Fundamenta Informaticae 108 (2011) 119-149 119
DOI 10.3233/FI-2011-416
10S Press

A Modal Interface Theory for Component-based Design

Jean-Baptiste Raclet Eric Badouel

INRIA Grenoble - Rines-Alpes, France INRIA/IRISA Rennes, France
Jean-Baptiste.Raclet@irit.fr eric.badouel@irisa.fr

Albert Benveniste Benoit Caillaud

INRIA/IRISA Rennes, France INRIA/IRISA Rennes, France
albert.benveniste @irisa.fr benoit.caillaud@irisa.fr

Axel Legay Roberto Passerone
INRIA/IRISA Rennes, France University of Trento, Italy
axel.legay@irisa.fr roberto.passerone@unitn.it

Abstract. This paper presents threodal interfacetheory, a unification ointerface automatand
modal specificationgwo radically dissimilar models for interface theoriesterface automata is a
game-based model, which allows the designer to expressiasisms on the environment and which
uses an optimistic view of compositiotwwo components can be composed if there is an environment
where they can work togetheModal specifications are a language theoretic account i@fgarfent

of the modal mu-calculus logic with a rich composition algetwhich meets certain methodological
requirements but which does not allow the environment aedcttimponent to be distinguished.
The present paper contributes a more thorough unificatidgheofwo theories by correcting a first
attempt in this direction by Larsen et al., drawing a conmgfgtture of the modal interface algebra,
and pushing the comparison between interface automataglmotbmata and modal interfaces even
further.

The work reported here is based on earlier work presentetilirend [42].

Keywords: Component-based System, Compositional Reasoning, &etefitheory, Interface Au-
tomata, Modal Specifications.

*This work was funded in part by the European IP-SPEEDS projember 033471 and the European STREP-COMBEST
project number 215543.
fAddress for correspondence: INRIA Grenoble - Rhdnes-g\|peance

120 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

1. Introduction

Nowadays, systems are tremendously large and complexttimgsiiom the assembling of several com-
ponents. These many components are in general designedrag,tevorking independently but with a
common agreement on what the interface of each componeuldshe. As a consequence, the study of
mathematical foundations that allow designers to reastireabstract level of interfaces is a very active
research area. According to our understanding of indlisteieds (see [5] for a discussion), an interface
theory is at least subject to the following requirements:

1. Satisfaction and satisfiability are decidablénterfaces should be seen as specifications whose
models are its possible implementations. It should thusdeéddble whether an interface admits
an implementation and whether a given component implenaegigen interface.

2. Refinement entails substitutabilitRefinement allows one to replace, in any context, an interfac
by a more detailed version of it. Refinement should entaissutiability of interface implementa-
tions, meaning that every implementation satisfying a egfiant also satisfies the larger interface.
For the sake of controlling design complexity, it is desieatn be able to decide whether there
exists an interface that refines two different interfacekisTs calledshared refinemen22]. In
many situations, we are looking for tigeeatest lower bound.e., the shared refinement that could
be refined by any other shared refinement.

3. Interfaces are closed under conjunctiobarge systems are concurrently developed for their dif-
ferentaspector viewpointshy different teams using different frameworks and toolsafagles of
such aspects include the functional aspect, the safetyiability aspect, the timing aspect. Each
of these aspects requires specific frameworks and tooleéaranalysis and design. Yet, they are
not totally independent but rather interact. The issue afidg with multiple aspects or multiple
viewpoints is thus essential. This implies that severabohictions are associated with a same sys-
tem, sub-system, or component, namely (at least) one p@puwiat. These introductions are to be
interpreted in a conjunctive way. The need for supportingjuactive introductions also follows
from the current practice in which early requirement captalies on Doors or even Excel sheets
collecting many individual requirements. The latter tydig consist of English text, semi-formal
languages whose sentences are translatable into predbéhadioral patterns, or even graphical
scenario languages.

4. Composition supports independent desighe interface theory should also provide a combination
operator on interfaces, reflecting the standard compasidfamplementations by, e.g., parallel
product. This operation must be associative and commat#bi\guarantee independence in the
development. Depending on the model, a notion of compayildibr composition may also be
considered, i.e., there can be cases where two systemst d@ncomposed.

5. Interface quotient supports incremental design and corepbreuse. A quotienting operation,
dual to composition is crucial to perform incremental dasiGonsider a desired global specifica-
tion and the specification of a preexisting component; tratignt specification describes the part
of the global specification that remains to be implemented.

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 121

6. A verification procedureln addition to the fact that an interface already represarget of prop-
erties, one should be able to verify if an interface satisdisgt of requirements written in some
specification language.

7. Encompassing interfaces with dissimilar alphabetSomplex systems are built by combining
subsystems possessing dissimilar alphabets for refaiggpoirts and variables. It is thus important
to properly handle those different alphabets when combimiterfaces.

Building good interface theories has been the subject ehsite studies (see, e.qg., [29, 20, 11, 23,
25, 18, 21]). In this paper we will concentrate on two modgélginterface automatf20] and (2)modal
specification$30]. Interface automata is a game-based variation of ioptput automata which deals
with open systems, their refinement and composition, ansl thetemphasis on interface compatibility.
Modal specifications is a language-theoretic account chgnfient of the modal mu-calculus logic [24]
which admits a richer composition algebra with product,jeoction and residuation operators.

Modal specifications correspond deterministicmodal automata [30], i.e., automata whose transi-
tions are typed withmay and mustmodalities. A modal specification thus represents a set afefsp
informally, a must transition is available in every compohthat implements the modal specification,
while a may transition needs not be. The components thakeimght modal specifications are prefix-
closed languages, or equivalently deterministic autoftratesition systems.

Satisfiability of modal specifications is decidable. Refipatmbetween modal specifications coin-
cides with model inclusion. Conjunction is effectively comted via a product-like construction. It
can be shown that the conjunction of two modal specificatmmrsesponds to their greatest common
refinement. Combination of modal specifications, handliyigckronization producta la Arnold and
Nivat [4], and the dual quotient combinators can be effityeimandled in this setting [39, 40].

In interface automata [20], an interface is representedrbinput/output automaton [34], i.e., an
automaton whose transitions are labeled withut or outputactions. The semantics of such an automa-
ton is given by a two-player game: amput player represents the environment, andCartput player
represents the component itself. Interface automata denummpass any notion of model, because one
cannot distinguish between interfaces and implementtion

Refinement between interface automata corresponds totdreating refinement relation between
games [2], i.e., an interface refines another if its envirenims more permissive whereas its compo-
nent is more restrictive. Shared refinement is defined in amoadnanner [22] for a particular class of
interfaces [13]. Contrary to most interface theories, tameg-based interpretation offers aptimistic
treatment of composition: two interfaces can be compos#teik exists at least one environment (i.e.,
one strategy for the Input player) in which they can intetagether in a safe way (i.e., whatever the
strategy of the Output player is). This is referred to as catibpity of interfaces. A quotient, which is
the adjoint of the game-based composition, has been propo$&0] for the deterministic case.

It is worth mentioning that, in existing work on interfacet@mata and modal specifications, there
is nothing about dissimilar alphabets. This is somehowr&ing as it seems to be a quite natural
question when performing operations that involve sevesaimonents, e.g., conjunction, composition,
and quotient. As we shall see in this paper, an explicit maishato handle dissimilar alphabets is

122 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

not needed when considering interface automata, sincemcign is not discussed for this model. For
the case of composition/quotient, instead, we shall saethikanotion is implicitly encompassed in the
definition of compatibility. Conjunction and quotient optars [30, 39, 40] that have been proposed
for modal specifications do not take dissimilar alphabetis &tcount. One thus needs to extend those
operators to this more general setting. This is one of thgstsof this paper.

In conclusion, both models have advantages and disadwemtag

e Interface automata is a model that allows designers to ms&enaptions on the environment,
which is mainly useful to derive a rich notion for compositievith compatibility issues. In addi-
tion, the notion of dissimilar alphabets is not needed. Woftely, the model is incomplete as
conjunction and shared refinement are not defined.

e Modal specification is a rich language-algebraic model oiclvimost of the requirements for a
good interface theory can be considered. Unfortunatefgyandmustmodalities are not sufficient
to derive a rich notion for composition including compditi Moreover, the notion of dissimilar
alphabets is missing.

It is thus worth considering unifying the frameworks of ifitee automata and modal specifications.
A first attempt was made by Larsen et al. [31, 36] who cons@leredal interfaceswhich are modal
specifications whose actions are also typeithjput or outputattributes. A modal interface can be viewed
as simply a modal specification except for the compositioarajon for which the modalities are an
additional complication. Refinement for modal interfacethe same as refinement for modal specifica-
tions, while composition is the one from interface automatasen et al. have shown that refinement for
modal specifications is compatible with the compositionrafien for interface automata [31, 36]. The
main problem with their results is that the composition aparis incorrect. Indeed, contrary to what
is claimed by the authors, their composition operator ismohotone with respect to satisfaction. This
fails to ensure that twoompatibleinterfaces may be implemented separately. Moreover, reaants
such as dissimilar alphabets, conjunction, and compoeiserare not considered.

The present paper adds a new stone to the cathedral of resutfigerface theories by (1) proposing
a new theory for dissimilar alphabets, (2) correcting thelahinterface composition operator presented
in [31, 36], (3) pushing the comparison between interfaderaata, modal automata and modal spec-
ifications and modal interfaces further, and (4) reasonim@rehitectural design for component-based
systems.

The rest of the paper is organized as follows. In Sectionsd23awe recap the theory for modal
specifications and interface automata, respectively. bkti@e4, we present the complete theory for
modal interfaces and correct the error in [31, 36]. Sectiondedicated to architectural design. Finally,
in Section 6, we draw our conclusion and discuss future sites for the model of modal interfaces.

2. Modal specifications

This section starts with an overview of existing resultsafieped in [30, 39, 40] for modal specifications
defined over a global alphabet (Sections 2.1, 2.2 and 2.3).alé¢e propose a hew methodology to
encompass dissimilar alphabets (Section 2.4).

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 123

2.1. The Framework

Following our previous work [39, 40, 42], we will define modspecifications in term of languages,
knowing that they can also be representeddbterministicautomata whose transitions are typed with
mayandmustmodalities [30]. We start with the following definition.

Definition 2.1. (Modal specification)
A modal specificatiofis a tupleS = (A, must, may), whereA is a finite alphabet and

must, may : A* s 24
are partial functions satisfying the followirggpnsistencyondition:
must(u) < may(u). 1)

If a € may(u), thena is allowed after the trace: whereas: € must(u) indicates that is required
after u. By negation,a ¢ may(u) means that is disallowedafter u. The latter is often written
a € mustnot(u). Condition (1) naturally imposes that every required act®also allowed. We shall
sometimes writenay s, andmusts, (or may; andmust; for short) to refer to the entities involved in the
definition of S;.

Modal specifications that generate regular languages cagpbesented bgleterministic modal au-
tomatg i.e., deterministic finite-word automata with two typestinsitions: solid transitions if the
action is required in the source state and dashed trarsifidris allowed but not required. The concept
is illustrated with the example.

msg
extra msg,extra
msg msg
ack,nack
ack,nack extra
(a) Functional sped-un (b) A simple automaton

Figure 1. The modal specificatidtun accepts the automaton

Example 2.1. Consider a producer whose alphabet of actions inclagsgfor when the producer sends
a message as well as two kinds of acknowledgment for traggmisack in case of success amck
in case of failure. Assume also the existence of an aaidrawhich occurs when extra resources are
requested to dispatch a message.

A functional specificatiori-un for the producer is given in Figure 1(a). It specifies thatsgmay
be sent again. Moreover evemysgmay be acknowledged. Additionally, the producer may regextsa
resources at any moment.

When composing specifications, discrepancies between tualnnformation carried out by the
specifications may appear. We then consjagzudo-modal specificatiorfalso calledmixed transition
systemsn [16]), denoted'S; they are triples satisfying Definition 2.1 with the exceptiof (1). For

124 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

£S a pseudo-modal specification, a waide A* is called consistently specifieth £S if it satisfies
(1) andinconsistentotherwise; modal specifications correspond exactly to thelass ofconsistent
pseudo-modal specifications, that is pseudo-modal spatidfics such that every € A* is consistently
specified.

ForZS = (A, must, may) a pseudo-modal specification, teepportof £S is the leasprefix-closed
languagelss such that

() € € Lrs, wheree denotes the empty word; and

(i) u € Lrs anda € may(u) imply u.a € Les.

2.2. Implementation, refinement and consistency

In this section, we study the conceptsiofplementation refinementand consistency We start with
implementation, which is also calledodel

Definition 2.2. (implementation)
A prefix-closed languag& C A* is animplementation(or model) of a pseudo-modal specification
ES = (A, must, may), denoted byZ = *S, if

VueZ = must(u) CZ, C may(u)

whereZ, is the set of actiona € A such thatu.a € 7.

Example 2.2. A model for the specification given in Figure 1(a) is presdnteFigure 1(b). It indicates
that every message will be acknowledged either positivelyegatively. Moreover, an extra resource is
requested if the message has to be re-emitted.

Lemma 2.1. LetZ C A* be a prefix-closed language afla pseudo-modal specification ovér If
7T =S, thenZ C Lys holds and every word of is consistently specified #S8.

The concept ofthorough refinemerfollows immediately from Definition 2.2 by comparing, thighuset
inclusion, the sets of implementations associated to twaeifipations.

Definition 2.3. (thorough refinement)
There exists a thorough refinement between specific&fgrand specificatiodS, if and only if any
model offS; is also a model ofSs.

Thorough refinement has been extensively studied in [32]cangpared to the more syntactic notion of
modal refinementhat is recalled hereafter.

Definition 2.4. (modal refinement)
Let?S; andtS, be two pseudo-modal specifications. The specificdtanefines'Ss, writtentS; < £Ss,
if and only if, for allu € £1, may,(u) C may,(u) andmust, (u) O musta(u).

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 125

It is easy to see that modal refinement is a preorder relatimnimnplies inclusion of supports:
p81 < pSQ — [4),31 - [4),32

Any two modal specifications; andS; such thatS; < S, < &) have equal supports = Ls, = Ls,
and for allu € £, may;(u) = mayy(u) andmust;(u) = musta(u). Said differently, equivalent modal
specifications differ only outside of their support. A urggqrepresentatived = (A, must, may) of
equivalence classes of modal specifications is defined byrasg that for allku ¢ Ls, must(u) = () and
may(u) = A. In the sequel, only modal specifications satisfying thigpprty are considered. Under
this assumption, modal refinement is a partial order redatio modal specifications.

In [39, 40, 6], it is shown that modal refinement for modal $feations is soundand complete,
i.e., it is equivalent to thorough refineménfor nondeterministianodal specifications, checking thor-
ough refinement is PSPACE-hard [3] (and also EXPTIME). As ahoefinement is P-complete, a faster
decision procedure exists in the deterministic case.

The following result relates implementations to consisyefor a pseudo-modal specification.

Theorem 2.1. (consistency [39, 40])

Let%S be a pseudo-modal specification. Eith8possesses no implementation, or there exists a largest
(for refinement order) modal specificatigrt®S) having the same alphabet of actions and such that
p(*S) <*S. In addition,p(S) possesses the same set of implementatiofiS.as

The modal specificatiop(%S) is called thepruningof %S. It is obtained frontS through the following
steps:

1. Start fromRy, a copy offS;

2. LetUj be the set of words inconsistently specifiedRp, meaning that. € U, does not satisfy
condition (1). For each € Uy, setmayg, (u) = A andmustr,(u) = 0. Then, for each word
v € A* such thaw.a = u for someu € Uy anda € A, removea from may g, (v). Performing
these two operations yields a pseudo-modal specificdtiosuch that/, is consistently specified
in R;. Since we have only removed inconsistently specified waas £, by Lemma 2.1 R,
and R, possess identical sets of implementations.

3. Observe that, it € mustg, (v), thenv becomes inconsistently specified /1. So we repeat
the above step o®y, by considering/;, the set of words: inconsistently specified ifit;. Let
Ay C Up x Uy be the relation consisting of the pairs, v) such that.a = u for somea andv is
inconsistently specified ii®;. Note thatv is a strict prefix ofu.

4. Repeating this, we get a sequence of triples, Uy, Ay) x>0 such that 1) J,. ;. U, is consistently
specified inRy11, and 2)mayg, , (v) € mayg, (v) for eachv, with strict inclusion whenever
v.a = u for someu € Uy, and 3)Ax1 C Uy x U1 is the relation consisting of the paifs, v)
such thaw.a = u for somea andv is inconsistently specified iRy — again,v is a strict prefix
of u.

!Completeness of modal refinement does not hold for nondatistio modal automata [32]. It holds in our case since wekwor
with specifications (for which determinism is hardwired).

126 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

5. Callchaina sequencey, u1, ... of words such thatuy, ui.1) € Ag4q for everyk > 0. Since
ug+1 IS a strict prefix ofuy, every chain is of length at mogty|. Thus, every inconsistently
specified word ofS is removed after finitely many steps of the above algorithims proves that
the procedure eventually converges. The lipgitS) is consistent and is given by:

may(u) = (), may g, (v)

Hu) mustes(u) if mustss(u) C may(u)
must(u) =
0 otherwise

The above procedure terminates in finitely many steps if tippart of the pseudo-modal specification
is regular which is, in particular, the case of pseudo-megactifications originated fromdeterministic
pseudo-modal automatorThis procedure also entails a sufficient condition for tagsfiability prob-
lem: a pseudo-modal specification admits a model if and drilgere is no wordu € Lys such that
u is inconsistent and for all prefixasof u if u = v.a.v’ thena € must(v). Hence this problem is
NLOGSPACE-complete; it is PSPACE-hard for nondetermimigseudo-modal specifications [3].

2.3. Operations on modal specifications

Greatest Lower Bound: The set of all pseudo-modal specifications equipped withahcefinement
< is a lattice. We denote B, & S, the Greatest Lower Bounf(iGLB) of ¥S; and’S, defined over the
same alphabet. The GLUB; & ESo can be computed as

may(u) = may;(u) N may,(u) (2)

must(u) = musti(u) U musta(u)

Observe that, even S, and?S, satisfy (1), it is not guaranteed thafl; & kS5 does too. Hence, by
using Theorem 2.1, faf; andS; two modal specifications, we defidg A So as being the (uniquely
defined) modal specification

SINSy = p(Sl & SQ) (3)
GLB satisfies the following key property, which relates itagic formulas:

Theorem 2.2. (conjunctive interfaces [39, 40])
LetZ be a prefix-closed language aSdandS; be modal specifications. Then,

I)ZSl/\SQ = I):Slandllzsg

The following holds regarding support€s, rs, € Ls, N Ls,, with equality if and only if no pruning is
needed, i.e$; A Sy = 81 & So.

Composition: LetS; andS; be two modal specifications over the same alphabet. Toenposition
S1 ® Sy is defined by
may(u) = may;(u) N mayy(u))

must(u) = musti(u) N musta(u)

The following theorem shows that composition ensures gutaility.

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 127

Theorem 2.3. (substitutability in compaosition [39, 40])
LetZ;,Z, be two prefix-closed languages afid S,, S| andS), be modal specifications:

1. If Si <& andSé < 8, thenS{ &® Sé < 851 ® 8.
2. It |: Sy andZy |: Sy, thenZ; x Iy): S1 ® Sy, whereZ; x Iy = 71 N Is.

3. The following holds regarding supporiSs, ¢s, = Ls, N Ls,-

Residuation: We now discuss theesiduationoperation which was introduced in [39, 40]. We will
show that this operation is the adjoint of composition. &EpandS, two modal specifications, we first
define theipseudo-quotiens; /S, according to the following disjunctive and exhaustive sase

a € may(u) Nmust(u) if a€ musty(u
and a € musta(u
a € must(u) \ may(u) if a € musti(u
and a ¢ musta(u
a € may(u) \ must(u) if a € may,(u
and a & musty(u
a € may(u) \ must(u) if a & may,(u
and a ¢ mays(u
a & may(u) U must(u) if a & may,(u
(

)
)
)
)
)
)
)
)
)
)

and a € mays(u

Observe that, due to the second ca%g/ S, is not consistent. Having defingt] /S», using the pruning
operation of Theorem 2.1, we can now set

S1/82 = p(S1//S2).)

Any prefix-closed languagé C A* can be viewed as a modal specification whose must set coincide
with its may setvu € A*, must(u) = may(u) = Z,. Using this embedding, the quotient of two prefix-
closed languages can be defined. Observe that, becausefotittierule, the quotient of two languages
is a modal specification that is not necessarily a language.

We now show that the quotient operation is indeed the adiditiie composition operation:

Theorem 2.4. (residuation [39, 40])
LetZy, 7, be prefix-closed languages afig S;, S be modal specifications. Then,

1. $ 8 <Sifand onIy if Sg < 8/81
2. V1 : [Il ':Sl =11 x1Iy ':S] iff I lZS/Sl

Example 2.3. Quotient and conjunction are illustrated in Figure 2. Siggpone aims at realizing a sys-
tem whose behavior is given by the left-hand side specifinatevery message must be acknowledged

128 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

msg,ack,extra

, o e

A

g
:

extra msg,extra
BAREN msg RN

ack,nack:..
~n

_'fj:ﬁ’:

msg,extra,ack,nack

ack,nack

Figure 2. Quotient for top-down design

positively. For this purpose, a preexisting component @oning to the middle-hand side specifica-
tions is available in the context; it implements the speaifan Fun of Figure 1(a) with the additional
assumption that the communication channel never diseibat negative acknowledgment. Then, the
product of the context with any implementation of the riglaid side specification is guaranteed to be
an implementation of the desired behavior.

2.4. Dissimilar alphabets

Complex systems are built by composing and combining mabgystems or components. Clearly,
those objects should possess their own local alphabet & pad variables. Dealing with those local
aspects when developing the fundamental services seesrss tlikvial notice but has deep technical con-
sequences. As we shall see in this section, modalities ajpgesn elegant solution to address alphabet
equalization with appropriate flexibility.

Let us first recall how alphabet equalization is performettlie shuffle product of languages. For
w a word over some alphabét, and B C A, let prz(w) denote the word oveB obtained by erasing,
from w, all symbols not belonging t@. For £ a language oved and B C A C (), therestriction
of £Lto B is the languagel |z = {u € B* | u = prg(w) ,w € L} and theextensiorof L to C' is the
languagelic = {u € C* | pry(u) € L}. Theshuffle produciC; x L, of the two languageg; C A}
andLy C A} is then defined as

L1 X Loy = (El)TC N (£2)T07 whereC = A; U As.

The shuffle product uses inverse projection to equalizeadets. The same holds for automata over
dissimilar alphabets and their synchronous product.

Using modalities allows for aeutralprocedure for equalizing alphabets. The principle is devid.

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 129

Observe that, by (4),

a € musti(s) and a € whatevers(s)

4 (6)

a € whatever(s)

holds if the two interfaces are combined using parallel cositipn (here,;whatever denotes an arbi-
trary modality). Similarly, by (2),

a € may,(s) and a € whatevers(s)
4 (7
a € whatever(s)

holds if the two interfaces are combined using conjunctibime observation above reveals our solution:
alphabet extension is performed by settingtpecificmodalities for extended traces, specifically

e may in case of the conjunction;
e must in case of the parallel compositian.

These two types of alphabet extensions are calledkandstrong This is a key contribution of our
work as it will provide us with a very elegant way of dealinghvilissimilar alphabets.

Definition 2.5. (weak and strong extensions)
Let®S = (A, mustzs, may,s) be a pseudo-modal specification anddeD A.

1. Theweak extensionf S to C' is the pseudo-modal specificatiéifi,c = (C, must, may) such
thatvev € C*:
must(v) = mustes (pry(v))
may(v) = mays (pra(v)) U (C\ A)

2. Thestrong extensiowf *S to C'is the pseudo-modal specificatié$yc = (C, must, may) such
thatvev € C*:

must(v) = mustes (pry(v)) U (C\ A)

may(v) = mayss (pra(v)) U (C\ A)
Regarding supports, the following equalities how(:sﬂc) = E(STC) = (£$)TC' We are now ready to
extend the operations of Sections 2.2 and 2.3 to the casssifrdiar alphabets.

Definition 2.6. Let S, %S, and S; be pseudo-modal or modal specifications over alphaHets$; for
i =1, 2, respectively. The relations and operations of Sectiora®2edefined as follows:

[weak implementation¢’ O A]
ICC*EptS iff TEPSy

[strong implementation}’ O A]
ICCH=stS iff TS

130 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

[weak refinementi, O A;]
ESoy <y PSy iff Sy < pslﬂASQ

[strong refinementids O A4]
ISy < ISy iff 2§y < pSlTASQ

[operatorsC' = A; U Ag]
SINSy = SlﬂC A S2ﬂC

§1® 8 = S11¢ @ S0
S1 /82 = Sipe / S2qc

Note the careful use of weak and strong extensions in therdiit operations. The results of Sections 2.2
and 2.3 are slightly weakened as indicated next.

Theorem 2.5. Let S, S; and S! be modal specifications defined ovér A, and A; respectively, for
i=1,2.

1. Weak and strong implementation / refinement relationsedaged as follows:

):s C |:w and <s € <w

2. Weak and strong modal refinement are both sound and camplet. weak and strong thorough
refinement, respectively:

82§w81 = {I]II:wSQ}Q{I]I):wsl}
S <8 & {I]II:SSQ}Q{I]I):S&}

3. The following holds regarding conjunction:

Ty SiAS & Ik, S andZ =, S

4. Theorem 2.3 still holds when alphabets are differentyigeal thatstrongrefinement and imple-
mentation are used — it is actually false if weak refinemerningiementation are used:

If S <; S1andS) <, Sy, thenS; @ S <, S1 @ Sa;
If 71 =5 S1 andZy =5 So, thenZy x Iy =5 S1 @ So;
S| < 81 andS) <, Sz in general danotimply thatS] ® S <, S1 ® Sa;
7, Ew S1andZy =y Sy in general danotimply thatZ, x 7y =, S1 @ Sa.

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 131

5. Relations between the quotient and the composition tpsrare preserved provided additional
assumptions on alphabets:

Sy <, S/S
A CA
<
SIS S | 5 <o S/S1
Ay D AU A
7y s St andZy =5 §/8 = IixIh s S
A CA

V11 :14):s S = i x1I |:s

= To =, S/S
andAz, D AU A, } 2 s S/51

Observe that the last sub-statement of statement 5 refiresdin 2.4.

Proof:

The detailed proof of this theorem can be found in [43]. Weya@ive here the counterexamples for the
third and the fourth bullets of statement 4. First, the felltg counterexample shows thamposition

is not monotonic wrt to the weak refinement when alphabetsliffierent Consider the three modal
specifications:

o Sy with A; = {a} andmay; (¢) = must;(e) = 0;
o S| with A} = {a,b} andmay/(e) = {b} andmust) () = 0;
o Sy with As, = {b} andmays(e) = musty(e) = {b}.

ThenS = §; ® S, is defined ovefa, b} andmay(e) = must(e) = {b}; and,S’ = S] ® S, is defined
over{a, b} andmay’(e) = {b} andmust’(¢) = (). Thus we haveS] <,, S; andS; @ Sy £ S1 ® Sa.

Now, this counter-example shows tHat=,, S; andZs =, S2 do notimplyZ; x Zs =, &1 ® So:
e S; with 41 = {a} andmay;(¢) = musti(e) = 0; Z; with Az, = {a,b} andZ; = {e};
e Sy with Ay = {b} andmays(€) = musta(e) = {b}; Zo with Az, = {b} andZ, = {e, b}.

ThenZ, =, S; andZs =y So. 7y x Iy = {0} andmays, zs, (€) = musts,zs,(€) = {b} thusZ; x Z,
is not a weak implementation & ® S,. O

Example 2.4. Consider now a second specificatiBel for a producer in Figure 3(a) dealing with re-
liability: messages are negatively acknowledged until ghstem is reset. The specificatiéun in
Figure 1(a) andRelare defined on different alphabets: the actiesetis not part of the alphabet &fun
and similarly forextrain Rel The conjunction of the two aspects is depicted in Figurg; 3(bserve that
the modalities of the transitions labeled i@getare directly inherited from those Rel

132 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

3. Interface automata

In [20], de Alfaro and Henzinger introducedterface automatawhich are automata whose transitions
are typed withnput andoutputactions rather than with modalities. In this section, weftyioverview
the theory of interface automata and refer the reader tal[2[Xor more details.

Definition 3.1. ([20])
An interface automators a tupleP = (X, z, A, —), whereX is the set obtateszy € X is theinitial
state A is the alphabet odctions,and—C X x A x X is the transition relation.

We decomposel = A? U Al, whereA? is the set of inputs and! is the set of outputs. In the rest of the
paper, we shall often use? to emphasize that € A? anda! for o € Al. We will also user — y to
emphasize thatz, a, y) € —. Observe that if we consider deterministic interface aatianthen we can
propose a language-based definition similar to the one we fgavmodal specifications.

The semantics of an interface automaton is given by a twgeplgame between d@nput player that
represents the environment (the moves are the input agtiand anoutputplayer that represents the
component itself (the moves are the output actions). Inpdtoaitput moves are in essence orthogonal to
modalities. Interface automata are operational modetsdihaot distinguish between an interface and
one of its models. More precisely, the model of an interfag®raaton is any of its refinements. As a
consequence, the notion of refinement coincides with theobisatisfaction. Moreover, any interface
automaton is always satisfiable except if it is empty.

Remark 3.1. In interface automata, the distinction between inputs ariduis should not be interpreted
as a function from the Inputs to the Outputs.

Example 3.1. Two interface automata are depicted in Figure 4 (this exangphdapted from [20]). The
clientClin Figure 4(a) is defined over the alphaljek?, fail?} U {msgl. The actiorfail? never occurs
which encodes the assumption that the environment of teataliever transmits fail to the client. The
serverServin Figure 4(b) is defined over the alphalehsg?ack? nack? U {sent! ok!, fail! }; when
msgis invoked, the server tries to send the message and regehtifirst transmission fails. If both
transmissions fail, the component reports faildedl(), otherwise it reports successk().

extra msg,extra
msg
msg,ack msg,nacl«
nack Paae
N fer T Y ﬁ rese
reset
nack
extra msg,extra
(a) Reliability specRel (b) ConjunctionFun A Rel

Figure 3. Conjunction of specifications on dissimilar alpéts

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 133

Alternatively, properties of interfaces are describeddmg-based logics, such as ATL or ATL]
whose complexities are PSPACE and PTIME-complete, reispgctRefinement between interface au-
tomata corresponds to the alternating refinement relat@wden games [2], i.e., an interface refines
another one if its environment is more permissive whersasainponent is more restrictive. This prob-
lem is known to be PTIME-complete. There is no notion of congrd reuse and shared refinement is
defined in an ad-hoc manner [22].

g

ok?

ack?
msg? _ sent! nack? _ sent!
LT LT LT

(a) ClientCl (b) ServerServ

Figure 4. Two interface automata to be composed

Remark 3.2. Contrary to input/output automata, interface automatagereerally not input-enabléd
Refinement of input/output automata corresponds to simoulddetween traces. If the model was not
input-enabled, then a refinement could accept less inpatsith abstraction. The game-based approach
allows us to avoid such a situation even when the system impot enabled.

The main advantage of the game-based approach appearsdefithion of composition andom-
patibility between interface automata. Following [17], two interfackomata areomposablédf they
have disjoint sets of output actions, compose by synchirmnizhared actions and interleave asyn-
chronously all other actions.

Definition 3.2. (Product of interface automata [20])
LetP; = (X1, z01,41,—1) andPy = (X2, z02, A2, —2) be two interface automata. The product over
P, andPs is an interface automatoR, x Py = (X, xo, A, —), where

e X = Xy x Xy;

® To = To1 X T2,

e A=A;UAy, andA? = (A17U A7)\ ((A17 N Ag) U (A7 N Aql)), andA! = Ayl U Ayl
e — is defined as follows:

— For each actiom € A such that ¢ A; N As, there exists a transitiofx 1, y1) — (2, y2)
iff there exists(z1) ——, (z2) andy; = y2 or (y1) —, (y2) andx; = x».

— For each actiom € A;7 N As?, there exists a transitiofx1, y1) AN (2, yo) iff there exists

(21) 5, (2) and(y1) 25, (32).

2Recall that a system is input-enabled if it can react to apytimction in any moment.

134 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

— Foreachu € (417 N Ao!) U (437 N Ay1), there exists a transitiofy, 1) 2 (2,) iff
there existgz1) —=, (z2) and(y1) —, (y2).

Since interface automata are not necessarily input-eddllbich is what allows the automaton to
make assumptions on the environment), the pro@yck P, of two interface automat®; andP, may
haveillegal stateswhere one of the automata may produce an output action trasasin the input
alphabet of the other automaton, but is not accepted attttis 3n most of existing models for interface
theories that are based on an input/output setting, thefaots would be declared to compatible
This is a pessimistic approach that can be avoided by ekpdite game-based semantics. Indeed, the
game semantics supports an optimistic approach:

“Two interfaces can be composed and are compatible if theeet ieast one environment
where they can work together (i.e., where they can avoidllémgal states).”

ack?
msg! _ sent! nack? _ sent!

iack?

! I 2 !

msg! . sent! nack? . sent!
[} LT . .

LT LT

(a) ProducClI x Serv (b) CompositiorCl|| Serv

Figure 5. Compatibility oServandCl

Deciding whether there exists an environment where the iéasfaces can work together is equiva-
lent to checking whether the environment in the product efitlierfaces has a strategy to always avoid
illegal states. This can be viewed as a reachability games/lcomplexity is linear [20]. The set of
states from which the environment has a strategy to avoiditiyal states whatever the component does
can be recursively computed as follows.

Let Illegal(P1, P2) be the subset of paifs:1, z2) € X1 x Xo such that there exists

either an actiorw € A;!' N Ay? with r] —,
but not zo —,

or an actiona € As! N A7 with Ty —>,
but not z; —,

wherez - means that: —— y for some statey. If illegal states exist in the produ®; x P», there
may still exist refinements of the product without illegadtst Those refinements specify how the result-
ing product should be restricted in order to guarantee tlegfal states cannot be reached. As proved
in [20], there is one such largest refinement which can beirddaby backward pruning; x P, as
follows. ForY C X, the set of states d?; x Ps, let pre,(Y) be the subse¥ C X of states: such that

PR y for somey € Y anda! € A! (an output action of the product). Lete{(Y) = Y and, fork > 0,

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 135

pre{““(Y) = pre!(pre{‘“‘(Y)) and letpre; (Y) = [, pre{“(Y).

The desired pruning consists in:

e Removingpre| (Illegal(P1,P2)) from X, and

e Removing transitions to states jme; (lllegal(P1,P2)), and
e Removing unreachable states.

The result of applying the pruning 1; x P, is denoted byP; || P, and is called theomposition
of the two interface automat&®; andP, are calledcompatibleif applying the pruning leaves the initial
state [20]. We now recall the two following theorems from][&tat show that interface automata support
independent design and substitutability.

Theorem 3.1. ([20])
The composition operation for interface automata is assgeiand commutative.

Theorem 3.2. ([20])
Let P1, P2, andP5 be three interface automata. 7 refinesP; and the set of shared actions7f || Ps
is included in the set of shared actions/f|| Ps, thenP, || P refinesPy || Ps.

Example 3.2. The product of the interface automata in Figure 4 is reptesein Figure 5(a). The gray
state is illegal as the server wants to report a failta@! § which is not accepted as an input by the client.
The result of applying the pruning operation is then deplidateFigure 5(b).

Bhaduri has proposed a quotient operation that is the @djpthe composition operation [10]. This
guotient, which is defined for the deterministic fragmeriypis characterized in the following theorem.
Let P+ be the interfacé® where input and output actions have been exchanged.

Theorem 3.3. ([20])
Consider two deterministic interface autom&yaandPs. If P; andPQl are compatible, then there exists
‘P such that

1P| P < Po,
2. for eachP’ such thatP; | P’ < P, we haveP’ < P and,
3. Pis given by(Py || Ps) .

The theorem above states that, contrary to the case of matdahata, the quotient for interface automata
can be derived from the composition operation with a simpléck operation between input and output
actions.

Remark 3.3. The operations between interface automata that have béeediso far do not require an
explicit treatment of dissimilar alphabets as is the casenimdal specifications. Indeed, it is implicitely
handled with the help of the game-based approach. Conjumistiot defined for interface automata. For
such an operation, we conjuncture that the game-basedabpi® not powerful enough for an implicit
treatment.

136 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

4. On modal interfaces

We now present the full theory fanodal interfacesModal interfaces is an extension of modal specifi-
cations where actions are also typed withut andoutput This addition allows us to define notions of
composition and compatibility for modal specificationshe spirit of interface automata.

The first account on compatibility for modal interfaces wesposed in [31, 36]. In this section, we
propose a full interface theory for modal interfaces, whitdludes composition, product, conjunction,
and component reuse via quotient. Moreover, we show thatimposition operator proposed in [31, 36]
is incorrect and we propose a correction.

We shall start our theory with the definition pfofiles which are used to type actions of modal
specifications withinput andoutputmodalities.

4.1. Profiles

Given an alphabet of action$, aprofileis a functionr : A — {?,!}, labeling actions with the symbols
? (for inputg or! (for output3. We write “a?” (respectively,a!) to express thatrt(a) = ?” (respectively,
m(a) =1). The set ofa € A such thatr(a) = ? (respectivelyr(a) =!) is denotedA? (respectivelyA!).
We shall sometimes write by abuse of notation= (A?, A!).

We now discuss operations on profiles. We consider a profite (A;7, A;!) defined overd; and
a profilery = (A27, Ay!) defined overds.

Refinement between profiles. Profile o refinesnt, denotedr, < 71, if and only if A, O A; and
both profiles coincide odl;: Va € Ay, m(a) = m1(a).

Proposition 4.1. The refinemenk between profiles is transitive.

Product between profiles. The product between; andns, denotedr; ® w5 is defined if and only if
AN As! = (), and is equal to the profile = (A?, A!) over A; U A, such that:

Al = (A U A
T=m1 & T2 :

Proposition 4.2. Let 7, 74, w1, andm, be profiles. The product between profiles is monotonic with
respect to refinement: if; < m; andr’, < 7y andm ®my andr @), are defined, then| @), < m @ms.

Conjunction between profiles. The conjunction ofr; andrsy, denotedr; A w9, is the greatest lower
bound of the profiles, whenever it exists. More preciselg,abnjunction of profiles; andr, is defined
if and only if both profiles coincide on their common alphabét € A;N Ay, 71(a) = m2(a). Whenever
defined, the conjunctioni; A mo coincides withr, for every symbol ind; and withr, for every symbol
in As.

Proposition 4.3. Let w1, mo andn be profiles. Theng < m A my ifand only if r < 7y andn < 7.

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 137

Quotient between profiles. The quotientof m; and s, denotedr; / 72, is defined as the adjoint of
®, If it exists, namelyr; /1o = max{r | 7 ® my < m}. More precisely;r; / 7o is defined when
A7 N Ayl = (), and is thus equal to the profite= (A?, A!) such that

A = A\ (AN A
SWECE
A7 = [(A7U4,7)\ Al U Ay!

Proposition 4.4. Let w, m; andm, be profiles defined over th&, A; and A, respectively:
o if | @ m <mandA; D AU Ay, thenmy < 7T/7T1;

o if 1y < m/m andA; C A, thenm; @ mo < 7.

4.2. The framework of modal interfaces

We now formally introduce modal interfaces that are modeat#jrations whose actions are also labeled
with inputandoutputattributes. We will consider the language representatighe spirit of [40, 39, 42],
while Larsen et al. followed the automata-based representéhe two representations are equivalent).

Definition 4.1. (Modal interface)
A modal interfaceis a pairC = (S,), whereS is a modal specification over the alphabg and
m: As — {7,!} is aprofile.

A model for a modal interface is a pdiZ, 7’), whereZ is a prefix-closed language ardis a profile
for Z. We say thatZ, «’) strongly implement§S,), written (Z, 7’) =5 (S, 7), if Z =5 S andn’ <,
and similarly forweak implementationWe say tha{Ss, m2) < (S1,m1) if Sy <s &1 andme < 71, and
analogously for weak refinemenst,,. The compositionof two models is the pair that results from the
shuffle productx of their prefix-closed languages and of the product of thedfiles.

4.3. Operations on modal interfaces

Operations on modal specifications directly extend to djmrs on modal interfaces. We have the fol-
lowing definition.

Definition 4.2. Consider two modal interface&s = (S;,71) andCy = (S2,7m2), and letx € {A, ®, /}.
If w1 x w9 is defined, then

Cl*CQ = (Sl*Sg,ﬂl*Wg).

The following theorem states that all the characteristapprties of modal specifications directly extend
to modal interfaces.

Theorem 4.1. Propositions stated in Theorem 2.5 extend to modal intestac

We now recap the translation from interface automata to iatkxfaces, which will help us make
the link between modalities and input or output actions.

138 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

4.4. From interface automata to modal interfaces

We recap the translation from interface automata to modahaata that has been proposed in [31]. In
this section, we extend this translation to modal specifinat the language-algebraic extension corre-
sponding to modal automata.

We consider an interface automatbn= (X, zg, A, —). We assumé to be deterministic and we
let Lp denote the (prefix-closed) language definedbyrhe alphabet afp is As,, = A and modalities
are defined for all: € A%:

a? € musts, (u) if w.a?eLlp
al € mayg, (u) \ musts,(u) if w.al€Llp
a? € mayg, (u) \ musts,(u) if weLlp
andu.a? & Lp (8)
al € maygs,, (u) if welp
andu.a! € Lp
a € mays, (u) \ musts,(u) if u¢gLp.

Theorem 1 of [31] shows that, with the above correspondealternating simulation for interface au-
tomata and modal refinement for modal interfaces coincidgaRling supports, we have:

Ls, =LpU{u.a?v|ue Lp,ua? & Lp,veE Ap}. 9)

It is worth making some comments about this translationemiy formulas (8,9). Regarding for-
mula (9), the supporting languads;,, allows the environment to violate the constraints set ol ithie
interface automatof®. When this happens—formally, the environment exits theradtting simulation
relation—the component considers that the assumptiorsruvitich it was supposed to perform are vio-
lated, so it allows itself breaching its own promises andpearfiorm anything afterward. One could also
see the violation of assumptions as an exception. Thgp states no particular exception handling since
everything is possible. Specifying exception handlingitheounts to refining this modal interface.

Formula (8) refines (9) by specifying obligations. Case Iresges that the componantistaccept
from the environment any input within the assumptions. Casadicates that the component behaves
according to best effort regarding its own outputs actidrieally, cases 3 and 4 express that the viola-
tion by the environment of the assumptions made by the coamngaare seen as an exception, and that
exception handling is unspecified and not mandatory. Thiseelding is illustrated in Figure 6 for the
case of the Client of Figure 4(a).

ok? fail? msg!
/.--'u’ PR ... e S
fo0 —1 .
msg!,ok? fail? ™. ok? .
fail?

Figure 6. Embedding of the interface automatdnfrom Figure 4(a) into a modal interface

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 139

4.5. On compatibility for modal interfaces

In this section, we take advantage of profiles to define a natfocomposition for modal interfaces
including the compatibility issue introduced for intefsautomata. We shall recap the solution proposed
in [31, 36], then we shall show a counter example to Theorein [Z1] and then propose our correction.

4.5.1. The composition and the bug in Theorem 10 of [31]

We now consider the notion of compatibility of two modal ifiéeesC; = (S1,m1) andCy = (S2,72)
with S; defined over4d; and S, defined overd,. We assume thaf; andCy do not share common
output actions (which is the composability requirementilsinio the one for interface automata). We
first compute the product betweén andC, following Definition 4.3. We then definélegal(C;,Cs) to
be the subset of words belonging to the support @f; ® Cs, such that one interfacmayproduce an
output thatmay notbe accepted as an input by the other interface:

either an actiom € AN Ay?
with a € may, (u1) \ musta(us)

10
or anactiorn € Ax!' N A7 (10)

with a € mays(uz) \ musti(uy),

whereu; = pry, (u) and similarlyu; = pry,(u). In order to get rid of illegal runs, we must first
consider the words having a suffixy’ such thaw.v’ is illegal andv’ is a sequence of outputs; this way,
no environment can prevent to occur fromv. ForU a set of words of modal interfacg let pre,(U)

be the set

pre(U) = {v € L | Jal € may(v),v.al € U}

Let pre)(U) = U, and, fork > 0, pref "1 (U) = pre,(pref(U)). Finally, letpre; (U) = U, pref (U).
The composition of two modal interfaces is obtained fronirthepduct by removing words ipre; (U),
following the approach outlined for interface automataoodal interfaces are compatible if the prun-
ing with the illegal words do not remove the empty word. Theposition betwee; andCs is denoted
C1] Ca.

Theorem 10 in [31, 36] states that

“(Independent Implementability). For any two composabldahimterfaces’;, C2 and two
implementationgZ;,) and (Zs, m2). If (Z1,m) < C; and (Zz,m2) < Cs, then it holds
that (Il,ﬂl) X (IQ,WQ) < Cl H CQ."

The following exampl& shows that Theorert0 in [31, 36] is wrong.

Example 4.1. Figure 7 depicts two modal interfac€s andCs; Z; andZ, are implementations af;
and(,, respectively. Alphabets are indicated for each modalfete. Parallel composition according
to [31] is namedC; || C2],. Word c?.a! is illegal since in the state reached after this rdpmay offerb!
whereas’s may (in fact will) not accept it. Howevet?.a! is in the product of the two implementations.

3This example is due to discussions of the authors with Barbabstmann and Laurent Doyen.

140 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

9Da'>|]b'>|:| 9DC?>DG'>E|
Cy: {al, b} C1®Cs : {al, b, c?}
éD-??-ﬂ.qI?.ﬂ —_—
C2 : {a?, b7, 07} [Cl || CQ]O : {a!, b', 07}
c?

—0-%—-0 -0 o i
7 : {a!,bl} [C1 | C2]1 = {al,b!,c?}

c? a? c? a!
-t —————{
Io : {a?,b?,c?} Ty X Iy : {a!,bl, c?}

Figure 7. Counterexample regarding compatibility. Gregeged states are to be removed.

4.5.2. The correction

Call exceptiorany word inL¢, g¢, from which the environment has no strategy to prevent tharoence
of an illegal word, meaning that an illegal word can be otlgdifrom the exception by following only
output actions.

Definition 4.3. (compatibility)
The exception languagef modal interface€; andCs is the languag&e, | ¢, = pre; ({llegal(C1,C2)).
Modal interface€’; andC, are said to beompatibleif and only if the empty word is notin&e, | ¢,

Definition 4.4. (parallel composition)
Given two modal interface§; andCs, therelaxationof C; ® Cs is obtained by applying the following
pseudo-algorithm t6; ® Cs:
forall vin L¢,zc, do
forall ain A do
if v ¢ gcl | Ca andv.a € €C1 Il Ca then
for all win A* do
must(v.a.w) = ()
may(v.a.w) == A
end for
end if
end for
end for

If C; andCy are compatible, the relaxation 6f ® C, is called theparallel compositionof C; andCs,
denoted by, || C2. WheneveC; andC, are incompatible, the parallel compositién|| Cs is defined as
the inconsistent modal specificatidn

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 141

If the environment performs an actiar? to which the fif ... then ...” statement applies, then illegal
words may exist for certain paif€;,Z;) of strong implementations @f; andC.. If this occurs, then
C1 || Co relaxes all constraints on the future of the correspondimg r— Nothing is forbidden, nothing
is mandatory: the system has reached a “universal” statis. plinallels the pruning rule combined with
alternating simulation, in the context of interface auttama

Example 4.2. We now show that our relaxation allows us to correct the cauexample stated in Fig-
ure 7. We observe that our relaxation procedure yigld§ Cs]1, with A = {a!, !, ¢?}, which hasZ; xZ,
as an implementation.

Associativity of the parallel composition operator is orfetlee key requirements of an interface
framework, since it enables independent design of sulesysst Unlike in [31, 36], where associativity
is only mentioned, we can now state the following theorem:

Theorem 4.2. The parallel composition operator is commutative and astoe.

Proof:

Commutativity of || immediately holds by definition. We now consider assodigtiv_et three modal
interfacesCy, Cy,C3. We characterize the set of illegal words (ifC; || C2) || C3) and then prove that
rearranging the parentheses will not change this set.

In the sequel we shall writd;, must;, may; the elements of; (with i = 1,2, 3) and A;;, must;j,
may,; the elements of; © C; (for (4,) € {1,2,3} x {1,2, 3}, such that # j). We shall also write;
for pry, (u) andu;; for pry, 4, (u).

Observe first that, by definitior® is associative. Moreover, a wotdis illegal inC; ® Cs iff

(mayll(ul) \ must;(m)) U (mayé(uz) \ mustr{(ul)) #) (11)

whereu; = pr,, (u) andmay; (u1) = may, (u1) N A;! and similarly for other cases. Then, in building
C1]| C2 from C; ® Cs, relaxation of Def. 4.4 applies to every words L, ¢, such that

b7 € may5(v) : wb? eI (12)
Consequently, every word ific, | ¢,
either belongs itself t&€¢, zc,, Or has a strict prefix € L¢, gc,Satisfying (12). (13)
Observe that (12) rewrites as
3b? € may,5(v), Jw € (411U A))* = 0.b7.w satisfies (11) (14)

Apply this to the paifC; || C2,C3): word u is illegal in (Cy || C2) ® Cs iff

(may!lz(ulg) \ musté(u;;)) U (may!g(ug) \ must({Q(ulg)) +) (15)

where A, is the alphabet of; || Co. LetU be the set of all such’s, and sefl = pre{(U). Then, in
building (C1 || C2) || C3 from (Cy || C2) ® C3, relaxation applies to every worde L ¢, | ¢,)ec, Satisfying

142 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

(12). Consequently, every word ific, | c,) | c, Satisfies (13) withC; @ C ® C3 instead ofCy © Cs.
Finally, (12) rewrites as:

Ib? € may(v), Jw € (A;1U Al U A3)* = 0.b7.w satisfies (15) (16)
Let us further analyse (15). Two cases must be considered:

1. ui2 has reached a universal stategf|| C2 : in this case, by (13)u12 has a strict prefixi;o €
Le,wc, Satisfying (12), meaning that;».b7 may for someb?, by subsequently performing only
output actions, reach a deadlock in the product of the (GairCs).

2. u12 has not reached a universal stat&€pf| Cs : in this caseyu s € L¢, »c, and

! ! !
mayyp(uiz) = may;(ur) U mayy(uz)
mustio(u1s) = (mustr{(ul) N must%(uz)) U (A17\ A2) U (A7 \ Ay)

Hence the non-emptiness of (15) is equivalenttpcausing a deadlock in the pdi;,Cs) or the
pair (Cs,C3).

Let us summarize how the two conditions (12) were rewritten:
Ib? € may(v),Jw € (A;1U Al U A3))* = u = v.b?.w satisfies the following condition

e There exists a paifi, j) € {1,2,3} x {1,2,3}, such thati # j andu;; = pr,,(u) possesses a
prefix @;;.b7 that may, for somé? and by subsequently performing only output actions, reach a
deadlock in the paifC;,C;).

The bottom line is that the condition and (12) is indeed symim@ith respect to the considered three
modal interfaces. This proves the associativityj|of 0

As for interface automata (Theorem 4 in [20]), strong refinatrpreserves compatibility, assuming
that the refined modal interface does not introduce new drantons.

Lemma 4.1. Consider three modal interfac€s i = 1...3, such that’y, <, C; andA; N A3 C A1 N As.
® pry,a,(lllegal(Cy,C3)) is included inlilegal(Cy, C3);
[pI'AluA3 (ECQ HCS) is included iné’cl |Cs-

Proof:
Consider an illegal word: € Illegal(Cy,Cs) for Co @ Cs. This means that there exists an actiore
Ay N Az such that (i) either is an output ofC; and an input of’s, such thatu € may,(pry,(v)) and
a & musts(pra,(u)), or (ii) a is an input ofC; and an output of3, such thats ¢ musts(pry,(u)) and
a € maysz(pry,(u)).

By Definition 2.5,u is also INL¢, @y, 40,45 - BY DEfinition 2.5u" = pry, 4, (u) belongs tole, gc;-
Since itis assumed that; N A3 C A; N Ag, actiona belongs tod; N Az. By Definition 2.4, either is
an output ofC; and an input of’3, such thatr € may; (pra, (v')) anda & mustz(pra,(u’)), or (i) a is

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 143

an input ofC; and an output of’3, such that ¢ must, (pry, (v')) anda € maysz(pra,(v’)). Meaning
thatu' € Illegal(Cy,C3), which proves the first point of the lemma.

Consider now the second point. Recall tiat U As! is included inA5! U As!. Hence, the set of
actionspry, 4, (pre; (Illegal (Co,C3))) is included inpre; (pry, 4, (Illegal (C2,C3))), which is in turn
included inprej (Illegal(Cy,C3)), thanks to the first point of the lemma. 0

Corollary 4.1. (compatibility preservation)
Given any three modal interfacés i = 1...3, such thaty <, C; andA;NA3 D AN Asz. C; compatible
with Cs implies thatC, andCs are also compatible.

Proof:
This is an immediate consequence of the previous Lemma 4durme’, andCs incompatible, meaning
thate € &, ¢,- By Lemma 4.1¢ = pry, 4,(€) € &, | ¢,- HENceC; andCs are also incompatible. O

Contrary to interface automata for whi€h || C, is a refinement of; ® C, [20], relaxation of modal
interfaces amounts to computing an abstraction of the mtodu

Lemma 4.2. Given two modal interface§; andCs:
Ci®Cy<(||CQ

Proof:
Two cases are possible:

o if ue Lege, \ &, | e, thenmuste, ge, (u) = muste, | ¢, (v) andmaye, ec, (v) = maye, || ¢, (v);
o if u€ & e, thenu € Le ¢, andmuste, | ¢, (v) = 0 andmaye, | ¢, (u) = A.

Thus,mustc, e, (u) 2 muste, || ¢, (u) andmaye, e, (u) € maye, || ¢, (u)- 0
Theorem 10 stated in [31, 36] now holds for the parallel cositimm operator.

Theorem 4.3. (independent implementability)
For any two modal interface, C, and two implementation&Z;, 71), (Z2, m2) such tha(Z;, 1) =5 C;
and(Ig,m) |:3 Co, it holds that(Il,m) X (Ig,ﬂ'g)):s C1 || Co.

Proof:
If (Il,ﬂl)):5 C; and (IQ,TFQ) l:s Cs, then, by Theorem 4.1(,2.1,7T1) X (IQ,TFQ) l:s C1 ® Co. By
Lemma 4.2 and by the generalization of Theorem 1 in Theor&m(%;, 71) x (Zo,m2) s C1]| C2. O

5. Methodological considerations

While the framework we propose adds significant flexibilaydesign flows, it also raises some method-
ological issues that we discuss now.

144 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

As previously remarked, a designer may want to specify thedas of the system via different inter-
faces (calledriewpoint3. In this situation, she may wonder whether the same systeatdvibe obtained
by implementing all the viewpoints in a single componentlternatively, as several components where
each of them implementing some of the viewpoints. This golesimounts relating the operation of
product/composition to the one of conjunction. We have thewing result.

Theorem 5.1. LetCq, Co, C3 be three modal interfaces. Then,
1. G ® (CQ /\Cg) < (Cl ®Cg) A (Cl ®Cg);
2. C1[[(C2 N C3) < (C1[|C2) A (CrC);

3. The reverse refinements in points 1 and 2 do not hold.

Proof:
Recall thatmay,;, must; and A; denote the elements 6f and letA = A; U Ay U As.

Proof of statement 1By definition of the GLB of modal specifications and by Theor2rh, we
have: p(C2 & C3) < C2 & Cs. Note that the definition of composition for modal specifimatcan be
immediatly extended tpseudemodal specifications with preservation of Proposition A8 a result:

Ci®p(Ca & C3) < C1 @ (C2 & C3)
We then can easily prove that thatdistributes ovek:. Thus:
C1®@p(Ca & C3) < (C1 ®C2) & (C1 ®C3)
Recall thatp(%S) is the largest modal specification (for refinement orderhsbatp(:S) < £S. Thus:
C1®p(C2 & C3) < p((C1 ®C2) & (C1 @ C3)).

Thatis:C; ® (C2 A C3)<(C1 ® C2) A (C1 @ Cs3).

Proof of statement A.etu € Le, | ¢,acy) then:

e eitheru € L g (concs);

e or,u has a strict prefix € Le, g c,nc;) SUCh that.b? € Illegal(Cy,C2 A C3) for some actiord?.

In the first case, according to the point 1 of Theorem 5.1,yewef mayc, z(c, /\CS)(U) also belongs to
May ¢, sc)n((Cyacs) (1) By definition of the conjunction:

0 € [maye,se, (004,04, (1) U (A\ (A1 U A2))] 0 [maye, sc, (04,04, (u) U (A (A1 U A3))]
Moreover, by Lemma 4.2}; ® C; < C || C; fori = 1,2, thus:
a € [maye, | ¢, (Pra,ua, (1) U (AN (A1 U A2))] N [maye, | ¢, (Pra,ua;(w) U (A\ (A1 U A3))]

thatis,a € mayc, || co)n(cy | cs) (W)

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 145

In the second case, let us first show thavi6? < Illlegal(C1,Ca A C3) thenpry 4, (v.07) €
Illegal(Cy,C;) for i = 1,2. Letmay, = may; N A;! and similarly for other cases. Whenb? €
Illegal(Cy1,Cy A C3) there exista € A1 N Ay N Ag such that:

a € (may}(pry, (v.b?))\ mustZ,Q/\Cg(prAQLJAS (v.b7)))
U (may!cg/\cg (Pra,ua, (v-07))\ must o (uy (pry, (U.b?))))

If a ¢ mustZ,QAcB(prA2uA3(v.b?)) thena ¢ [mustEQ(prAQ(v.b?)) U mustés(prAS(v.b?))]; moreover
if a € mayéQACS(prAQLjAB(v.b?)), asa € A; N Az N Az, we have:a € mayéQ(prAQ(v.b?)) N
may{cg(prAB (v.b?)_). As a result,pry, 4, (v.b?) is_illegal inC; ® C; for i = 1,2 andu has reached
a universal state ifCy || C2) A (C1 || C3). In conclu5|on,maycl®(C2ACS)(u) C mayc, || ca)n((Cy I\Cs)(“)'

Now if a € must(cl | C2)A((Ca |l CB)(U) then by definition:

a € [(musti(pry, (u)) U (Az\ A1) N (musta(pra,(u)) U (Ar \ A2))]

17
U[(must1(pra, (u)) U (A3 \ A1) N (mustz(pry,(uw)) U (Ar\ A3))] ()

We have to prove € mustc, | (concy) (), thatis:
a € [musti(pra, (u)) U ((A2 U A3)\ Ay)] (18)

N [(musta(pra, (u)) U mustz(pra, (u))) U (A1 \ (A2 U A3))]
If a ¢ must, (pry, (u)) then from Equation 17 we deduce:
a € must(pra, (u)) N musts(pra, (u) N (As \ Ar) N (A3 \ Ay)
If a € must, (pry, (1)) then from Equation 17 we deduce:
a € ((musta(pra, (u)) U (A1 \ A2)) N ((musts(pra,(u)) U (A1 \ Az)))

In the two situations, Equation 18 is true and thus mustc, || c,nc,) (W)

Proof of statement 3 and €£onsider the three following modal interfaces defined overaiphabet
{a} with the same profiler(a) =7:

e C1 with may () = {a}, mayi(a) = {a} andmay (aa) = 0;
o Co with mays(€) = {a}, mayz(a) = {a} = 0;
o C3 with mays(e) = {a}, mays(a) = musts(a) = {a} andmay, (aa) = 0;
Thenmayc,sc)nciwcs)(€) = {a} whereasnaye, ¢ c,nc,)(€) = 0. As aresult:
(C1®Ca) A (C1®C3) £ C1L @ (C2 AC3).

The same counterexample can be used to prove (fal:C2) A (C1 || C3) £ Cy || (C2 A Cs). 0

146 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

The interpretation of this theorem is as follows. We assuwgedomponents indexed by 1 and 2,
with associated interfaces. The left hand side of equaiiop®int 1 and 2 captures the design process
in which (1) the two viewpoints for component 2 are first condal, and (2) the two components are
combined; this is called eomponent-centriclesign process because it aims at specifying components
completely before assembling them. The right hand sideucegthe design process in which viewpoints
are first considered separately for all components, and filesd; this is called aiewpoint-centric
design process. Theorem 5.1 expresses that viewpoinieceigsign processes leave more room for
implementations than component-centric ones.

6. Conclusion, related work and future work

This paper presentsmaodal interfacdramework, a unification of interface automata and modatigpe
cations. Itis a complete theory with a powerful compositidgebra that includes operations such as con-
junction (for requirements composition) and residuation ¢omponent reuse but also assume/guarantee
contract-based reasoning [42]). However, the core carttabs of the paper are (1) a parallel compo-
sition operator that reflects a rich notion of compatibilitgtween components, actually correcting the
parallel composition proposed in [31, 36], and (2) a new ithéwat encompasses dissimilar alphabets.

Interface automata were first introduced as an extensiompoftAOutput automata with an optimistic
approach for composition. Modal specifications have beepgsed as an extension of process-algebraic
theories [35, 30] which allows for a better distinction beem successive implementations (see the intro-
duction of [36] and [30] for some discussion). Modal inteda are a model that mixes both I/O automata
and modal specifications.

There are various other approaches for interface the@@ss[b] for a survey). One of them is based
on contracts [7, 36, 38, 27], that is a representation whaeekeeps an explicit distinction between
assumptions on the environment and guarantees on behafities system. A similar approach to ours
has been developed in [33] fonan-modalprocess-algebraic framework in which a dedicated preglicat
is used to model inconsistent processes.

Interface automata and modal specifications are incomlgarabdels asnust mayandinput, out-
put have orthogonal meanings. Modal specification can be vieageah abstraction of a set of closed
system$ (as a modal specification does not allow a component andvteament to be distinguished).
As a consequence, specification logics and verificationguaes for this model [26, 28] are exten-
sions of those defined for transition systems [37, 15]. fater automata is a more “open” model (as it
distinguishes between the component and its environmadtjtés thus not surprising that specification
logics and verification procedures for such a model cornedgpo those defined for reactive systems, e.g.,
ATL [1]. This paper did not focus on verification proceduriest we believe that this research direction
is of importance and deserves further studies.

There are several possible directions for future reseakdirst step would be to implement all the
concepts and operations presented in the paper and evHieatesulting tool on concrete case studies.
Extensions of modal specifications can be investigated revhetes are described as valuations of a
set of variables just as it has been the case for interfacareta [13, 18]. One should also propose
definitions of quotient and conjunction for interface auéta

“A closed system is a system that does not interact with anamkmnvironment. On the contrary, an open system is a system
that continuously interacts with an unknown environment.

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 147

Another promising direction would be a timed extension ofdaianterfaces. In [21], de Alfaro
et al. proposedimed interface automatthat extend timed automata just as interface automataaxten
finite-word automata. The semantics of a timed interfaceraaton is given by a timed game [19, 12],
which allows one to capture thened dimensiorin composition, i.e., “what are the temporal ordering
constraints on communication events between compone2i§? [Up to now, composition is the only
operation that has been defined on timed interface automatfl4], Chatain et al. have proposed a
notion of refinement for timed games. However, monotonioitparallel composition with respect to
this refinement relation has not been investigated yet. I18][2imed modal specificatiorere proposed.
As modal specifications, timed modal specifications admitlk composition algebra with product,
conjunction and residuation operators. Thus, a naturattion for future research would be to unify
timed interface automata and timed modal specificationds Would imply a translation from timed
interface automata to timed modal specifications.

Acknowledgments

We are grateful to Barbara Jobstmann and Laurent Doyen wéymoped the counter example given in
Section 4.5.1 which proved that thhe construction in [31$ w&orrect.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternatitigre temporal logic. Journal of the ACM
49(5):672-713, 2002.

[2] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. #®&Fnating refinement relations. Rroc. of the
9th International Conference on Concurrency Theory (COR®8), volume Lecture Notes in Computer
Science 1466, pages 163—-178. Springer, 1998.

[3] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. WasoviskComplexity of decision problems for
mixed and modal specifications. Rroc. of the 11th International Conference on FoundatiohSaoftware
Science and Computation Structures (FoSSaCSt@)me Lecture Notes in Computer Science 4962, pages
112-126. Springer, 2008.

[4] A. Arnold and M. Nivat. Metric interpretations of infirgttrees and semantics of non deterministic recursive
programs.Theoretical Computer Scienckl, 1980.

[5] E. Badouel, A. Benveniste, B. Caillaud, T. A. Henzingkrl egay, and R. Passerone. Contract theories for
embedded systems : A white paper. Research report, IRIS3ANRennes, 2009.

[6] N. Benes, J. Kretinsky, K. G. Larsen, and J. Srba. Oermeihism in modal transition systemgheoretical
Computer Sciencé&10(41):4026-4043, 2009.

[7] A.Benveniste, B. Caillaud, and R. Passerone. A geneddehof contracts for embedded systems. Research
report 6214, IRISA/INRIA Rennes, 2007.

[8] N. Bertrand, A. Legay, S. Pinchinat, and J.-B. Raclet.ofnpositional approach on modal specifications for
timed systems. IiRProc. of the 11th International Conference on Formal Engiireg Methods (ICFEM’09)
volume Lecture Notes in Computer Science 5885, pages 6 79-Sg®inger, 2009.

[9] N. Bertrand, S. Pinchinat, and J.-B. Raclet. Refinemaudt@onsistency of timed modal specifications. In
Proc. of the 3rd International Conference on Language antbfata Theory and Applications (LATA'Q9)
volume Lecture Notes in Computer Science 5457, pages 12-Spsinger, 2009.

148 J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design

[10] P. Bhaduri. Synthesis of interface automataPmc. of the 3rd Automated Technology for Verification and
Analysis Conference (ATVA'Q3)olume Lecture Notes in Computer Science 3707, pages 333-Springer,
2005.

[11] S. Bliudze and J. Sifakis. A notion of glue expressivantr component-based systems. Piioc. of the
19th International Conference on Concurrency Theory (COIR®S), volume Lecture Notes in Computer
Science 5201, pages 508-522. Springer, 2008.

[12] T. Brihaye, F. Laroussinie, N. Markey, and G. Oreibym@&d concurrent game structures. Rroc. of the
18th International Conference on Concurrency Theory (COR®?7), volume Lecture Notes in Computer
Science 4703, pages 445-459. Springer, 2007.

[13] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and F. Y.I@ang. Synchronous and bidirectional component
interfaces. IrProc. of the 14th International Conference on Computer Aiderification (CAV’02)volume
Lecture Notes in Computer Science 2404, pages 414—-42'hdgpr2002.

[14] T. Chatain, A. David, and K. G. Larsen. Playing gameswiined games. li®roc. of the 3rd IFAC Confer-
ence on Analysis and Design of Hybrid Systems (ADHSZH)9.

[15] E. M. Clarke and E. A. Emerson. Design and synthesis otkyonization skeletons using branching-
time temporal logic. IrLogic of Programsvolume Lecture Notes in Computer Science 131, pages 52-71.
Springer, 1981.

[16] D. Dams, R. Gerth, and O. Grumberg. Abstract interpi@teof reactive systemsACM Trans. Program.
Lang. Syst.19(2):253-291, 1997.

[17] L. de Alfaro. Game models for open systems.Varification: Theory and Practicesolume Lecture Notes
in Computer Science 2772, pages 269-289. Springer, 2003.

[18] L. de Alfaro, L. Dias da Silva, M. Faella, A. Legay, P. R@nd M. Sorea. Sociable interfaces.Hroc. of
the 5th International Workshop on Frontiers of Combiningt®yns (FroCos’05)volume Lecture Notes in
Computer Science 3717, pages 81-105. Springer, 2005.

[19] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar,caM. Stoelinga. The element of surprise in
timed games. IiProc. of the 14th International Conference on Concurrenlegdry (CONCUR’03)volume
Lecture Notes in Computer Science 2761, pages 142—15Gdepr2003.

[20] L. de Alfaro and T. A. Henzinger. Interface automata. PFroc. of the 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSEf2hes 109-120. ACM Press, 2001.

[21] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timeddrfaces. IrProc. of the 2nd Workshop on Embedded
Software (EMSOFT’'02)olume Lecture Notes in Computer Science 2491, pages P23-Springer, 2002.

[22] L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrovelface theories with component reuse Ploc.
of the 8th International Conference on Embedded Softwa@SEFT'08) pages 79-88. ACM Press, 2008.

[23] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvég Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity - the Ptolemy approaéhoc. of the IEEE91(1):127-144, 2003.

[24] G. Feuillade and S. Pinchinat. Modal specificationgli@rcontrol theory of discrete-event systemsscrete
Event Dynamic Systenis7(2):181-205, 2007.

[25] C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. RehdaficlSfree conformance. IRroc. of the 16th
International Conference on Computer Aided Verificatio{@®4), volume Lecture Notes in Computer
Science 3114, pages 242-254. Springer, 2004.

[26] P. Godefroid, M. Huth, and R. Jagadeesan. Abstradiimsed model checking using modal transition sys-
tems. InProc. of the 12th International Conference on Concurrenicgdry (CONCUR’01)volume Lecture
Notes in Computer Science 2154, pages 426—440. Springet, 20

J.-B. Raclet et al./ A Modal Interface Theory for Comporigated Design 149

[27] G. Goessler and J.-B. Raclet. Modal contracts for comepé-based design. IRroc. of the 7th IEEE In-
ternational Conference on Software Engineering and ForMathods (SEFM’'09)pages 295-303. IEEE
Computer Society Press, 2009.

[28] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Dondw in thep-calculus. InProc. of the 6th
International Conference on Verification, Model Checkiaggl Abstract Interpretation (VMCAI'O5yolume
Lecture Notes in Computer Science 3385, pages 233—-24Ndapr2005.

[29] T. A. Henzinger and J. Sifakis. The embedded systemigdesallenge. IrProc. of the 14th International
Symposium on Formal Methods (FM’Q8)olume Lecture Notes in Computer Science 4085, pages 1-15.
Springer, 2006.

[30] K. G. Larsen. Modal specifications. Kwutomatic Verification Methods for Finite State Systewmdume
Lecture Notes in Computer Science 407, pages 232—-246.g&pyib989.

[31] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/0 autdanfar interface and product line theories. In
Proc. of the 16th European Symposium on Programming Laregiagd Systems (ESOP’QVdlume Lecture
Notes in Computer Science 4421, pages 64—79. Springer, 2007

[32] K. G. Larsen, U. Nyman, and A. Wasowski. On modal refinet@nd consistency. IRroc. of the 18th In-
ternational Conference on Concurrency Theory (CONCUR’0@ume Lecture Notes in Computer Science
4703, pages 105-119. Springer, 2007.

[33] G. Luttgen and W. Vogler. Conjunction on processed! &ostraction via ready-tree semantidheoretical
Computer Scien¢&73:19-40, 2007.

[34] N. Lynch and M. R. Tuttle. An introduction to Input/OutpautomataCWI-quarterly 2(3), 1989.

[35] R. Milner. A complete axiomatisation for observatibnangruence of finite-state behaviorsformation
and Computation81(2):227-247, 1989.

[36] U. Nyman. Modal Transition Systems as the Basis for Interface Theaiel Product Lines PhD thesis,
Aalborg University, Department of Computer Science, 2008.

[37] A. Pnueli. The temporal logic of programs. Rtoc. 18th Annual Symposium on Foundations of Computer
Science (FOCS'77pages 4657, 1977.

[38] S. Quintonand S. Graf. Contract-based verificationefdrchical systems of componentsAroc. of the 6th
IEEE International Conference on Software Engineering &adnal Methods (SEFM’08pages 377-381.
IEEE Computer Society, 2008.

[39] J.-B. RacletQuotient de s@cifications pour lagutilisation de composantBhD thesis, Université de Rennes
I, 2007. (In French).

[40] J.-B. Raclet. Residual for component specificatiomsPrioc. of the 4th International Workshop on Formal
Aspects of Component Software (FACS,0ilume Electronic Notes Theoretical Computer Science 215
pages 93-110, 2008.

[41] J.-B. Raclet, E. Badouel, A. Benveniste, B. CaillaudLAgay, and R. Passerone. Modal interfaces: Unifying
interface automata and modal specifications.Ptoc. of the 9th International Conference on Embedded
Software (EMSOFT'09)pages 87-96. ACM Press, 2009.

[42] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillautj &. Passerone. Why are modalities good for interface
theories? InProc. of the 9th International Conference on ApplicationGafncurrency to System Design
(ACSD’09) pages 199-127. IEEE Computer Society Press, 2009.

[43] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillautt] &. Passerone. Why are modalities good for Interface
Theories? Research Report RR-6899, INRIA, 2009.

