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Abstract—
The implementation of service-rich, highly interconnected ap-

plications and the increasing demand for performance, requires
the development of highly optimized and flexible computing plat-
forms. However, the tight real-time requirements of such systems,
together with constraints on cost and physical size of the devices,
results in increased design complexity and system heterogeneity.
This creates a large design space. In this paper, we propose a
structured approach based on system level specification languages
that supports the rapid exploration and performance evaluation
of computing platforms, including their middleware components,
through simulation of abstract models. Accuracy is achieved
through an off-line rapid architecture profiling procedure. We
focus on a process network model, which is more suitable
to the description of concurrent functions and data-dominated
applications than a traditional sequential programming model.
We describe the structure of our simulation framework, and use
it to evaluate the performance of the lower layers of the UMTS
protocol when mapped on Software Defined Radio oriented
architectures.

I. INTRODUCTION

The construction of distributed communication infrastruc-
tures, and the use of highly connected embedded systems,
makes it possible today to realize new and innovative applica-
tions and services. These systems are often context-aware and
leverage the mobility afforded by wireless connectivity [1].
The implementation of such applications, and the increasing
demand for high performance, requires the development of
highly optimized computing platforms. However, the tight
real-time requirements of such systems, together with con-
straints on cost and physical size of the devices, results in
increased design complexity and system heterogeneity. This
presents an overwhelmingly large design space for developers.
Tools based on Register Transfer Level (RTL) simulation and
evaluation boards are too detailed for an effective exploration
of system design alternatives, and are typically biased toward
specific implementation styles. In addition, the lack of ab-
straction makes the design, as well as the validation process,
difficult if not impossible.

To overcome these problems, new methodologies have been
developed for fast architectural exploration and optimization
based on a stepwise refinement of the design specification. One

example is the platform-based design (PBD) methodology [2],
where platforms at higher levels abstract the details of lower
level platforms, and can be used for fast performance estima-
tion. This process is essential for quickly converging toward
a platform that is not only optimized for the desired func-
tionality, but can also support its future extensions. Tools for
the automatic mapping and synthesis of optimized platforms
are faced however with extreme complexity, due to the size
of the solution space, and are typically confined to specific
domains of applications. The alternative is manual architec-
ture selection, coupled with fast performance simulation that
computes metrics with quick turnaround time. Early attempts
by the industry to introduce such technology [3] have not been
successful in the market due to a variety of reasons, including
the lack of appropriate performance models and the use of
proprietary languages.

In this paper, we approach the problem by presenting an
infrastructure based on system level specification languages
and rapid architecture profiling using both existing and newly
developed tools which support the PBD paradigm. Within
PBD, we focus on the design abstraction that corresponds to
the deployment of an application on a computing platform
that may include general purpose processors and other pro-
grammable or reconfigurable components (i.e., FPGAs). Our
contribution is a structured approach to the construction of
functional as well as architectural models. These not only
include performance metrics such as execution timing, but are
also able to quickly and flexibly evaluate different scheduling
policies and mapping strategies. This is achieved by separating
the functional models from the architectural models, and by
connecting them through control signals to regulate the overall
execution. The architectural models of processors include the
specification of middleware components, such as the scheduler,
which may have substantial impact on the performance and
the correctness of the implementation. Our solution is eval-
uated both qualitatively and quantitatively on the data link
and physical layers of the UMTS protocol mapped onto an
architecture oriented towards the implementation of Software
Defined Radios. We show that we can explore interesting
mappings quickly (in a matter of minutes) as well as measure
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metrics such as throughput, latency, and utilization.
This paper is organized as follows: Related work is dis-

cussed in Section I-A. Section II gives an overview of our
methodology. Section III discusses in detail the functional and
architectural models used in our case study. Finally, results and
conclusions are discussed in Sections IV and V.

A. Related Work

The literature on design space exploration is vast. We detail
only the work that is close to our defined area of application.

1) Academic Approaches: Kempf et al. have presented sim-
ilar ideas in the analysis of multi-processor SoC platforms [4].
In this work, the authors present a methodology based on
SystemC that makes use of a Virtual Processing Unit to
schedule a set of tasks, which are then simulated using a
discrete event model. Our approach is similar, but is more
focused on selecting an appropriate architecture, including
other heterogeneous components such as FPGAs, and extends
the methodology to a timed process network model, rather than
discrete event. The way we handle preemption is also different,
and based on the Result Oriented Modeling (ROM) technique
proposed by Schirner and Dömer [5]. In ROM, efficiency of
simulation is achieved by optimistically executing a transac-
tion to completion and by deferring checks for preemption
to its end. Then, if necessary, appropriate corrective actions
are taken to adjust the timing of concurrent transactions.
We apply this technique to processes running on processing
elements instead of bus transactions. In addition, we explicitly
distinguish between the processes and the scheduling policy,
which are connected through special ports, to support an easy
mapping of processes onto computing elements.

Optimistic execution requires that certain properties be
satisfied by the model. For this, we employ a mixed dataflow
and reactive model where the activation of the dataflow actors
is controlled by a scheduler. This is inspired by the model
used in FunState [6]. In its basic form, the FunState model
includes functions that communicate over queues and arrays of
registers. Their activation is controlled by a finite state machine
(FSM), which determines the progress of the execution, so
that tokens are consumed and produced at a time consistent
with the execution latency of the functions. The main purpose
of FunState is heterogeneous modeling and schedulability
analysis, which is supported by symbolic formal verification
techniques. However, its design as an internal representation
makes FunState harder to use for architectural and design
space exploration. In particular, it does not distinguish between
function and architecture. We are mainly interested in the
performance evaluation of possibly different configurations of
the system. Thus, in our methodology, we use schedulers to
represent an operating system, while the functions are assigned
to different CPUs to model the mapping.

Some work has been already done in the area of abstract
RTOS modeling in SystemC. In [7] Mahadevan et al. present
ARTS framework aimed to maintain preemptive scheduling
capabilities in SystemC. Le Moigne et al. particularly, describe
an implementation of a generic RTOS model, supporting basic

performance analysis for different scheduling policies [8].
They present two approaches to scheduling tasks on a single
processor. The first uses a dedicated SystemC thread in order
to simulate the behavior of an RTOS. The second avoids using
the thread and embeds the RTOS procedures in the tasks.
The second approach has advantages in terms of simulation
performance, but makes it hard to explore different hardware
architectures. Our RTOS model is therefore conceptually sim-
ilar to the first approach.

Several frameworks have been developed for architectural
exploration and performance evaluation. For instance, MI-
LAN [9], which is built on top of GME [10], supports the inte-
gration of different simulators at various levels of granularity,
and integrates the design space exploration tool DESERT [11].
At its core, DESERT allows the designer to express the
flexibility in a platform by specifying structural constraints in
OCL. An efficient symbolic technique is used to explore only
those architectures that satisfy the constraints, thus pruning
a large part of the design space. Performance evaluation is
then carried out by integrating lower level simulators. Our
architecture exploration paradigm differs substantially from
that employed in DESERT. We employ an abstract description
of an operating system, instead of structural constraints, and
thus are able to relate the execution of a function with its
implementation on an architecture without resorting to low
level simulators, which are only used during a characterization
phase. However, the combined use of structural and scheduling
constraints for fast generation and exploration of architectures
could be a promising avenue of future research. Similarly, the
Metropolis framework [12] defines a general infrastructure and
a rich metamodel for the design of heterogeneous systems that
is capable of representing functions, generic performance met-
rics, and complex mapping using synchronizations constraints.
Within Metropolis, Meyerowitz et al. focus on high level
modeling of embedded micro-architectures retargetable for
different instruction sets [13]. Their approach to architecture
design space exploration is similar to ours and recent presen-
tations suggest the use of this technique for Software Defined
Radio [14]. We use their proposed annotation mechanism [15]
as part of our flow for profile information on the ARM9
processor. However, we take a more pragmatic approach, and
rely on an existing language (SystemC) on top of which
we build a simple structure to distinguish between functional
and architectural elements. While this limits expressiveness,
our simple strategy overcomes certain efficiency and usability
problems that are associated with the definition of quantities
and scheduling policies in the Metropolis metamodel. Our
schedulers can be seen as special cases of the Metropolis
quantity managers.

Functional languages have also been used to support design
space exploration. In ForSyDe [16], the system is initially
specified as a deterministic network of synchronous pro-
cesses, a model that facilitates the functional description by
abstracting away detailed timing. The specification is then
refined into an implementation by applying a series of network
transformations, that may or may not preserve the seman-
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tics of the network. These transformations can, for example,
partition the system into sub-domains that run at different
speeds, corresponding to different implementations, thus pro-
viding feedback on the performance of the refined model.
The transformation-based refinement in ForSyDe has clear
advantages in terms of the ability to prove correctness and
maintain consistency with the original specification. However,
the distinction between functionality and architecture is lost,
and a change of mapping may require substantial restructuring
of the system. Our approach to mapping, instead, makes this
task simpler, since only the mapping of functions to computing
elements must be changed.

2) Industrial Approaches: An industrial tool for creating
platform descriptions with mapping capabilities is VaST Sys-
tems Technology’s Comet/Meteor [17]. Comet focuses on
creating high performance processor and architecture models
at the system level. It uses virtual processors, buses, and
peripheral devices to create candidate architectures for design
space exploration. These are called virtual system prototypes
(VSP). VSP models are provided by VaST in the form of
libraries or can be entered by the user in C/C++/SystemC.
Meteor is an embedded software development environment. It
also interacts with VSPs for cycle accurate simulation and
parameter driven configuration. Meteor is the environment
to develop software for the VSPs created by Comet. This
process follows much more closely a typical design process
for a microprocessor including optimizing code development
than our approach. Code is developed for a specific VSP
environment as opposed to capturing the pure functionality
of an application.

Mirabilis Design’s Visual Sim [18] product family supports
a more formal approach by providing a wide variety of models
of computation including discrete event, dynamic dataflow,
synchronous dataflow, boolean dataflow, continuous time, and
finite state machines. The design process in Visual Sim begins
by constructing a model of the system using the parame-
terizable library provided. This model can be augmented as
well with C, C++, Java, SystemC, Verilog, or VHDL blocks.
The library blocks operate semantically using a wide variety
of models of computation. The design is then partitioned
into software, middleware, or hardware. Finally, the design
is optimized by running simulations and adjusting parameters
of the library elements. The underlying simulation kernel is
Ptolemy [19]. This tool focuses very much on design space
exploration through the manipulation of the library block
parameters and unlike our approach begins with a unified
design and refines it into its HW and SW components through
a manual ad-hoc refinement process.

Cofluent’s Systems Studio [20] also provides transaction
level SystemC models which perform design space explo-
ration. The functional description is a set of communicating
processes executing concurrently. The platform model is a
set of communicating processes and shared memories linked
by shared communication nodes. The platform model has
performance attributes associated with it as well. This ap-
proach is very similar our approach but is more focused on

keeping within a particular model of computation to describe
the functionality. In addition the HW components are generic
and not indicative of any existing architectural services.

II. METHODOLOGY

Our particular implementation of the PBD methodology
follows the steps presented in Figure 1.
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Fig. 1. Design Exploration Methodology

A. Functional Modeling

We first build a system level model of the functionality,
with no notion of time (untimed level) [21], used to verify
correctness and to study concurrency issues. This can be done
in the model of computation which most suites the application.
We then develop the functional model in a system level
design language. SystemC [22], [23] was chosen for our case
study over traditional sequential programming because it is a
component model which natively supports concurrency, a com-
putation paradigm that is more appropriate for today’s reactive
embedded systems. Our functional specification follows the
process network model [24], where processes are concurrent
and communicate over FIFO channels. A strength of our
approach is the flexibility to specify models of computation
and design languages.

B. Profiling

In order to create a SystemC performance model for a
particular architecture we need to know the performance of
each functional block executed on this architecture. To do so,
we extract the code (C in this case) from our functional model
(SystemC) and profile the execution on a set of processor
emulators. We use two primary profiling flows for our work.

The first is used to get information for general purpose
processors (in this case ARM9 and ARM7). This process
involves the use of embedded profilers or instruction set
simulators, in particular, Keil ARM Development Tool [25], as
well as GNU compiler tools, virtual hardware, and a custom
designed code annotator. Initially the code is cross compiled
for the particular architecture target we are interested in. This
executable is then fed to a virtual hardware simulator (in this
case, simplescalar [26]). These results along with the original
source code and corresponding binaries are fed to a code
annotator which produces annotated code detailing the actual
running time of individual segments of the original code for
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the given architecture target. This flow is shown in the top
half of Figure 2.

The second flow involves libraries of elements which can
be implemented on a platform FPGA (such as Xilinx’s Virtex
series). From the library, a set of systems are automatically
generated by creating various legal permutations of the library
components. One permutation may consist of a single soft
processor core connected to a bus while another may have
multiple processors and memory elements. Each of these
individual systems is then run through the synthesis process
provided by the FPGA. At this time, code which should be
run on these systems is partitioned and bound to processing
elements (such as the Microblaze soft processor). At the end
of synthesis, the required execution cycles can be obtained for
the application along with information about the cycle time
from the physical design tools. Together, this can be used to
calculate an overall execution time. This process is described
in much more detail in [27].
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Fig. 2. General Purpose and Programmable Processor Profiling Flows

C. Architecture Modeling
For the model of the architecture, we exploit SystemC’s

ability to support different models of computation, by working
at the timed level. Each architectural element is modeled
as a resource manager. These are responsible for granting
access to the resource according to a desired scheduling policy
and for correctly accounting for timing (and, possibly, other
performance metrics) by correctly sequencing the operations.
For computational resources such as CPUs, the resource man-
ager takes the form of a scheduler that implements a certain
scheduling policy. The annotated profiling data is used to
construct a performance model at the timed transaction level,
which we use to determine the performance of the overall
system, and to compute the utilization of the processors.

Our scheme has several advantages over the use of the
profiler alone, which by itself can provide the system per-
formance. First, processor emulators are slow and their per-
formance depends on the underlying architecture. In contrast,
SystemC is relatively fast and independent of the microcon-
troller architecture (see Section III-B). Secondly, SystemC is

more flexible and makes it easier to partition the functionality
onto different processor cores, and to combine their perfor-
mance. This is essential as platforms evolve to include more
processing elements.

A simple example of a system with two process networks
that may have different priorities is shown in Figure 3. Each
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1. Process fires (has data, has space to write)
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3. Execution granted

4. Process runs 

to completion

5. Port output granted

6. Post 

output

Fig. 3. Scheduling Mechanism

process network contains four processes interconnected by
FIFOs. All processes in this example are mapped onto the
same CPU. At the simulator level, mapping takes place by
connecting the process to the scheduler via dedicated bidirec-
tional communication channels, which are used to exchange
control information. The scheduler is also connected to a timer
similar to that proposed by Yoo et al. [28].

The scheduler is modeled as a finite state machine which
controls the execution of the system. The activation of each
process is controlled by the typical firing conditions of process
networks, i.e., the availability of data at the input queues, and
the availability of space at the output queues. These conditions
are notified to the processes every time data is written to
or read from the attached FIFOs. When a firing condition
is satisfied, the process triggers the scheduler by sending
a Ready to Run signal through the dedicated bidirectional
channel and then waits for permission to start computation,
which will be granted by the scheduler when the processor
is available and when no higher priority process is ready to
run. The process is run to completion, and stops before the
results are written to the output FIFO. The computation is
done in logically zero time. Instead, the scheduler will again
trigger the process to post its outputs at the correct time, which
will not only account for the process execution latency, but
also for the time spent in running higher priority processes
that had become active and preempted its execution. This
way, following the ROM methodology, a process is never
physically suspended as a result of preemption, thus reducing
the overhead due to context switches. Instead, the scheduler
verifies if any preemption has occurred, and, if so, updates the
completion time by delaying it by the appropriate amount.

D. Preemptive scheduling

Several policies can be implemented by the scheduler. An
example of a fixed-priority preemptive scheduler is shown in
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Algorithm 1. The scheduler manages a priority list whose
items are process descriptors which include the time, Tinit,
at which the process initiates its computation (negative if not
scheduled yet) and a variable, τ , indicating the time left for
the process to finish its computation.

Algorithm 1 Fixed Priority Preemptive Scheduler
1: if ( new process new P ) then
2: if ( current P.priority ≤ new P.priority ) then
3: current P.τ − = current time - current P.Tinit;
4: end if
5: Add item( new P );
6: else if (timeout current P) then
7: notify current P post data;
8: list.pop( );
9: end if

10: current P = list.top( );
11: if ( current P.Tinit ≤ 0 ) then
12: trigger current P execution (notify event);
13: end if
14: current P.Tinit = current time;
15: reset timer( current P, current P.τ );

The procedure may be triggered either by a new process
entering the enabled state or by a timeout from the timer that
signals that a process has terminated execution and needs to
post its data (lines 1 and 6). In the case of a new process,
the algorithm first compares its priority with the one of the
currently running process. If the new process has higher
priority, then we update (decrease) the time to completion τ of
the current process with the time it has been executed, which
is the difference between the current time and the time it was
last given the resource (line 3). In all cases, the new process
is added to the list of processes (line 5). If a timeout occurs,
it signals that the current process has reached the end of its
computation. It is therefore removed from the list, and granted
permission to post its data to the output (line 7).

The CPU is then given to the process at the top of the list
(line 10). If the process starts execution for the first time, then
its body is actually invoked (line 12). Time will not advance
during its execution, since all timing is accounted for by the
scheduler. To do so, the process descriptor is updated to record
the starting time (line 14), and the timer is reset with the
remaining time to completion for the process.

Other scheduling policies, such as round robin or EDF,
can be implemented as well. By using a standard API for
the scheduler process, these can be exchanged quickly to
evaluate their impact on the mapped functionality and on the
overall performance. A higher level resource manager using
the technique described in [5] can then be used to mediate
the data transfer between processor cores over a bus or other
communication channels.

III. CASE STUDY

We test our methodology on architectures for Software
Defined Radios (SDR). SDR is a radio technology in which
both modulation and demodulation are performed in software
or using a programmable device [29]. The major advantages

are flexibility and ease of adaptation, since the radio function
can easily be changed to new standards. Programmability also
promises economy of scale for manufacturers, who can rely
on common platforms reused across different domains of ap-
plications. The requirements in terms of performance, latency,
and cost make the design of these architectures difficult. We
explored alternative implementations of part of the UMTS
protocol [30] on programmable architectures.

A. Functional Model

In this paper we focus on the User Equipment Domain of
the UMTS protocol [30], which is of great interest to mobile
devices and is subject to stringent implementation constraints.
The protocol stack of UMTS for the User Equipment Domain
has been standardized by the 3rd Generation Partnership
Project (3GPP) up to the Network layer, including the Physical
(PHY) and Data Link (DLL) layers. Our model includes the
implementation of the DLL layer and the functionality of the
PHY layer. The DLL layer contains the Radio Link Control
(RLC) and the Medium Access Control (MAC) sublayers and
performs general packet forming. The RLC communicates
with the MAC through different logical channels to distinguish
between user data, signaling and control data. Depending on
the required quality of service, the MAC layer maps the logical
channels into a set of transport channels, which are then
passed onto the Physical Layer. Finally, the Physical Layer
handles lower level coding and modulation in order to reduce
the bit error rate of the transmitted data.

The architecture of the protocol stack is very complex due to
the high number of different logical and transport channels. In
this work we focus on a subset of the functionality, described
next, together with the architecture chosen for performance
estimation.

1) Protocol Stack: The functional model of the UMTS
protocol, shown in Figure 4, is composed of six DLL layer
modules (actors of a dataflow process network) and of fourteen
PHY layer modules for the transmitter, and of five DLL
modules and twelve PHY modules for the receiver. Our
functional model includes only a subset of the UMTS protocol
stack and corresponds to the bidirectional Dedicated Channel
that, in our case, is limited to point-to-point uplink user data
transmission. Due to the complexity of the protocol stack we
have made some initial assumptions in order to restrict our
implementation and simplify the functional model. The RLC
is divided into three separate entities for Transparent (Tr), Un-
acknowledged (UM) and Acknowledged (AM) transmission
modes. We have limited our analysis to the Unacknowledged
mode since this is a superset of the Transparent mode, and
can be used to a certain degree to estimate the performance
of the Acknowledged mode. Thus, the results of performance
analysis of the UM allow us to make approximate estimations
of the performance of the complete RLC layer.

Likewise, the MAC sublayer is divided into different entities
that handle the mapping between the logical and the transport
channels. Of these, we model the MAC-d entity which is the
only one involved with the baseline (not enhanced) Dedicated
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Fig. 4. Functional Model Mapped to Two Processors

Channel. The other blocks used for Dedicated Channel han-
dling were introduced in more recent versions of the standard
and are required for high speed and quality of service support.

The transmitter part of the PHY functional model is im-
plemented upon the uplink model presented in [31] and is
extended with two more blocks (Spreading and Modulation)
described in [32] in order to complete the chain of digital
operations. The receiver model is implemented as the chain
of backward, to those of the transmitter, operations applied to
the data coming from the Air interface module. For the mo-
ment, the Ch coding and Ch decoding blocks include imple-
mentation of only Convolution coding and Viterby decoding
algorithms respectively. This way we were able to study only
the lowest data rate (12.2kbps). Other data rates require the
implementation of the Turbo coding and decoding algorithms,
which we are going to complete in the future.

Every module is attached to two FIFO queues, one for data
input and the other for data output, connected to the next
module. Currently, the same FIFO queues are used for inter-
processor communication representation. Each block signals
to the next the availability of a packet to be processed, by
depositing it into the queue with blocking read and blocking
write. The transmission buffer is a random data generator
used to perform the simulation. The Reassembly module
displays the final data as received. The Air interface module
is organized as a channel that adds some random distortion
and time delays to the transmitted data.

As described in Section II-C, the modules are connected to
each processor of the architecture via bidirectional channels.
Each function uses only the channel dedicated to the processor
used for its execution. This way, remapping a function to
another processor can be achieved by simply switching to

another dedicated channel. In Figure 4 we have shown a
mapping example, which represents the execution of different
protocol layers on separate processors.

B. Architectural Model

To design an optimal architecture we need to decide what
elements should be available on the platform to achieve the
best trade-off between the metrics of interest. In our design
flow, these elements can include general-purpose processors,
Digital Signal Processors (DSP), Field Programming Gate Ar-
rays (FPGAs), or their mix. This step also includes identifying
the kind of processors to be used (and their performance), as
well as their number and general interconnection topology.

For this case study, we focused on the ARM7 (A7), ARM9
(A9), and Microblaze processors (µB). These are suited for
embedded applications and work well with the profiling flow
described earlier. In our case for profiling, our library elements
consisted of the Microblaze processor core (6.00a) enabled
with an FPU on Xilinx’s Virtex II-Pro 2VP30. This was part of
the ML310 development board. In addition it was connected to
the On-Chip Peripheral Bus (OPB), enabled caching in 32MB
of DDR SRAM, and used its iLMB and dLMB (instruction
and data local memory buses) to access 112KB of BRAM. Its
core frequency was 100MHz. The ARM7 TDMI-S is a small
size, low power 32-bit RISC microcontroller with 128KB on-
chip Flash ROM and 16KB of RAM. The ARM9 TDMI is a
higher performance 32-bit processor. It has 16KB caches for
both instructions and data. We run this both at 250 and 400
Mhz.

Procedure DLL PHY Configuration
GPP Flow

Create Static Exe <2s <3s Envir. Fedora 5
Create Debug Exe <1s <1s Proc. Xeon 3GHz
Create DisAsm File <2s <1s Mem. 3.5GB
Simplescalar <8s 8-80m1 s=sec 1.Dependent on
Annotation <2m 1h-16h1 m=min loops to amortize
SystemC Exe <1m h=hour cache misses

FPGA Flow, Xilinx 9.1i EDK
Generate BStream 35m Same Envir. Ubunutu 7.1
Update BStream <3s Same Proc. P4 2GHz
Download BStream <1m Same Mem. 2GB

TABLE I
ARCHITECTURE PROFILING PROCESS AND COST

Table I details the time spent in the two profiling flows to get
information for the architecture models. As is shown, profiling
is not always fast. However, it should be noted that profiling
various models is fully independent so that the time for
profiling is only dictated by the most computationally complex
model (not the set of models). Every model needs to be
profiled only once for each architectural model. The profiling
information is used after to simulate a combination of models
in SystemC, which is performed (for 1000 packets) in less
than a minute. It does not take a lot of time to configure (map)
another functional model to another architecture configuration.
We simply need to comment one line and uncomment another
for each function that needs to be remapped. Again all this is
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Mapping # 1 2 3 4 5
DLL A9(4) A9(2) A9(4) A9(2) A7
PHY A9(4) A9(2) µB µB A9(4)
Mapping # 6 7 8 9 10
DLL A7 A7 µB µB µB
PHY A9(2) µB A9(4) A9(2) µB

TABLE II
MAPPING CONFIGURATIONS

not very time consuming and allows a designer to explore a
large design space.

Figure 5 provides a comparison of the performance (ex-
ecution times in ns) for the DLL functions for the ARM9
processor at 250Mhz, the ARM7 processor, and the Microb-
laze processor. This is provided as a sample to show that
while general trends in execution time can be seen, they are
unpredictable and require a true profiling flow as opposed to
crude estimates.
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Fig. 5. Sample Execution Times Obtained Through Profiling

The architecture configurations (mappings) we explored are
shown in Table II. Mapping of architecture models was done at
the DLL/PHY level. Combinations of the Microblaze, ARM7,
and ARM9 at 400 (A94) and 250Mhz (A92) were used. If
one desired, mapping could be done within the sub-functional
blocks of both the PHY and DLL models as well. This would
greatly expand the size of the design space.

IV. EXPERIMENTAL RESULTS

This section presents the performance analysis for the Data
Link (DLL) and the Physical (PHY) layers mapped to the
architecture configurations presented in Table II. Three metrics
were used to characterize the performance in our design space
exploration. The first metric is the processing element load
(utilization). The second and third are latency and throughput
of the communication system, respectively. To calculate these
parameters, one must know the time that each function takes
to be executed on the particular processing element. We
obtain the execution time of each task mapped onto different
processing elements using the profiling methods presented in
Section II and illustrated partially in Figure 5. These methods
represent the lower level of abstraction (the profiler level),
which we use to extract the relevant performance data to be
used at the simulation’s higher level.

Figure 6 illustrates the percentage load (utilization) of
four analyzed processors with respect to the functionality
mapped onto them under a fixed transfer rate used for speech
transmission (12.2 kbps).
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Fig. 6. Mapping Effect on System Utilization

This investigation examines 7 configurations. Two of them
have the ARM9 mapped to the DLL (mappings 1-4). One uses
the ARM7 for DLL (mappings 5-7). One uses the Microblaze
for the DLL (mappings 8-10). The remaining three examine
mapping the ARM9 and Microblaze to the PHY (the ARM7
was not mapped to the PHY). The results of the analysis show
considerable variability across the processors. This analysis
gives us a measure of the residual computing power available
to the rest of the protocol, to potential other protocols running
concurrently, and, at DLL layer, to higher level applications.
This is essential information for the correct architecture choice
and partitioning of the system. When the PHY functionality is
mapped to the FPGA (mappings 3, 4, 7, 10) or to the ARM9
at 250Mhz (mappings 2, 6, 9) the load exceeds 100%, and is
therefore invalid. Some boards for SDR development presently
in the market, for example [33], use FPGAs to perform only
modulation/demodulation computation (roughly a tenth part
of the PHY). Our results show that this is reasonable and that
full PHY functionality is not well suited to the current crop of
soft processor FPGA cores due to their low frequencies and
relatively simple, general purpose pipelines.

The architecture mappings we have studied are composed
of two processors. One of them is used to run the functionality
of the PHY layer exclusively. Because our case study includes
the implementation of only one protocol stack, we consider
that the right mapping combination is achieved when the PHY
processor is loaded at almost 100%. The other processor is not
only dedicated to the DLL layer, but also to the other higher
protocol layers and applications, thus, it should not be loaded
by the functionality of the DLL completely.

A second class of results are presented in Figure 7. They
are devoted to the analysis of the latency and throughput of
the analyzed mappings. From this graph we can see that the
throughput adequate for the speech data transfer (12.2kbps)
is supported only by mappings that have ARM9 (400Mhz)
used to run the functionality of PHY (mappings 1, 5, 8). In
these cases, the ARM9 dedicated to the PHY is loaded at
almost 100%. The architectures with the ARM9 (250Mhz)
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used to run the same functionality are slightly overloaded and
do not give appropriate throughput. In this situation we can
either change (increase) the clock frequency or change the
mapping by transferring part of the functionality of the PHY
onto another available processor. The load on the processor
by DLL is negligible in comparison to PHY. That is why the
throughput of the overall system is close to that which can be
achieved by using only one processor and, therefore, is very
low. Equal distribution of functionality between the processors
may increase this value significantly, while the latency will not
change much.

V. CONCLUSION

We have presented a methodology for the design space
exploration of processor-based computing platforms. The
methodology is based on the separation between the func-
tional model, described in SystemC as a process network,
and an architecture and performance model, described as a
resource manager or scheduler. Preemption is accounted for
by adjusting the timing of availability of output data, without
actually suspending processes, which would adversely impact
simulation performance. The performance data is obtained
through low level profiling which can be done independently
of the simulation process. We have presented an example of
preemptive scheduler, and tested the methodology on a subset
of the UMTS protocol to analyze the processor load and
other parameters under different configurations. The analysis
shows considerable variability in performance. This justifies
the use of the PBD approach to design these kinds of systems,
which must be fine tuned to support different standards without
incurring a costly design space exploration process.

Our future work is focused towards facilitating design
deployment by automatically generating the required connec-
tions between processes and schedulers, according to a given
mapping, and extending the library of available schedulers.
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