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Abstract—Design correctness and performance are major is-
sues which are usually considered separately, and with different
emphasis, by traditional system design flows. In this paper we
show that one can meaningfully connect and benefit from the
advantages of two design frameworks, with different design goals.
We consider BIP for high-level rigorous design and correct-
by-construction implementation, and METROII, for low-level
platform-based design and performance evaluation.

I. INTRODUCTION

Several different methodologies based on the concept of

component and platform address system level analysis and

design problems [4], [6], [8], [10], [11], in order to achieve the

desired functionality within some given constraint. However,

most of the present industrial approaches have the drawback

of primarily addressing either the platform or the software

components, but not both. One way of solving this problem is

to take advantage of the respective strengths of complementary

analysis tools, by bridging their semantic gap through model

transformations and integration.

We present the coupling of two design and analysis frame-

works, BIP [3] and METROII [5]. BIP is primarily focused on

correct-by-construction functional models. Conversely, a key

feature of METROII is the ability to specify both the functional

and a separate architectural model. These are mapped together

to produce a system model with performance metrics [7], [9].

Our objective is to reuse a verified correct functional model

developed in BIP within an architectural model developed in

METROII for design space exploration. Our main contribution

consists in structure and semantic preserving transformations

that replicate the BIP interaction mechanism in METROII,

using a combination of schedulers and constraint solvers. The

model can be formally verified in BIP. Then, the performance

of the instantiated functional model can be evaluated over dif-

ferent architectures and platforms using the flexible METROII

mechanism, without the need to change the BIP components.

II. TOOL INTEGRATION

Structurally, BIP [3] and METROII [5] share the same

component-based approach to modeling, making a structure

preserving transformation relatively simple. However, the two

frameworks are operationally significantly different. We take

advantage of the ability of BIP to generate C++ code, which

can be then imported in METROII by defining wrappers.

Therefore, an atomic behavior of the BIP model can be

preserved by being embedded into a METROII component.
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Fig. 1. An example of BIP functional model

The communication mechanism of METROII is different from

the one implemented in BIP. Each BIP connector contains an

arbitrary computation on the port variables, which is mediated

in METROII by a communication channel. The introduction

of an additional component for communication modeling is

similar to the S/R BIP model [3], therefore, the latter is used

for the connection with METROII. We have implemented an

automatic BIP to METROII ANTLR [1]-based converter which

takes as input the BIP functional model and produces a corre-

sponding, structurally and behaviorally equivalent, METROII

functional model.

a) Case-study Functional Model: Figure 1 shows a

parallelized version of the bitonic sorting algorithm [2] as

a composition of components in BIP, previously introduced

in [3]. The algorithm splits a sequence to be sorted into

several subsequences (d0, d1, d2, and d3) handled in parallel

by an equal number of components. One of the components,

Chiffre d0, is presented in details in Figure 1. The top (A)

part of Figure 2 shows a fragment of the S/R-BIP model

corresponding to the example of Figure 1. The METROII

translation of the same example is presented in the middle

(B) part of Figure 2. The figure shows the detail of how the

interaction between Chiffre d0 and Chiffre d2 has been realized

with a dedicated communication component. Port step2 of the

model of Figure 1 is replaced with a pair of ports S step2

and step2 for send and receive communication, while the

connector itself is replaced by a scheduler component called

Engine2. Other ports and connectors of the model components

are transformed in a similar way. The states of the components

are split each into two states, one that sends and the other that

receives the data to/from the scheduler. The Engine2 scheduler

is described as a Petri Net (PN) that manages explicitly the

interaction of the BIP connector.
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Fig. 2. S/R-BIP and METROII models of the bitonic sorting algorithm

In BIP the interactions between components are concretely

realized by using a synchronization function call managed by

the BIP kernel. We have reimplemented this mechanism in a

separate METROII component called synchronizer shown in

the middle right part (B) of Figure 2.

III. DESIGN SPACE EXPLORATION

Once the BIP functional model is imported in METROII,

it is easy to explore the performance of the system under

different mappings. Part (C) of Figure 2 shows a simple model

of a platform. Each d(n) dist component, with n ∈ {0, 1, 2, 3},

is mapped using mapping constraints solvers to a dedicated

task component d(n) t of the architectural model. We have

evaluated two different mappings. In the first mapping (m1),

each of the tasks is executed on a separate processing element

which communicate through dedicated channels. In the second

mapping (m2), pairs of components (e.g., d0 dist/d1 dist

and d2 dist/d3 dist) share a processing element. Each task

of the architectural model is annotated and scheduled using

METROII annotators and schedulers. We use a simple charac-

terization of tasks where performance numbers are selected

arbitrarily to illustrate the mapping capabilities. However,

METROII provides strong support for both off-line and run-

time architectural components characterization [7].

We run our experiments with two sets of annotation data

(set1 and set2) while the tasks are scheduled either using a

pure Round Robin (RR) or a First-come First-served (FCFS)

scheduler, or their mix. The information about the mappings,

annotation, scheduling policies and simulation results are

summarized in Table I. Each column name denotes the type

of mapping and scheduling policy. For instance, m1FCFS

m1RR m1FCFS m1mix m2RR m2FCFS m2mix

set1 d0(de)sort = 100; write/read memory = 10

d1(de)sort = 200; write/read memory = 20

d2(de)sort = 300; write/read memory = 30

d3(de)sort = 400; write/read memory = 40

Exe t 1480 2050 1980 2590 2640 2670

p0: 20.27 14.63 15.15 34.75 34.09 33.70

Util p1: 40.54 29.27 30.30 81.08 79.55 78.65

% p2: 60.81 43.90 45.45

p3: 81.08 58.54 60.60

set2 d0(de)sort = d1(de)sort = d2(de)sort = d3(de)sort = 200

write/read memory = 20

Exe t 1040 1040 1040 1460 1460 1460

Util % 57.69 57.69 57.69 82.19 82.19 82.19

TABLE I
EXPERIMENTAL RESULTS

stands for mapping (m1) using the FCFS scheduler. We have

studied two main parameters of the system, the total execution

time of the distributed algorithm (Exe t) and the processors

utilization (Util) for both sets of annotation data. We calculate

the utilization as the percentage of time when the processing

element is actually performing some job. The rest of the time

it is idle either due to interprocessor communication or due to

the data from other components being delayed.

For the annotation data we assume that the execution time

for ascending and descending sorting as well as write/read

to/from the memory running on the same processing element

to be the same. The time for these operations is marked in the

table as d(n) (de)sort and write/read memory respectively.
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