
Cyber/Physical Co-Design in Practice:
Case Studies in METROII

Luca Rizzon and Roberto Passerone
Dipartimento di Ingegneria e Scienza dell’Informazione

University of Trento, I-38123 Trento, Italy

Email: luca.rizzon,roberto.passerone@unitn.it

Abstract—To analyze embedded systems, engineers use tools
that can simulate the performance of software components
executed on hardware architectures. When the embedded system
functionality is strongly correlated to physical quantities, as in the
case of Cyber-Physical System (CPS), we need to model physical
processes to determine the overall behavior of the system. Unfor-
tunately, embedded systems simulators are not generally suitable
to evaluate physical processes, and in the same way physical
model simulators hardly capture the functionality of computing
systems. In this work, we present a methodology to concurrently
explore these aspects using the METROII design framework. In
this work, we provide guidelines for the implementation of these
models in the design environment, and discuss the results gathered
with the simulator for two case studies.

I. INTRODUCTION

Embedded Systems (ESs) are computing devices specifi-
cally designed and optimized to perform a specific task. This
term is used to refer to systems that exhibit features that are in
contrast to general computing platforms, which are designed to
execute a variety of tasks that can differ significantly from one
another. PDAs, smartphones, car ECUs, avionics, industrial
automation systems, home automation, among many others
are all examples of instances of ESs. While these applications
encompass different domains, and differ in requirements and
attributes, they do share common design challenges. For exam-
ple, mobile devices require a low energy consumption profile to
guarantee an acceptable battery lifetime without compromising
the device size or weight [1]. In the case of systems that
affect individual’s safety, such as for example car ABS or
avionics system, the reaction time of the control algorithm
is crucial; therefore, the execution time of certain tasks, and
their probability of being interrupted from other events are of
fundamental importance, as opposed to the case of general
purpose computers.

Recently, ES applications made of software and hardware
components that work together to monitor and to control
physical quantities have received growing attention [2]. These
applications, which exhibit a tight coupling between the com-
putation domain and the physical world, are referred to as
Cyber-Physical System (CPS). In a typical CPS, computation
elements (processes, networking) influence the physical quan-
tities, and conversely the effect of physical processes can influ-
ence the behavior of computing processes. This cross-relation
complicates the design, especially because the computational
and the physical components are handled by professionals with
different profiles and are generally studied with models which
differ significantly.

For engineers developing CPS it is of fundamental im-
portance to design the cyber as well as the physical part of
the system taking into account both the computational unit
features, and the results of the interaction with the physical
world. Both aspects, in fact, affect important system met-
rics, such as energy efficiency, efficient utilization of limited
computational resources (memory, processors, speed), real-
time constraints, and predictability of the outcome. However,
due to the intrinsic difference that exists between the cyber
and physical domain, design tools and simulators designed
to model one world are typically not suitable to model the
other, and vice versa [3]. Therefore, the current practice is to
study the two worlds separately, with the risk of not properly
modeling how the two interact. In particular, only very few
description of studies applied to real cases have been presented
in the literature [4]. In this paper, we propose a methodology
to integrate computational models and physical models using
a design strategy inspired by the function/architecture co-
design paradigm: while cyber and physical components are
conceptually separated, they are integrated over two mapping
steps to result in an overall system model. We support the
methodology using the METROII design exploration tool [5].
In particular, we explore the functionalities offered by the
METROII design framework and how to use them in practice
by studying how to analyze two very different case studies, to
identify and outline best design practices that can be adopted to
express and combine the cyber/physical features in METROII.
The proposed practices can be adapted or extended to model
other, equally diverse systems.

This paper is structured as follows. In Section II we
summarize the related work, and we introduce METROII and
the proposed design methodology in Section III. The following
two sections are dedicated to two case studies, a binaural
guidance interface (Section IV), and a thermoelectric energy
recovery system (Section V), and their analysis and design
space exploration. Section VI concludes the paper.

II. STATE OF THE ART

Several design methodologies have been presented in the
literature and applied successfully to cope with the design
challenges of CPS. In Platform-Based Design (PBD), the
design moves from the application space to the architectural
space through a mapping process [6]. The approach is based
on the separate definition of the functionality of the system,
and of the possible implementation platforms. The two are
then combined by mapping the functionality on the different
platform architectures to assesses the performance of interest in

a structured way [7]. The PBD paradigm can be enforced using
contracts [8]. In this case, the design methodology is carried
out in two steps. The first consists in the definition of the cyber
and the physical architecture, followed by an exploration of the
target platforms. In our work, we follow the PBD paradigm and
extend it to a two-step mapping process to separately specify
and then combine cyber and physical components.

Model-Based Design (MBD) addresses the problem of
designing complex system starting from a model that repre-
sents the system behavior using numerical methods, models
or measurements. Jensen et al. discuss the MBD approach in
the context of CPS, by dividing the design process into steps,
from physical modeling, to simulation, software synthesis
and validation [9]. The authors exemplify the methodology
with Ptolemy II, a modeling and simulation environment for
heterogeneous embedded systems which supports MBD [10].
Our approach is more structured, and defines precise roles for
the architectural and the functional elements of the models.
The METROII design tool, which we use in our work, has
been also used in combination with Ptolemy II, originating
the design tool for timing verification called Metronomy [11].
Also based on Ptolemy II, PTIDES focuses on the design of
event-triggered real-time distributed systems, and includes a
programming model and the relative toolchain that supports
MBD [12]. The PTIDES approach combines the construction
of a model with a simulation of the system and network,
and estimates the behavior of the system mapped onto a
target platform. The implementation platform introduces de-
lays that may affect the execution of real-time systems. The
tool integrates the simulation of Discrete Events –typical of
cyber components– with different physical time models, to
perform timing verification, and generate executable software.
An alternative approach, proposed by Noyer et al., includes
the adoption of three different design tools in the workflow:
1) a tool for timing analysis, 2) a tool that supports Model
Driven Development, and 3) a tool for Requirement Manage-
ment (RM) [13].

The Matlab design environment, which follows the MBD
approach, supports CPS development through Simulink or
SimScape. Matlab is suitable to capture the functional spec-
ifications of a system as well as the architecture specifica-
tions. However, it lacks the semantic construct to be able
to specify concurrency, therefore it cannot support the func-
tion/architecture co-design principle. An alternative approach
to the one presented in this work is based on the adoption
of Modelica [14]. Modelica is a powerful tool for modeling
and simulation of mechanical, electrical, thermal, control and
hydraulic systems. In its standard version, it does not provide
simulation of computing systems, but since it is designed to be
domain neutral, it is flexible enough to support the description
of such kind of systems. Recently, a support library called
Modelica EmbeddedSystems was released, which represents
an extension of Modelica from the physical domain toward
the digital domain. A design approach that combines Modelica
and METROII has been developed [15], but it keeps the two
designs separated and makes them communicate via CORBA.

Another framework for building complex systems by
composition of components is Behavior-Interaction-Priority
(BIP) [16]. In BIP, the system specification is organized
in three layers. The first layer describes the components in

isolation, the second layer is used to specify the interaction of
components activation through connectors, and the top layer
is used to express the priorities that characterize the overall
system architectures. To support CPS design, BIP can interact
with Simulink physical models by using translators to convert
Simulink blocks into BIP specifications [17].

To address the problem of CPS design, recent technologies
are devoted to the joint modeling and simulation of domain
specific software [18]. Since the intrinsic multidisciplinarity
of the design process involves the study of concurrent, het-
erogeneous models, a design cannot be studied in a unique
framework due to the different semantics in use. Some design
methodologies involve the structured exploration of the cyber
and physical worlds by using two different design tools,
and then applying iterative algorithms to converge towards
a solution that meets the design requirements [19], [20].
Other design flows use two different design tools and a new
specification language to bridge programming languages that
otherwise could not communicate. One example is the use
of an Intermediate Format (IF) to exchange models between
Matlab/Simulink and the C language [21]. Standards can
alternatively be used for tool interoperability. The Functional
Mockup Interface (FMI) is a tool-independent standard aimed
to ease the collaboration in design projects where different
tools and workflows are used. Using FMI, the designer distin-
guishes between the functionality of the component (code or
binaries), and its interface data. Tools supporting FMI allow
engineers to import models and co-simulate them to perform
design validation, promoting the exchange of simulations
model across tools [22]. Our methodology is orthogonal to
this approach, which could be conveniently used to extend the
integration capabilities.

III. DESIGN METHODOLOGY AND METROII

In our work, we adopt the METROII design framework [5].
A METROII system design is made of a Functional and an
Architectural model, to promote reusability and separation of
concerns. The Functional Model expresses what the design
does in algorithmic terms, such as the control strategy. The
Architectural Model describes how the system is implemented,
the hardware platform where the control algorithm executes,
including embedded processors, sensors, actuators, communi-
cation primitives, operating systems, firmware, and drivers.
While the functional model can be used to perform control
validation, the architectural model contains values and formula
used to model the physical quantities of interest, to simulate
physical time, power consumption, associated costs, and other
features of interest.

In METROII, functional and architectural models are de-
scribed as netlists of components that communicate through
ports. Each port is associated to a set of methods defined by
the port interface. A port can be either required or provided.
Required ports specify a set of methods that the component
requires from other components. Provided ports specify the
methods that the component implements and that it can per-
form when requested by others. A component, in turn, contains
processes, modeled as imperative code that implement the
main functionality and the provided methods.

The basic behavior of components is initially specified in
SystemC, then encapsulated by wrapping the code to provide

METROII interfaces. The components of a METROII system
are concurrent, and synchronize through events. Each method
is associated to a pair of begin and end events, which mark the
start and end points of the procedure execution. The execution
of a METROII system is orchestrated by an event scheduler,
which triggers the methods of the components. Additional
events are used to characterize quantities, which model non-
functional aspects such as execution time and power con-
sumption. Annotators, which are similar to event schedulers,
are used to label quantities with values corresponding to the
event triggering, providing the means to conduct performance
analysis. In particular, end events are associated with tags
expressing time the annotator uses to evaluate the execution
time in the target architecture.

Event synchronization is specified through constraints. In
particular, architectural components are synchronized with the
functional components through mapping constraints, which
schedule functions and their respective architectural imple-
mentations (tasks) simultaneously. This mechanisms imple-
ments a function/architecture co-design paradigm: functions
synchronize with the architecture, which progresses according
to the modeled quantities, to produce an estimate of the sys-
tem performance. Likewise, abstract functional communication
primitives, such as a blocking FIFO, can be synchronized to
an architectural implementation, such as a shared memory.

Simulations

Architectural Functional
(Physical Interactions)

Physical
Domain

Architectural Model
(Computing Platform) Functionality

Cyber
Domain

Physical Model
And Interactions

Functional
Implementation

Mapping

Design
Solutions

Fig. 1. Proposed workflow to model cyber-physical systems by separating
functional and architectural models of the computing and physical parts of the
system and conducting the simulations with the same design environment

In this work, we extend the function/architecture approach
to perform cyber/physical co-design, adopting the procedure
illustrated in Figure 1. We follow a paradigm similar to
the function/architecture co-design appraoch. However, we
first decompose the computational and the physical part of
the system under consideration. Since physical quantities are
handled and modeled in the architectural part of the system,

to model the physical part of a CPS the designer focuses
on the architectural model of the system first. Mathematical
models that describe the physical behavior of the system are
implemented in C/C++ inside the architectural components.
While not used in our case studies, these models may in-
volve differential equation solvers (e.g., the Euler method),
when a discretized continuous time description is required.
Interfaces are used to forward physical quantities to other
components according to the interaction that exists between
architectural elements, whether they represent a physical or
a computational process. In this phase, the designer ana-
lyzes physical interaction between architectural components
to identify the component organization. The interaction is
implemented through ports. Then the designer analyzes the
functional model of the physical part, to identify components
that interact with the functionality of functional functions.
A physical process that influences (or is influenced by) the
behavior of the functionality of the system is modeled as a
functional component. A special provision must be made if
a physical process is defined only in the physical functional
model. In that case, the designer must include also a virtual
(or counterpart) component in the physcial architectural model,
to allow the mapping constraints to schedule and capture
its execution, even if the component is isolated from other
components from the point of view of the architecture.

In the architectural model of the design, the message
exchange between components is used to connect provided
and required objects as in traditional ESs design. In addition,
interfaces are used to forward physical quantities between
components that physically interact. For example, to model
how the temperature of a component A influences the actions
of another component B in one of our case studies, component
A contains a required port to a shared memory, and B has a
provided port to the same memory. The interface is used by B
to receive temperature values from A.

Once the design is completed, the overall functional model
contains the functionality of the computing part of the system,
with components and ports that model the interactions of
physical processes with the system functionality. The architec-
tural model contains the definition of the computing platform
together with the physical models and interactions between
physical and computing worlds. The METROII scheduler is
used to coordinate the execution, the same way as in the
design of embedded system. However, events that are trig-
gered by physical processes (i.e., a value reaches a threshold)
are ignored by the METROII scheduler, but are fired from
direct, concurrent function calls performed by an architectural
component.In this way it is possible to define the order of
execution of code portions according to on the behavior of
physical quantities that is not known before execution. In fact,
the events logical ordering handled by the scheduler cannot be
conditioned in runtime. Generally, the physical time annotator
is used to evaluate the execution time of a design. To simulate
the evolution in time of physical quantities, the annotator is
used to define the time resolution of the simulation. Since the
physical time annotator is used to tick the simulation time,
and the logical sequence of events may change depending on
the design, if the designer wants to monitor the time between
two generic events the developer must insert additional code
to extract time values. Designers can use the tool to evaluate
the features of many implementations mapped into several

architectures to identify the solution that best matches the
application constraints. At that point, having studied the design
by separating the functional and architectural aspects of both
computation and the physical domains, the selected solution
can be implemented into the target architecture reusing the
functional code.

The next two sections describe how this methodology is
applied in practice, by describing in detail the design of two
CPS case studies, where human behavior in the first, and heat
propagation in the second, constitute part of a cyber-physical
feedback loop.

IV. BINAURAL GUIDANCE SYSTEM

The binaural guidance interface has been developed in the
context of the EU funded project DALi (Devices for Assisted
Living). The main objective of the project is to develop a
robotic platform that permits older adults to autonomously
move across public spaces. The result of the project is called
c-Walker [23]; it consists of a four-wheeled rollator equipped
with sensors, computing boards, actuators, and interfaces.
While a standard rollator is generally used to support gait
of people with reduced strength at the lower limbs, the c-
Walker extends the cohort of potential users including those
who suffer from cognitive difficulties, and need support in
order to orientate and to identify the best trajectory to follow
in an unknown environment to reach the desired destination.

The user of the c-Walker selects the places he/she wants to
visit using a touchscreen mounted in between the handlebars.
The system computes the optimal route using information
stored in a map database. When the user starts walking, the
c-Walker uses different sensors to localize itself inside the
environment, and compares its real time position with the
planned route. The planned route may change along the way
according to the dynamics of the scene monitored using a
camera and a depth sensor. If the user does not deviate from the
planner route, the system remains passive, as a conventional
walker. If the user deviates from the optimal route, the system
intervenes by actuating the user interfaces. In particular, the
system uses the touchscreen to show a map of the surroundings
with the current position and projected route, a pair of wearable
haptic bracelets that vibrate to indicate to the user whether
to move left or right, and a headphone to reproduce binaural
sound stimuli which express the direction where the suggested
trajectory is located.

In this work, we focus on the user audio interface [24]. The
auditive interface software provides binaural sound, processed
to be interpreted by the listener as originating from points in
space along the planned route. The user is therefore encour-
aged to simply follow the sound lead. The interface software
relies on data coming from the c-Walker regarding the spatial
location of the optimal route, and on information on the user’s
head orientation captured using an Inertial Measurement Unit
(IMU) mounted on the headphone arches, in order to adjust
the sound direction in real time.

It is important to emphasize that a person can correctly
interpret binaural sound signals only if they are administered
with a time delay smaller than 50 milliseconds, otherwise
the human localization task may infer the perceived stimuli
as associated to sound events that happen later than what

intended by the algorithm. This may happen frequently. To
give an example, consider that the human ability to recognize
the spatial location of sound improves if the listener is able
to benefit of small head movements. In fact, moving the head
makes it possible to collect more cues regarding an ambiguous
signal, such as sounds located within the so called cone
of confusion [25]. But, while the listener is moving her/his
head, if the synthesized sound is emitted with a delay greater
than 50 milliseconds, the sound may be associated with the
final position of the head instead of being associated to the
position where the head was initially. The interaction of the
guidance system with the user, i.e., the emission of stimuli
and the corresponding reaction of the user which results in
movements, closes the loop between the localization system,
the planner, and the user interface. Therefore, the time delay
of the auditive interface is crucial to its correct interpretation.
Several components affect this delay, from the processing time
to the size of the buffers used in the physical components.

A. METROII Implementation

The general block diagram of the complete system is shown
in Figure 2. Referring to the proposed methodology, we created
a cyber model consisting of all the software components that
express the functionality, as well as their corresponding archi-
tectural tasks. In addition, we have included a Processor and
the SoundCard as architectural components to represent the
computing platform. The physical part is needed to describe
the physical time and the movements, or rather the variation
of the spatial coordinates. The movements of the users are
described by the Person component. To reflect its interaction
with other components, and to map it correctly in METROII, the
Person component is included in the architectural as well as in
the functional model. The functional components are extended
to include the description of physical interactions. In case a
designer aims at modeling the precise human behavior [26],
details regarding sound localization performance and degree
of cooperation of the human can be implemented within the
Person architectural component.

B. Physical Model

Since physical quantities of interest (i.e., time) are han-
dled inside the METROII architectural model, physical model
components belong to the architecture. The audioProc Task,
the Imu Task, the Planner Task, and the playback Task have
a dual role: they represent the architectural component of their
functional counterparts, and they receive, modify, and forward
physical data. The physical model includes the presence of
the user of the c-Walker that is represented by the thread
implemented within the Person Task component. The presence
of this component models the interaction of the user with the
binaural guidance system. From one side, the user receives
the guidance sound stimuli which convey spatial information
encoded as the spatial location of the virtual sounds. On the
other hand, the user movements change the position in space
of the assistive device, and these variations are captured by the
Planner Task. The person can also move his/her head indepen-
dently, and this is monitored by the IMU Task. The physical
model is completed including the interfaces to communicate
with the Processor and the SoundCard.

Processor SoundCard

Imu_Task

Planner_Task

audioProc_Task Playback_Task

Person_Task

MAPPINGConstraints
Solvers

Audio processing FIFO playback FIFO person

FIFO IMU FIFO

FIFO Planner FIFO

Constraints
Solvers

updatePlan

getIMUcoordinates

computeSound reproduceSound

movePlan

moveHead

listentoSound

Fig. 2. The METROII model for the binaural guidance system.

From a functional viewpoint, the interface between the
playback and the person transmits the sequence of samples
representing the sound signal. But, from the physical point
of view, the interface between the SoundCard and the Per-
son Task component models the exchange of spatial coor-
dinates. In order to model the presence of the user, and
to model the feedback between the sound reproduction and
the subsequent movements of the user, a functional Person
component is added to the cyber model of the system. Within
the Person component it is possible to map the Person Task
behavior to close the loop of the system output toward the
inputs.

C. Cyber Model

The cyber model consists of the software components of
the binaural guidance system, and the hardware components
that support their execution. In particular, the Audio Processing
component contains the algorithm that transforms a monoaural
audio signal into a binaural stimulus. The computation works
on a period buffer which is then fed to the sound card to be
reproduced. The size of the period buffer matters, because it
influences the latency of the computation. Once a number of
samples of audio output equal to the SoundCard period buffer
size has been produced, they are forwarded to the playback
component. The playback component models the reproduction
of the audio signal.

The Audio Processing component receives inputs from the
IMU and the Planner. The IMU provides data regarding the
orientation of the head of the user. The Planner computes
the optimal trajectory for the user, and by knowing the actual
position of the c-Walker, provides to the Audio processing
component the spatial coordinates of the next position to
reach, i.e., the spatial location of the virtual sound source the
audio processing component has to compute in the subsequent
time interval. The Audio processing aligns the absolute spatial

coordinates according to the user head orientation and starts
processing sound. The cyber model is completed including
a Processor and a SoundCard. The Processor supports the
execution of all the software components, while the SoundCard
provides the playback of the audio stimuli.

D. Mapped Systems

We have estimated the performance of the system onto two
different architectures. The first is a traditional laptop with a
2.53 GHz dual core CPU and 4 GB of RAM, to have a baseline
performance model on a relatively high power device. The
second platform is BeagleBoard–xM, equipped with a 1 GHz
ARM Cortex–A8 core and 512 MB of RAM, which we have
considered as representative of a class of small size, low power
devices. Because of its small dimension, the BeagleBoard
would be preferable if the system were to be engineered to
be wearable, rather than being carried on the c-Walker.

The mapping of functional onto architectural components
is labeled with execution time values, which were measured
on the target platforms through profiling. Besides the two
platforms, we also mapped four different configurations for
the Planner, which differ in terms of the minimum dimensions
of the grid used to represent the environment map. This affects
both the accuracy of the route determination, as well as the
computation time. The communication with the IMU can be
configured in two ways: 1) considering only azimuthal angles,
or 2) using values of roll, yaw and pitch. The first is associated
with the rendering of binaural sounds laying on the horizontal
plane only, while the second is associated to the reproduction
of full 3D sounds. Their implementations differ, as well as, of
course, the performance. The sound processing time depends
on the size of the sound buffer, which determines the period of
the computation. Longer buffers allow for longer computation
time, but introduce latency. Finally, the playback time depends
on the semantics of the playback system call: it is considered

to be equal to the duration of the processed sound chunk for
a blocking call, or is considered equal to 0 if the playback
is called by a non-blocking function (we neglect the call and
return time).

E. Results

We analyze the results of the model estimated processing
time and simulation time, and determine if the mapped design
satisfies the required execution time. Simulations run in a mat-
ter of a few seconds. Estimated execution times of a selected
set of platforms for the binaural guidance system are reported
in Figure 3. In the figure, the BeagleBoard is identified by
the string “bb”. The planner implementations are labeled from
P1 to P4. Planner alternatives are listed in order of increasing
accuracy. P1 corresponds to a lower degree of spatial accuracy,
but it has the fastest computational time. On the contrary, P4
is slower, but performs the geometric calculation at a higher
resolution. Because the planner is computationally intensive,
it is always mapped onto the notebook, since the BeagleBoard
would not be able to sustain it. Design names starting with
3D refer to the tridimensional sound rendering, as opposed
to using the horizontal plane only. The sound buffer size is
configured using three different values: 250 ms (labeled as
B1), 500 ms (B2) or 1 second long (B4). The “-bp” suffix
denotes a blocking playback call.

Figure 3 shows the playback time corresponding to the
different buffer sizes using the continuous blue line, while the
overall execution time of the different solutions is shown as
colored bars, showing the planner execution time in orange, the
time required by the IMU in blue, the audio processing time
in grey, and the blocking playback time in yellow. Designs in
which the execution time is lower than the playback time allow
the system to reproduce the guidance sound continuously. If
the design required execution time is greater than the playback
time, the mapped system can reproduce the guidance signal
only with pauses in between two consecutive signaling events
longer than the delay time. This introduces glitches in the
playback, which should be avoided. Among the alternatives,
those with an audio processing execution time lower than 50
milliseconds should preferably be taken into considerations for
implementation, since the latency affects the human recog-
nition task the least, as discussed previously. Among these,
those with a total execution time shorter than the playback
time also allows the system to reproduce the guidance signal
without interruption. Among the alternatives, for the system
testing with participants, we chose the implementation with the
shortest buffer time (B1) associated with the Planner configura-
tion P1. Our final choice for experimentation was to adopt the
notebook, because the implementations on the BeagleBoard do
not respect the 50 ms deadline for the correct interpretation of
the guidance sounds in any of the implementations. A more
powerful portable platform should therefore be investigated for
a wearable implementation.

V. THERMOELECTRIC ENERGY RECOVERY SYSTEM

In this section, we discuss the design of a microcontroller-
based battery-less system for data center CPU monitoring
and cooling powered by the electrical energy produced by a
thermoelectric generator (TEG). The Thermoelectric Energy
Recovery System (TERS) is composed of a TEG, a circuit for

energy conditioning and a storage unit. The TERS interacts
with two main components: a high performance data center
processor, called the host, which we wish to monitor; and a
monitoring system, i.e., a small wireless node that includes a
low-power microcontroller and a set of sensors. The thermal
energy needed to power the monitoring system comes from the
heat dissipated by the high performance data center processor
(the host). To model the thermal behavior of the host, we
considered an ARM-based device. This thermal energy is
converted into electrical energy by a Thermoelectric Generator
(TEG) composed of Peltier cells. The TEG output power goes
through a conditioning circuit and is then stored in a superca-
pacitor. When the harvested energy is sufficient to power the
microcontroller and its sensors, the monitoring system wakes
up and, according to its configuration, performs one of the
two tasks for which it has been developed: either it serves
as a wireless sensor node to monitor temperature, humidity,
and other environmental parameters; or it works as an active
microprocessor cooler by feeding energy to a small cooling
fan. The monitoring system mounts a MSP430 microcontroller.
The MSP was chosen because it exhibits a very low power
consumption profile. Using the harvested energy to cool the
data center CPU makes it possible to over clock the host
processor for short periods of time without overheating it, thus
increasing the computing performance. A complete description
of the thermoelectric energy recovery system developed to
power an energy neutral wireless sensor node can be found
in [27], [28], while a description of the behavior of the active
cooler for over-clocking can be found in [29].

A. METROII Implementation

Implementing the proposed methodology, we first consider
the physical models. The mathematical models have been
obtained from the analysis of data collected in a dedicated
experimental setup and then implemented in C/C++. We
implemented the CPU heating function, the formula for the
conversion of thermal gradient into electrical energy and the
charge/discharge of the supercapacitor. Likewise, we charac-
terized the energy consumption of the MSP. After that, we
defined the relation between the tasks that run on the CPU
with the generated temperature, and the status of the MSP with
its power consumption to define the architecture models. Then,
the physical–architectural components were combined with the
cyber–architectural components to define the complete design.

Unlike the previous case, where events were logically
ordered in time, in this system some state changes of a
component are triggered by events that take place in other
components, whose duration is not known in advance. This
requires a more careful account of the synchronization. In fact,
the data center host and the monitoring system functionalities
are separated, but their activation is related by physical pro-
cesses. The activity of the monitoring system configured to
perform CPU cooling is triggered by the temperature of the
ARM CPU, but the ARM CPU and the MSP are not connected
from the point of view of the architecture, so there is no
direct interface to trigger the event. The situation is similar
for the monitoring configuration, which works as long as the
recovered energy is sufficient to power the microcontroller
and the sensor, independently of the state of the host. Events
of the physical quantities are not handled by the scheduler,
so the corresponding state transitions are triggered through

0

250

500

750

1000

1250

1500

B1
P1

B1
P2

B1
P3

B1
P4

3D
B1

P1
3D

B1
P2

3D
B1

P3
3D

B1
P4

3D
B1

P1
-b
p

3D
B1

P2
-b
p

3D
B1

P3
-b
p

3D
B1

P4
-b
p

B2
P1

B2
P2

B2
P3

B2
P4

3D
B2

P1
3D

B2
P2

3D
B2

P3
3D

B2
P4

3D
B2

P2
-b
p

3D
B2

P2
-b
p

3D
B2

P3
-b
p

3D
B2

P4
-b
p

B4
P1

B4
P2

B4
P3

B4
P4

3D
B4

P1
3D

B4
P2

3D
B4

P3
3D

B4
P4

bb
3D

B4
P1

bb
3D

B4
P2

bb
3D

B4
P3

bb
3D

B4
P4

De
la

y
in

 m
ill

is
ec

on
ds

Mapped Systems

Fig. 3. The binaural guidance estimated execution time. The blue line represents the maximum execution time required to perform continuous playback. On
the bars, orange is the planner execution time, blue is the time required by the IMU, grey is the audio processing time, while yellow is the blocking playback
time.

direct interfaces which, in this case, relate the two CPUs. A
representation of the METROII model is depicted in Figure 4.
In METROII, schedulers are used to specify the logical order
of begin and end events of functions, and events are used
by the mapper to synchronize elements. But for the reasons
listed above, not all the events are handled by the scheduler,
because the start event of a functionality may be fired when
a physical quantity of another component satisfies a given
criteria. Moreover, the time annotator is used to specify the
timing resolution of the simulation.

B. Physical Model

The physical model of the TERS is composed of the ARM
CPU, the TEG, the MSP, and the interfaces between the
aforementioned components. From the physical model point
of view, the ARM CPU is a source of heat; and the MSP
is a component that consumes the power stored in the TEG
component. Unlike the cyber model, in the physical model,
ARM CPU and MSP are connected together through the TEG
component. The physical models of the two CPUs handle
the physical processes and interactions (heat exchange and
power consumption). The ARM CPU component includes the
model of thermal dissipation of the processor implemented
as theoretical heating and cooling curves. The theoretical
heating curve defines the temperature gradient trend over time
considering a constant ambient temperature as:

ΔT (t) = ΔTmax ·
(
1− e−t/τ

)

where ΔT is the thermal gradient between the CPU package
and the ambient temperature, and ΔTmax is the target temper-
ature difference. τ is the time constant of the system, that is
the time required for the system to reach the target temperature
ΔTmax in ideal conditions (i.e., if there were no heat exchange
with the environment). Conventionally, τ corresponds to the

time required for the system to reach the value 0.632 ·ΔTmax,
and the system is considered to be in steady state after about
4÷ 5 times τ .

When the CPU starts performing a more demanding task,
the simulator computes the current value of the thermal gra-
dient as:

ΔT (t) = ΔTbegin +ΔTtarget ·
(
1− e−t/τ

)

with ΔTbegin the value of temperature at the beginning of the

new task, ΔTtarget the steady state temperature of the new
task. On the contrary, when the CPU switches from a more
demanding task to a less demanding activity, or to the idle
state, or when the cooling fan intervenes, the thermal gradient
value is updated according to:

ΔT (t) = ΔTtarget − (ΔTtarget −ΔTbegin) · e−t/τ

The values of the target temperatures were measured on our
workbench during the characterization phase of the prototype
device; and, observing the transitions between different tasks,
we also derived values for τ . The CPU component includes the
Euler forward method to resolve the thermal model equations.

The relation between the thermal gradient and the gener-
ated output power of the TEG is implemented inside the TEG
physical/architectural component. This component contains
the thermoelectric generator and the supercapacitor physical
models. The thermoelectric generator model computes the
actual generated power of the TEG as a function of the thermal
gradient. The super-capacitor charge and discharge model is
included in the TEG component. The generated power makes
the voltage inside the super-capacitor increase as:

Vsc(t) =

√

Vsc(t− 1) +
2Vgenerated(t)

Csc

When the MSP is powered on, it consumes power according
to its state and the task it is executing. Therefore, the TEG
component diminishes the storage voltage accordingly, with:

Vsc(t) =

√

Vsc(t− 1)− 2Vconsumed(t)
Csc

The interface between the MSP and the TEG components
models the energy consumption of the MSP. The supplyPower
interface is used to trigger state transitions of the MSP which
works according to the energy at its disposal. For example, the
interface is used to switch on the MSP when the voltage stored
in the TEG supercapacitor increases over the threshold of op-
eration of the MSP. This kind of state transitions are modeled
directly, and not using the METROII scheduler because physical
quantities are not visible to the event scheduler.

C. Cyber Model

The cyber model includes software and hardware compo-
nents of the system. The model of the TERS is composed of
the host server, the FIFO component, the Host Task, the ARM
CPU, the Cooling Task or the Sense Task, and the MSP. In
particular, the host server component models the functional
activity of the server (i.e., jobs/tasks the server executes). It
interfaces with a FIFO component used to capture the job start
and finish events. The host server is mapped into the Host Task
that associates the current job to a a set of parameters, such as
the clock frequency, the load percentage and the job duration.
The two CPUs cyber components (ARM and MSP) provide the
execution to their respective tasks. The ARM CPU provides the
execution of the jobs requested by the Host Task with specific
parameters. The MSP cyber component models the execution
of the firmware implemented in the wireless sensor node. The
Cooling Task and the Sense Task model two firmware which
correspond to two possible activities that the MSP can provide.
The first contains instructions to control the ARM CPU clock
frequency, and to supply the cooling fan to implement the
active cooling task that supports ARM CPU overclocking. The
Sense Task, instead, contains the instructions to sample the
sensors that is used to implement environmental monitoring
with WSN. From the cyber standpoint, the ARM CPU and the
MSP are disconnected, because their tasks are unrelated.

D. Functional and Architectural Models

The resulting METROII functional model includes two
components: the host server and its corresponding FIFO.
Both components are part of the cyber system model. The
architectural model contains components that are part of both
the physical and the cyber model. The TEG component is
purely physical, and it interacts with the MSP and the ARM
CPU components. The last two contain both the physical and
the cyber models. In particular, from the cyber viewpoint, the
two CPUs interact with the tasks they can executed which
are modeled as threads in the architectural model. Therefore,
the architectural model is completed including the Host Task
(that executes on the ARM CPU), the Cooling Task and the
Sense Task (that can execute on the MSP).

The Host Task component contains parameters such as the
load percentage devoted to the required functional activity,
the clock frequency, and the CPU package temperature. The

ARM CPU TEG

Host_Task

Sense_Task

MAPPINGConstraints
Solvers

Host Server FIFO

MSP

Cooling_Task

consumePower

executeTask

setClockFrequency

activateCooling

generateHeat supplyPower

performCooling

performMonitoring

Required
port

Provided
port

Fig. 4. The METROII model for the thermoelectric energy recovery system
applied to the ARM CPU. The figure includes both the Sense Task and the
Cooling Task that can be implemented alternatively.

temperature is computed at each iteration as a function of the
CPU clock frequency and load according to the values derived
from measurement made on the prototype device [27].

The TEG components parameters specify the efficiency of
the TEG (η), the storage capacitance (Csc), the supercapacitor
maximum voltage (V max

sc), and the present stored energy. The
TEG component interfaces with both the host CPU and the
MSP components. The TEG component receives from the
ARM CPU component the CPU temperature which is used
to determine the present harvested energy, according to the
formula that has been derived from measurement made on the
prototype device.

The TEG interface with the MSP receives request of energy,
that can be served only in case the stored energy is greater than
the voltage threshold that allows the MSP to activate. If the
MSP is active, the TEG component receives request of energy,
and subtracts from the present storage voltage the amount of
energy required according to the task that the MSP component
is performing. In particular, the MSP can be in Idle mode
when it is active but performing neither the Sense Task nor
the Cooling Task. If the MSP is performing the Sense Task,
it samples the sensors and transmits the data over the wireless
channel, and at the same time the TEG component decreases
the amount of stored energy accordingly.

When a MSP is configured to perform the Cooling Task,
the iteration among components becomes more articulated
because of how the blocks interact with each other in order
to implement the over clocking and cooling procedure dis-
cussed in [29]. First, given that the fan power consumption to
perform cooling is higher than the power required to perform
monitoring, when we want to simulate the cooling procedure,
the value for the activation threshold of the TEG component
is set to the corresponding, and greater, value. When the
harvested energy is enough to sustain the cooling activity,
the MSP component sends the command that makes the CPU
run with the maximum available load, and at the maximum
clock frequency to the corresponding ARM CPU component.
As a consequence, the remaining time needed to perform the

running job decreases, while the CPU temperature increases.
If the temperature were to reach the threshold of 82◦ C, the
dynamic voltage and frequency scaling (DVFS) of the host
device would intervene to scale down the clock frequency, thus
reducing the generated temperature. But in this case, DVFS is
not activated because the monitoring device is ready to cool
down the CPU package with the following procedure. When
the CPU temperature reaches 80◦ C the MSP feeds power to
the cooling fan. At that time, the CPU temperature is decreased
according to the fan specifications and the energy stored in the
super capacitor is subtracted accordingly; at the same time,
the host CPU continues to run at its maximum clock speed
continuing to generate a lot of heat. After a while, the CPU
temperature reaches again the 80◦ C threshold. At that time, if
the stored energy is sufficient, the MSP can again activate the
fan; otherwise, it will set the CPU to a lower clock frequency
to prevent overheat. In the latter case, the host time left to
complete the job is calculated again in compliance with the
clock speed and load.

E. Mapped Systems

We mapped the design onto two different host devices: a
1 GHz ARM Cortex–A9 CPU Pandaboard with 1 GB DDR2
RAM, and a Samsung Arndale equipped with a 1.7 GHz dual
core Cortex–A15 with 2 GB DDR3 RAM. We chose these
two embedded boards because they are representatives of a
class of systems with reasonable computing performance and
a low heat dissipation. The simulator considers the thermal
model of the corresponding host device. The model is written
in C within the host component of the architectural model.
We considered different values for the storage capacitance
(Csc), and two different cooling fans. The fan parameters in
the simulator include the required voltage of operation, the
power consumption, and also their cooling capacity.

F. Results

We analyze the results of the presented model estimating
processing time, amount of samples transmitted, number of
cooling events, amount of residual energy on the storage
supercapacitor, as well as simulation time for different con-
figurations. Figure 5 illustrates the number of cooling events
and the number of packets sent during one week of operation
of the system using the ArndaleBoard as a host, while Figure 6
shows the result obtained conducting the same analysis using
the thermal model of the PandaBoard as host. We mapped
the system using models we gathered from measurements of
the devices. For each design, we evaluated the performance of
the monitoring system configured to perform either cooling or
sensing. We pick the design tm1C1 for deployment because
it ensures the MSP executes a large number of cooling and
sensing events maintaining a small size for the TEG compared
to the solution with more Peltier cells (namely the tm1-4p).
The very same TERS design exhibits good performance also
applied to the Pandaboard (tm2C1). However, the advantage
of having more Peltier cells is more evident on the Pandaboard
than in the Arndaleboard (tm2-4p vs. tm1-4p). Having larger
storage supercapacitor is more detrimental for the monitoring
activity on the Pandaboard than on the ArndaleBoard (see blue
markers for tm2C16 compared to tm1C16). In fact, the design
tm1C16 makes 71.4% the number of activities of the design

with a storage capacitor four time larger (tm1C4). On the
contrary, the design tm2C16 sends only 37.5% the number
of packets sent by the design on the Pandaboard tm2C4.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0

50

100

150

200

250

tm
1-
no

nL
P

tm
1h tm
1

tm
1-
LF

tm
1-
2p

tm
1-
4p

tm
1C

1

tm
1C

2

tm
1C

4

tm
1C

8

tm
1C

16

tm
1C

24

N
um

be
r o

f P
ac

ke
t s

en
t

Se
co

nd
s s

pe
nt

 in
 o

ve
rc

lo
ck

N
um

be
r o

f c
oo

lin
g

ev
en

ts

Mapped Systems

Fig. 5. Average number of cooling (in red) and sensing events (in blue) in a
week for different configurations of the monitoring device applied on top of
the Arndale CPU. Seconds the CPU spent in overclock (represented by bars).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

50

100

150

200

250

tm
2-
no

nL
P

tm
2h tm
2

tm
2-
LF

tm
2-
2p

tm
2-
4p

tm
2C

1

tm
2C

2

tm
2C

4

tm
2C

8

tm
2C

16

N
um

be
r o

f P
ac

ke
t s

en
t

Se
co

nd
s s

pe
nt

 in
 o

ve
rc

lo
ck

N
um

be
r o

f c
oo

lin
g

ev
en

ts

Mapped Systems

Fig. 6. Average number of cooling and sensing events (in red and blue
respectively) in a week for different configurations of the monitoring device
applied on top of the Pandaboard CPU. Seconds the CPU spent in overclock
(represented by bars).

The simulation of one week of operation of 100 host
processors, and their corresponding TEGs, with 90 monitoring
devices configured to perform cooling and 10 configured for
monitoring, requires about 2 hours of computation time. To
simulate 2 monitoring system, one configured to perform the
Sense Task and the other configured to perform the Cool-
ing Task, for one week of operation, the simulator takes 105
seconds on average.

VI. CONCLUSION

We have proposed and discussed a methodology for the
design and evaluation of Cyber-Physical System. Our approach
consists in extending the traditional function/architecture co-
design principle to clearly distinguish the cyber from the
physical world. The two are then integrated again through
a double mapping step, which brings separate functional and

architectural models together into an overall system implemen-
tation. This methodology was applied to two case studies. The
case study of the audio guidance system is subject to real–
time constraints. The design of the data center monitoring and
cooling system is studied because its contribution to the data
center energy efficiency is subject to the power availability,
and because of the complex interactions that exists between
components. In both cases, the METROII framework allows
engineers to express the connections between the functional
world as formalized by control algorithms as well as the
events of the physical world to capture both aspects of the
design. The results obtained from the evaluation agree with
the implementations, and allowed us to choose the appropriate
platform for further experimentation. The same approach can
be adopted to express other types of interaction that can happen
in a CPS, and to explore various design solution independently
from the level of abstraction used for the system description.

ACKNOWLEDGMENT

This work was supported by the FP7 projects DALi grant
n. 288917, and GreenDataNet grant n. 609000.

REFERENCES

[1] I. Minakov and R. Passerone, “PASES: An energy-aware design space
exploration framework for wireless sensor networks,” Journal of Sys-
tems Architecture, vol. 59, no. 8, pp. 626–642, September 2013.

[2] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the 47th

Design Automation Conference. ACM, 2010, pp. 731–736.

[3] E. A. Lee, “Cyber-physical systems-are computing foundations ad-
equate,” in Position Paper for NSF Workshop On Cyber-Physical
Systems: Research Motivation, Techniques and Roadmap, vol. 2, 2006.

[4] H. Kim, L. Guo, E. Lee, and A. Sangiovanni Vincentelli, “A tool
integration approach for architectural exploration of aircraft electric
power systems,” in IEEE 1st International Conference on Cyber-
physical systems, Networks, and Applications, ser. CPSNA13, Taipei,
Taiwan, August 19–20, 2013.

[5] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “METROII: A design envi-
ronment for cyber-physical systems,” ACM Transactions on Embedded
Computing Systems, vol. 12, no. 1s, pp. 49:1–49:31, March 2013.

[6] A. Pinto, A. Bonivento, A. L. Sangiovanni-Vincentelli, R. Passerone,
and M. Sgroi, “System level design paradigms: Platform-based design
and communication synthesis,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 11, no. 3, pp. 537–563, July 2006.

[7] D. Densmore, R. Passerone, and A. L. Sangiovanni-Vincentelli, “A
platform-based taxonomy for ESL design,” IEEE Design and Test of
Computers, vol. 23, no. 5, pp. 359–374, May 2006.

[8] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proceedings
of the IEEE, vol. 103, no. 11, pp. 2104–2132, 2015.

[9] J. C. Jensen, D. H. Chang, and E. A. Lee, “A model-based design
methodology for cyber-physical systems,” in 7th International Wireless
Communications and Mobile Computing Conference, ser. IWCMC.
Istanbul, Turkey: IEEE, July 4–8, 2011, pp. 1666–1671.

[10] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, 2014. [Online]. Available:
http://ptolemy.org/books/Systems

[11] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. L. Sangiovanni-Vincentelli,
and E. A. Lee, “Metronomy: a function-architecture co-simulation
framework for timing verification of cyber-physical systems,” in Pro-
ceedings of the International Conference on Hardware/Software Code-
sign and System Synthesis, ser. CODES14, New Delhi, India, October
12–17, 2014, pp. 24:1–24:10.

[12] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler, “Execution
strategies for PTIDES, a programming model for distributed embedded
systems,” in 15th IEEE Real-Time and Embedded Technology and
Applications Symposium, ser. RTAS09, San Francisco, CA, United
States, April 13–16, 2009, pp. 77–86.

[13] A. Noyer, P. Iyenghar, E. Pulvermueller, J. Engelhardt, F. Pramme, and
G. Bikker, “A model-based workflow from specification until validation
of timing requirements in embedded software systems,” in Proceedings
of the 10th IEEE International Symposium on Industrial Embedded
Systems, ser. SIES15, Siegen, Germany, June 8–10, 2015, pp. 1–4.

[14] D. Henriksson and H. Elmqvist, “Cyber-physical systems modeling
and simulation with modelica,” in International Modelica Conference,
Modelica Association, vol. 9, 2011.

[15] Qi Zhu, “Optimizing mapping in system level design,” Ph.D. disserta-
tion, University of California, Berkeley, 2008.

[16] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis, “A
framework for automated distributed implementation of component-
based models,” Distributed Computing, vol. 25, no. 5, pp. 383–409,
2012.

[17] V. Sfyrla, G. Tsiligiannis, I. Safaka, M. Bozga, and J. Sifakis, “Com-
positional translation of Simulink models into synchronous BIP,” in
Proceedings of the 5th IEEE International Symposium on Industrial
Embedded Systems, Trento, Italy, July 9–11 2010.

[18] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber–physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[19] P. Joshi, S. K. Shukla, J. P. Talpin Inria, and H. Yu, “Mapping functional
behavior onto architectural model in a model driven embedded system
design,” in Proceedings of the 30th Annual ACM Symposium on Applied
Computing, ser. SAC15. Salamanca, Spain: ACM, April 13–17, 2015,
pp. 1624–1630.

[20] G. Ascia, V. Catania, and M. Palesi, “A GA-based design space
exploration framework for parameterized system-on-a-chip platforms,”
Evolutionary Computation, IEEE Transactions on, vol. 8, no. 4, pp.
329–346, 2004.

[21] Y. Yang, A. Pinto, A. Sangiovanni-Vincentelli, and Q. Zhu, “A design
flow for building automation and control systems,” in Proceedings of
the 31st IEEE Real-Time Systems Symposium, ser. RTSS10, San Diego,
CA, US, Nov. 30 – Dec. 3, 2010, pp. 105–116.

[22] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold et al., “The func-
tional mockup interface for tool independent exchange of simulation
models,” in Proceedings of the 8th International Modelica Conference.
Linköping University Press, 2011, pp. 105–114.

[23] L. Palopoli et al., “Navigation assistance and guidance of older adults
across complex public spaces: the dali approach,” Intelligent Service
Robotics, vol. 8, no. 2, pp. 77–92, 2015.

[24] L. Rizzon and R. Passerone, “Embedded soundscape rendering for the
visually impaired,” in Proceedings of the 8th IEEE International Sym-
posium on Industrial Embedded Systems, ser. SIES13, Porto, Portugal,
June 19–21, 2013, pp. 101–104.

[25] D. R. Begault, E. M. Wenzel, and M. R. Anderson, “Direct comparison
of the impact of head tracking, reverberation, and individualized head-
related transfer functions on the spatial perception of a virtual speech
source,” Journal of the Audio Engineering Society, vol. 49, no. 10, pp.
904–916, 2001.

[26] S. Munir, J. A. Stankovic, C.-J. M. Liang, and S. Lin, “Cyber physical
system challenges for human-in-the-loop control,” in 8th International
workshop on feedback computing. San Jose, CA, June 25, 2013.

[27] M. Rossi, L. Rizzon, M. Fait, R. Passerone, and D. Brunelli, “Energy
neutral wireless sensing for server farms monitoring,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 3,
pp. 324–334, September 2014.

[28] L. Rizzon, M. Rossi, R. Passerone, and D. Brunelli, “Wireless sensor
networks for environmental monitoring powered by microprocessors
heat dissipation,” in Proceedings of the 1st International Workshop
on Energy Neutral Sensing Systems, ser. ENSSys13, Rome, Italy,
November 14, 2013, pp. 8:1–8:6.

[29] ——, “Energy neutral hybrid cooling system for high performance
processors,” in Proceedings of the 5th International Green Computing
Conference, ser. IGCC14, Dallas, TX, November 3–5, 2014, pp. 1–6.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

