
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Contract-Based Reasoning for
Component Systems with Complex

Interactions

Sophie Quinton, Susanne Graf and Roberto Passerone

Verimag Research Report no TR-2010-12

May 2010

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Contract-Based Reasoning for Component Systems with Complex
Interactions

Sophie Quinton, Susanne Graf and Roberto Passerone

May 2010

Abstract

This paper analyzes various notions of refinement used in contract and interface theories. We
define a generic component algebra and then focus on possible verification strategies and dis-
cuss their compositional properties. We study the relationship between refinement of open
systems and refinement under context, and show that we can obtain stronger compositional
results, known as circular reasoning, if we loosen their connection. The theoretical results are
then presented in the context of two models derived from the SPEEDS HRC specification lan-
guage, and we show how to combine partial tool chains for both frameworks into a complete
tool chain for our methodology.

Keywords: refinement, interface theories, circular reasoning

Reviewers: Susanne Graf

Notes:

How to cite this report:

@techreport { ,
title = { Contract-Based Reasoning for Component Systems with Complex Interactions},
author = { Sophie Quinton, Susanne Graf and Roberto Passerone},
institution = { Verimag Research Report },
number = {TR-2010-12},
year = { },
note = { }
}

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

1 Introduction
Contract and interface frameworks are emerging as the formalism of choice for system designs that require
large and dispersed teams, or where the supply chain is complex [3]. Contracts are usually expressed as
pairs of assumptions, or properties that the environment must satisfy, and guarantees, the properties that
must be satisfied by each particular component. This style of specification is typically employed in the
context of component-based frameworks, which facilitate the design process by hierarchically decompos-
ing the design. This process is particularly effective if one can deduce properties of the entire system from
properties of its parts. In this case the framework is said to support compositional reasoning.

Of interest in system design is the relationship of refinement between a specification and an implemen-
tation. In contract frameworks, refinement takes different forms, depending on whether we are considering
refinement with respect to a specification, refinement of contracts, or refinement of an implementation
with respect to a contract. In this paper we present a methodology that makes use of these three forms of
refinement to simplify the verification process in system design. In particular, we consider two specific
notions: refinement between closed systems, and refinement under context, which is in turn used to define
the relationship of satisfaction of a contract by a component, and refinement between contracts, which we
call dominance. These relationships are introduced using a generic contract framework that uses abstract
composition operators to encompass a variety of different interaction models.

We discuss some rules for compositional reasoning and the constraints they impose on the refinement
relations. In particular, circular reasoning, which allows a component and its environment to be refined
concurrently — each relying on the abstract description of its context — entails an interesting rule for
proving dominance. But it imposes a relatively strong requirement on the refinement relation. We show
how to relax this constraint when checking refinement between contracts. In addition, we impose a much
looser relationship between refinement and refinement under context than usually assumed, which allows
us in some cases to derive more powerful rules for reasoning about contracts.

This work has a practical motivation in the component-framework HRC — standing for heterogeneous
rich components — defined in the SPEEDS IP project and used in the COMBEST project. The model
defines component properties as extended transition systems and provides several composition models,
ranging from low-level semantic composition to composition frameworks underlying the design tools used
by system designers. We focus here on two composition – and corresponding contract — frameworks. We
show that both can be seen as instances of our general contract framework and, based on the relationships
between the underlying refinement relations and the properties they enjoy, we show how to combine partial
tool chains for both frameworks into a complete tool chain for our methodology.

The proofs of all theorems are given in the appendix.

2 Contract-based design

2.1 Design methodology
From a macroscopic point of view, we adopt a top-down design and verification methodology in which
high-level properties are pushed progressively from the level of the system to the level of atomic compo-
nents — which we call implementations. As usual, this is just a convenient representation; in real life, we
always achieve the final picture in several iterations alternatively going up and down the hierarchy.

Our methodology, illustrated in Figure 1, makes use of the notion of contract [2, 12]. More details are
provided in [3]. For a component K, a contract describes 1) the interface of K 2) the interaction between
K and its environment denotedE, and 3) an abstraction of the expected behavior ofE and an abstraction of
the promised behavior of K. The idea is that the system component is refined into a set of subcomponents
assembled using a complex interaction layer. Contracts are associated to each of the subcomponents in
such a way that if we can build implementations satisfying the contracts of the subcomponents, then their
composition satisfies the system contract.

More precisely, we suppose given a global property ϕ which the system K under construction has to
realize together with an environment on which we may have some knowledge, expressed by a property

Verimag Research Report no TR-2010-12 1/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

glI

(satisfaction)

(conformance)
4 ϕ

GA

G1 A1

I1

G2A2

A3 G3

|= C3 EI3 |= C−1|= C2|= C1 I2

C1
C2

gl2

gl1
C3

gl3

w.r.t. glI

{C1, C2, C3} dominates C

C

gl
A G

gl

Figure 1: Method for proving gl{E, glI{I1, I2, I3}} 4 ϕ

A. The property ϕ and A are expressed w.r.t. the interface PK of K. We proceed as follows: (1) define
a contract C for PK which conforms to ϕ; (2) define K as a composition of subcomponents Ki and a
contract Ci for each of them; possibly iterate this step if needed; (3) prove that any set of implementations
Ii for Ki satisfying the contracts Ci, when composed, satisfy the top-level contract C (dominance) — and
thus guarantee ϕ; (4) provide such implementations.

The global property ϕ appears at the top, while the implementations Ii are at the bottom. The correct-
ness proof for a particular system is therefore split into 3 phases: conformance (denoted 4) of the top-level
contract C to ϕ, dominance between the contracts Ci and C, and satisfaction (denoted |=) of the Ci by the
implementation Ii. Thus, conformance relates properties of closed systems — as a contract defines a closed
system made of the composition of its assumption and guarantee — while dominance relates contracts and
satisfaction relates components to contracts.

2.2 Contract framework
We develop our methodology on a generic framework that supports hierarchical components and mecha-
nisms to reason about composition. The following notions and properties form the basis of this framework.
Here, we use glue operators [14] to generalize the operation of parallel composition found in most tradi-
tional frameworks.

Definition 2.1 (Component algebra) A component algebra is a structure of the form (K,GL, ◦,∼=) where:

• K is a set of components. Each component K ∈ K has as its interface a set of ports, denoted PK .

• GL is a set of glue (composition) operators. A glue is a partial function 2K −→ K transforming a
set of components into a new component. Each gl ∈ GL is defined on a set of ports Sgl from the
original set of components — called its support set — and defines a new interface Pgl for the new
component — called its exported interface. K = gl({K1, . . . ,Kn}) is defined if K1, . . . ,Kn ∈ K
have disjoint interfaces, Sgl =

⋃n
i=1 PKi and the interface of K is Pgl , the exported interface of gl .

• ∼=⊆ K × K is an equivalence relation. In general, this equivalence is derived from equality or
equivalence of semantic sets.

2/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

• ◦ is a partial operation on GL to hierarchically compose glues. gl ◦ gl ′ is defined if Pgl′ ⊆ Sgl .
Then, its support set is Sgl\Pgl′ ∪ Sgl′ and its interface is Pgl (cf. Figure 2).
Furthermore, ◦ must be coherent with ∼= in the sense that gl{gl ′{K1},K2} ∼= (gl ◦ gl ′){K1 ∪ K2}
for any sets of components Ki such that all terms are defined.

To simplify the notation, we write gl{K1, . . . ,Kn} instead of gl({K1, . . . ,Kn}). Figure 2 shows how
hierarchical components and connectors are built from atomic ones. Note that exported ports of internal
connectors (which are not connected) are not represented in this figure.

��������

����
����
����
���� �

�
�

�
�
�

����
����
����
����

��������

��
��
��

��
��
��

�
�
�

�
�
�

Sgl′

Sgl

K3

gl ′{K1, K2}

K2
K4

K1

gl{gl ′{K1, K2}, K3, K4}

Figure 2: Hierarchical components and connectors

We use the notion of context to restrict the way a component may be further composed.

Definition 2.2 (Context) A context for an interface P is a pair (E, gl) where E is such that P ∩ PE = ∅
and gl is defined on P ∪ PE .

We introduce two refinement relations to reason about contracts: conformance, which we informally
introduced when discussing our methodology; and refinement under context, used to define satisfaction and
dominance. Refinement under context is usually considered as a derived relation and chosen as the weakest
relation implying conformance and ensuring compositionality, i.e., preservation by composition. We loosen
the coupling between these two refinements to obtain stronger reasoning schemata for dominance.

Definition 2.3 (Contract framework) A contract framework is a tuple (K,GL, ◦,∼=, {vE,gl},4) where:

• (K,GL, ◦,∼=) is a component algebra.

• {vE,gl} is a refinement under context relation parameterized by a context. Given a context (E, gl)
for an interface P , vE,gl is a preorder over the set of components on P .

• 4⊆ K ×K is a conformance relation between components with the same interface. It is a preorder
such that for any K1, K2 on the same interface P and for any context (E, gl) for P , K1 vE,gl
K2 =⇒ gl{K1, E} 4 gl{K2, E}.

Example 2.4 Typical notions of conformance 4 are trace inclusion or its structural counter part, simula-
tion1. For these notions of conformance, refinement under context is usually defined as:

K1 v4
E,gl K2 , gl{K1, E} 4 gl{K2, E}

That is, v4 is defined as the weakest preorder included in 4 that is compositional.

Definition 2.5 (Contract) A contract C for an interface P consists of:

• a context E = (A, gl) for P; A is called the assumption

• a component G on P called the guarantee
1Simulation is formally defined in section 3.2.

Verimag Research Report no TR-2010-12 3/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

We write C = (A, gl , G) rather than C = ((A, gl), G). The interface of the environment is implicitly
defined by gl whileA expresses a constraint on it andG a constraint on the refinements ofK. The “mirror”
contract C−1 of C is (G, gl , A), i.e. a contract for the environment.

Definition 2.6 (Satisfaction of contract) A component K satisfies a contract C = (A, gl , G), denoted K |=
C, if and only if K vA,gl G.

In interface theories [4], a single constraint is used to represent bothA andG (gl is predefined), because
each transition is controlled either by the component or the environment. However, in frameworks with
rendez-vous interaction, several pairs (A,G) may be derived from an interface, as both component and
environment may prevent a rendez-vous from taking place. Thus, we keep assumptions and guarantees
separate.

Our notion of contract has a structural part, which makes this definition very general by encompass-
ing any composition framework. A more practical advantage is related to system design: it allows us to
separate the architecture and the properties (requirements) of the system under construction, which evolve
independently during the development process. In particular, in frameworks where interaction is rich, re-
finement can be ensured by relying heavily on the structure of the system and less importantly on the
behavioral properties of the environment.

2.3 Reasoning within a contract framework

Compositional reasoning is usually based on the following rule: if I 4 S, then I ‖ E 4 S ‖ E (where ‖
denotes generically parallel composition). Thus, from I1 4 S1 and I2 4 S2, we get I1 ‖ I2 4 S1 ‖ S2.
The proof is as follows:

1. I1 4 S1 =⇒ I1 ‖ I2 4 S1 ‖ I2
2. I2 4 S2 =⇒ I2 ‖ S1 4 S2 ‖ S1

If we consider refinement under context, and not simply refinement in an open system, reasoning is a bit
more complex because we have to handle closed systems. In particular, the previous rule is not sufficient
anymore. Remember that for a contract framework we require that I vE S imply I ‖ E 4 S ‖ E. Now,
if I1 vI2 S1 and I2 vI1 S2, this is not sufficient to derive I1 ‖ I2 4 S1 ‖ S2. In fact, we only have:

• I1 vI2 S1 =⇒ I1 ‖ I2 4 S1 ‖ I2
• I2 vI1 S2 =⇒ I2 ‖ I1 4 S2 ‖ I1

This means that to obtain a rule similar to the usual compositional reasoning, we need the following:{
I1 vI2 S2

I2 vI1 S1
=⇒ I1 ‖ I2 4 S1 ‖ S2

Furthermore, we want to be able to apply incremental design by incorporating parts of the environment
into the system. Hence the more general rule:{

I1 vI2‖E I2
I2 vI1‖E I1

=⇒ I1 ‖ I2 vE S1 ‖ S2

Thus, we require refinement under context to be a relation parameterized by a context such that:{
I1 vglE2

{I2,E},gl1 S1

I2 vglE1
{I1,E},gl2 S2

=⇒ gl{I1, I2} vE,glE gl{S1, S2}

Note that we never use this rule directly, because we do not want to prove refinement in the actual context,
but in an abstract one that is refined by the concrete context. Thus, we will only need the property defined
below, which we refer to as compositionality.

4/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

Definition 2.7 (Compositionality) A refinement under context {vE,gl} is preserved by composition iff for
any context (E, gl) for an interface P and glE , E1, E2 such that E = glE{E1, E2}, the following holds
for any I , S on P:

I vE,gl S =⇒ gl1{I, E1} vE2,gl2 gl1{S,E1}

where gl1 and gl2 are such that gl ◦ glE = gl2 ◦ gl1.

A refinement under context as defined above has this property. This comes directly from the following:{
I vglE{E1,E2},gl S
E1 vgl1{I,E2},gl2 E1

=⇒ gl1{I, E1} vE2,gl2 gl1{S,E1}

Now, to check refinement in an abstraction of the actual context, we need another property of refine-
ment. Most frameworks offer the following rule:

I1 vS2,gl S1 ∧ I2 v S2 =⇒ I1 vI2,gl S1

Here, I2 v S2 denotes that I2 refines S2 in any context. This is quite limited because this requires to find a
way of “breaking the symmetry” of the dependency between component and environment. This is why the
following rule, which implies the previous one and is commonly referred to as circular reasoning, is more
interesting. Unfortunately, it is not sound in general.

I1 vS2,gl S1 ∧ I2 vS1,gl S2 =⇒ I1 vI2,gl S1

For each particular framework, this property can be proved by an induction based on the semantics of com-
position and refinement. For example, in a contract framework based on I/O automata, circular reasoning
is sound because exactly one component has control over each interaction [13].

However, circular reasoning does not hold for parallel composition with synchronizations (as they exist
in e.g. in Petri Nets or process algebras) or instantaneous mutual dependences between inputs and outputs
(as they exist in synchronous formalisms). Two reasons for the non validity of circular reasoning for v4

are illustrated in Figure 3.

a a

A G

a

b

a

b c

a

E

bc

a

K

b c c

EGA

b ab a a a

K

Figure 3: K v4
A,gl G and E v4

G,gl A but K 6v4
E,gl G.

Suppose that composition is defined as the synchronization between actions with the same name and
interleaving of others. The upper example shows that non-determinism of the abstract environment is a
problem. In the example of the second row, both the assumption A and the guarantee G forbid b to occur.
This allows their respective refinements according to v4, E and K, to offer b — since they can rely on G
resp. A to forbid its actual occurrence. But obviously, the composition of the implementations gl{E,K}
now allows b.

Because circular reasoning is not sound for all refinements under context, it may be useful to use a
more restrictive definition of refinement under context in order to make circular reasoning sound. This is
the reason why refinement under context and conformance are decoupled in our definition of a contract
framework.

Verimag Research Report no TR-2010-12 5/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

2.4 Dominance

Dominance is the key notion that distinguishes reasoning in a contract framework from theories based
on refinement between components. Intuitively, dominance means for contracts what refinement means
for components. More specifically, proving that a contract C dominates C′ means showing that every
implementation of C, that is, every component satisfying C, is also an implementation of C′.

Definition 2.8 (Binary dominance) Let C and C′ be two contracts for the same interface P , with C =
(A, gl , G) and C′ = (A′, gl ′, G′) (implying that PG = PG′). C dominates C′ iff gl = gl ′ (and as a
consequence PA = PA′) and:

for any K on P,K |= C =⇒ K |= C′

Moreover, one may need in some cases a notion of well-formedness of a system. It is generally a
property that cannot be expressed in the considered component framework: deadlock-freedom, termination,
etc. One expects however such a property to be preserved top-down by conformance.

Definition 2.9 (well-formedness) We define a well-formedness constraint as a property preserved by con-
formance, that is if S is well-formed and S′ 4 S, then S′ is well-formed.

As typically a top-level description is not fine-grained enough to guarantee well-formedness, we are
also interested in preserving well-formedness in a bottom-up fashion — that is from implementation con-
tracts to global contracts. This may then be achieved by strengthening the definition of dominance, for
example by adding the following constraint:

? for any E on PA, E |= (G′, gl , A′) =⇒ E |= (G, gl , A)

Contract algebras. Some contract frameworks define an algebra of contracts. Examples are [1] and
the SPEEDS L0 framework presented in the next section. Having an algebra of contracts is in principle
attractive. Our dominance problem would then boil down to checking that g̃l(C1, . . . , Cn) dominates C for
a given g̃l defined on contracts.

We do not propose such an algebra for two reasons. The first one is that this would impose much
stronger constraints on the general notion of contract framework: we would need for each composition
operator gl the existence of an operator g̃l on contracts such that K1 |= C1∧K2 |= C2 ⇐⇒ gl{K1,K2} |=
g̃l(C1, C2). This is clearly not possible for arbitrary component frameworks. In fact, it is not even possible
to define greatest lower bounds or least upper bounds of contracts for arbitrary settings. Also, there is in
general no largest implementation satisfying a contract. Our aim is to propose a generic notion of contract
framework which imposes minimal constraints on the component framework it is associated with.

The second reason for not proposing an algebra of contracts is that we show in the following that it is
possible to reason efficiently about contracts without ever composing them.

If one cannot compose contracts or wants to avoid it, a dominance check involves in general not just
a pair of contracts. A typical situation would be the one depicted on Figure 1, where a set of contracts
{Ci}ni=1 are attached to disjoint interfaces {Pi}ni=1. Besides, a composition operator glI is defined on
P =

⋃n
i=1 Pi and a contract C is given for P ′ ⊆ P .

We thus provide a broader notion of dominance: a set of contracts {Ci}i=1..n dominates a contract
C w.r.t. a composition operator glI iff any set of components satisfying the contracts Ci, when composed
using glI , makes a component satisfying C.

In order to hide ports of the lower-level contracts which do not appear at the interface of the top-level
contract, we relax the constraints on the composition operators by only requiring that they agree on their
common ports. For this, we need a notion of projection of a component K onto a subset P ′ of its interface,
denoted ΠP ′(K), which is quite natural and must preserve the following properties.

Definition 2.10 (Projection) If Π is a projection, then for any components Ki and A on disjoint interfaces
P and PA, and any composition operator gl on P ∪ PA:

6/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

1. for P ′ ⊆ P and for any gl1, gl2 with Pgl1 = P ′ ∪ PA, Pgl2 = P\P ′ s.t. gl = gl1 ◦ gl2:

K1 vA,gl K2 ∧ΠP ′(K2) vA,gl1 G =⇒ ΠP ′(K1) vA,gl1 G

Note that G is defined on P ′.

2. for P ′A ⊆ PA and for any gl1, gl2 on Pgl1 = P ∪ P ′A, Pgl2 = PA\P ′A s.t. gl = gl1 ◦ gl2:

K vΠP ′
A

(A),gl1
G =⇒ K vA,gl G

Note that G is defined on P .

These properties state that ports of the component (and symmetrically of the environment) which do not
appear in interactions with the environment (resp. the component) may be abstracted away when checking
refinement.

Note that we might use an equivalence relation between composition operators rather than equality.
This would be, e.g., in the context of L1 connectors, an equivalence based on equality of the associated sets
of interactions. More generally, this can be any relation such that gl ∼= gl ′ implies that gl{K1, ... ,Kn} ∼=
gl ′{K1, ... ,Kn} for any set of components such that compositions are defined.

We now state formally our semantic definition of dominance.

Definition 2.11 (Dominance for a composition) Let C be a contract on P , {Ci}ni=1 a set of contracts on Pi
and glI a composition operator such that SglI =

⋃n
i=1 Pi and P ⊆ PglI . Then {Ci}ni=1 dominates C with

respect to glI iff for any components {Ki}ni=1:

(∀i,Ki |= Ci) =⇒ ΠP (glI{K1, . . . ,Kn}) |= C

A sufficient condition for dominance has been proposed in [12] when circular reasoning is sound. It
relies on the fact that local assumptions are indeed discharged, that is, implied by the environment defined
by the guarantees of the peers and the global assumption A. Yet, it requires that ∀i, gl ◦ glI = gl i. The
generalization of this rule to composition operators on different sets of ports is given below.

Theorem 2.12 If ∀i. ∃glEi . gl ◦ glI = gl i ◦ glEi and circular reasoning is sound, then to prove that C
dominates {Ci}i=1..n w.r.t. gl , it is sufficient to prove that:{

ΠP (glI{G1, ... , Gn}) |= C
∀i,ΠPAi (glEi{A,G1, ... , Gi−1, Gi+1, ... , Gn}) |= C−1

i

Note that the well-formedness condition (?) discussed previously is obviously preserved by this rule.
In SPEEDS HRC, discussed below, the required decomposability of gl ◦ glI into gl i ◦ glEi is trivial for

L0 but not for L1. Due to lack of space, we do not develop this issue here.
This condition shows that the proof of a dominance relation boils down to a set of satisfaction checks,

one for proving refinement between the guarantees, the second for discharging individual assumptions.
This result is particularly significant because one can check dominance while avoiding composition of

contracts, which is, as stated before, impossible in the general case and leads to state explosion in most
concrete contract frameworks.

2.5 Combining two refinement relations
We consider here using two relations of refinement under context vα and vβ instead of a single one.
Mainly, the goal is to reintroduce some asymmetry between the property that must be guaranteed by the
component and the one to be guaranteed by its environment, because full symmetry might be either not
sufficient or unnecessarily strong to ensure circular reasoning.

In particular, we consider the following rule which we call pseudo circular reasoning for vα and vβ :

K vαA,gl G ∧ E v
β
G,gl A =⇒ K vαE,gl G (0)

Verimag Research Report no TR-2010-12 7/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

It guarantees that vα is preserved in a circular-like fashion if the environment refines A via some relation
vβ .

This kind of pseudo circular reasoning can be used in different ways to make dominance checks easier.
We will use both of them in our application to the SPEEDS framework in the next section where we have
two refinements under context, one supporting circular reasoning, and one not.

Relaxing standard non circular reasoning. Suppose that vα does not allow circular reasoning. Sup-
pose that we have a second refinement under context relation vβ which is strong enough to guarantee
pseudo circular reasoning.

In this case, we can use (0) as a rule for verifying dominance instead of rule (1) which was proposed
for the case where circular reasoning is not possible.

K vαA,gl G ∧ E v A =⇒ K vαE,gl G (1)

Rule (0) relaxes rule (1) by requiring assumptions to be refined via vβ , which is generally weaker than
refinement in any context. Thus, condition (0) allows us to establish dominance more often than rule (1).

Relaxing circular reasoning. Suppose now that circular reasoning is sound for vα. Suppose again
that we have another, weaker, refinement under context relation vβ .

In this case, rule (0) relaxes the rule for circular reasoning

K vαA,gl G ∧ E vαG,gl A =⇒ K vαE,gl G (2)

We can prove that pseudo circular reasoning allows the following sufficient condition for dominance
when vα is stronger than vβ .

Theorem 2.13 If ∀i. ∃glEi . gl ◦ glI = gl i ◦ glEi and pseudo circular reasoning is sound for vα and vβ ,
then to prove that C dominates {Ci}i=1..n w.r.t. gl , it is sufficient to prove:{

ΠP (glI{G1, . . . , Gn}) |=α C
∀i,ΠPAi (glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn}) |=β C−1

i

Now suppose that vβ is not only weaker but also less costly to check than vα. Then pseudo-circular
reasoning allows establishing dominance more often, and in addition it increases the scalability of domi-
nance checks.

If there is a well-formedness condition, then pseudo circular reasoning can be adopted only if both
relations vα and vβ preserve this well-formedness condition.

3 Two contract frameworks
We show now how the general theory introduced in the previous section is applied in practice. In the
SPEEDS project, we have defined a modeling framework HRC — standing for Heterogeneous Rich Com-
ponents — to offer designers an environment for contract-based design. HRC offers the possibility to define
hierarchical components where interactions and data exchange are defined by explicit connectors between
ports which define the component’s interface. Components are associated with behaviors (implementa-
tions) and contracts are represented by a pair of behaviors (that is, properties) expressing an assumption on
the environment and a guarantee, that is a property that the component’s implementation must realize in
any environment obeying the constraint imposed by the assumption.

In HRC, we choose to represent behaviors on an interface (that is represented by a set of ports P) by
labeled transition systems, which are sufficiently enriched to represent hybrid and stochastic behaviors as
well as implementations realizing complex data transformations. To simplify the presentation, we restrict
ourselves here to abstract transition systems without data nor any other extension.

Definition 3.1 (LTS as behaviors) A labeled transition system (LTS) on a set of ports P is defined as a tuple
(Q, q0,P,−→) where Q is a set of states, q0 an initial initial state and−→ ⊆ Q×2P ×Q is a transition
relation.

8/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

For hierarchical model composition, there exist several models defining different levels of abstraction:
they range from low-level semantic composition (called L0) to user level composition which generalizes
the composition primitives existing in commercial design tools. We discuss here two layers: L0 which we
already mentioned, and L1 which offers a richer set of composition operators.

In L0, connectors are simple name matchings which connect an output port to one (or more) input
ports, possibly in a hierarchical fashion. The composition semantics is synchronous, that is, a transition
of a composed system involves all components in a globally maximal interaction. L1-connectors are more
complex; they are inspired by BIP connectors [6]. In L1, a connector defines a set of possible interactions
on a set of ports, which may be output, input or event ports. For compatibility reasons, connectors on inputs
and outputs must obey the same constraints as L0 connectors, that is, connect exactly one output to a set
of inputs and define exactly one interaction involving all connected ports. The L1 execution model is more
asynchronous as executions of different connectors are interleaved, and maximal progress is only enforced
for individual connectors.

3.1 L0 contract framework

At the semantic level, the L0 contract framework of the SPEEDS HRC model is based on a simple trace-
based representation, and uses set operations for the definition of the operators. In other words, LTS
are used at the L0 level as recognizers for the trace representation. This is convenient, as the synchronous
composition semantics translates into simple intersection of trace sets. In this context, we are not concerned
with the specific form of a trace (more details can be found elsewhere [2]). Instead, we simply assume that
for any set of ports P there exists a set of corresponding traces G over those ports which we call behaviors
or runs over P . As discussed in Section 2.4, the set of behaviors is equipped with a projection operator
projP1,P2

(G) which restricts the behaviors to ports in P1 ⊆ P2, and a corresponding inverse projection
proj−1

P1,P2
(G) to extend the behaviors to a larger set of ports P2.

A component K with interface PK at level L0 is defined as a set of behaviors over PK . The behaviors
correspond to the history of ports that are visited when traversing the transitions of the LTS. Composition,
in the original formulation, is defined as a new LTS obtained by the Cartesian product of the transition sys-
tems, and by retaining only the pairs of transitions whose labels of ports match, given the correspondence
induced by the connectors. If the matching ports of the two components had the same names, composition
at the level of trace sets would boil down to a simple intersection of the sets of behaviors. Because this is
not true in general, and is forbidden by the definitions of our framework (components must have disjoint
sets of ports under composition), we must introduce the connectors as explicit components that establish a
synchronous relation between the histories of connected ports. The collection of these simple connectors
forms the composition operators Γ of our framework at the L0 level. In addition to that, to make inter-
section work, we must also equalize the ports of all trace sets using inverse projection, to have a coherent
representation of the composite. In particular, if K = {K1, . . . ,Kn} is a set of components such that
P1, . . . ,Pn are pairwise disjoint, then a composition operator Γ for K is a component KΓ defined on the
ports P = pΓ ∪ (∪ni=1Pi), and

K = Γ{K1, . . . ,Kn}
= projpΓ,P

(
KΓ ∩ proj−1

P1,P (K1) ∩ ... ∩ proj−1
Pn,P (Kn)

)
Component KΓ is always taken as an identity operator, and is used exclusively to rename ports in the
composition and to construct the new interface pΓ. In the following, at the semantic level, we implicitly
assume the appropriate connector components are used whenever a composition is required, and instead
use components with equal sets of ports for convenience.

The definition of ◦ is straightforward. Since composition operators are themselves components, their
composition follows the same principle as component composition. Finally, the ∼= relations on K is taken
as equality of sets of traces.

It is easy to define a notion of conformance 4 for the L0 model. This notion is equivalent to the
traditional notion of refinement, and is defined as trace containment. More formally, if K1 and K2 are
components over the same set of ports P , then K1 4 K2 if and only if K1 ⊆ K2.

Verimag Research Report no TR-2010-12 9/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

L0 contracts. Contracts are defined in L0 as pairs (A,G) of components over the same set of ports. In
particular, A represents the assumptions of the contract, or, equivalently, the behaviors that are considered
acceptable by the contract. Likewise,G expresses the guarantees, or those behaviors that are possible under
the contract, provided the assumptions are satisfied. The composition operator Γ is implied by port name
matching.

The definition of refinement under context vE,Γ is derived from the definition of composition and
conformance as in Example 2.4. K1 vE,Γ K2 if and only if Γ{K1, E} 4 Γ{K2, E}. The relation so
defined is a preorder, and satisfies by definition the conditions required by our framework.

In the L0 model, contract satisfaction is defined as refinement under the context of the assumptions.
Formally, a component K satisfies a contract C = (A,G) if and only if

K ∩A ⊆ G.

Observe that the above is equivalent to K ∩A ⊆ G∩A. In our framework, this translates into Γ{K,A} 4
Γ{G,A}, where Γ is the appropriate composition operator that computes the identity relation. By defini-
tion, this is the same as K vA,Γ G. Thus, the definition of satisfaction in HRC is consistent with the more
general definition of satisfaction of our framework.

In the L0 model there exists a unique maximal component satisfying a contract C, namely:

MC = G ∪ ¬A, (1)

where ¬ denotes the operation of complementation on the set of all behaviors over ports PA. The operation
of computing a canonical form is well defined, since the maximal implementation is unique, and it is
idempotent. It is easy to show that K |= C if and only if K ⊆ MC . We say that a contract C = (A,G)
is in canonical form when G = MC . Every contract has an equivalent contract in canonical form, which
is obtained by replacing G with MC . In the following, we focus on contracts in canonical form, since
several expressions can be simplified. The limitation is that complementation may not be effective in
certain models (such as timed models). In those cases, the use of canonical forms is precluded, and the
more generic L1 theory is required.

Parallel composition of contracts in L0. Contract composition formalizes how contracts related to dif-
ferent components should be combined to specify a single, compound, component. Let C1 = (A1, G1) and
C2 = (A2, G2) be contracts. First, composing these two contracts amounts to composing their promises.
Regarding assumptions, however, the situation is more subtle. Suppose first that these two contracts pos-
sess disjoint sets of ports and variables. At a first sight, the assumptions of the composite should intuitively
be simply the conjunction of the assumptions of the rich components, since the environment should satisfy
all the assumptions. In general, however, part of the assumptionsA1 will be already satisfied by composing
C1 with C2 acting as a partial environment for C1. Therefore, G2 can contribute to relaxing assumption A1,
and vice-versa. Whence the following definition:

Definition 3.2 (Composition of contracts) The parallel composition C1 || C2 is defined as the contract C =
(A,G) such that:

A = (A1 ∩A2) ∪ ¬(G1 ∩G2),
G = G1 ∩G2.

Note that the so defined contract is in canonical form.

The following result, which, as discussed is not true in the general case, expresses the strong compositional
properties of the L0 contract theory.

Lemma 3.3 If K |= C and K |= C′, then K ∩K ′ |= C || C′.

Dominance in L0. Dominance is defined in L0 as a contravariant relation between assumptions and
guarantees. The relation between guarantees is required for general dominance, whereas the second condi-
tion for assumptions is intended for preserving well-formedness.

Definition 3.4 (L0-Dominance) A contract C = (A,G) dominates a contract C′ = (A′, G′) if and only if
A ⊇ A′ and G ⊆ G′.

10/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

Dominance amounts to relaxing assumptions and reinforcing promises. Note that if C dominates C′ and
C′ dominates C, then C = C′. Furthermore, if C dominates C′ then MC |= C′. This property implies
the following result, which relates the definition of dominance in L0 to the more general definition of our
contract framework:

Lemma 3.5 If K |= C and C dominates C′, then K |= C′.

As a partial order, dominance admits both greatest lower bounds and least upper bounds, which we call
conjunction and disjunction of contracts, respectively. Let C1 = (A1, G1) and C2 = (A2, G2) be contracts.
The greatest lower bound of C1 and C2, written C = C1 u C2, is given by C = (A,G) where A = A1 ∪ A2

and G = G1 ∩ G2. Similarly, the least upper bound of C1 and C2, written C = C1 t C2, is given by
C′ = (A′, G′) where A = A1∩A2 and G = G1∪G2. Note that the result of these operations are contracts
in canonical form. Minimal and maximal contracts can also be defined, as well as complementation,
making L0 contracts a boolean algebra.

Discussion. The L0 contract framework has strong compositional properties, which derive from its
simple definition and operators. The theory, however, depends on the effectiveness of certain operators,
complementation in particular, which are necessary for the computation of canonical forms. While the
complete theory can be formulated without the use of canonical forms, complementation remains funda-
mental in the definition of contract composition, which is at the basis of system construction.

Circular reasoning is sound for a contract framework based on canonical forms. This is because any
behavior that is not allowed to the environment, is instead allowed by the guarantees. This is no longer the
case for contracts which are not in canonical form. This is a limitation of the L0 framework, since working
with canonical forms could prove computationally hard.

In the following section we analyze a higher level model, where we dispense with the composition
operator for contracts. We will show that the high level framework, called L1, can be used consistently
with L0 by proving that properties in L1 are preserved in L0 by soundness results.

3.2 L1 contract framework

The HRC L1 framework (1) allows to define more complex composition operators and (2) decouples the
notions of conformance and refinement in a context in order to enable circular reasoning even for contracts
that are not in normal form, and thus avoid the limitations of the L0 contract framework.

For defining the L1 contract framework, we follow the general theory exhibited in section 2. It is
therefore enough to provide the L1 composition model defined by a set of connectors, the semantics of
composition, and the two refinement relations and show that they satisfy the requirements of section 2.

L1 composition is based on interactions, which involve non-empty sets of ports. An interaction is
defined by the components that synchronize when it takes place, and the ports through which these com-
ponents synchronize. In the following, interactions are usually denoted α.

Definition 3.6 (L1 connectors) A connector γ is defined by a support set Sγ , an exported port pγ and a set
Iγ of interactions in Sγ .

The intuition behind support set and exported port is illustrated in Figure 2, where connectors relate a
set of inner ports and an outer port of a component. One should keep in mind that a connector, and thus an
exported port, represents a set of interactions rather than a single interaction.

Now, suppose given a set of interfaces Pi for components Ki and denote P =
⋃
i Pi. If pγ ⊆ Sγ′ , then

γ and γ′ form together a hierarchical connector whose interaction set is like Iγ′ where each interaction α
in which pγ occurs is replaced by a set of interactions identical to α except that the occurrence of pγ is
replaced by an interaction of Iγ .

Two connectors γ1 and γ2 are disjoint if pγ1 6= pγ2 , pγ1 /∈ Sγ2 and pγ2 /∈ Sγ1 . Note that Sγ1 and Sγ2

may have ports in common, as a port may be connected to several connectors.

Definition 3.7 (L1 composition operators) A composition operator Γ on a support set SΓ is a set of disjoint
connectors with support sets included in SΓ.

Verimag Research Report no TR-2010-12 11/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

Composition operators can be composed using two operations: union and hierarchical composition of
connectors. This defines an operator ◦ with the properties required by Definition 2.1.

Definition 3.8 (L1 composition semantics) Given a set of LTS {Ki}ni=1 with Ki = (Qi, q0
i ,Pi,−→i), and

Γ a composition operator with support set SΓ =
⋃n
i=1 Pi, we define the composition Γ{K1, ... ,Kn} as

(Q, q0,PΓ,−→), where Q =
∏n
i=1Qi, q

0 = (q0
1 , ... , q

0
n) and −→ is defined by:

∀γ ∈ Γ,∀α ∈ Iγ ,∀q1 = (q1
1 , . . . , q

1
n), q2 = (q2

1 , . . . , q
2
n) ∈ Q, q1 pγ−→ q2 iff the following conditions hold:

• ∀i, q1
i
Pi∩α−→ q2

i , with the convention that ∀q, q ∅−→ q, that is, components not involved in the interac-
tion don’t move.

• α is maximal w.r.t. Iγ , that is, there is no α′ ∈ Iγ such that α ⊆ α′ and the previous condition holds
for α′.

Thus,the semantics of composition is obtained as usual as the composition of transition systems where
each global transition corresponds to a maximal enabled interaction of exactly one connector, and the label
of a transition is the exported port of the corresponding connector2. In order to define a synchronous
composition, Γ must consist of a set of conflicting connectors which are never enabled jointly.

L1 contracts. Let P be an interface and Γ a composition operator with P in its support set, which
implicitly defines an interface PE of the environment. An L1-contract for P is then of the form (A,Γ, G)
where A is an LTS on PE and G an LTS on P .

It now remains to define the two refinement relations, conformance and refinement under context. As
in L1, we take into account the representation of behaviors as LTS and choose L1-conformance to be
simulation, that is, the structural counter part of L0-conformance (trace inclusion).

Definition 3.9 (L1-conformance: simulation) Let K1 and K2 be two LTS. A relation R ⊆ Q1 × Q2 is a
simulation from K1 to K2 iff q0

1R q0
2 and for any pair (q1, q2) ∈ Q1 ×Q2:

q1R q2 ∧ q1
α−→1 q

′
1 =⇒ ∃q′2 s.t. q2

α−→2 q
′
2 ∧ q′1R q′2

K1 4L1 K2 iff there exists such a relation.

Thus, L1-conformance is identical L0-conformance for behaviors without non-observable non-determinism,
and otherwise it is stronger. Note that in verification tools, in order to check trace inclusion efficiently, one
will generally check simulation anyway.

For refinement under context, which defines contract satisfaction, we choose a stronger relation than
for L0, in order to be able to use circular reasoning for dominance checks.

Definition 3.10 (L1 satisfaction) Given a component K and a contract (A, gl , G) for PK , we define satis-
faction as: K vL1

A,gl G ,{
gl{K,Adet} 4L1 gl{G,Adet} (4)
(qK , qA)R (qG, q′A) ∧ qK

α−→K =⇒ qG
α−→G (5)

where Adet is the determinization of A and R the relation on states proving that gl{K,Adet} 4L1

gl{G,Adet}.

That is, vL1 strengthens the “standard” notion of refinement under context as introduced in Exam-
ple 2.4 and used in the L0 framework by the condition (5) stating that every transition of a refining state
must correspond to a transition in each corresponding abstract state — but the target states must be related
as well only if the environment allows this transition. As a consequence, vL1 allows circular reasoning.
Note that in frameworks with data, one usually requires preservation of certain predicates from the concrete
to the abstract transition system; here we require preservation of transition enabledness, independently of
data.

2One can easily define two semantics of different granularity: we have chosen the one referring to exported ports, but alternatively
we could distinguish all the different interactions for each connector.

12/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

L1-satisfaction is not the loosest relation ensuring sound circular reasoning. Condition (5) can be
relaxed by not requiring that qG

α−→G if the environment controls α and A forbids in qA any interaction
αA that can be combined with α — meaning that: for any αA such that α ∪ αA is an interaction of the
closed system gl{K,A}, then αA is also an interaction of the closed system. Thus, the symmetry is broken
between environment and component, because all refinements of A must forbid such αA in qA (there is no
q′A s.t. qA

αA−→A q
′
A). For the sake of simplicity, we do not use this property here.

Generally, having a structural part in contracts allows the refinement relation to rely on the way a
component is connected to its environment, and not only on an abstraction of its behavior, to forbid (or
allow) an interaction in the composition.

Well-formedness. A natural notion of well-formedness for L1 would be deadlock freedom, a property
that is not preserved by composition. In [12], we define a framework based on modal transition systems, in
which deadlock freedom is indeed a well-formedness condition, that is, preserved by conformance. Here,
we use only L1 refinement under context to improve L0 reasoning. In particular, we are only interested in
L0-conformance and well-formedness.

3.3 Consistency between L0 and L1

In the previous sections, we have introduced two different notions of refinement under context: vL0 and
vL1 where the second is strictly stronger than the first one. As already stated, circular reasoning is sound
for vL1 but not for vL0.

Now, based on the results of section 2.5, we provide a way of relaxing the dominance checking for
L1 and symmetrically we propose a verification condition for L0-satisfaction that does not require that the
actual environment refines the abstraction of the environment in any context. These two improvements are
as explained in section 2.5 based respectively on the following two theorems.

Theorem 3.11 K vL1
A,gl G ∧ E vL0

G,gl A implies K vL1
E,gl G.

This allows us to relax our sufficient condition for dominance in L1. This is particularly interesting be-
cause checking L0-satisfaction is obviously easier than checking L1-satisfaction. Thus, checking that a set
of contracts {Ci}ni=1 L1-dominates a contract C requires one L1-satisfaction check and n L0-satisfaction
checks. Moreover, this relaxed rule allows establishing dominance more often.

Note that the well-formedness condition for L1 is not preserved using this rule. This is however no
problem because only the well-formedness condition of L0 has to be preserved in the global methodology,
which is indeed the case.

Theorem 3.12 K vL0
A,gl G ∧ E vL1

G,gl A implies K vL0
E,gl G.

This second theorem allows in the SPEEDS project building a complete tool chain based on a set of tools
checking either L0-satisfaction or L1-dominance (implemented by a set of L1-satisfaction checks). We can
check a complete contract hierarchy requiring dominance check using the existing L1 dominance checker,
and at the very end check satisfaction with the more scalable L0 satisfaction checker.

4 Related work
The L0 theory of contracts is similar to other notions of components with assumptions that are found in
the literature. For process spaces [9, 10], a process (or component, or interface) has two sets: X is the
set of possible behaviors, and Y is the set of acceptable behaviors. A process has the requirement that
X ∪ Y = R, the set of all behaviors. A process is the same as a contract C that has:

G = X, A = Y.

So, processes correspond to contracts in canonical form. The notion of refinement and contract composition
is the same as the one described here.

Verimag Research Report no TR-2010-12 13/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

A similar approach is obtained using trace structures with failure behaviors [5, 11]. A trace structure
(or component, or interface) has also two sets: S is the set of successful traces, and F is the set of failure
traces. One obtains a contract in canonical form C by setting

G = S ∪ F, A = ¬F.

Again, the notion of refinement and composition are the same as for contracts.
The trace structures developed by Dill [5], and subsequently by Wolf [15], are particularly interesting

because they address the problem of receptiveness by proving closure properties and by giving decision
procedures. These models were taken as inspiration to derive our initial notions, and fall in our general
methodology as additional instances.

Interface theories are based on a fixed rather than a generic model of composition — usually syn-
chronous Input/Output (I/O) composition. Besides, not all interface theories separate the assumption and
the guarantee. This work encompasses all these formalisms. Let us underline here that keeping A and G
separateimproves reusability [7]. Indeed, checking refinement under a new context can be achieved much
more easily, for example if the new environment refines the old one in any context. Besides, an interface is
necessarily a composition, thus keeping assumption and guarantee separate avoid storing their product.

In [13], we have shown the usefulness of the preliminary version of our general contract framework
(presented in [12]) for establishing results for two different interface theories: one for classical I/O au-
tomata [7] and another for Modal I/O automata [8]. In both frameworks circular reasoning is sound —
intuitively, because at any step the ports controlled by the component and those controlled by the environ-
ment are strictly separate. Nevertheless, [7, 8] present formal proofs which are quite long and technical.
We have shown in [13] that those that can be encoded into our general framework become much simpler
and clear.

5 Conclusion and future work

We have presented a contract framework based on a generic component algebra. We employ a methodology
that uses three notions of refinement: conformance, dominance and satisfaction. We have shown how to
derive these notions from refinement of open systems and refinement under context. We have then analyzed
the compositional properties of these relationships, and discussed the issue of circular reasoning when using
refinement under context. We have shown that by imposing a looser connection between refinement and
refinement under context we are able to derive powerful rules for reasoning about contracts.

These theoretical results are implemented in the context of the HRC model developed in the SPEEDS
project. We have used two interaction paradigms from HRC to show concrete examples of these relations,
and how to combine the respective tool chains. With respect to the existing implementations, there is a lot
of room for their improvement.

In [3], we provide a more detailed description of the design and verification methodology. In particular,
we provide for every design step, a set of checks to be carried out. However, we have to work on strategies
to be deployed when some check fails, which should depend on the failed check and on whether a top-
down or bottom-up approach is followed, and which should be able to exploit more detailed diagnostic
information when it exists.

References

[1] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofronis. Multiple view-
point contract-based specification and design. In Proc. of FMCO’07, volume 5382 of LNCS, pages
200–225, 2008. 2.4

[2] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R. Passerone, and C. Sofronis. A contract-based
formalism for the specification of heterogeneous systems. In Proc. of FDL’08, Stuttgart, Germany,
September 23–25, 2008. 2.1, 3.1

14/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

[3] S. Consortium. Speeds methodology for speculative and exploratory design in systems engineering.
under submission for publication as a series of articles, 2010. 1, 2.1, 5

[4] L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. of ESEC/SIGSOFT FSE’01, pages
109–120. ACM Press, 2001. 2.2

[5] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1989. 4

[6] G. Gößler and J. Sifakis. Composition for component-based modeling. Sci. Comput. Program., 55(1-
3):161–183, 2005. 3

[7] K. G. Larsen, U. Nyman, and A. Wasowski. Interface input/output automata. In Proc. of FM’06,
volume 4085 of LNCS, pages 82–97, 2006. 4

[8] K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o automata for interface and product line
theories. In Proc. of ESOP’07, volume 4421 of LNCS, pages 64–79, 2007. 4

[9] R. Negulescu. Process Spaces and the Formal Verification of Asynchronous Circuits. PhD thesis,
University of Waterloo, Canada, 1998. 4

[10] R. Negulescu. Process spaces. In Proc. of CONCUR’77, volume 1877 of LNCS, 2000. 4

[11] R. Passerone. Semantic Foundations for Heterogeneous Systems. PhD thesis, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, May
2004. 4

[12] S. Quinton and S. Graf. Contract-based verification of hierarchical systems of components. In Proc.
of SEFM’08, pages 377–381. IEEE Computer Society, 2008. 2.1, 2.4, 3.2, 4

[13] S. Quinton and S. Graf. A framework for contract-based reasoning: Motivation and application. In
proc. of FLACOS’08. Technical Report 377, University of Oslo, 2008. 2.3, 4

[14] J. Sifakis. A framework for component-based construction. In Proc. of SEFM’05, pages 293–300.
IEEE Computer Society, 2005. 2.2

[15] E. S. Wolf. Hierarchical Models of Synchronous Circuits for Formal Verification and Substitution.
PhD thesis, Department of Computer Science, Stanford University, October 1995. 4

Verimag Research Report no TR-2010-12 15/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

A Condition for dominance
NB: For the proof with only one refinement under context ensuring soundness of refinement under context,
one simply has to replace vα and vβ with v.

Remember that the following theorem is given for vα stronger than vβ .
Theorem 2.12 If ∀i. ∃glEi . gl ◦ glI = gl i ◦ glEi and pseudo circular reasoning is sound, then to prove

that C dominates {Ci}i=1..n w.r.t. gl , it is sufficient to prove that:{
ΠP (glI{G1, ... , Gn}) |=α C
∀i,ΠPAi (glEi{A,G1, ... , Gi−1, Gi+1, ... , Gn}) |=β C−1

i

For all i = 1..n, let Ki be a component on Pi. Suppose the following:

1. ∀i. ∃glEi . gl ◦ glI = gl i ◦ glEi

2. ΠP (glI{G1, ... , Gn}) vαA,gl G

3. ∀i,ΠPAi (glEi{A,G1, ... , Gi−1, Gi+1, ... , Gn}) vβGi,gli Ai

4. ∀i,Ki vαAi,gli Gi

We aim at proving ΠP (glI{K1, ... ,Kn}) |=α C, that is, that: ΠP (glI{K1, ... ,Kn}) vαA,gl G. For this,
we show by induction that for all l in J0, nK, for all partition {J,K} of J1, nK such that |J | = l:{

ΠP (glI{KJ ∪ GK}) vαA,gl G
∀i ∈ K,ΠPAi (glEi{A, E

i
J,K}) v

β
Gi,gli

Ai

with KJ = {Kj}j∈J , GK = {Gk}k∈K and with E iJ,K = KJ ∪ (GK\{Gi}).

• l = 0. By (2) and (3) the property holds.

• 0 ≤ l < n. We suppose that our property holds for l. Let {J ′,K ′} be a partition of J1, nK such that
|J ′| = l + 1. Let q be an element of J ′. We fix J = J ′\{q} and K = K ′ ∪ {q}.

Step 1 We first prove that ΠP (glI{KJ′ ∪ GK′}) vαA,gl G.{
Kq vαAq,glq Gq from (5)

ΠPAq (glEq{A, E
q
J,K}) v

β
Gq,glq

Aq

The second property is our recurrence hypothesis, as q ∈ K. Thus, by circular reasoning:

Kq vαΠPAq (glEq{A,E
q
J,K}),glq

Gq

By (1) and property 2. of Definition 2.10, this implies that:

Kq vαglEq{A,EqJ,K},gl◦glI Gq

As refinement under context is compositional, we obtain:

glI{Kq, EqJ,K} v
α
A,gl glI{Gq, E

q
J,K}

This is equivalent to glI{KJ′ ∪ GK′} vαA,gl glI{KJ ∪ GK}.
Finally, by using property 1. of Definition 2.10 and the recurrence hypothesis: ΠP (glI{KJ′ ∪GK′}) vαA,gl
G.

16/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

Step 2 We now have to prove that:

∀i ∈ K ′. ΠPAi (glEi{A, E
i
J′,K′}) v

β
Gi,gli

Ai

We fix i ∈ K ′. We have proved in step 1 that

Kq vαglEq{A,EqJ,K},gl◦glI Gq

As vα is stronger than vβ , we also have:

Kq vβglEq{A,EqJ,K},gl◦glI Gq

K = K ′ ∪ {q} so i ∈ K. Thus, by compositionality of refinement under context, we have:

glEi{Kq, A, EqJ,K\{i}} v
β
Gi,gli

glEi{Gq, A, E
q
J,K\{i}}

This boils down to glEi{A, E
i
J′,K′} v

β
Gi,gli

glEi{A, E
i
J,K}.

Hence, using property 1. of projection and the recurrence hypothesis: ΠPAi (glEi{A, E
i
J′,K′}) v

β
Gi,gli

Ai.

Conclusion By applying our property to l = n, we get:

ΠP (glI{K1, ... ,Kn}) vαA,gl G

2

B Consistency between L0 and L1
We prove here the following theorems:

1. L1-satisfaction implies L0-satisfaction
2. Soundness of circular circular reasoning for vL1

3. Soundness of pseudo circular reasoning for vL1 and vL0

4. Soundness of pseudo circular reasoning for vL0 and vL1

We also provide characterizations of vL1 and vL0 which are used in the proofs.
Transitions are labeled by interactions rather than by the exported port of the corresponding connector.

Lemma B.1 Γ{K1, E} simulates Γ{K2, E} if and only if there exists a relationR ⊆ (Q1×QE)×Q2 such
that:

• (q0
1 , q

0
E)R q0

2

• If (q1, qE)R q2 and (q1, qE) α−→ (q′1, q
′
E) for α ∈ IΓ such that α = αP ∪ αE , then ∃q′2 s.t. q2

αP−→
q′2 and (q′1, q

′
E)R q′2.

B.1 Characterization of L1-satisfaction
Lemma B.2 K1 vL1

E,Γ K2 if and only if there exists a relationR ⊆ (Q1 × 2QE)×Q2 such that:

• (q0
1 , {q0

E})R q0
2

• If (q1,QE)R q2 and q1
αP−→1 q

′
1, there exists q′2 such that:

1. q2
αP−→2 q

′
2

2. if there exists αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and αP ∪ αE ∈ IΓ, then

(q′1,Q′E)R q′2 where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E}.

We use the convention that ∀q ∅−→ q, so the above condition includes cases where onlyK1 or onlyE move
on.

Verimag Research Report no TR-2010-12 17/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

B.2 Characterization of L0-satisfaction
Lemma B.3 K1 vL0

E,I K2 if and only if there exists a relationR ⊆ (2Q1 ×QE)× 2Q2 such that:

• ({q0
1}, q0

E)R{q0
2}

• If (Q1, qE)RQ2 and (q1, qE) α−→ (q′1, q
′
E) for q1 ∈ Q1 with α = αP ∪ αE ∈ IΓ, then there

exists q2 ∈ Q2 and q′2 ∈ Q2 such that q2
αP−→ q′2 and (Q′1, q′E)RQ′2 for Q′1 defined as {q′1 | ∃q1 ∈

Q1 s.t. q1
αP−→1 q

′
1} and Q′2 defined as {q′2 | ∃q2 ∈ Q2 s.t. q2

αP−→2 q
′
2}.

We use the convention that ∀q ∅−→ q, so the above condition includes cases where only K1 or only E
moves on.

B.3 L1-satisfaction implies L0-satisfaction

We suppose that K1 vL1
E,Γ K2, and then we prove that K1 vL0

E,Γ K2.
As K1 vL1

E,Γ K2, there exists a relation R ⊆ (Q1 × 2QE)×Q2 as in Lemma B.2.
We define R ′ ⊆ (2Q1×QE)×2Q2 as follows: we define ({q1}, qE)R′ {q2} iff there existsQE ⊆ QE

such that qE ∈ QE and (q1,QE)R q2.
Obviously ({q0

1}, q0
E)R′ {q0

2}.
Now suppose ({q1}, qE)R′ {q2} and (q1, qE) α−→ (q′1, q

′
E) with α = αP ∪ αE ∈ IΓ. We must show

that there exists q′2 ∈ Q2 such that q2
αP−→ q′2 and ({q′1}, q′E)R′ {q′2}.

Let QE ⊆ QE be such that qE ∈ QE and (q1,QE)R q2. We have q1
αP−→1 q

′
1. Thus, there exists q′2

such that q2
αP−→2 q

′
2.

Besides, as qE
αE−→E q′E , we have (q′1,Q′E)R q′2 where Q′E is {q′E | ∃qE ∈ QE s.t. qE

αE−→E q′E}.
Hence, by definition ofR′: ({q′1}, q′E)R′ {q′2}.

2

B.4 Soundness of circular reasoning for vL1

Let K be a component on P , (E,Γ) a context for P and C = (A,Γ, G) a contract for P . Suppose that
K vL1

A,Γ G ∧ E vL1
G,Γ A. We have to prove that K vL1

E,Γ G.
As K vL1

A,Γ G and E vL1
G,Γ A, there exist two relationsR1 andR2 on respectively (QK × 2QA)×QG

and (QE×2QG)×QA as in Lemma B.2. We defineR ⊆ (QK×2QE)×QG as follows: for all qK ∈ QK ,
QE ⊆ QE and qG ∈ QG, (qK ,QE)R qG iff there exists QA ⊆ QA, QG ⊆ QG, qE ∈ QE and qA ∈ QA
such that qG ∈ QG, (qK ,QA)R1 qG and (qE ,QG)R2 qA.

We have to prove thatR ensures the conditions of Lemma B.2. Obviously, (q0
K , {q0

E})R q0
G.

Let qK ∈ QK ,QE ⊆ QE and qG ∈ QG be such that (qK ,QE)R qG. Let QA ⊆ QA, QG ⊆ QG,
qE ∈ QE and qA ∈ QA be such that qG ∈ QG, (qK ,QA)R1 qG and (qE ,QG)R2 qA. Now suppose
qK

αP−→K q′K . We have to prove that there exists q′G such that:

1. qG
αP−→G q′G

2. if there exists αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and αP ∪ αE ∈ IΓ, then

(q′K ,Q′E)R q′G where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E}.

Because (qK ,QA)R1 qG and qK
αP−→K q′K , we know that there exists q′G such that:

• qG
αP−→G q′G

• if there exists αA, qA ∈ QA and q′A ∈ QA such that qA
αA−→A q′A and αP ∪ αA ∈ IΓ, then

(q′K ,Q′A)R q′G with Q′A defined as {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

18/20 Verimag Research Report no TR-2010-12

Contract-Based Reasoning Sophie Quinton, Susanne Graf and Roberto Passerone

We show that this q′G satisfies the two conditions required above fromR. Condition 1. is exactly the same
as forR1.
Let us show that the second condition holds. Suppose that there exists αE , qE ∈ QE and q′E ∈ QE such
that qE

αE−→E q′E and αP ∪αE ∈ IΓ. LetQ′E be defined as above byQ′E = {q′E | ∃qE ∈ QE s.t. qE
αE−→E

q′E}. We have to show that (q′K ,Q′E)R q′G.
As (qE ,QG)R2 qA and qE

αE−→E q′E , we know that there exists q′A such that:

• qA
αE−→A q

′
A

• if there exists αG, qG ∈ QG and q′G ∈ QG such that qG
αG−→G q′G and αG ∪ αE ∈ IΓ, then

(q′E ,Q′G)R q′A with Q′G defined as {q′G | ∃qG ∈ QG s.t. qG
αG−→G q′G}.

Thus, applying the second property offered byR1 to this αE and q′A, we obtain that (q′K ,Q′A)R1 q
′
G where

Q′A is defined as {q′A | ∃qA ∈ QA s.t. qA
αE−→A q

′
A}.

Besides, as there exist indeed qG ∈ QG and q′G ∈ QG such that qG
αP−→G q′G, then applying the second

property offered byR2, we obtain (q′E ,Q′G)R2 q
′
A forQ′G defined as {q′G | ∃qG ∈ QG s.t. qG

αP−→G q′G}.
Finally, according to the definition of R , we can conclude that (q′K ,Q′E)R q′G.

2

B.5 Pseudo circular reasoning for vL1 and vL0

Let K be a component on an interface P , (E,Γ) a context for P and C = (A,Γ, G) a contract for P . We
suppose that K vL1

A,Γ G and E vL0
G,Γ A, and then we prove that K vL1

E,Γ G.
As K vL1

A,Γ G, there exists a relationR1 on (QK × 2QA)×QG as in Lemma B.2.
As E vL0

G,Γ A, there exists a relationR2 on (2QE ×QG)× 2QA as in Lemma B.3.
We defineR ⊆ (QK × 2QE)×QG as follows: for all qK ∈ QK , QE ⊆ QE and qG ∈ QG, we define

(qK ,QE)R qG iff there exists QA ⊆ QA such that (qK ,QA)R1 qG and (QE , qG)R2QA.
We have to prove thatR ensures the conditions of Lemma B.2. Obviously, (q0

K , {q0
E})R q0

G.
Let qK ∈ QK ,QE ⊆ QE , qG ∈ QG be such that (qK ,QE)R qG. LetQA be such that (qK ,QA)R1 qG

and (QE , qG)R2QA. Now suppose qK
αP−→K q′K . We have to prove that there exists p′G such that:

1. qG
αP−→G q′G

2. if there exists αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and αP ∪ αE ∈ IΓ, then

(q′K ,Q′E)R q′G where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E}.

Because (qK ,QA)R1 qG and qK
αP−→K q′K , we know that there exists q′G such that:

• qG
αP−→G q′G

• if there exists αA, qA ∈ QA and q′A ∈ QA such that qA
αA−→A q′A and αP ∪ αA ∈ IΓ, then

(q′K ,Q′A)R q′G with Q′A defined as {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

We show that this q′G satisfies the two conditions required above fromR. Condition 1. is exactly the same
as forR1.
Let us show that the second condition holds. Suppose there exist αE , qE ∈ QE and q′E ∈ QE such that
qE

αE−→E q′E and αP∪αE ∈ IΓ. LetQ′E be defined as above byQ′E = {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E}.

We have to show that (q′K ,Q′E)R q′G.
As qE

αE−→E q′E and qG
αP−→G q′G, we know that (qE , qG) α−→ (q′E , q

′
G). Thus, from (QE , qG)R2QA

and because qE ∈ QE , we can conclude that there exist qA ∈ QA and q′A ∈ QA such that qA
αE−→ q′A and

(Q′E , q′G)R2Q′A for Q′E defined as above and Q′A defined as {q′A | ∃qA ∈ QA s.t. qA
αE−→A q

′
A}.

Now, applying the second property offered byR1 to this αE , qA and q′A, we obtain that (q′K ,Q′A)R1 q
′
G

with QA as defined above.
Finally, according to the definition of R , we can conclude that (q′K ,Q′E)R q′G.

2

Verimag Research Report no TR-2010-12 19/20

Sophie Quinton, Susanne Graf and Roberto Passerone Contract-Based Reasoning

B.6 Pseudo circular reasoning for vL0 and vL1

Let K be a component on an interface P , (E,Γ) a context for P and C = (A,Γ, G) a contract for P . We
suppose that K vL0

A,Γ G and E vL1
G,Γ A, and then we prove that K vL0

E,Γ G.
As K vL0

A,Γ G, there exists a relationR1 on (2QK ×QA)× 2QG as in Lemma B.3.
As E vL1

G,Γ A, there exists a relationR2 on (QE × 2QG)×QA as in Lemma B.2.
We define R ⊆ (2QK × QE) × 2QG as follows: for all QK ⊆ QK , qE ∈ QE and QG ⊆ QG, we

define (QK , qE)RQG iff there exists qA ∈ QA such that (QK , qA)R1QG and (qE ,QG)R2 qA.
We have to prove thatR ensures the conditions of Lemma B.3. Obviously, ({q0

K}, q0
E)R{q0

G}.
Let QK ⊆ QK , qE ∈ QE and QG ⊆ QG be such that (QK , qE)RQG. Let qA be such that

(QK , qA)R1QG and (qE ,QG)R2 qA. Now suppose (qK , qE) α−→ (q′K , q
′
E) for qK ∈ QK with α =

αP ∪ αE ∈ IΓ. Let Q′K be defined as {q′K | ∃qK ∈ QK s.t. qK
αP−→K q′K} and Q′G as {q′G | ∃qG ∈

QG s.t. qG
αP−→G q′G}. We have to prove that there exists qG ∈ QG and q′G ∈ QG such that qG

αP−→ q′G
and that (Q′K , q′E)RQ′G.

As (qK , qE) α−→ (q′K , q
′
E), we know that qE

αE−→E q′E . Then, because (qE ,QG)R2 qA and qE
αE−→E

q′E , there exists q′A such that:

• qA
αE−→A q

′
A

• if there exists αG, qG ∈ QG and q′G ∈ QG such that qG
αG−→G q′G and αG ∪ αE ∈ IΓ, then

(q′E ,Q′G)R q′A with Q′G defined as above.

This implies in particular that (qK , qA) α−→ (q′K , q
′
A). Thus, from (qK ,QA)R1 qG and because qA ∈

QA, we can conclude that there exists qG ∈ QG and q′G ∈ QG such that qG
αP−→ q′G and (Q′K , q′A)R1Q′G

for Q′K and Q′G defined as above.
This gives us the qG and q′G we were looking for. There only remains to prove that (Q′K , q′E)RQ′G.
Now, applying the second property offered byR2 to thisαP , qG and q′G, we obtain that (q′E ,Q′G)R2 q

′
A.

Hence, according to the definition of R , the conclusion that (q′K ,Q′E)R q′G.
2

20/20 Verimag Research Report no TR-2010-12

	Introduction
	Contract-based design
	Design methodology
	Contract framework
	Reasoning within a contract framework
	Dominance
	Combining two refinement relations

	Two contract frameworks
	L0 contract framework
	L1 contract framework
	Consistency between L0 and L1

	Related work
	Conclusion and future work
	Condition for dominance
	Consistency between L0 and L1
	Characterization of L1-satisfaction
	Characterization of L0-satisfaction
	L1-satisfaction implies L0-satisfaction
	Soundness of circular reasoning for L1
	Pseudo circular reasoning for L1 and L0
	Pseudo circular reasoning for L0 and L1

