
A 32-neurons Slice for High Speed Handwriting Recognition

L.M. Reyneriy, F. Gregorettiy, B. Lazzeriniyy, R. Passeroney

y Dipartimento di Elettronica - Politecnico di Torino
yy Dipartimento di Ingegneria della Informazione - Universit�a di Pisa

Abstract

This article presents PAPRICA-3, a high-speed

32-neurons slice for real-time neural processing

of images. The system is a programmable par-

allel processor array with the instruction set

tailored to the emulation of neural networks

and to image processing. Dedicated hardware

features allow simultaneous image acquisition,

image processing and neural network emula-

tion. The 32-neurons slice is cascadable to

match the required size. The system is under

fabrication and has been simulated at a clock

frequency of 100 MHz (typical). Estimated

performance is up to 130 MCPS for percep-

trons. The system has been tested on the recog-

nition of handwritten check amounts, by inte-

grating neural network algorithms with context

analysis techniques.

1 Introduction

1 Handwriting recognition [1, 2, 4] is a major

issue in a wide range of application areas, in-

cluding mailing address interpretation, docu-

ment analysis, signature veri�cation [3] and, in

particular, bank check processing.

Besides the classical problems encountered

in reading machine-printed text, such as word

and character segmentation and recognition,

the domain of handwritten text recognition

has to deal with other problems such as the

apparent similarity of some characters with

each other, the unlimited variety of writing

styles and habits of di�erent writers, and also

the high variability of character shapes issued

by the same writer over time. Furthermore,

1This work has been partially supported by the EEC

MEPI initiative DIM-103 Handwritten Character Recog-

nition for Banking Documents.

the relatively low quality of the text image,

the unavoidable presence of background noise

and various kinds of distortions (for instance,

poorly written, degraded, or overlapping char-

acters) can make the recognition process even

more di�cult.

The amount of computations required for

a reliable recognition of handwritten text is

therefore very high, and real-time constraints

can only be satis�ed either by using very pow-

erful and expensive processors, or by develop-

ing ad-hoc processors tailored to the speci�c

task.

We have decided to develop a dedicated ar-

chitecture, to cope with tight cost constraints

and size requirements, and to tailor the recogni-

tion algorithms to the architecture capabilities.

In this paper we present PAPRICA-3, a mas-

sively parallel image processor with the instruc-

tion set dedicated to the emulation of several

types of neural networks (such as perceptrons,

self-organizing maps, cellular networks). The

main di�erence with respect to other hardware

neural network implementations resides in its

complete programmability, therefore the sys-

tem can also accomplish other tasks such as im-

age processing, image acquisition, image com-

pression, symbolic computation, etc.

The proposed VLSI device has been designed

to be used in a minimum-size con�guration

consisting of 1 chip, 1 external RAM, plus

some glue logic to interface with a host proces-

sor. The device has been inserted into a com-

plete system for high-speed recognition of the

amount on banking checks, which mixes image

processing algorithms, neural networks and a

context analysis subsystem.

The VLSI device has been designed in par-

allel with the development of the software, so

that the hardware and software designs have in-




uenced each other very much. That resulted

into an e�cient though 
exible implementation

for a wide class of applications.

2 Hardware Description

The VLSI chip of PAPRICA-3 has been de-

signed bearing in mind the following con-

straints/requirements:

� cascadability: the chip implements a slice

of 32 neurons (namely, all that could �t in

100 mm2, but additional neurons can be

cascaded with nothing but one RAM chip

per each additional PAPRICA-3 chip,

� one Processing Element per each neuron,

to have the highest e�ciency,

� as simple as possible processors, namely

1-bit pro-

cessing elements; operations with higher

resolution can be computed by means of a

bit-serial approach; this provided the best

complexity/
exibility/performance com-

promise among all the architectures which

were analyzed,

� provisions for both image processing,

mathematical morphology [6], neural net-

work emulations, image acquisition, etc.

� easy interface with a host processor, to im-

prove the overall functionality of the sys-

tem,

� the highest degree of programmability, al-

though keeping the hardware complexity

at a low level; this has been achieved

by letting the host processor (instead of

PAPRICA-3) perform a number of opera-

tions which normally occur at a lower rate,

� both \local" and \global" instructions; the

former are used to implement a sort of

neighborhood, while the latter are avail-

able to compute global operations, such

as summations, maxima, minima, winner-

takes-all, etc.

� provisions for simple handling of external

look-up tables (either external RAM or

ROM devices),

� a set of external \status registers" where

PAPRICA-3 can accumulate neuron out-

puts which can be read (or written into)

in parallel by the host processor,

� a set of direct binary I/Os (6+6, in the

prototype) channels by means of which

PAPRICA-3 can either interrupt the host

or activate stepper motors, CCD cameras,

etc.,

The only (undesirable) limitation which has

been added is that a maximum of 256 neu-

rons per aggregate are available (although the

chip can sequentially emulate several aggre-

gates, with minor limitations). This limitation

applies only to perceptrons, as limitations for

self-organizing maps are much less stringent.

2.1 Internal Architecture

PAPRICA-3 is the latest version of a previous

hardware designed at the Politecnico di Torino.

As shown in �g. 1, the kernel of PAPRICA-3 is

a linear array of 32 identical 1-bit Processing

Elements (PEs) connected to an image mem-

ory via a bidirectional 32-bit wide bus.

The image memory is organized into address-

able words whose length matches that of the

processor array. Each word contains data rela-

tive to one binary pixel plane (also called layer)

of one line of an image (32 bits wide), and a sin-

gle cycle is needed to load an entire line of data

into the PE's internal registers.

Data can be transferred into the internal

registers of each PE, processed and explicitly

stored back into memory according to a RISC-

like processing paradigm.

When executing a program, the correspon-

dence between line number, pixel plane of a

given image, and absolute word address is com-

puted in hardware by means of data structures,

named Image Descriptors, stored in the Con-

trol Unit. An Image Descriptor is a memory

pointer consisting of three parts: a base ad-

dress and two line counters which can be reset

or increased by a speci�ed amount under pro-

gram control. Two additional counters can be

used to modify program 
ow; instructions are

provided to preset, increase and test them.



Q

In
te

rn
al

 R
eg

is
te

rs

N

S

E

W

CONTROL

UNIT

WCS

k lines of binary

image plane 0

8-bit serial input
from camera

serial output
to monitor

PE1

PE2

PE3

PE4

PE0

IM
AGE M

EM
ORY

VIF

PE63

PE62

PE61

H
O

ST

M
O

R
L

O
R

Processing Elements

Figure 1: General architecture of the Processor Array.

2.2 Instruction set

Each PE is composed of a Register File and a

1-bit Execution Unit, and processes one pixel

of each line. The core of the instruction set is

based on morphological operators [6]: the re-

sult of an operation depends, for each proces-

sor, on the value of pixels in a given neighbor-

hood (5 � 5, as sketched by the grey squares

in �g. 1). Data from E, EE, W and WW

directions (where EE and WW denote pixels

two bits apart in E and W directions, respec-

tively) may be obtained by direct connection

with neighboring PEs, while all other directions

correspond to data of previous lines (N, NE,

NW, NN) or of subsequent lines (S, SE, SW,

SS).

To obtain the outlined neighborhood, a

number of internal registers (16 per each

PE, at present), called Morphological Regis-

ters (MOR), have a structure which is more

complex than that of a simple memory cell,

and are actually composed of �ve 1-bit cells

with a S!N shift register connection. When

a load operation from memory is performed,

all data are shifted northwards by one posi-

tion and the south-most position is taken by

the new line from memory. In this way, data

from a 5� 5 neighborhood are available inside

the array for each PE, at the expense of a two-

line latency. A second set of registers (48 per

each PE, at present), called Logical Registers

(LOR), is only 1-bit wide.

The instruction set includes also logical and

algebraic operations (AND, OR, NOT, EXOR,

etc.), which act on either Logical Registers

or the central bit of Morphological Registers.

These operations can also be used to match in-

put patterns against prede�ned templates, or

to compute algebraic operations such as sums,

di�erences, multiplications, etc. As PEs are

1-bit computing elements, all algebraic oper-

ations have to be computed using a bit-serial

approach.

An important characteristic of the system is

the integration of a serial-to-parallel I/O de-

vice, called Video InterFace (VIF), which can

be connected to a linear CCD array for di-

rect image input (and optionally to a moni-

tor, for direct image output). The interface is

composed of two 8-bit, 32 stages shift registers

which serially and asynchronously load/store

a new line of the input/output image during

the processing of the previous/next line. Two

instructions activate the bidirectional transfer

between the PE's internal registers and the

VIF, ensuring also proper synchronization with

the CCD and the monitor.

Image processing algorithms consist of se-

quences of low level steps, such as �lters, convo-

lutions, etc., to be performed line by line over

the whole image. This means that the same

block of instructions often has to be repeated

many times, and instruction fetching from an

external memory can lead to quite high over-



heads. Hence we chose to pre-load each block

of instructions into an internal memory, named

Writable Control Store (WCS, 1K words � 32

bits), and to fetch instructions from there. The

performance of a fast cache with a hit ratio

close to 1 can thus be obtained, at a fraction of

the cost and complexity.

2.3 Inter-processor communication

Two inter-processor communication mecha-

nisms are also available to exchange informa-

tion among PEs which are not directly con-

nected. The �rst one is a Status Evaluation

Network to which each processor sends the 1-

bit content of one of its registers and which pro-

vides a Status Word divided into two sub�elds.

The �rst one is composed of two global 
ags,

named SET and RESET, which are true when

the contents of the speci�ed registers are all `1's

or all `0's, respectively. The second one is the

COUNT �eld which is set equal to the number

of processing elements in which the content of

the speci�ed register is `1'.

This inter-processor communication mecha-

nism can be used to compute global functions

such as maxima, minima (e.g., for emulation of

fuzzy systems), logical OR and AND of boolean

neurons, neighborhood communications, neu-

ron summations in perceptrons, external look-

up tables, winner-takes-all, seed propagation

algorithms, etc.

This global information may also be accu-

mulated and stored in an external Status Reg-

ister File and used for further processing, or

to conditionally modify program 
ow. Status

Registers can also be read by the host proces-

sor. For instance, Status Registers have been

used in the example of section 3 to implement

a neural network, by computing the degree of

matching between an image and a set of tem-

plates (weight and center matrices).

The second communication mechanism is

an Inter-processor Communication Network,

which allows global and multiple communica-

tions among clusters of PEs. The topology of

the communication network may be varied at

run-time: each PE controls a switch that en-

ables or disables the connection with one of its

adjacent processors. The PEs may thus be dy-

namically grouped into clusters, and each PE

can broadcast a register value to the whole

cluster with a single instruction. This fea-

ture can be very useful in algorithms involving

seed-propagation techniques, in the emulation

of pyramidal (hierarchical) processing and for

cellular neural networks or for local communi-

cation (short range neighborhood).

A Host Interface allows the host processor to

access the WCS, and a few internal con�gura-

tion registers. The access is through a conven-

tional 32-bit data bus with associated address

and control lines.

Some additional control and status bits are

used to exchange information with the host

processor: these include a START input line

and a RUNNING output line, plus other six in-

put and six output lines called Host Communi-

cation Channels (HCC). HCC input lines can

be tested during program execution to modify

program 
ow, while HCC output lines can be

used as 
ags to signal certain conditions to the

host processor (for instance, interrupts).

The example described in section 3 uses a

system composed of two PAPRICA-3 chips

plus two fast static RAMs providing a

128K�32 bits Image Memory, 256 Status Reg-

isters, a host processor, and an interface with

the CCD imager. The system operates with

a clock frequency of up to 100MHz, providing

6.4 Gpixops/s peak throughput. The system

is internally pipelined with a complex pipeline

structure which provides an average perfor-

mance of 3.5 Gpixops/s.

3 An Application Example

The aim of this work was to recognize real-

world checks, where handwriting is assumed to

be unboxed and usually unsegmented, so that

characters in a word may touch or even over-

lap. Fortunately, the amount on Italian checks

consists of only one word, thus no phrase seg-

mentation is required. The amout is also writ-

ten twice: the legal amount (namely, the literal

one), and the courtesy amount (namely, the nu-

merical one).

The two �elds are placed in well-known areas

of the check, and an approximate localization

of these two areas can be obtained from the

information contained in the code-line printed



CLUSTERINGNEURALPREPROCESS.

PREPROCESS. NEURAL CLUSTERING

NEURALPREPROCESS.

CONTEXT

SCANNER

A
m

ou
nt

Courtesy

Legal

Code-line
Bit-map

Figure 2: Block diagram of the handwriting

recognizer.

at the bottom of the check (assuming that each

bank has its own check layout, as is usually the

case).

Experimental results have shown that an ac-

ceptable recognition performance for a given

application can only be achieved by using con-

textual information (namely, redundancy) [2].

For instance, recognition errors can be detected

and corrected by means of a dictionary. In the

speci�c application, redundancy is present both

in the exact correspondence that exists between

the legal and the courtesy amounts, and in the

very limited size of the dictionary to be used

(the combinations of about 30 words, for Ital-

ian checks); also, it is interesting to note that

only 15 out of the 26 letters of the English al-

phabet are used in such a dictionary.

The proposed system integrates �ve subsys-

tems which are in cascade, as shown in �g. 2:

� a mechanical and optical scanner, to ac-

quire a bit-map image of the check;

� an image preprocessor for preliminary �l-

tering, scaling, and thresholding of the im-

age;

� a neural subsystem, based on an ensemble

of neural networks, which detect character

centers and provide hypotheses of recogni-

tion for each detected character;

� a clustering subsystem which improves the

performance of the centering detector of

the neural subsystem;

� a context analysis subsystem based on a

lexical and syntactic analyzer.

Legal and courtesy amounts are preprocessed

and recognized independently (at the character

level) and then the two streams of information

are sent to the common context analysis subsys-

tem, which exploits all the mutual redundancy.

REDUCTION
FEATURE

BLACK/WHITE

WINDOW
EXTRACTOR FILTER BRIGHTNESS THRESHOLD

ZOOMCOMPRESS

SCANNER

NEURAL

From

To

128x500 (128x1500) pixels GRAY SCALE

THINNING

BASELINEFEATURES

Figure 3: Block diagram of the image prepro-

cessor.

In practice, also the code-line �eld located

at the bottom of the checks is scanned and

processed, to obtain general information about

the bank and, indirectly, about check layout.

Recognition of this �eld is easy, as it is printed

on a light background and its graphical quality

is usually very high. It is therefore not dis-

cussed here.

The neural and clustering subsystems carry

out a pre-recognition of the individual charac-

ters, based on an integrated segmentation and

recognition technique. In correspondence to

each character of a handwritten word, the neu-

ral subsystem produces a list of \candidate"

characters, instead of just one as in other rec-

ognizers.

The context analysis subsystem combines the

candidate characters and, guided by the mu-

tual redundancy present in the legal and cour-

tesy amounts, produces hypotheses about the

amount so as to correct errors made by the

neural subsystem. The error rate of the neu-

ral subsystem alone is high, but this is strongly

reduced by the context analysis subsystem. At

the end, the system generates a list of possi-

ble amounts, which are sorted according to a

decreasing recognition con�dence.

The image preprocessor and the neural sub-

system are executed on one or more PAPRICA-

3 chips (two, in the prototype), while the clus-

tering subsystem and the context analysis sub-

system are executed by an external host pro-

cessor (a Pentium, in the prototype), which can

implement these types of algorithms more e�-

ciently.

3.1 Image preprocessing

The �rst preprocessing subsystem is the image

preprocessor shown in �g. 3, which consists of

the blocks described below.



a)

b)

c)

d)

e)

f)

g)

h)

i)

Figure 4: Preprocessing steps of handwritten

images (an \easy" example): a) original image,

200 dpi, 16 gray levels; b) low-pass �ltered im-

age; c) compensated for brightness; d) thresh-

olded image; e) spot noise removal; f) thinned,

after 6 steps; g) �nding baseline (at the left side

of the image); h) features detection (features

are tagged by small crosses); i) compressed.

1. The WINDOW EXTRACTOR acquires the in-

put image from the SCANNER, at a reso-

lution of approximately 200 dpi, 16 gray

levels. The scanner is an 876-pixel CCD

line camera scanned mechanically over the

image, from right to left (due to practi-

cal reasons), at a speed of 2m/s (which

is equivalent to about 700 characters/s).

Image size is about 876 � 1500 pixels, al-

though character recognition takes place

in two smaller areas of known coordinates

(see �g. 4.a).

Image acquisition is performed by the VIF,

in parallel with processing, and a whole

image line is acquired in just one clock cy-

cle.

2. The FILTER block computes a simple low-

pass �lter with a 3 � 3 pixel kernel (see

�g. 4.b).

3. The BRIGHTNESS block compensates for

the non-uniform detector sensitivity and

paper color. A pixel-wise adaptive algo-

rithm shifts the white level to a pre-de�ned

value (see �g. 4.c).

4. The THRESHOLD block converts the gray-

scale image, after compensation, into a

B/W image; conversion takes place by

comparing the brightness of each pixel

with an adaptive threshold which is a func-

tion of both the white and the black levell

(see �g. 4.d). From this point onwards,

only the B/W image is processed.

5. The THINNING block reduces the width of

all the strokes to 1 pixel, as shown in

�g. 4.f. Thinning is a morphological op-

erator [6] which reduces the width of lines,

while preserving stroke connectivity.

6. The BASELINE block detects the baseline of

the handwritten text, which is a horizon-

tal stripe intersecting the text in a known

position (see �g. 4.g, left side). Unlike the

other steps of preprocessing, the baseline

cannot be detected only by means of local

algorithms (namely, algorithms with a lim-

ited neighborhood), as it is a global param-

eter of the entire image. It is computed

throughout the scan of the whole image,

therefore is available only at the end of the

image.

7. The FEATURES block detects and extracts

from the image a set of 12 stroke fea-

tures, which are helpful for further char-

acter recognition. As shown in �g. 4.h

(crosses), this block detects the four left,

right, top and bottom concavities, and the

terminal strokes in the eight main direc-

tions.

Features are helpful both for center lo-

calization and for character recognition,

as their types and positions identify al-

most univocally the character to be rec-

ognized. Features are not used alone, but

together with the neural recognizer to im-

prove recognition reliability, as described

in section 3.2.



8. The FEATURE REDUCTION (see �g. 4.h),

the ZOOM and the COMPRESS (see �g. 4.i)

blocks reduce, respectively, the number

of features (by removing both redundant

and useless ones), the vertical size of the

manuscript (to approximately 25-30 pix-

els), and the overall size of the manuscript

(by a linear factor of 2), by means of

ad-hoc topological transformations which

do not preserve image shape, although

they do preserve its connectivity. These

transformations depend on the features de-

tected by the FEATURES block, as areas

containing fewer features are compressed

more than others containing more fea-

tures.

After all the preprocessing steps, the B/W im-

age is ready for the following neural recogni-

tion steps (see section 3.2). The image was re-

duced both in size (down to 14� 18 (=252) or

12� 21 (=252) pixels for the courtesy and the

legal amounts, respectively), in number of gray

levels (2), and in stroke thickness (1 pixel), and

noise was removed.

Each character �ts into 256 bits, which are

then reorganized as eight adjacent processor

memory words (8 � 32 bits), in order to op-

timize the performance of the neural detector.

Table 1 lists execution times of individual

blocks.

3.2 Neural subsystem

The second subsystem is a hybrid neural net-

work recognizer. Most handwriting recog-

nizers [1]-[2] require two consecutive steps,

namely:

1. character segmentation; each word is

�rst segmented into individual characters.

Each character should contain all and only

the strokes of the desired character, while

strokes of adjacent characters should be re-

moved completely.

2. character recognition; each segmented

character is recognized. In the literature

there is an enormous amount of recogni-

tion algorithms [1, 2, 4], based on di�er-

ent techniques. We have considered most

of them and analyzed their applicability

a) b)

Figure 5: Problems arising in handwriting seg-

mentation: a) di�culties in segmentation; b)

ambiguities and pseudo-characters.

to the chosen hardware platform, with the

constraint of high-speed real-time process-

ing.

In the end we chose a hybrid approach,

which mixes feature-based and neural

recognition, as described in detail in sec-

tion 3.2.3. At this stage of processing, con-

text is not yet considered, as it is later used

by the context analysis subsystem.

3.2.1 Centering detector

Segmentation is quite a di�cult task, especially

for handwritten texts, as there is no clear sepa-

ration between consecutive characters (see ex-

amples in �g. 5). Furthermore the same se-

quence of strokes can often be interpreted in

di�erent ways. For instance, the strokes shown

in �g. 5.b can either be interpreted (also by hu-

man readers) as \n mi", \nnn", \nnu", \n ini",

\vvv", \vwi", etc.

It is obvious that an erroneous segmenta-

tion process sends wrong data to the charac-

ter recognition step. Therefore it may add a

number of unwanted artifacts, and it also in-

creases the recognition error rate, as charac-

ters not properly segmented are mostly misin-

terpreted.

For all the reasons described above, we chose

a slightly di�erent approach for segmentation.

We decided to use an integrated segmentation

and recognition (ISR) approach, in which char-

acter segmentation is tightly integrated with

character recognition, and no preliminary seg-

mentation is required.

In detail, the CENTERING DETECTOR scans the

preprocessed and compressed image from right

to left (for mechanical reasons) and extracts a

sliding window of �xed size (either 14 � 18 or

12 � 21), namely one window for each prepro-

cessed line (see section 3.1). Note that win-

dows without strokes are immediately skipped,



Figure 6: Center positions found by the

two center detectors: neural (solid lines) and

feature-based (dashed lines).

as they contain no useful information. Thanks

to the instruction set available, lines can be

skipped in as low as one clock cycle. Each win-

dow is associated with its window coordinate x,

which is the distance in pixels of the window's

geometrical center from the right hand side of

the check.

The CENTERING DETECTOR then computes,

for each new window coordinate, two centering

functions Cn(x) and Cf (x), which are computed

by two independent blocks, respectively:

1. a neural detector: a three-layer WRBF +

MLP network [4, 5], similar to the one

shown in �g. 7, with 252 inputs, 30 and

3 hidden units and 1 output unit (for a

total of 7590 centers and weights), trained

to detect character centers. Training is su-

pervised and the training set is made up

of a large number of patterns obtained by

manual classi�cation, containing charac-

ters which are either centered or not, each

one associated with a target value which is

function of its \centering".

2. a feature-based detector: this computes the

centering function according to the rela-

tive position, type and quantity of the fea-

tures detected by the FEATURES block.

The centering functions contain local maxima,

which roughly coincide with the location of

character centers, as shown in �g. 6. Center-

ing functions have more maxima than character

centers, but spurious centers are easily removed

by the clustering subsystem (see section 3.3).

3.2.2 Pseudo-characters

During the design of the system, we have been

faced with the opportunity to recognize a set of

so-called pseudo-characters, which mostly co-

incide with traditional characters, except for

some di�erences which have been explicitly in-

troduced to improve recognition performance.

The idea behind the concept of pseudo-

characters results from the analysis of the prob-

lems arising in the identi�cation of character

centers. For instance, the ambiguous trace in

�g. 5.b can be recognized more easily and with

less ambiguity, if it is recognized as a sequence

of six pseudo-characters .

Most \m" and \n" consist of the sequence

of three (respectively, two) pseudo-characters

. It is obvious that, since characters are not

recognized in their original forms, words must

be translated according to the chosen set of

pseudo-characters. This means that the dic-

tionary used by the context analysis subsystem

has to be preprocessed. For the example in

�g. 5.b, the dictionary will contain the word \U

l. . . ", instead of \Un mil. . . "2 (with

an appropriate coding of non-ASCII pseudo-

characters).

Furthermore all \similar" characters (such as

lower case \a"s and \o"s) are identi�ed by the

same pseudo-characters.

3.2.3 Character recognizer

The CHARACTER RECOGNIZER recognizes each

individual pseudo-character, using a hybrid ap-

proach, which mixes feature-based [3] and neu-

ral [1] recognizers.

First of all, features extracted by the

FEATURES block are used to identify all easy-to-

recognize characters. For instance, most \0",

\6", \9" digits (but not only these) are writ-

ten well enough that a straightforward and fast

analysis of the main features and strokes is suf-

�cient to recognize those characters with a high

accuracy.

Other characters are more di�cult to rec-

ognize using only features; for instance, digits

\4", \7" and some types of \1" can be recog-

nized more easily using neural techniques. All

characters which have not been recognized us-

ing features are isolated and passed to a neu-

ral network trained by an appropriate training

set. This section describes only the neural rec-

ognizer, as it is the most interesting block in

2the �rst �ve letters of the Italian equivalent of \one

million"



the system.

The CHARACTER RECOGNIZER is \triggered"

for each pseudo-character center detected by

the CENTERING DETECTOR. As shown in table 1,

the CHARACTER RECOGNIZER is the slowest piece

of code, due to the large number of synaptic

weights involved. Fortunately it is run at a rel-

atively low rate, namely every 15 lines, in the

average, therefore its e�ects on computing time

are limited.

As shown in �g. 7 the neural recognizer con-

sists of the cascade of two neural networks:

1. For the courtesy amount, a two-layer

WRBF network [4] with 252 inputs, 100

hidden and 20 output units (for a total of

27.400 centers and weights), one for each

pseudo-character to be recognized (digits

0-9, plus a few delimiters). For the legal

amount, a two-layer WRBF network with

252 inputs, 230 hidden and 46 output units

(for a total of 63.340 centers and weights),

associated with 15 upper and lower case

letters (a, c, d, e, i, l, m, n, o, q, r, s, t, u,

v, as these are all and the only characters

required to write any number in Italian),

and a set of additional pseudo-characters.

This network is initialized as described

in [4], without any further training. The

training set used to initialize the network

was obtained by manually classifying a

number of examples.

2. A one layer MLP [5], with 20 inputs and

20 outputs (or 46 and 46, for the legal

amount), which is trained to improve the

quality of the output of the neural recog-

nizer. The network was trained using an

adaptive delta rule [5].

For each coordinate xk, the output of the

CHARACTER RECOGNIZER is a list

L(xk) = f(c1; e
1

r(xk)); (c2; e
2

r(xk)); : : : ;

(cj ; e
j
r(xk)); : : :g (1)

of recognition con�dences ejr(xk) associated

with each pseudo-character cj . The list is then

sorted according to decreasing values of ejr.

As said before, the CENTERING DETECTOR

detects more centers than there are pseudo-

characters. This is not a bug, as it helps

Figure 7: Three-layer neural network block for

character recognition.

the CHARACTER RECOGNIZER to improve its per-

formance, since the neural network is allowed

to \see" the same pseudo-character more than

once, from di�erent \points of view". The ad-

ditional centers detected are then easily �ltered

by the clustering subsystem.

3.3 Clustering subsystem

The clustering subsystem aims to group the

centers detected by the CENTERING DETECTOR

into as many clusters as there are pseudo-

characters in the courtesy (or legal) amount.

To this aim, some statistics are calculated

on the training set, including the average intra

cluster distance, the average inter cluster dis-

tance, the average number of centers per clus-

ter, and the average pseudo-character width.

First, we build three triangular basic cen-

tering functions, for each center xk. The

three functions are associated with, respec-

tively, the centering con�dences Cn(xk) and

Cf (xk), and the highest recognition con�dence

of the pseudo-characters in the list L(xk). Then

we de�ne a global centering function which

sums the three basic functions and appears as

a sequence of peaks (local maxima) correspond-

ing to centers, and valleys (local minima).

Using the collected statistics, the peaks are

grouped into clusters. Each cluster is repre-

sented by its highest central peak, named main

peak.

Whenever multiple hypotheses appear rea-

sonable, all of them are taken into account, so

that the clustering subsystem actually gener-

ates a set of hypotheses of clustering.



PAPRICA-3 Pentium 90 MHz Sparc 10

worst case morphol. ad-hoc morphol.

Image preprocessor �s/line ms/check �s/line �s/line �s/line

WINDOW EXTRACTOR + FILTER 1.38 2.76 1,700 705 1,370

BRIGHTNESS 2.95 5.90 1,970 320 1,660

THRESHOLD 0.91 1.82 830 255 570

THINNING 8.34 16.7 7,390 - 7,850

BASELINE 4.24 8.28 4,320 - 3,890

FEATURES 3.05 6.10 9,490 - 10,430

ZOOM 2.24 4.48 820 160 760

COMPRESS
y 30.8 61.6 21,350 - 24,950

OTHER (VARIOUS) 3.25 6.50 3,330 - 5,020

TOTAL PREPROCESSING 57.2 114 51,200 - 56,500

PAPRICA-3 Pentium 90 MHz

worst case morphol. ad-hoc

Neural subsystem ms/psd-char ms/check ms/psd-char ms/check

CENTERING (FEATURES) 0.40 19.2 1,440 -

RECOGNIZER (FEATURES)
yy 3.60 172.8 12,960 -

RECOGNIZER (NEURAL)
yy 1.68 80.7 - 13,440

TOTAL RECOGNIZER 5,680 272.7 27,840

Table 1: Average execution times of the various processing steps (with 64 PEs at 66 MHz), while

processing the courtesy amount. y
COMPRESS acts on an image zoomed by an average factor 3.2,

therefore processing times are scaled accordingly. yy
CHARACTER RECOGNIZER acts a few times

per each pseudo-character, namely once every 15 lines on average.

3.4 Context analysis subsystem

For each hypothesis of clustering of the cour-

tesy amount, starting from the one with the

highest con�dence, we produce a list of hypo-

thetical courtesy amounts. These amounts are

obtained by generating all the possible com-

binations of the pseudo-characters associated

with each main peak.

The amounts are then sorted according to de-

creasing values of the amount con�dence, which

is calculated in terms of the recognition con�-

dences of the component pseudo-characters.

Similar considerations also apply to legal

amounts.

Each hypothetical courtesy amount is then

used to divide the legal amount into smaller

strings which are easier to recognize. Based on

the number of digits in the courtesy amount,

the presence of characteristic tokens can be as-

sumed in the legal amount. For example, if the

number of digits is greater than or equal to 4,

the legal amount includes the token \mil" (for

either \mila" or \mille"3).

The tokens subdivide the legal string into

substrings, which are in their turn divided into

3Italian for \thousand"

lower-level substrings, and so on.

In practice, the system searches for patterns,

i.e., sequences of pseudo-characters in the legal

string which correspond to the translation of

the searched tokens.

As the translation of characters into pseudo-

characters is not univocal, each characteristic

token may have more than one equivalent pat-

tern. A token belief is computed in terms of

the recognition con�dences associated with the

pseudo-characters of the patterns. The pattern

with the highest belief is assumed to match the

searched token.

When all the tokens in the legal string have

been detected, the amount of the check is iden-

ti�ed.

The identi�ed amount is associated with an

amount con�dence, which is de�ned as the av-

erage of the token beliefs of its component to-

kens. Actually, as several hypotheses are con-

sidered, more than one check amount is iden-

ti�ed. These amounts are sorted according to

descending amount con�dences.

The performance of the system is therefore

evaluated as the percentage of amounts cor-

rectly recognized in the �rst k (1 � k � 4)

positions.



Neural Network internal weights external weights

MCPS MCUPS MCPS MCUPS

MLP, 32� n inputs, 1 bit/input, 8 bits/weight 130 60 90 50

MLP, 32�n inputs, 4 bit/input, 16 bits/weight,

adaptive learning rate

33 19 30 16

Kohonen, 1�30 neurons, 8 inputs, 8 bits/input,

1� 5 neighborhood

110 60

Kohonen, 30�30 neurons, 8 inputs, 8 bits/input,

5� 5 neighborhood

90 49

Table 2: Performance of the PAPRICA-3 system, in single-chip con�guration (namely, 32 PEs),

running at 100 MHz, with either internal weights (max. 60 bits/neuron) or external weights (no

size limitation).

4 Performance Evaluation

Table 1 lists the execution times of the various

processing blocks for the example presented in

section 3; �gures are given for a system with

64 PEs (namely, 2 chips), running at 66 MHz.

All the programs were also tested on both a

Pentium at 90 MHz and a Sparc Station 10, us-

ing the same algorithms based on mathematical

morphology, which are well suited to the spe-

ci�c problems of bitmap processing and char-

acter recognition. Some programs (FILTER,

BRIGHTNESS, THRESHOLD, ZOOM, CENTERING

DETECTOR, CHARACTER RECOGNIZER) could be

implemented more e�ciently on a sequential

computer using more traditional methods (ad-

hoc programs). These were also implemented

on the Pentium and their performance listed in

table 1 for comparison.

The performance of PAPRICA-3 is 100 to

1,1000 times faster than that of Pentium and

Sparc Station, for almost all the programs con-

sidered.

Table 2 lists the execution times of a single-

chip PAPRICA-3 system running at 100 MHz,

for other well-known neural algorithms such as

Perceptrons (MLP) and Kohonen maps [5]. As

all mathematical operations are implemented

in a bit-serial fashion, system performance de-

pend heavily on input and weight resolution.

Furthermore, the best performance can be ob-

tained when the number of either neurons or

inputs match the number of PEs.

References

[1] R.M. Bozinovic and S.N. Srihari, \O�-line

cursive script word recognition", IEEE

Trans. on PAMI, vol. 11, Jan. 1989, pp.

68-83.

[2] L. Evett, C. Wells, F. Keenan, T. Rose and

R. Whitrow, \Using linguistic informa-

tion to aid handwriting recognition", Proc.

Int. Workshop on Frontiers in Handwrit-

ing Recognition, Sept. 1991, pp. 303-311.

[3] H.L. Teulings, "Invariant handwriting fea-

tures useful in cursive-script recognition",

in Fundamentals in Handwriting Recog-

nition, S. Impedovo ed., Springer-Verlag,

Berlin, 1993, pp. 179-198.

[4] L.M. Reyneri, \ Weighted Radial Basis

Functions for Improved Pattern Recogni-

tion and Signal Processing", Neural Pro-

cessing Letters, May 1995, pp. 2-6.

[5] S. Haykin, \Neural Networks: A Compre-

hensive Foundation", Mc Millan College

Publishing Company, New York, 1994.

[6] J. Serra, \Image Analysis and Mathemat-

ical Morphology", Academic Press, Lon-

don, 1992.


