
Fundamenta Informaticae 108 (2011) 119–149 119

DOI 10.3233/FI-2011-416

IOS Press

A Modal Interface Theory for Component-based Design∗

Jean-Baptiste Raclet†

INRIA Grenoble - Rĥones-Alpes, France
Jean-Baptiste.Raclet@irit.fr

Eric Badouel
INRIA/IRISA Rennes, France
eric.badouel@irisa.fr

Albert Benveniste
INRIA/IRISA Rennes, France
albert.benveniste@irisa.fr

Benoı̂t Caillaud
INRIA/IRISA Rennes, France
benoit.caillaud@irisa.fr

Axel Legay
INRIA/IRISA Rennes, France
axel.legay@irisa.fr

Roberto Passerone
University of Trento, Italy
roberto.passerone@unitn.it

Abstract. This paper presents themodal interfacetheory, a unification ofinterface automataand
modal specifications, two radically dissimilar models for interface theories. Interface automata is a
game-based model, which allows the designer to express assumptions on the environment and which
uses an optimistic view of composition:two components can be composed if there is an environment
where they can work together. Modal specifications are a language theoretic account of a fragment
of the modal mu-calculus logic with a rich composition algebra which meets certain methodological
requirements but which does not allow the environment and the component to be distinguished.
The present paper contributes a more thorough unification ofthe two theories by correcting a first
attempt in this direction by Larsen et al., drawing a complete picture of the modal interface algebra,
and pushing the comparison between interface automata, modal automata and modal interfaces even
further.

The work reported here is based on earlier work presented in [41] and [42].

Keywords: Component-based System, Compositional Reasoning, Interface Theory, Interface Au-
tomata, Modal Specifications.

∗This work was funded in part by the European IP-SPEEDS project number 033471 and the European STREP-COMBEST
project number 215543.
†Address for correspondence: INRIA Grenoble - Rhônes-Alpes, France

120 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

1. Introduction

Nowadays, systems are tremendously large and complex, resulting from the assembling of several com-
ponents. These many components are in general designed by teams, working independently but with a
common agreement on what the interface of each component should be. As a consequence, the study of
mathematical foundations that allow designers to reason atthe abstract level of interfaces is a very active
research area. According to our understanding of industrial needs (see [5] for a discussion), an interface
theory is at least subject to the following requirements:

1. Satisfaction and satisfiability are decidable.Interfaces should be seen as specifications whose
models are its possible implementations. It should thus be decidable whether an interface admits
an implementation and whether a given component implementsa given interface.

2. Refinement entails substitutability.Refinement allows one to replace, in any context, an interface
by a more detailed version of it. Refinement should entail substitutability of interface implementa-
tions, meaning that every implementation satisfying a refinement also satisfies the larger interface.
For the sake of controlling design complexity, it is desirable to be able to decide whether there
exists an interface that refines two different interfaces. This is calledshared refinement[22]. In
many situations, we are looking for thegreatest lower bound, i.e., the shared refinement that could
be refined by any other shared refinement.

3. Interfaces are closed under conjunction.Large systems are concurrently developed for their dif-
ferentaspectsor viewpointsby different teams using different frameworks and tools. Examples of
such aspects include the functional aspect, the safety or reliability aspect, the timing aspect. Each
of these aspects requires specific frameworks and tools for their analysis and design. Yet, they are
not totally independent but rather interact. The issue of dealing with multiple aspects or multiple
viewpoints is thus essential. This implies that several introductions are associated with a same sys-
tem, sub-system, or component, namely (at least) one per viewpoint. These introductions are to be
interpreted in a conjunctive way. The need for supporting conjunctive introductions also follows
from the current practice in which early requirement capture relies on Doors or even Excel sheets
collecting many individual requirements. The latter typically consist of English text, semi-formal
languages whose sentences are translatable into predefinedbehavioral patterns, or even graphical
scenario languages.

4. Composition supports independent design.The interface theory should also provide a combination
operator on interfaces, reflecting the standard composition of implementations by, e.g., parallel
product. This operation must be associative and commutative to guarantee independence in the
development. Depending on the model, a notion of compatibility for composition may also be
considered, i.e., there can be cases where two systems cannot be composed.

5. Interface quotient supports incremental design and component reuse.A quotienting operation,
dual to composition is crucial to perform incremental design. Consider a desired global specifica-
tion and the specification of a preexisting component; the quotient specification describes the part
of the global specification that remains to be implemented.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 121

6. A verification procedure. In addition to the fact that an interface already represents a set of prop-
erties, one should be able to verify if an interface satisfiesa set of requirements written in some
specification language.

7. Encompassing interfaces with dissimilar alphabets.Complex systems are built by combining
subsystems possessing dissimilar alphabets for referencing ports and variables. It is thus important
to properly handle those different alphabets when combining interfaces.

Building good interface theories has been the subject of intensive studies (see, e.g., [29, 20, 11, 23,
25, 18, 21]). In this paper we will concentrate on two models:(1) interface automata[20] and (2)modal
specifications[30]. Interface automata is a game-based variation of input/output automata which deals
with open systems, their refinement and composition, and puts the emphasis on interface compatibility.
Modal specifications is a language-theoretic account of a fragment of the modal mu-calculus logic [24]
which admits a richer composition algebra with product, conjunction and residuation operators.

Modal specifications correspond todeterministicmodal automata [30], i.e., automata whose transi-
tions are typed withmayandmustmodalities. A modal specification thus represents a set of models;
informally, a must transition is available in every component that implements the modal specification,
while a may transition needs not be. The components that implement modal specifications are prefix-
closed languages, or equivalently deterministic automata/transition systems.

Satisfiability of modal specifications is decidable. Refinement between modal specifications coin-
cides with model inclusion. Conjunction is effectively computed via a product-like construction. It
can be shown that the conjunction of two modal specificationscorresponds to their greatest common
refinement. Combination of modal specifications, handling synchronization products̀a la Arnold and
Nivat [4], and the dual quotient combinators can be efficiently handled in this setting [39, 40].

In interface automata [20], an interface is represented by an input/output automaton [34], i.e., an
automaton whose transitions are labeled withinput or outputactions. The semantics of such an automa-
ton is given by a two-player game: anInput player represents the environment, and anOutputplayer
represents the component itself. Interface automata do notencompass any notion of model, because one
cannot distinguish between interfaces and implementations.

Refinement between interface automata corresponds to the alternating refinement relation between
games [2], i.e., an interface refines another if its environment is more permissive whereas its compo-
nent is more restrictive. Shared refinement is defined in an ad-hoc manner [22] for a particular class of
interfaces [13]. Contrary to most interface theories, the game-based interpretation offers anoptimistic
treatment of composition: two interfaces can be composed ifthere exists at least one environment (i.e.,
one strategy for the Input player) in which they can interacttogether in a safe way (i.e., whatever the
strategy of the Output player is). This is referred to as compatibility of interfaces. A quotient, which is
the adjoint of the game-based composition, has been proposed in [10] for the deterministic case.

It is worth mentioning that, in existing work on interface automata and modal specifications, there
is nothing about dissimilar alphabets. This is somehow surprising as it seems to be a quite natural
question when performing operations that involve several components, e.g., conjunction, composition,
and quotient. As we shall see in this paper, an explicit mechanism to handle dissimilar alphabets is

122 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

not needed when considering interface automata, since conjunction is not discussed for this model. For
the case of composition/quotient, instead, we shall see that the notion is implicitly encompassed in the
definition of compatibility. Conjunction and quotient operators [30, 39, 40] that have been proposed
for modal specifications do not take dissimilar alphabets into account. One thus needs to extend those
operators to this more general setting. This is one of the subjects of this paper.

In conclusion, both models have advantages and disadvantages:

• Interface automata is a model that allows designers to make assumptions on the environment,
which is mainly useful to derive a rich notion for composition with compatibility issues. In addi-
tion, the notion of dissimilar alphabets is not needed. Unfortunately, the model is incomplete as
conjunction and shared refinement are not defined.

• Modal specification is a rich language-algebraic model on which most of the requirements for a
good interface theory can be considered. Unfortunately,mayandmustmodalities are not sufficient
to derive a rich notion for composition including compatibility. Moreover, the notion of dissimilar
alphabets is missing.

It is thus worth considering unifying the frameworks of interface automata and modal specifications.
A first attempt was made by Larsen et al. [31, 36] who considered modal interfaces, which are modal
specifications whose actions are also typed ininputor outputattributes. A modal interface can be viewed
as simply a modal specification except for the composition operation for which the modalities are an
additional complication. Refinement for modal interfaces is the same as refinement for modal specifica-
tions, while composition is the one from interface automata. Larsen et al. have shown that refinement for
modal specifications is compatible with the composition operation for interface automata [31, 36]. The
main problem with their results is that the composition operator is incorrect. Indeed, contrary to what
is claimed by the authors, their composition operator is notmonotone with respect to satisfaction. This
fails to ensure that twocompatibleinterfaces may be implemented separately. Moreover, requirements
such as dissimilar alphabets, conjunction, and component reuse are not considered.

The present paper adds a new stone to the cathedral of resultson interface theories by (1) proposing
a new theory for dissimilar alphabets, (2) correcting the modal interface composition operator presented
in [31, 36], (3) pushing the comparison between interface automata, modal automata and modal spec-
ifications and modal interfaces further, and (4) reasoning on architectural design for component-based
systems.

The rest of the paper is organized as follows. In Sections 2 and 3 we recap the theory for modal
specifications and interface automata, respectively. In Section 4, we present the complete theory for
modal interfaces and correct the error in [31, 36]. Section 5is dedicated to architectural design. Finally,
in Section 6, we draw our conclusion and discuss future extensions for the model of modal interfaces.

2. Modal specifications

This section starts with an overview of existing results developed in [30, 39, 40] for modal specifications
defined over a global alphabet (Sections 2.1, 2.2 and 2.3). Wealso propose a new methodology to
encompass dissimilar alphabets (Section 2.4).

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 123

2.1. The Framework

Following our previous work [39, 40, 42], we will define modalspecifications in term of languages,
knowing that they can also be represented bydeterministicautomata whose transitions are typed with
mayandmustmodalities [30]. We start with the following definition.

Definition 2.1. (Modal specification)
A modal specificationis a tupleS = (A,must ,may), whereA is a finite alphabet and

must ,may : A∗ 7→ 2A

are partial functions satisfying the followingconsistencycondition:

must(u) ⊆ may(u). (1)

If a ∈ may(u), thena is allowed after the traceu whereasa ∈ must(u) indicates thata is required
after u. By negation,a 6∈ may(u) means thata is disallowedafter u. The latter is often written
a ∈ mustnot(u). Condition (1) naturally imposes that every required action is also allowed. We shall
sometimes writemaySi

andmustSi
(ormay i andmust i for short) to refer to the entities involved in the

definition ofSi.
Modal specifications that generate regular languages can berepresented bydeterministic modal au-

tomata, i.e., deterministic finite-word automata with two types oftransitions: solid transitions if the
action is required in the source state and dashed transitions if it is allowed but not required. The concept
is illustrated with the example.

ack,nack

extra
msg

msg,extra

(a) Functional spec.Fun

msg

msg

extraack,nack

ack,nack

(b) A simple automaton

Figure 1. The modal specificationFunaccepts the automaton

Example 2.1. Consider a producer whose alphabet of actions includesmsgfor when the producer sends
a message as well as two kinds of acknowledgment for transmission: ack in case of success andnack
in case of failure. Assume also the existence of an actionextrawhich occurs when extra resources are
requested to dispatch a message.

A functional specificationFun for the producer is given in Figure 1(a). It specifies that amsgmay
be sent again. Moreover everymsgmay be acknowledged. Additionally, the producer may request extra
resources at any moment.

When composing specifications, discrepancies between the modal information carried out by the
specifications may appear. We then considerpseudo-modal specifications(also calledmixed transition
systemsin [16]), denotedpS; they are triples satisfying Definition 2.1 with the exception of (1). For

124 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

pS a pseudo-modal specification, a wordu ∈ A∗ is calledconsistently specifiedin pS if it satisfies
(1) and inconsistentotherwise; modal specifications correspond exactly to the subclass ofconsistent
pseudo-modal specifications, that is pseudo-modal specifications such that everyu ∈ A∗ is consistently
specified.

For pS = (A,must ,may) a pseudo-modal specification, thesupportof pS is the leastprefix-closed
languageLpS such that

(i) ǫ ∈ LpS , whereǫ denotes the empty word; and

(ii) u ∈ LpS anda ∈ may(u) imply u.a ∈ LpS .

2.2. Implementation, refinement and consistency

In this section, we study the concepts ofimplementation, refinementand consistency. We start with
implementation, which is also calledmodel.

Definition 2.2. (implementation)
A prefix-closed languageI ⊆ A∗ is an implementation(or model) of a pseudo-modal specification
pS = (A,must ,may), denoted byI |= pS, if

∀u ∈ I ⇒ must(u) ⊆ Iu ⊆ may(u)

whereIu is the set of actionsa ∈ A such thatu.a ∈ I.

Example 2.2. A model for the specification given in Figure 1(a) is presented in Figure 1(b). It indicates
that every message will be acknowledged either positively or negatively. Moreover, an extra resource is
requested if the message has to be re-emitted.

Lemma 2.1. Let I ⊆ A∗ be a prefix-closed language andpS a pseudo-modal specification overA. If
I |= pS, thenI ⊆ LpS holds and every word ofI is consistently specified inpS.

The concept ofthorough refinementfollows immediately from Definition 2.2 by comparing, through set
inclusion, the sets of implementations associated to two specifications.

Definition 2.3. (thorough refinement)
There exists a thorough refinement between specificationpS1 and specificationpS2 if and only if any
model ofpS1 is also a model ofpS2.

Thorough refinement has been extensively studied in [32] andcompared to the more syntactic notion of
modal refinementthat is recalled hereafter.

Definition 2.4. (modal refinement)
Let pS1 andpS2 be two pseudo-modal specifications. The specificationpS1 refinespS2, writtenpS1 ≤

pS2,
if and only if, for all u ∈ L1, may1(u) ⊆ may2(u) andmust1(u) ⊇ must2(u).

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 125

It is easy to see that modal refinement is a preorder relation that implies inclusion of supports:

pS1 ≤
pS2 =⇒ LpS1

⊆ LpS2

Any two modal specificationsS1 andS2 such thatS1 ≤ S2 ≤ S1 have equal supportsL = LS1
= LS2

and for allu ∈ L, may1(u) = may2(u) andmust1(u) = must2(u). Said differently, equivalent modal
specifications differ only outside of their support. A unique representativeS = (A,must ,may) of
equivalence classes of modal specifications is defined by assuming that for allu 6∈ LS , must(u) = ∅ and
may(u) = A. In the sequel, only modal specifications satisfying this property are considered. Under
this assumption, modal refinement is a partial order relation on modal specifications.

In [39, 40, 6], it is shown that modal refinement for modal specifications is soundand complete,
i.e., it is equivalent to thorough refinement1. For nondeterministicmodal specifications, checking thor-
ough refinement is PSPACE-hard [3] (and also EXPTIME). As modal refinement is P-complete, a faster
decision procedure exists in the deterministic case.

The following result relates implementations to consistency, for a pseudo-modal specification.

Theorem 2.1. (consistency [39, 40])
Let pS be a pseudo-modal specification. EitherpS possesses no implementation, or there exists a largest
(for refinement order) modal specificationρ(pS) having the same alphabet of actions and such that
ρ(pS) ≤ pS. In addition,ρ(pS) possesses the same set of implementations aspS.

The modal specificationρ(pS) is called thepruningof pS. It is obtained frompS through the following
steps:

1. Start fromR0, a copy ofpS;

2. LetU0 be the set of words inconsistently specified inR0, meaning thatu ∈ U0 does not satisfy
condition (1). For eachu ∈ U0, setmayR0

(u) = A andmustR0
(u) = ∅. Then, for each word

v ∈ A∗ such thatv.a = u for someu ∈ U0 anda ∈ A, removea from mayR0
(v). Performing

these two operations yields a pseudo-modal specificationR1 such thatU0 is consistently specified
in R1. Since we have only removed inconsistently specified words fromLR0

, by Lemma 2.1,R1

andR0 possess identical sets of implementations.

3. Observe that, ifa ∈ mustR1
(v), thenv becomes inconsistently specified inR1. So we repeat

the above step onR1, by consideringU1, the set of wordsu inconsistently specified inR1. Let
∆1 ⊆ U0 × U1 be the relation consisting of the pairs(u, v) such thatv.a = u for somea andv is
inconsistently specified inR1. Note thatv is a strict prefix ofu.

4. Repeating this, we get a sequence of triples(Rk, Uk,∆k)k≥0 such that 1)
⋃

m≤k Um is consistently
specified inRk+1, and 2)mayRk+1

(v) ⊆ mayRk
(v) for eachv, with strict inclusion whenever

v.a = u for someu ∈ Uk, and 3)∆k+1 ⊆ Uk × Uk+1 is the relation consisting of the pairs(u, v)
such thatv.a = u for somea andv is inconsistently specified inRk+1 — again,v is a strict prefix
of u.

1Completeness of modal refinement does not hold for nondeterministic modal automata [32]. It holds in our case since we work
with specifications (for which determinism is hardwired).

126 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

5. Call chaina sequenceu0, u1, . . . of words such that(uk, uk+1) ∈ ∆k+1 for everyk ≥ 0. Since
uk+1 is a strict prefix ofuk, every chain is of length at most|u0|. Thus, every inconsistently
specified word ofpS is removed after finitely many steps of the above algorithm. This proves that
the procedure eventually converges. The limitρ(pS) is consistent and is given by:

may(u) =
⋂

k mayRk
(u)

must(u) =

{

mustpS(u) if mustpS(u) ⊆ may(u)

∅ otherwise

The above procedure terminates in finitely many steps if the support of the pseudo-modal specification
is regular which is, in particular, the case of pseudo-modalspecifications originated from adeterministic
pseudo-modal automaton. This procedure also entails a sufficient condition for the satisfiability prob-
lem: a pseudo-modal specification admits a model if and only if there is no wordu ∈ LpS such that
u is inconsistent and for all prefixesv of u if u = v.a.v′ thena ∈ must(v). Hence this problem is
NLOGSPACE-complete; it is PSPACE-hard for nondeterministic pseudo-modal specifications [3].

2.3. Operations on modal specifications

Greatest Lower Bound: The set of all pseudo-modal specifications equipped with modal refinement
≤ is a lattice. We denote bypS1 &

pS2 theGreatest Lower Bound(GLB) of pS1 andpS2 defined over the
same alphabet. The GLBpS1 &

pS2 can be computed as

may(u) = may1(u) ∩ may2(u)

must(u) = must1(u) ∪ must2(u)
(2)

Observe that, even ifpS1 andpS2 satisfy (1), it is not guaranteed thatpS1 & pS2 does too. Hence, by
using Theorem 2.1, forS1 andS2 two modal specifications, we defineS1 ∧ S2 as being the (uniquely
defined) modal specification

S1 ∧ S2 = ρ(S1 & S2). (3)

GLB satisfies the following key property, which relates it tologic formulas:

Theorem 2.2. (conjunctive interfaces [39, 40])
Let I be a prefix-closed language andS1 andS2 be modal specifications. Then,

I |= S1 ∧ S2 ⇔ I |= S1 andI |= S2

The following holds regarding supports:LS1∧S2
⊆ LS1

∩ LS2
, with equality if and only if no pruning is

needed, i.e.,S1 ∧ S2 = S1 & S2.

Composition: Let S1 andS2 be two modal specifications over the same alphabet. Theircomposition
S1 ⊗ S2 is defined by

may(u) = may1(u) ∩ may2(u)

must(u) = must1(u) ∩ must2(u)
(4)

The following theorem shows that composition ensures substitutability.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 127

Theorem 2.3. (substitutability in composition [39, 40])
Let I1,I2 be two prefix-closed languages andS1,S2,S

′
1 andS ′

2 be modal specifications:

1. If S ′
1 ≤ S1 andS ′

2 ≤ S2, thenS ′
1 ⊗ S ′

2 ≤ S1 ⊗ S2.

2. If I1 |= S1 andI2 |= S2, thenI1 × I2 |= S1 ⊗ S2, whereI1 × I2 = I1 ∩ I2.

3. The following holds regarding supports:LS1⊗S2
= LS1

∩ LS2
.

Residuation: We now discuss theresiduationoperation which was introduced in [39, 40]. We will
show that this operation is the adjoint of composition. ForS1 andS2 two modal specifications, we first
define theirpseudo-quotientS1//S2 according to the following disjunctive and exhaustive cases:

a ∈ may(u) ∩must(u) if a ∈ must1(u)

and a ∈ must2(u)

a ∈ must(u) \may(u) if a ∈ must1(u)

and a 6∈ must2(u)

a ∈ may(u) \must(u) if a ∈ may1(u)

and a 6∈ must1(u)

a ∈ may(u) \must(u) if a 6∈ may1(u)

and a 6∈ may2(u)

a 6∈ may(u) ∪must(u) if a 6∈ may1(u)

and a ∈ may2(u)

Observe that, due to the second case,S1//S2 is not consistent. Having definedS1//S2, using the pruning
operation of Theorem 2.1, we can now set

S1/S2 = ρ(S1//S2). (5)

Any prefix-closed languageI ⊆ A∗ can be viewed as a modal specification whose must set coincides
with its may set:∀u ∈ A∗,must(u) = may(u) = Iu. Using this embedding, the quotient of two prefix-
closed languages can be defined. Observe that, because of thefourth rule, the quotient of two languages
is a modal specification that is not necessarily a language.

We now show that the quotient operation is indeed the adjointof the composition operation:

Theorem 2.4. (residuation [39, 40])
Let I1,I2 be prefix-closed languages andS1,S2,S be modal specifications. Then,

1. S1 ⊗ S2 ≤ S if and only if S2 ≤ S/S1

2. ∀I1 : [I1 |= S1 ⇒ I1 × I2 |= S] iff I2 |= S/S1.

Example 2.3. Quotient and conjunction are illustrated in Figure 2. Suppose one aims at realizing a sys-
tem whose behavior is given by the left-hand side specification: every message must be acknowledged

128 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

msg,extra,ack,nack

ack,nack

ack

msg,ack,extra

ack

msg
msg

=/
msg

extra msg,extra

ack,nack

∧

Figure 2. Quotient for top-down design

positively. For this purpose, a preexisting component conforming to the middle-hand side specifica-
tions is available in the context; it implements the specification Fun of Figure 1(a) with the additional
assumption that the communication channel never distributes a negative acknowledgment. Then, the
product of the context with any implementation of the right-hand side specification is guaranteed to be
an implementation of the desired behavior.

2.4. Dissimilar alphabets

Complex systems are built by composing and combining many subsystems or components. Clearly,
those objects should possess their own local alphabet of ports and variables. Dealing with those local
aspects when developing the fundamental services seems like a trivial notice but has deep technical con-
sequences. As we shall see in this section, modalities appear as an elegant solution to address alphabet
equalization with appropriate flexibility.

Let us first recall how alphabet equalization is performed for the shuffle product of languages. For
w a word over some alphabetA, andB ⊆ A, let prB(w) denote the word overB obtained by erasing,
from w, all symbols not belonging toB. For L a language overA andB ⊆ A ⊆ C, the restriction
of L to B is the languageL↓B = {u ∈ B∗ | u = prB(w) , w ∈ L} and theextensionof L to C is the
languageL↑C = {u ∈ C∗ | prA(u) ∈ L}. Theshuffle productL1 × L2 of the two languagesL1 ⊆ A∗

1

andL2 ⊆ A∗
2 is then defined as

L1 × L2 = (L1)↑C ∩ (L2)↑C , whereC = A1 ∪A2.

The shuffle product uses inverse projection to equalize alphabets. The same holds for automata over
dissimilar alphabets and their synchronous product.

Using modalities allows for aneutralprocedure for equalizing alphabets. The principle is as follows.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 129

Observe that, by (4),

a ∈ must1(s) and a ∈ whatever2(s)

⇓

a ∈ whatever(s)

(6)

holds if the two interfaces are combined using parallel composition (here,whatever denotes an arbi-
trary modality). Similarly, by (2),

a ∈ may1(s) and a ∈ whatever2(s)

⇓

a ∈ whatever(s)

(7)

holds if the two interfaces are combined using conjunction.The observation above reveals our solution:
alphabet extension is performed by setting thespecificmodalities for extended traces, specifically

• may in case of the conjunction∧;

• must in case of the parallel composition⊗.

These two types of alphabet extensions are calledweakandstrong. This is a key contribution of our
work as it will provide us with a very elegant way of dealing with dissimilar alphabets.

Definition 2.5. (weak and strong extensions)
Let pS = (A,must pS ,may pS) be a pseudo-modal specification and letC ⊇ A.

1. Theweak extensionof pS to C is the pseudo-modal specificationpS⇑C = (C,must ,may) such
that∀v ∈ C∗:

{

must(v) = mustpS (prA(v))

may(v) = maypS (prA(v)) ∪ (C \A)

2. Thestrong extensionof pS to C is the pseudo-modal specificationpS↑C = (C,must ,may) such
that∀v ∈ C∗:

{

must(v) = mustpS (prA(v)) ∪ (C \A)

may(v) = maypS (prA(v)) ∪ (C \A)

Regarding supports, the following equalities hold:L(S⇑C) = L(S↑C) = (LS)↑C . We are now ready to

extend the operations of Sections 2.2 and 2.3 to the case of dissimilar alphabets.

Definition 2.6. Let pS, pSi andSi be pseudo-modal or modal specifications over alphabetsA,Ai for
i = 1, 2, respectively. The relations and operations of Section 2.2are redefined as follows:

[weak implementation;C ⊇ A]

I ⊆ C∗ |=w
pS iff I |= pS⇑C

[strong implementation;C ⊇ A]

I ⊆ C∗ |=s
pS iff I |= pS↑C

130 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

[weak refinement;A2 ⊇ A1]
pS2 ≤w

pS1 iff pS2 ≤
pS1⇑AS2

[strong refinement;A2 ⊇ A1]
pS2 ≤s

pS1 iff pS2 ≤
pS1↑AS2

[operators;C = A1 ∪A2]

S1 ∧ S2 = S1⇑C ∧ S2⇑C

S1 ⊗ S2 = S1↑C ⊗ S2↑C

S1 / S2 = S1⇑C / S2↑C

Note the careful use of weak and strong extensions in the different operations. The results of Sections 2.2
and 2.3 are slightly weakened as indicated next.

Theorem 2.5. Let S, Si andS ′
i be modal specifications defined overA, Ai andA′

i respectively, for
i = 1, 2.

1. Weak and strong implementation / refinement relations arerelated as follows:

|=s ⊆ |=w and ≤s ⊆ ≤w

2. Weak and strong modal refinement are both sound and complete w.r.t. weak and strong thorough
refinement, respectively:

S2 ≤w S1 ⇔ {I | I |=w S2} ⊆ {I | I |=w S1}

S2 ≤s S1 ⇔ {I | I |=s S2} ⊆ {I | I |=s S1}

3. The following holds regarding conjunction:

I |=w S1 ∧ S2 ⇔ I |=w S1 andI |=w S2

4. Theorem 2.3 still holds when alphabets are different, provided thatstrongrefinement and imple-
mentation are used — it is actually false if weak refinement orimplementation are used:

• If S ′
1 ≤s S1 andS ′

2 ≤s S2, thenS ′
1 ⊗ S ′

2 ≤s S1 ⊗ S2;

• If I1 |=s S1 andI2 |=s S2, thenI1 × I2 |=s S1 ⊗ S2;

• S ′
1 ≤w S1 andS ′

2 ≤w S2 in general donot imply thatS ′
1 ⊗ S ′

2 ≤w S1 ⊗ S2;

• I1 |=w S1 andI2 |=w S2 in general donot imply thatI1 × I2 |=w S1 ⊗ S2.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 131

5. Relations between the quotient and the composition operators are preserved provided additional
assumptions on alphabets:

S2 ≤s S/S1

A1 ⊆ A

}

⇒ S1 ⊗ S2 ≤s S

S1 ⊗ S2 ≤s S

A2 ⊇ A ∪A1

}

⇒ S2 ≤s S/S1

I1 |=s S1 andI2 |=s S/S1

A1 ⊆ A

}

⇒ I1 × I2 |=s S

∀I1 : I1 |=s S1 ⇒ I1 × I2 |=s S

andAI2 ⊇ A ∪A1

}

⇒ I2 |=s S/S1

Observe that the last sub-statement of statement 5 refines Theorem 2.4.

Proof:
The detailed proof of this theorem can be found in [43]. We only give here the counterexamples for the
third and the fourth bullets of statement 4. First, the following counterexample shows thatcomposition
is not monotonic wrt to the weak refinement when alphabets aredifferent. Consider the three modal
specifications:

• S1 with A1 = {a} andmay1(ǫ) = must1(ǫ) = ∅;

• S ′
1 with A′

1 = {a, b} andmay′1(ǫ) = {b} andmust′1(ǫ) = ∅;

• S2 with AS2
= {b} andmay2(ǫ) = must2(ǫ) = {b}.

ThenS = S1 ⊗ S2 is defined over{a, b} andmay(ǫ) = must(ǫ) = {b}; and,S ′ = S ′
1 ⊗ S2 is defined

over{a, b} andmay′(ǫ) = {b} andmust′(ǫ) = ∅. Thus we have:S ′
1 ≤w S1 andS ′

1 ⊗ S2 �w S1 ⊗ S2.

Now, this counter-example shows thatI1 |=w S1 andI2 |=w S2 do not implyI1 × I2 |=w S1 ⊗ S2:

• S1 with A1 = {a} andmay1(ǫ) = must1(ǫ) = ∅; I1 with AI1 = {a, b} andI1 = {ǫ};

• S2 with A2 = {b} andmay2(ǫ) = must2(ǫ) = {b}; I2 with AI2 = {b} andI2 = {ǫ, b}.

ThenI1 |=w S1 andI2 |=w S2. I1 × I2 = {∅} andmayS1⊗S2
(ǫ) = mustS1⊗S2

(ǫ) = {b} thusI1 × I2
is not a weak implementation ofS1 ⊗ S2. ⊓⊔

Example 2.4. Consider now a second specificationRel for a producer in Figure 3(a) dealing with re-
liability: messages are negatively acknowledged until thesystem is reset. The specificationFun in
Figure 1(a) andRelare defined on different alphabets: the actionresetis not part of the alphabet ofFun
and similarly forextra in Rel. The conjunction of the two aspects is depicted in Figure 3(b); observe that
the modalities of the transitions labeled byresetare directly inherited from those inRel.

132 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

3. Interface automata

In [20], de Alfaro and Henzinger introducedinterface automata, which are automata whose transitions
are typed withinput andoutputactions rather than with modalities. In this section, we briefly overview
the theory of interface automata and refer the reader to [20,17] for more details.

Definition 3.1. ([20])
An interface automatonis a tupleP = (X,x0, A,→), whereX is the set ofstates, x0 ∈ X is theinitial
state, A is the alphabet ofactions,and→⊆ X ×A×X is the transition relation.

We decomposeA = A?∪A!, whereA? is the set of inputs andA! is the set of outputs. In the rest of the
paper, we shall often usea? to emphasize thata ∈ A? anda! for a ∈ A!. We will also usex

a
−→ y to

emphasize that(x, a, y) ∈ →. Observe that if we consider deterministic interface automata, then we can
propose a language-based definition similar to the one we gave for modal specifications.

The semantics of an interface automaton is given by a two-player game between aninput player that
represents the environment (the moves are the input actions), and anoutput player that represents the
component itself (the moves are the output actions). Input and output moves are in essence orthogonal to
modalities. Interface automata are operational models that do not distinguish between an interface and
one of its models. More precisely, the model of an interface automaton is any of its refinements. As a
consequence, the notion of refinement coincides with the oneof satisfaction. Moreover, any interface
automaton is always satisfiable except if it is empty.

Remark 3.1. In interface automata, the distinction between inputs and outputs should not be interpreted
as a function from the Inputs to the Outputs.

Example 3.1. Two interface automata are depicted in Figure 4 (this example is adapted from [20]). The
client Cl in Figure 4(a) is defined over the alphabet{ok?, fail?} ∪ {msg!}. The actionfail? never occurs
which encodes the assumption that the environment of the client never transmits afail to the client. The
serverServin Figure 4(b) is defined over the alphabet{msg?,ack?,nack?} ∪ {sent!,ok!, fail!}; when
msgis invoked, the server tries to send the message and resends it if the first transmission fails. If both
transmissions fail, the component reports failure (fail!), otherwise it reports success (ok!).

msg,ack msg,nack

reset

nack

(a) Reliability spec.Rel

extra msg,extra

extra msg,extra
nack

msg

ack

msg

nack resetreset

(b) ConjunctionFun∧ Rel

Figure 3. Conjunction of specifications on dissimilar alphabets

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 133

Alternatively, properties of interfaces are described in game-based logics, such as ATL or ATL∗[1]
whose complexities are PSPACE and PTIME-complete, respectively. Refinement between interface au-
tomata corresponds to the alternating refinement relation between games [2], i.e., an interface refines
another one if its environment is more permissive whereas its component is more restrictive. This prob-
lem is known to be PTIME-complete. There is no notion of component reuse and shared refinement is
defined in an ad-hoc manner [22].

ok?

msg!

(a) ClientCl

fail!

ok!

sent!msg?
ack?

nack? sent!

ack?

nack?

(b) ServerServ

Figure 4. Two interface automata to be composed

Remark 3.2. Contrary to input/output automata, interface automata aregenerally not input-enabled2.
Refinement of input/output automata corresponds to simulation between traces. If the model was not
input-enabled, then a refinement could accept less inputs than its abstraction. The game-based approach
allows us to avoid such a situation even when the system is notinput enabled.

The main advantage of the game-based approach appears in thedefinition of composition andcom-
patibility between interface automata. Following [17], two interfaceautomata arecomposableif they
have disjoint sets of output actions, compose by synchronizing shared actions and interleave asyn-
chronously all other actions.

Definition 3.2. (Product of interface automata [20])
Let P1 = (X1, x01, A1,→1) andP2 = (X2, x02, A2,→2) be two interface automata. The product over
P1 andP2 is an interface automatonP1 ×P2 = (X,x0, A,→), where

• X = X0 ×X1;

• x0 = x01 × x02;

• A = A1 ∪A2, andA? = (A1? ∪A2?) \ ((A1? ∩A2!) ∪ (A2? ∩A1!)), andA! = A1! ∪A2!;

• → is defined as follows:

– For each actiona ∈ A such thata 6∈ A1 ∩A2, there exists a transition(x1, y1)
a

−→ (x2, y2)
iff there exists(x1)

a
−→

1
(x2) andy1 = y2 or (y1)

a
−→

2
(y2) andx1 = x2.

– For each actiona ∈ A1?∩A2?, there exists a transition(x1, y1)
a?
−→ (x2, y2) iff there exists

(x1)
a?
−→

1
(x2) and(y1)

a?
−→

2
(y2).

2Recall that a system is input-enabled if it can react to any input action in any moment.

134 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

– For eacha ∈ (A1? ∩ A2!) ∪ (A2? ∩ A1!), there exists a transition(x1, y1)
a!
−→ (x2, y2) iff

there exists(x1)
a

−→
1
(x2) and(y1)

a
−→

2
(y2).

Since interface automata are not necessarily input-enabled (which is what allows the automaton to
make assumptions on the environment), the productP1 × P2 of two interface automataP1 andP2 may
have illegal stateswhere one of the automata may produce an output action that isalso in the input
alphabet of the other automaton, but is not accepted at this state. In most of existing models for interface
theories that are based on an input/output setting, the interfaces would be declared to beincompatible.
This is a pessimistic approach that can be avoided by exploiting the game-based semantics. Indeed, the
game semantics supports an optimistic approach:

“Two interfaces can be composed and are compatible if there is at least one environment
where they can work together (i.e., where they can avoid the illegal states).”

ok!

sent!
ack?

nack? sent!

ack?

nack?

msg!

(a) ProductCl × Serv

ok!

sent!
ack?

nack? sent!

ack?

msg!

(b) CompositionCl ‖Serv

Figure 5. Compatibility ofServandCl

Deciding whether there exists an environment where the two interfaces can work together is equiva-
lent to checking whether the environment in the product of the interfaces has a strategy to always avoid
illegal states. This can be viewed as a reachability game whose complexity is linear [20]. The set of
states from which the environment has a strategy to avoid theillegal states whatever the component does
can be recursively computed as follows.

Let Illegal(P1,P2) be the subset of pairs(x1, x2) ∈ X1 ×X2 such that there exists

either an actiona ∈ A1! ∩A2? with x1
a!
−→

1

but not x2
a?
−→

2

or an actiona ∈ A2! ∩A1? with x2
a!
−→

2

but not x1
a?
−→

1

wherex
a

−→ means thatx
a

−→ y for some statey. If illegal states exist in the productP1 × P2, there
may still exist refinements of the product without illegal state. Those refinements specify how the result-
ing product should be restricted in order to guarantee that illegal states cannot be reached. As proved
in [20], there is one such largest refinement which can be obtained by backward pruningP1 × P2 as
follows. ForY ⊆ X, the set of states ofP1 × P2, let pre !(Y) be the subsetZ ⊆ X of statesz such that

z
a!
−→ y for somey ∈ Y anda! ∈ A! (an output action of the product). Letpre0! (Y) = Y and, fork ≥ 0,

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 135

prek+1
! (Y) = pre !

(

prek! (Y)
)

and letpre∗! (Y) =
⋃

k pre
k
! (Y).

The desired pruning consists in:

• Removingpre∗! (Illegal(P1,P2)) from X, and

• Removing transitions to states inpre∗! (Illegal(P1,P2)), and

• Removing unreachable states.

The result of applying the pruning toP1 × P2 is denoted byP1 ‖P2 and is called thecomposition
of the two interface automata.P1 andP2 are calledcompatibleif applying the pruning leaves the initial
state [20]. We now recall the two following theorems from [20] that show that interface automata support
independent design and substitutability.

Theorem 3.1. ([20])
The composition operation for interface automata is associative and commutative.

Theorem 3.2. ([20])
LetP1, P2, andP3 be three interface automata. IfP2 refinesP1 and the set of shared actions ofP2 ‖P3

is included in the set of shared actions ofP1 ‖P3, thenP2 ‖P3 refinesP1 ‖P3.

Example 3.2. The product of the interface automata in Figure 4 is represented in Figure 5(a). The gray
state is illegal as the server wants to report a failure (fail!) which is not accepted as an input by the client.
The result of applying the pruning operation is then depicted in Figure 5(b).

Bhaduri has proposed a quotient operation that is the adjoint of the composition operation [10]. This
quotient, which is defined for the deterministic fragment only, is characterized in the following theorem.
LetP⊥ be the interfaceP where input and output actions have been exchanged.

Theorem 3.3. ([20])
Consider two deterministic interface automataP1 andP2. If P1 andP⊥

2 are compatible, then there exists
P such that

1. P1 ‖P ≤ P2,

2. for eachP ′ such thatP1 ‖P
′ ≤ P2, we haveP ′ ≤ P and,

3. P is given by(P1 ‖P
⊥
2)⊥.

The theorem above states that, contrary to the case of modal automata, the quotient for interface automata
can be derived from the composition operation with a simple switch operation between input and output
actions.

Remark 3.3. The operations between interface automata that have been defined so far do not require an
explicit treatment of dissimilar alphabets as is the case for modal specifications. Indeed, it is implicitely
handled with the help of the game-based approach. Conjunction is not defined for interface automata. For
such an operation, we conjuncture that the game-based approach is not powerful enough for an implicit
treatment.

136 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

4. On modal interfaces

We now present the full theory formodal interfaces. Modal interfaces is an extension of modal specifi-
cations where actions are also typed withinput andoutput. This addition allows us to define notions of
composition and compatibility for modal specifications in the spirit of interface automata.

The first account on compatibility for modal interfaces was proposed in [31, 36]. In this section, we
propose a full interface theory for modal interfaces, whichincludes composition, product, conjunction,
and component reuse via quotient. Moreover, we show that thecomposition operator proposed in [31, 36]
is incorrect and we propose a correction.

We shall start our theory with the definition ofprofiles which are used to type actions of modal
specifications withinput andoutputmodalities.

4.1. Profiles

Given an alphabet of actionsA, aprofile is a functionπ : A 7→ {?, !}, labeling actions with the symbols
? (for inputs) or ! (for outputs). We write “a?” (respectively,a!) to express that “π(a) = ?” (respectively,
π(a) = !). The set ofa ∈ A such thatπ(a) = ? (respectively,π(a) = !) is denotedA? (respectivelyA!).
We shall sometimes write by abuse of notation,π = (A?, A!).

We now discuss operations on profiles. We consider a profileπ1 = (A1?, A1!) defined overA1 and
a profileπ2 = (A2?, A2!) defined overA2.

Refinement between profiles. Profileπ2 refinesπ1, denotedπ2 ≤ π1, if and only if A2 ⊇ A1 and
both profiles coincide onA1: ∀a ∈ A1, π2(a) = π1(a).

Proposition 4.1. The refinement≤ between profiles is transitive.

Product between profiles. The product betweenπ1 andπ2, denotedπ1 ⊗ π2 is defined if and only if
A1! ∩A2! = ∅, and is equal to the profileπ = (A?, A!) overA1 ∪A2 such that:

π = π1 ⊗ π2 :

{

A! = (A1! ∪ A2!)

A? = (A1? ∪ A2?) \ A!

Proposition 4.2. Let π′
1, π

′
2, π1, andπ2 be profiles. The product between profiles is monotonic with

respect to refinement: ifπ′
1 ≤ π1 andπ′

2 ≤ π2 andπ1⊗π2 andπ′
1⊗π′

2 are defined, thenπ′
1⊗π′

2 ≤ π1⊗π2.

Conjunction between profiles. The conjunction ofπ1 andπ2, denotedπ1 ∧ π2, is the greatest lower
bound of the profiles, whenever it exists. More precisely, the conjunction of profilesπ1 andπ2 is defined
if and only if both profiles coincide on their common alphabet: ∀a ∈ A1∩A2, π1(a) = π2(a). Whenever
defined, the conjunctionπ1 ∧ π2 coincides withπ1 for every symbol inA1 and withπ2 for every symbol
in A2.

Proposition 4.3. Let π1, π2 andπ be profiles. Then,π ≤ π1 ∧ π2 if and only if π ≤ π1 andπ ≤ π2.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 137

Quotient between profiles. The quotientof π1 andπ2, denotedπ1 /π2, is defined as the adjoint of
⊗, if it exists, namelyπ1 /π2 = max{π | π ⊗ π2 ≤ π1}. More precisely,π1 /π2 is defined when
A1? ∩A2! = ∅, and is thus equal to the profileπ = (A?, A!) such that

π1 /π2 :

{

A! = A1! \ (A1! ∩A2!)

A? = [(A1? ∪A2?) \ A!] ∪A2!

Proposition 4.4. Let π, π1 andπ2 be profiles defined over theA, A1 andA2 respectively:

• if π1 ⊗ π2 ≤ π andA2 ⊇ A ∪A1, thenπ2 ≤ π/π1;

• if π2 ≤ π/π1 andA1 ⊆ A, thenπ1 ⊗ π2 ≤ π.

4.2. The framework of modal interfaces

We now formally introduce modal interfaces that are modal specifications whose actions are also labeled
with inputandoutputattributes. We will consider the language representation in the spirit of [40, 39, 42],
while Larsen et al. followed the automata-based representation (the two representations are equivalent).

Definition 4.1. (Modal interface)
A modal interfaceis a pairC = (S, π), whereS is a modal specification over the alphabetAS and
π : AS → {?, !} is aprofile.

A model for a modal interface is a pair(I, π′), whereI is a prefix-closed language andπ′ is a profile
for I. We say that(I, π′) strongly implements(S, π), written (I, π′) |=s (S, π), if I |=s S andπ′ ≤ π,
and similarly forweak implementation. We say that(S2, π2) ≤s (S1, π1) if S2 ≤s S1 andπ2 ≤ π1, and
analogously for weak refinement≤w. Thecompositionof two models is the pair that results from the
shuffle product× of their prefix-closed languages and of the product of their profiles.

4.3. Operations on modal interfaces

Operations on modal specifications directly extend to operations on modal interfaces. We have the fol-
lowing definition.

Definition 4.2. Consider two modal interfacesC1 = (S1, π1) andC2 = (S2, π2), and let⋆ ∈ {∧,⊗, /}.
If π1 ⋆ π2 is defined, then

C1 ⋆ C2 = (S1 ⋆ S2, π1 ⋆ π2).

The following theorem states that all the characteristic properties of modal specifications directly extend
to modal interfaces.

Theorem 4.1. Propositions stated in Theorem 2.5 extend to modal interfaces.

We now recap the translation from interface automata to modal interfaces, which will help us make
the link between modalities and input or output actions.

138 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

4.4. From interface automata to modal interfaces

We recap the translation from interface automata to modal automata that has been proposed in [31]. In
this section, we extend this translation to modal specifications, the language-algebraic extension corre-
sponding to modal automata.

We consider an interface automatonP = (X,x0, A,→). We assumeP to be deterministic and we
letLP denote the (prefix-closed) language defined byP. The alphabet ofSP isASP

= A and modalities
are defined for allu ∈ A∗

P :

a? ∈ mustSP
(u) if u.a? ∈ LP

a! ∈ maySP
(u) \mustSP

(u) if u.a! ∈ LP

a? ∈ maySP
(u) \mustSP

(u) if u ∈ LP

and u.a? 6∈ LP

a! 6∈ maySP
(u) if u ∈ LP

and u.a! 6∈ LP

a ∈ maySP
(u) \mustSP

(u) if u 6∈ LP .

(8)

Theorem 1 of [31] shows that, with the above correspondence,alternating simulation for interface au-
tomata and modal refinement for modal interfaces coincide. Regarding supports, we have:

LSP
= LP ∪ {u.a?.v | u ∈ LP , u.a? 6∈ LP , v ∈ A∗

P} . (9)

It is worth making some comments about this translation, given by formulas (8,9). Regarding for-
mula (9), the supporting languageLSP

allows the environment to violate the constraints set on it by the
interface automatonP. When this happens—formally, the environment exits the alternating simulation
relation—the component considers that the assumptions under which it was supposed to perform are vio-
lated, so it allows itself breaching its own promises and canperform anything afterward. One could also
see the violation of assumptions as an exception. Then,LSP

states no particular exception handling since
everything is possible. Specifying exception handling then amounts to refining this modal interface.

Formula (8) refines (9) by specifying obligations. Case 1 expresses that the componentmustaccept
from the environment any input within the assumptions. Case2 indicates that the component behaves
according to best effort regarding its own outputs actions.Finally, cases 3 and 4 express that the viola-
tion by the environment of the assumptions made by the component are seen as an exception, and that
exception handling is unspecified and not mandatory. This embedding is illustrated in Figure 6 for the
case of the Client of Figure 4(a).

msg!,ok?,fail? ok?

msg!ok?,fail?

fail?

Figure 6. Embedding of the interface automatonCl from Figure 4(a) into a modal interface

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 139

4.5. On compatibility for modal interfaces

In this section, we take advantage of profiles to define a notion of composition for modal interfaces
including the compatibility issue introduced for interface automata. We shall recap the solution proposed
in [31, 36], then we shall show a counter example to Theorem 10in [31] and then propose our correction.

4.5.1. The composition and the bug in Theorem 10 of [31]

We now consider the notion of compatibility of two modal interfacesC1 = (S1, π1) andC2 = (S2, π2)
with S1 defined overA1 andS2 defined overA2. We assume thatC1 andC2 do not share common
output actions (which is the composability requirement similar to the one for interface automata). We
first compute the product betweenC1 andC2 following Definition 4.3. We then defineIllegal(C1, C2) to
be the subset of wordsu belonging to the support ofC1 ⊗ C2, such that one interfacemayproduce an
output thatmay notbe accepted as an input by the other interface:

either an actiona ∈ A1! ∩A2?

with a ∈ may1(u1) \must2(u2)

or an actiona ∈ A2! ∩A1?

with a ∈ may2(u2) \must1(u1),

(10)

whereu1 = prA1
(u) and similarlyu2 = prA2

(u). In order to get rid of illegal runs, we must first
consider the wordsv having a suffixv′ such thatv.v′ is illegal andv′ is a sequence of outputs; this way,
no environment can preventv′ to occur fromv. ForU a set of words of modal interfaceC, let pre !(U)
be the set

pre !(U) = {v ∈ LC | ∃a! ∈ may(v), v.a! ∈ U}

Let pre0! (U) = U , and, fork ≥ 0, prek+1
! (U) = pre !

(

prek! (U)
)

. Finally, letpre∗! (U) =
⋃

k pre
k
! (U).

The composition of two modal interfaces is obtained from their product by removing words inpre∗! (U),
following the approach outlined for interface automata. Two modal interfaces are compatible if the prun-
ing with the illegal words do not remove the empty word. The composition betweenC1 andC2 is denoted
C1 ‖ C2.

Theorem 10 in [31, 36] states that

“ (Independent Implementability). For any two composable modal interfacesC1, C2 and two
implementations(I1, π1) and (I2, π2). If (I1, π1) ≤ C1 and (I2, π2) ≤ C2, then it holds
that (I1, π1)× (I2, π2) ≤ C1 ‖ C2.”

The following example3 shows that Theorem10 in [31, 36] is wrong.

Example 4.1. Figure 7 depicts two modal interfacesC1 andC2; I1 andI2 are implementations ofC1
andC2, respectively. Alphabets are indicated for each modal interface. Parallel composition according
to [31] is named[C1 ‖ C2]0. Wordc?.a! is illegal since in the state reached after this run:C1 may offerb!
whereasC2 may (in fact will) not accept it. However,c?.a! is in the product of the two implementations.

3This example is due to discussions of the authors with Barbara Jobstmann and Laurent Doyen.

140 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

a!c?

a!

c? a?

I1 : {a!, b!}

I2 : {a?, b?, c?}

c? a!

I1 × I2 : {a!, b!, c?}

[C1 ‖ C2]0 : {a!, b!, c?}

c?

C1 ⊗ C2 : {a!, b!, c?}

a!a! b!

C1 : {a!, b!}

c? a?

C2 : {a?, b?, c?}

[C1 ‖ C2]1 : {a!, b!, c?}

A

c?

c? a!

Figure 7. Counterexample regarding compatibility. Grey-shaded states are to be removed.

4.5.2. The correction

Call exceptionany word inLC1⊗C2 from which the environment has no strategy to prevent the occurrence
of an illegal word, meaning that an illegal word can be obtained from the exception by following only
output actions.

Definition 4.3. (compatibility)
Theexception languageof modal interfacesC1 andC2 is the languageEC1 ‖ C2 = pre∗! (Illegal (C1, C2)).
Modal interfacesC1 andC2 are said to becompatibleif and only if the empty wordǫ is not inEC1 ‖ C2 .

Definition 4.4. (parallel composition)
Given two modal interfacesC1 andC2, the relaxationof C1 ⊗ C2 is obtained by applying the following
pseudo-algorithm toC1 ⊗ C2:

for all v in LC1⊗C2 do
for all a in A do

if v 6∈ EC1 ‖ C2 and v.a ∈ EC1 ‖ C2 then
for all w in A∗ do

must(v.a.w) := ∅
may(v.a.w) := A

end for
end if

end for
end for

If C1 andC2 are compatible, the relaxation ofC1 ⊗ C2 is called theparallel compositionof C1 andC2,
denoted byC1 ‖ C2. WheneverC1 andC2 are incompatible, the parallel compositionC1 ‖ C2 is defined as
the inconsistent modal specification⊥.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 141

If the environment performs an actiona? to which the “if ... then ...” statement applies, then illegal
words may exist for certain pairs(I1,I2) of strong implementations ofC1 andC2. If this occurs, then
C1 ‖ C2 relaxes all constraints on the future of the corresponding runs — Nothing is forbidden, nothing
is mandatory: the system has reached a “universal” state. This parallels the pruning rule combined with
alternating simulation, in the context of interface automata.

Example 4.2. We now show that our relaxation allows us to correct the counter example stated in Fig-
ure 7. We observe that our relaxation procedure yields[C1 ‖ C2]1, withA = {a!, b!, c?}, which hasI1×I2
as an implementation.

Associativity of the parallel composition operator is one of the key requirements of an interface
framework, since it enables independent design of sub-systems. Unlike in [31, 36], where associativity
is only mentioned, we can now state the following theorem:

Theorem 4.2. The parallel composition operator is commutative and associative.

Proof:
Commutativity of ‖ immediately holds by definition. We now consider associativity. Let three modal
interfacesC1, C2, C3. We characterize the set of illegal words in((C1 ‖ C2) ‖ C3) and then prove that
rearranging the parentheses will not change this set.

In the sequel we shall writeAi, must i, may i the elements ofCi (with i = 1, 2, 3) andAij , must ij,
may ij the elements ofCi ⊗ Cj (for (i, j) ∈ {1, 2, 3} × {1, 2, 3}, such thati 6= j). We shall also writeui
for prAi

(u) anduij for prAi∪Aj
(u).

Observe first that, by definition,⊗ is associative. Moreover, a wordu is illegal inC1 ⊗ C2 iff

∪
(

may !
1(u1) \must?2(u2)

)

∪
(

may !
2(u2) \must?1(u1)

)

6= ∅ (11)

whereui = prAi
(u) andmay !

1(u1) = may1(u1) ∩ A1! and similarly for other cases. Then, in building
C1 ‖ C2 from C1 ⊗ C2, relaxation of Def. 4.4 applies to every wordv ∈ LC1⊗C2 such that

∃b? ∈ may12(v) : v.b? ∈ I (12)

Consequently, every word inLC1 ‖ C2 :

either belongs itself toLC1⊗C2 , or has a strict prefixv ∈ LC1⊗C2satisfying (12). (13)

Observe that (12) rewrites as

∃b? ∈ may12(v),∃w ∈ (A1! ∪A2!)
∗ ⇒ v.b?.w satisfies (11). (14)

Apply this to the pair(C1 ‖ C2, C3): wordu is illegal in (C1 ‖ C2)⊗ C3 iff

∪
(

may !
12(u12) \must?3(u3)

)

∪
(

may !
3(u3) \must?12(u12)

)

6= ∅ (15)

whereA12 is the alphabet ofC1 ‖ C2. Let U be the set of all suchu’s, and setI = pre∗! (U). Then, in
building (C1 ‖ C2) ‖ C3 from (C1 ‖ C2)⊗ C3, relaxation applies to every wordv ∈ L(C1 ‖ C2)⊗C3 satisfying

142 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

(12). Consequently, every word inL(C1 ‖ C2) ‖ C3 satisfies (13) withC1 ⊗ C2 ⊗ C3 instead ofC1 ⊗ C2.
Finally, (12) rewrites as:

∃b? ∈ may(v),∃w ∈ (A1! ∪A2! ∪A3!)
∗ ⇒ v.b?.w satisfies (15). (16)

Let us further analyse (15). Two cases must be considered:

1. u12 has reached a universal state ofC1 ‖ C2 : in this case, by (13),u12 has a strict prefix̂u12 ∈
LC1⊗C2 satisfying (12), meaning that̂u12.b? may for someb?, by subsequently performing only
output actions, reach a deadlock in the product of the pair(C1, C2).

2. u12 has not reached a universal state ofC1 ‖ C2 : in this case,u12 ∈ LC1⊗C2 and

may !
12(u12) =

(

may !
1(u1) ∪may !

2(u2)
)

must?12(u12) =
(

must?1(u1) ∩must?2(u2)
)

∪ (A1? \A2) ∪ (A2? \ A1)

Hence the non-emptiness of (15) is equivalent tou12 causing a deadlock in the pair(C1, C3) or the
pair (C2, C3).

Let us summarize how the two conditions (12) were rewritten:

∃b? ∈ may(v),∃w ∈ (A1! ∪A2! ∪A3!)
∗ ⇒ u = v.b?.w satisfies the following condition:

• There exists a pair(i, j) ∈ {1, 2, 3} × {1, 2, 3}, such thati 6= j anduij = prAi
(u) possesses a

prefix ûij.b? that may, for someb? and by subsequently performing only output actions, reach a
deadlock in the pair(Ci, Cj).

The bottom line is that the condition and (12) is indeed symmetric with respect to the considered three
modal interfaces. This proves the associativity of‖ . ⊓⊔

As for interface automata (Theorem 4 in [20]), strong refinement preserves compatibility, assuming
that the refined modal interface does not introduce new shared actions.

Lemma 4.1. Consider three modal interfacesCi, i = 1...3, such thatC2 ≤s C1 andA2 ∩A3 ⊆ A1 ∩A3.

• prA1∪A3
(Illegal(C2, C3)) is included inIllegal(C1, C3);

• prA1∪A3

(

EC2 ‖ C3
)

is included inEC1 ‖ C3 .

Proof:
Consider an illegal wordu ∈ Illegal(C2, C3) for C2 ⊗ C3. This means that there exists an actiona ∈
A2 ∩ A3 such that (i) eithera is an output ofC2 and an input ofC3, such thata ∈ may2(prA2

(u)) and
a 6∈ must3(prA3

(u)), or (ii) a is an input ofC2 and an output ofC3, such thata 6∈ must2(prA2
(u)) and

a ∈ may3(prA3
(u)).

By Definition 2.5,u is also inLC1⊗C3↑A2∪A3
. By Definition 2.5,u′ = prA1∪A3

(u) belongs toLC1⊗C3 .
Since it is assumed thatA2 ∩A3 ⊆ A1 ∩A3, actiona belongs toA1 ∩A3. By Definition 2.4, eithera is
an output ofC1 and an input ofC3, such thata ∈ may1(prA1

(u′)) anda 6∈ must3(prA3
(u′)), or (ii) a is

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 143

an input ofC1 and an output ofC3, such thata 6∈ must1(prA1
(u′)) anda ∈ may3(prA3

(u′)). Meaning
thatu′ ∈ Illegal(C1, C3), which proves the first point of the lemma.

Consider now the second point. Recall thatA1! ∪ A3! is included inA2! ∪ A3!. Hence, the set of
actionsprA1∪A3

(pre∗! (Illegal (C2, C3))) is included inpre∗!
(

prA1∪A3
(Illegal(C2, C3))

)

, which is in turn
included inpre∗! (Illegal (C1, C3)), thanks to the first point of the lemma. ⊓⊔

Corollary 4.1. (compatibility preservation)
Given any three modal interfacesCi, i = 1...3, such thatC2 ≤s C1 andA1∩A3 ⊇ A2∩A3. C1 compatible
with C3 implies thatC2 andC3 are also compatible.

Proof:
This is an immediate consequence of the previous Lemma 4.1. AssumeC2 andC3 incompatible, meaning
thatǫ ∈ EC2 ‖ C3 . By Lemma 4.1,ǫ = prA1∪A3

(ǫ) ∈ EC1 ‖ C3 . HenceC1 andC3 are also incompatible.⊓⊔

Contrary to interface automata for whichC1 ‖ C2 is a refinement ofC1 ⊗C2 [20], relaxation of modal
interfaces amounts to computing an abstraction of the product:

Lemma 4.2. Given two modal interfacesC1 andC2:

C1 ⊗ C2 ≤ C1 ‖ C2

Proof:
Two cases are possible:

• if u ∈ LC1⊗C2 \ EC1 ‖ C2 thenmustC1⊗C2(u) = mustC1 ‖ C2(u) andmayC1⊗C2(u) = mayC1 ‖ C2(u);

• if u ∈ EC1 ‖ C2 thenu ∈ LC1 ‖ C2 andmustC1 ‖ C2(u) = ∅ andmayC1 ‖ C2(u) = A.

Thus,mustC1⊗C2(u) ⊇ mustC1 ‖ C2(u) andmayC1⊗C2(u) ⊆ mayC1 ‖ C2(u). ⊓⊔

Theorem 10 stated in [31, 36] now holds for the parallel composition operator.

Theorem 4.3. (independent implementability)
For any two modal interfacesC1, C2 and two implementations(I1, π1), (I2, π2) such that(I1, π1) |=s C1
and(I2, π2) |=s C2, it holds that(I1, π1)× (I2, π2) |=s C1 ‖ C2.

Proof:
If (I1, π1) |=s C1 and (I2, π2) |=s C2, then, by Theorem 4.1,(I1, π1) × (I2, π2) |=s C1 ⊗ C2. By
Lemma 4.2 and by the generalization of Theorem 1 in Theorem 4.1: (I1, π1)× (I2, π2) |=s C1 ‖ C2. ⊓⊔

5. Methodological considerations

While the framework we propose adds significant flexibility to design flows, it also raises some method-
ological issues that we discuss now.

144 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

As previously remarked, a designer may want to specify the aspects of the system via different inter-
faces (calledviewpoints). In this situation, she may wonder whether the same system would be obtained
by implementing all the viewpoints in a single component, oralternatively, as several components where
each of them implementing some of the viewpoints. This question amounts relating the operation of
product/composition to the one of conjunction. We have the following result.

Theorem 5.1. Let C1, C2, C3 be three modal interfaces. Then,

1. C1 ⊗ (C2 ∧ C3) ≤ (C1 ⊗ C2) ∧ (C1 ⊗ C3);

2. C1 ‖ (C2 ∧ C3) ≤ (C1 ‖ C2) ∧ (C1 ‖ C3);

3. The reverse refinements in points 1 and 2 do not hold.

Proof:
Recall thatmay i, must i andAi denote the elements ofCi and letA = A1 ∪A2 ∪A3.

Proof of statement 1.By definition of the GLB of modal specifications and by Theorem2.1, we
have: ρ(C2 & C3) ≤ C2 & C3. Note that the definition of composition for modal specification can be
immediatly extended topseudo-modal specifications with preservation of Proposition 2.3. As a result:

C1 ⊗ ρ(C2 & C3) ≤ C1 ⊗ (C2 & C3)

We then can easily prove that that⊗ distributes over&. Thus:

C1 ⊗ ρ(C2 & C3) ≤ (C1 ⊗ C2) & (C1 ⊗ C3)

Recall thatρ(pS) is the largest modal specification (for refinement order) such thatρ(pS) ≤ pS. Thus:

C1 ⊗ ρ(C2 & C3) ≤ ρ((C1 ⊗ C2) & (C1 ⊗ C3)).

That is:C1 ⊗ (C2 ∧ C3)≤(C1 ⊗ C2) ∧ (C1 ⊗ C3).

Proof of statement 2.Let u ∈ LC1 ‖ (C2∧C3) then:

• eitheru ∈ LC1⊗(C2∧C3);

• or, u has a strict prefixv ∈ LC1⊗(C2∧C3) such thatv.b? ∈ Illegal(C1, C2 ∧ C3) for some actionb?.

In the first case, according to the point 1 of Theorem 5.1, every a ∈ mayC1⊗(C2∧C3)(u) also belongs to
may (C1⊗C2)∧((C1⊗C3)(u). By definition of the conjunction:

a ∈ [mayC1⊗C2(prA1∪A2
(u)) ∪ (A \ (A1 ∪A2))] ∩ [mayC1⊗C3(prA1∪A3

(u)) ∪ (A \ (A1 ∪A3))]

Moreover, by Lemma 4.2,C1 ⊗ Ci ≤ C1 ‖ Ci for i = 1, 2, thus:

a ∈ [mayC1 ‖ C2(prA1∪A2
(u)) ∪ (A \ (A1 ∪A2))] ∩ [mayC1 ‖ C3(prA1∪A3

(u)) ∪ (A \ (A1 ∪A3))]

that is,a ∈ may (C1 ‖ C2)∧((C1 ‖ C3)(u).

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 145

In the second case, let us first show that ifv.b? ∈ Illegal (C1, C2 ∧ C3) then prA1∪Ai
(v.b?) ∈

Illegal(C1, Ci) for i = 1, 2. Let may!i = mayi ∩ Ai! and similarly for other cases. Whenv.b? ∈
Illegal(C1, C2 ∧ C3) there existsa ∈ A1 ∩A2 ∩A3 such that:

a ∈
(

may !
1(prA1

(v.b?)) \must?C2∧C3(prA2∪A3
(v.b?))

)

∪
(

may !
C2∧C3

(prA2∪A3
(v.b?)) \must?12(u1(prA1

(v.b?)))
)

If a /∈ must?C2∧C3(prA2∪A3
(v.b?)) thena /∈ [must?C2(prA2

(v.b?)) ∪ must?C3(prA3
(v.b?))]; moreover

if a ∈ may !
C2∧C3

(prA2∪A3
(v.b?)), as a ∈ A1 ∩ A2 ∩ A3, we have: a ∈ may !

C2
(prA2

(v.b?)) ∩

may !
C3
(prA3

(v.b?)). As a result,prA1∪Ai
(v.b?) is illegal in C1 ⊗ Ci for i = 1, 2 andu has reached

a universal state in(C1 ‖ C2) ∧ (C1 ‖ C3). In conclusion,mayC1⊗(C2∧C3)(u) ⊆ may (C1 ‖ C2)∧((C1 ‖ C3)(u).

Now if a ∈ must (C1 ‖ C2)∧((C1 ‖ C3)(u) then by definition:

a ∈ [(must1(prA1
(u)) ∪ (A2 \A1)) ∩ (must2(prA2

(u)) ∪ (A1 \A2))]

∪[(must1(prA1
(u)) ∪ (A3 \A1)) ∩ (must3(prA3

(u)) ∪ (A1 \A3))]
(17)

We have to provea ∈ mustC1 ‖ (C2∧C3)(u), that is:

a ∈ [must1(prA1
(u)) ∪ ((A2 ∪A3) \ A1)]

∩ [
(

must2(prA2
(u)) ∪must3(prA3

(u))
)

∪ (A1 \ (A2 ∪A3))]
(18)

If a /∈ must1(prA1
(u)) then from Equation 17 we deduce:

a ∈ must2(prA2
(u)) ∩must3(prA3

(u)) ∩ (A2 \A1) ∩ (A3 \A1)

If a ∈ must1(prA1
(u)) then from Equation 17 we deduce:

a ∈
(

(must2(prA2
(u)) ∪ (A1 \ A2)

)

∩
(

(must3(prA3
(u)) ∪ (A1 \ A3))

)

In the two situations, Equation 18 is true and thusa ∈ mustC1 ‖ (C2∧C3)(u).

Proof of statement 3 and 4.Consider the three following modal interfaces defined over the alphabet
{a} with the same profileπ(a) =?:

• C1 with may1(ǫ) = {a}, may1(a) = {a} andmay1(aa) = ∅;

• C2 with may2(ǫ) = {a}, may2(a) = {a} = ∅;

• C3 with may3(ǫ) = {a}, may3(a) = must3(a) = {a} andmay1(aa) = ∅;

Thenmay(C1⊗C2)∧(C1⊗C3)(ǫ) = {a} whereasmayC1⊗(C2∧C3)(ǫ) = ∅. As a result:

(C1 ⊗ C2) ∧ (C1 ⊗ C3) � C1 ⊗ (C2 ∧ C3).

The same counterexample can be used to prove that:(C1 ‖ C2) ∧ (C1 ‖ C3) � C1 ‖ (C2 ∧ C3). ⊓⊔

146 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

The interpretation of this theorem is as follows. We assume two components indexed by 1 and 2,
with associated interfaces. The left hand side of equationsin point 1 and 2 captures the design process
in which (1) the two viewpoints for component 2 are first combined, and (2) the two components are
combined; this is called acomponent-centricdesign process because it aims at specifying components
completely before assembling them. The right hand side captures the design process in which viewpoints
are first considered separately for all components, and thenfused; this is called aviewpoint-centric
design process. Theorem 5.1 expresses that viewpoint-centric design processes leave more room for
implementations than component-centric ones.

6. Conclusion, related work and future work

This paper presents amodal interfaceframework, a unification of interface automata and modal specifi-
cations. It is a complete theory with a powerful compositionalgebra that includes operations such as con-
junction (for requirements composition) and residuation (for component reuse but also assume/guarantee
contract-based reasoning [42]). However, the core contributions of the paper are (1) a parallel compo-
sition operator that reflects a rich notion of compatibilitybetween components, actually correcting the
parallel composition proposed in [31, 36], and (2) a new theory that encompasses dissimilar alphabets.

Interface automata were first introduced as an extension of Input/Output automata with an optimistic
approach for composition. Modal specifications have been proposed as an extension of process-algebraic
theories [35, 30] which allows for a better distinction between successive implementations (see the intro-
duction of [36] and [30] for some discussion). Modal interfaces are a model that mixes both I/O automata
and modal specifications.

There are various other approaches for interface theories (see [5] for a survey). One of them is based
on contracts [7, 36, 38, 27], that is a representation where one keeps an explicit distinction between
assumptions on the environment and guarantees on behaviorsof the system. A similar approach to ours
has been developed in [33] for anon-modalprocess-algebraic framework in which a dedicated predicate
is used to model inconsistent processes.

Interface automata and modal specifications are incomparable models asmust, mayand input, out-
put have orthogonal meanings. Modal specification can be viewedas an abstraction of a set of closed
systems4 (as a modal specification does not allow a component and its environment to be distinguished).
As a consequence, specification logics and verification procedures for this model [26, 28] are exten-
sions of those defined for transition systems [37, 15]. Interface automata is a more “open” model (as it
distinguishes between the component and its environment) and it is thus not surprising that specification
logics and verification procedures for such a model correspond to those defined for reactive systems, e.g.,
ATL [1]. This paper did not focus on verification procedures,but we believe that this research direction
is of importance and deserves further studies.

There are several possible directions for future research.A first step would be to implement all the
concepts and operations presented in the paper and evaluatethe resulting tool on concrete case studies.
Extensions of modal specifications can be investigated, where states are described as valuations of a
set of variables just as it has been the case for interface automata [13, 18]. One should also propose
definitions of quotient and conjunction for interface automata.

4A closed system is a system that does not interact with an unknown environment. On the contrary, an open system is a system
that continuously interacts with an unknown environment.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 147

Another promising direction would be a timed extension of modal interfaces. In [21], de Alfaro
et al. proposedtimed interface automatathat extend timed automata just as interface automata extend
finite-word automata. The semantics of a timed interface automaton is given by a timed game [19, 12],
which allows one to capture thetimed dimensionin composition, i.e., “what are the temporal ordering
constraints on communication events between components? [21]”. Up to now, composition is the only
operation that has been defined on timed interface automata.In [14], Chatain et al. have proposed a
notion of refinement for timed games. However, monotonicityof parallel composition with respect to
this refinement relation has not been investigated yet. In [9, 8], timed modal specificationsare proposed.
As modal specifications, timed modal specifications admit a rich composition algebra with product,
conjunction and residuation operators. Thus, a natural direction for future research would be to unify
timed interface automata and timed modal specifications. This would imply a translation from timed
interface automata to timed modal specifications.

Acknowledgments

We are grateful to Barbara Jobstmann and Laurent Doyen who proposed the counter example given in
Section 4.5.1 which proved that thhe construction in [31] was incorrect.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[2] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations. InProc. of the
9th International Conference on Concurrency Theory (CONCUR’98), volume Lecture Notes in Computer
Science 1466, pages 163–178. Springer, 1998.

[3] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. Complexity of decision problems for
mixed and modal specifications. InProc. of the 11th International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS’08), volume Lecture Notes in Computer Science 4962, pages
112–126. Springer, 2008.

[4] A. Arnold and M. Nivat. Metric interpretations of infinite trees and semantics of non deterministic recursive
programs.Theoretical Computer Science, 11, 1980.

[5] E. Badouel, A. Benveniste, B. Caillaud, T. A. Henzinger,A. Legay, and R. Passerone. Contract theories for
embedded systems : A white paper. Research report, IRISA/INRIA Rennes, 2009.

[6] N. Benes, J. Kretı́nský, K. G. Larsen, and J. Srba. On determinism in modal transition systems.Theoretical
Computer Science, 410(41):4026–4043, 2009.

[7] A. Benveniste, B. Caillaud, and R. Passerone. A generic model of contracts for embedded systems. Research
report 6214, IRISA/INRIA Rennes, 2007.

[8] N. Bertrand, A. Legay, S. Pinchinat, and J.-B. Raclet. A compositional approach on modal specifications for
timed systems. InProc. of the 11th International Conference on Formal Engineering Methods (ICFEM’09),
volume Lecture Notes in Computer Science 5885, pages 679–697. Springer, 2009.

[9] N. Bertrand, S. Pinchinat, and J.-B. Raclet. Refinement and consistency of timed modal specifications. In
Proc. of the 3rd International Conference on Language and Automata Theory and Applications (LATA’09),
volume Lecture Notes in Computer Science 5457, pages 152–163. Springer, 2009.

148 J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design

[10] P. Bhaduri. Synthesis of interface automata. InProc. of the 3rd Automated Technology for Verification and
Analysis Conference (ATVA’05), volume Lecture Notes in Computer Science 3707, pages 338–353. Springer,
2005.

[11] S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based systems. InProc. of the
19th International Conference on Concurrency Theory (CONCUR’08), volume Lecture Notes in Computer
Science 5201, pages 508–522. Springer, 2008.

[12] T. Brihaye, F. Laroussinie, N. Markey, and G. Oreiby. Timed concurrent game structures. InProc. of the
18th International Conference on Concurrency Theory (CONCUR’07), volume Lecture Notes in Computer
Science 4703, pages 445–459. Springer, 2007.

[13] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Synchronous and bidirectional component
interfaces. InProc. of the 14th International Conference on Computer Aided Verification (CAV’02), volume
Lecture Notes in Computer Science 2404, pages 414–427. Springer, 2002.

[14] T. Chatain, A. David, and K. G. Larsen. Playing games with timed games. InProc. of the 3rd IFAC Confer-
ence on Analysis and Design of Hybrid Systems (ADHS’09), 2009.

[15] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching-
time temporal logic. InLogic of Programs, volume Lecture Notes in Computer Science 131, pages 52–71.
Springer, 1981.

[16] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.ACM Trans. Program.
Lang. Syst., 19(2):253–291, 1997.

[17] L. de Alfaro. Game models for open systems. InVerification: Theory and Practice, volume Lecture Notes
in Computer Science 2772, pages 269–289. Springer, 2003.

[18] L. de Alfaro, L. Dias da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable interfaces. InProc. of
the 5th International Workshop on Frontiers of Combining Systems (FroCos’05), volume Lecture Notes in
Computer Science 3717, pages 81–105. Springer, 2005.

[19] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of surprise in
timed games. InProc. of the 14th International Conference on Concurrency Theory (CONCUR’03), volume
Lecture Notes in Computer Science 2761, pages 142–156. Springer, 2003.

[20] L. de Alfaro and T. A. Henzinger. Interface automata. InProc. of the 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE’01), pages 109–120. ACM Press, 2001.

[21] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. InProc. of the 2nd Workshop on Embedded
Software (EMSOFT’02), volume Lecture Notes in Computer Science 2491, pages 108–122. Springer, 2002.

[22] L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov. Interface theories with component reuse. InProc.
of the 8th International Conference on Embedded Software (EMSOFT’08), pages 79–88. ACM Press, 2008.

[23] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity - the Ptolemy approach.Proc. of the IEEE, 91(1):127–144, 2003.

[24] G. Feuillade and S. Pinchinat. Modal specifications forthe control theory of discrete-event systems.Discrete
Event Dynamic Systems, 17(2):181–205, 2007.

[25] C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof. Stuck-free conformance. InProc. of the 16th
International Conference on Computer Aided Verification (CAV’04), volume Lecture Notes in Computer
Science 3114, pages 242–254. Springer, 2004.

[26] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using modal transition sys-
tems. InProc. of the 12th International Conference on Concurrency Theory (CONCUR’01), volume Lecture
Notes in Computer Science 2154, pages 426–440. Springer, 2001.

J.-B. Raclet et al. / A Modal Interface Theory for Component-based Design 149

[27] G. Goessler and J.-B. Raclet. Modal contracts for component-based design. InProc. of the 7th IEEE In-
ternational Conference on Software Engineering and FormalMethods (SEFM’09), pages 295–303. IEEE
Computer Society Press, 2009.

[28] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in theµ-calculus. InProc. of the 6th
International Conference on Verification, Model Checking,and Abstract Interpretation (VMCAI’05), volume
Lecture Notes in Computer Science 3385, pages 233–249. Springer, 2005.

[29] T. A. Henzinger and J. Sifakis. The embedded systems design challenge. InProc. of the 14th International
Symposium on Formal Methods (FM’06), volume Lecture Notes in Computer Science 4085, pages 1–15.
Springer, 2006.

[30] K. G. Larsen. Modal specifications. InAutomatic Verification Methods for Finite State Systems, volume
Lecture Notes in Computer Science 407, pages 232–246. Springer, 1989.

[31] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for interface and product line theories. In
Proc. of the 16th European Symposium on Programming Languages and Systems (ESOP’07), volume Lecture
Notes in Computer Science 4421, pages 64–79. Springer, 2007.

[32] K. G. Larsen, U. Nyman, and A. Wasowski. On modal refinement and consistency. InProc. of the 18th In-
ternational Conference on Concurrency Theory (CONCUR’07), volume Lecture Notes in Computer Science
4703, pages 105–119. Springer, 2007.

[33] G. Lüttgen and W. Vogler. Conjunction on processes: Full abstraction via ready-tree semantics.Theoretical
Computer Science, 373:19–40, 2007.

[34] N. Lynch and M. R. Tuttle. An introduction to Input/Output automata.CWI-quarterly, 2(3), 1989.

[35] R. Milner. A complete axiomatisation for observational congruence of finite-state behaviors.Information
and Computation, 81(2):227–247, 1989.

[36] U. Nyman. Modal Transition Systems as the Basis for Interface Theories and Product Lines. PhD thesis,
Aalborg University, Department of Computer Science, 2008.

[37] A. Pnueli. The temporal logic of programs. InProc. 18th Annual Symposium on Foundations of Computer
Science (FOCS’77), pages 46–57, 1977.

[38] S. Quinton and S. Graf. Contract-based verification of hierarchical systems of components. InProc. of the 6th
IEEE International Conference on Software Engineering andFormal Methods (SEFM’08), pages 377–381.
IEEE Computer Society, 2008.

[39] J.-B. Raclet.Quotient de sṕecifications pour la ŕeutilisation de composants. PhD thesis, Université de Rennes
I, 2007. (In French).

[40] J.-B. Raclet. Residual for component specifications. In Proc. of the 4th International Workshop on Formal
Aspects of Component Software (FACS’07), volume Electronic Notes Theoretical Computer Science 215,
pages 93–110, 2008.

[41] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone. Modal interfaces: Unifying
interface automata and modal specifications. InProc. of the 9th International Conference on Embedded
Software (EMSOFT’09), pages 87–96. ACM Press, 2009.

[42] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why are modalities good for interface
theories? InProc. of the 9th International Conference on Application ofConcurrency to System Design
(ACSD’09), pages 199–127. IEEE Computer Society Press, 2009.

[43] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why are modalities good for Interface
Theories? Research Report RR-6899, INRIA, 2009.

