

A. Bonivento, L. P. Carloni, and A. L. Sangiovanni-
Vincentelli. Platform based design for wireless sensor net-
works. MONET, 11:469-485, 2006.

I.. P. Carloni, FE. D. Bernardinis, A. L. Sangiovanni-
Vincentelli, and M. Sgroi. The art and science of integrated
systems design. In Proceedings of the 28" European Solid-
State Circuits Conference, ESSCIRC 2002, Firenze, Italy,
September 2002.

J. Chong, A. Davare, and K. Lwin. Concurrent embedded
design for multimedia: JPEG encoding on Xilinx FPGA
case study. Technical Report UCB/EECS-2006-40, Univer-
sity of California, Berkeley, April 16 2006.

D. Densmore, A. Donlin, and A. L. Sangiovanni- Vincentelli.
FPGA architecture characterization for system level perfor-
mance analysis. In Proceedings of the Conference on De-
sign, Automation and Test in Europe (DATE06), Munich,
Germany, March 6-10, 2006.

T. Grotker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, Norwell, MA,
2002.

S. Kakita, Y. Watanabe, D. Densmore, A. Davare, and A. L.
Sangiovanni-Vincentelli. Functional model exploration for
multimedia applications via algebraic operators. In Proceed-
ings of the 6'" International Conference on Application of
Concurrency to System Design, Turku, Finland, June 26-30,
2006.

Keil. http://www.keil.com.

SEF SDR development platform. Technical specifications,
Lyrtech, February 2007.

T. Meyerowitz, R. Chen, A. L.. Sangiovanni-Vincentelli, and
J. Harnish. Modeling a heterogeneous multiprocessor for
software defined radio. In Presentations of the CHESS re-
view meeting, Berkeley, CA, February 2006.

T. C. Meyerowitz and A. L. Sangiovanni-Vincentelli. High
level CPU micro-architecture models using Kahn process
networks. In SRC TechCON, Portland, Oregon, October 24—
25 2005.

J. Mitola. The software radio architecture. IEEE Communi-
cation Magazine, 33(5):26-38, May 1995.

A. L. Sangiovanni-Vincentelli. Defining platform-based de-
sign. EEdesign, February 2002.

T. Shono, Y. Shirato, H. Shiba, K. Uehara, K. Araki, and
M. Umehira. [EEE 802.11 wireless LAN implemented
on software defined radio with hybrid programmable archi-
tecture. IEEE Transactions on Wireless Communications,
4(5):2299-2308, September 2005.

SystemC. http://www.systemc.org.

XiRisc. http://www.micro.deis.unibo.it/ campi/XiRisc.

