
Modeling Reactive Systems in Java

C. PASSERONE and C. SANSOÈ
Politecnico di Torino
L. LAVAGNO and R. McGEER
Cadence Berkeley Laboratories
J. MARTIN, R. PASSERONE and A. SANGIOVANNI-VINCENTELLI
University of California at Berkeley

We present an application of the Java™ programming language to specify and implement
reactive real-time systems. We have developed and tested a collection of classes and methods
to describe concurrent modules and their asynchronous communication by means of signals.
The control structures are closely patterned after those of the synchronous language Esterel,
succinctly describing concurrency, sequencing and preemption. We show the user-friendliness
and efficiency of the proposed technique by using an example from the automotive domain.

Categories and Subject Descriptors: B.6.3 [Hardware]: Design Aids—hardware description
languages; simulation; I.6.4 [Simulation and Modeling]: Model Validation and Analysis; J.2
[Computer Applications]: Physical Sciences and Engineering—electronics; J.6 [Computer
Applications]: Computer-Aided Engineering—computer-aided design (CAD)

General Terms: Design, Languages

Additional Key Words and Phrases: High level design, Java, prototyping, simulation

1. INTRODUCTION

A reactive system continuously interacts with the environment, generally
under some timing constraints. A convenient modeling paradigm for em-
bedded systems is based on the notion of decomposition into a set of
concurrent processes (see, for example, Hoare [1978]). Processes can com-
municate with each other and with the environment either by means of
synchronous protocols, such as rendezvous or Remote Procedure Call, or by
means of exchange of signals. The signaling paradigm has been mostly
used so far in Hardware Description Languages (e.g., VHDL or Verilog),

Authors’ addresses: C. Passerone and C. Sansoè, Politecnico di Torino, Dipartimento di
Elettronica, corso Duca degli Abruzzi 24, 10129, Torino, Italy; L. Lavagno and R. McGeer,
Cadence Berkeley Laboratories, 2001 Addison Street, Berkeley, CA 94704; J. Martin, R.
Passerone, and A. Sangiovanni-Vincentelli, Department of EECS, University of California at
Berkeley, Berkeley, CA 94720.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1084-4309/99/1000–0515 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998, Pages 515–523.

and in Synchronous Languages such as Esterel or StateCharts [Halbwachs
1993; v.d.Beek 1994]. It is quite flexible, because it also admits an asyn-
chronous interpretation that is better suited to a heterogeneous implemen-
tation than strict synchronization (implied by rendezvous) or caller suspen-
sion (implied by RPC).

We thus considered an important feature allowing the designer to use the
signal/process paradigm to specify the reactive control aspects of the
design. In Balarin et al. [1997], a HW/SW co-design methodology is pre-
sented that uses a combination of Esterel and C as the specification
languages; in the underlying model of computation, the modules are
internally synchronous, and externally asynchronous, communicating us-
ing the signal/process paradigm. The nonhomogeneity in terms of specifica-
tion languages and simulation environment has proven very inconvenient,
especially in the earliest phase of the design, when only the functionality is
to be tested and timing information is less of an issue. Moreover, a more
structured programming language would be highly desirable, so that com-
mon mistakes would be caught and corrected earlier in the design.

We have chosen Java [Arnold and Gosling 1996] as the language to
specify the object hierarchy implementing the data computation, and we
have added a class library to specify concurrent processes communicating
asynchronously via a set of multicast signals. The system can therefore be
simulated directly in the language of the specification. Choosing Java has
several advantages: portability is not an issue, since it was taken into
account during the design of the language itself; moreover, Java is a truly
object oriented language, with all the advantages of object encapsulation
and without the numerous historical legacy problems that plague C and
C11. It also performs extensive type checks at compile time, thus reducing
the chances of runtime bugs. Modeling and debugging can be performed on
almost any platform. However, Java is not suitable as it is to describe a
reactive embedded system, and so we developed new features in the form of
a class library to give designers new constructs to be used in the specifica-
tion phase.

We envision a design flow in which the designer first uses Java with our
classes to define an executable specification of the embedded software and
of the environment in which it is going to be used. This has a number of
advantages in several of the successive steps:

Documentation. Having such a description is very useful because it
provides an unambiguous interpretation of the informal specification of the
system.

Simulation. The system and its environment can be simulated to verify
the correctness of the design. At this level, it is very important to allow
partially nondeterministic specifications, at least for the environment. This
can be achieved by free inputs to the environment model, that are tied to
random number generators at run time. One of the main goals of this work
is also to provide a consistent simulation when using different implemen-
tations of the Java Virtual Machine (JVM).

516 • C. Passerone et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

Implementation. After functional specification is complete, one can either
use a different implementation language (e.g., when code and memory size
are at an absolute premium), or use various compilation techniques on the
same Java source. While standard Just in Time (JIT) compilers can achieve
good optimization levels, we believe that better results can be obtained by
restricting the set of Java constructs to those that have an Extended Finite
State Machine interpretation (a good idea anyway in embedded system
specification), which allows one to use superoptimization techniques, like
the one described in Balarin et al. [1997]. Automatic synthesis can then
produce C code as the software for the final implementation.

Garbage collection is a difficult issue in embedded systems, both because
of memory consumption and because of problems in satisfying real-time
constraints. We thus advocate a fully static object creation policy, thus
making garbage collection unnecessary, while we wait for proposed real-
time extensions to the JVM [Nielsen 1997] to make real-time garbage
collection feasible.

Hence, in this paper we present an extension to Java which provides
methods to describe a reactive systems. Our goals were to be able to have
different concurrent processes and describe their interconnections in an
event driven communication scheme, with methods to suspend and resume
them. We also wanted to address the problem of scheduling concurrent
processes in a more predictable way than that provided by the language
itself.

The approach is inspired, as discussed above, by the family of Synchro-
nous Languages [Halbwachs 1993], and in particular by the Reactive C
language [Boussinot et al. 1996]. Our work differs from the former because
we did not develop a new language, but rather extended an existing one.
We can thus build on top of a wealth of experience and software tools. Our
work also differs from the latter, because we tried to add a minimal amount
of new constructs, in order to keep the extended language as simple and
close to the original as possible.

Javatime [Young and Newton 1997] has a somewhat similar goal to our
proposal, in that it is also using Java as a vehicle for system-level design.
However, the Javatime approach is significantly different from ours. In
particular, the Javatime Model of Computation is aimed at subsuming
several others (among which Data Flow and Synchronous), and hence is
just reactive, but does not make the synchronous hypothesis. Javatime
“components” work asynchronously in “fundamental mode”, that is they
must react faster than their environment can perceive. However, there is
no global scheduling imposed, and hence the overall specification is nonde-
terministic in general (the behavior depends on nondeterministic schedul-
ing choices). The Javatime approach requires the designer to successively
refine the Javatime MOC into an implementation MOC (e.g., synchronous
for hardware implementation), that is defined as a Java package on top of
the basic Javatime package. This refinement, in the case of synchronous
implementation, effectively schedules the initial specification and deter-
minizes it.

Modeling Reactive Systems in Java • 517

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

The paper is organized as follows: Section 2 briefly outlines some of the
problems of Java implementation of threads that motivated us to develop
this extension. Section 3 describes in detail the package and how we
implemented it, showing its application in an example. Section 4 finally
concludes the paper.

2. JAVA AND EMBEDDED SYSTEMS

Java already has many features that make it easy to program algorithms
for embedded systems: in fact, it supports multithreading, synchronization
among different threads when accessing shared resources and exception
handling. Moreover, Java is a fully object oriented language, with all the
constructs to handle complex data structures and flow control; being close
to the C11 language, software developers don’t have to learn a completely
new paradigm.

What Java lacks is an easy way to make a program react to stimuli: this
can be achieved by using thread synchronization, but as the number of
signals increases it becomes less tractable, especially when more than one
input is expected at the same time; in fact, communication among threads
should be made explicit by instantiating a shared object and providing
mechanisms to access it. There are also several problems with the thread
mechanism in general, and with its implementation in Java in particular:

(1) it provides designers with a low-level control of parallelism and a great
deal of freedom for developing parallel applications, which is usually
not required, and often leads to bad designs with difficult-to-find bugs,

(2) it lacks control structures for communication between threads: Java
does support object locks which allow for the creation of synchroniza-
tion points; however, Sun Microsystem’s JVM Specification [Lindholm
and Yellin 1996] does not specify an order in which threads receive an
object lock, so the behavior of the application may be dependent on the
JVM being used,

(3) it lacks a standard scheduling algorithm, so that the thread scheduling
order may be different depending on the scheduling algorithm imple-
mented by the JVM being used. This variation in thread scheduling
results in designs that may execute normally on one system, but
execute erroneously on another system.

For example, consider the differences between the “green thread” pack-
age supported for the Solaris platform, and the Windows NT/95 implemen-
tation of multithreading: in the first case, a thread is allowed to run until it
voluntarily stops, or a higher priority thread takes control of the system; in
the second case, each thread is allotted a time slice, after which it is
preempted to allow others to run. Also among Posix thread (pthread)
compliant implementations there may be differences: the IBM port of the
JVM on the AIX Operating System has no support for priorities, while
other implementations (i.e., IRIX) do. Moreover, even in the same JVM port
one can sometimes choose between different thread packages, as in the

518 • C. Passerone et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

Solaris case, where a “native” preemptive implementation, with support for
multiprocessor systems, can be used instead of the already mentioned
“green thread” package.

It should be noted that some of these problems are inherent in threads,
and some are inherent in portable threads. Efficient scheduling of threads
is integral to the operating system on a given platform, and it is thus
unsurprising that the Java language designers did not fix a scheduler in
the language design. The resulting phenomenon of “write once, debug
everywhere” is a natural consequence.

The problem with threads in general has long been known. Indeed, this
problem led to the development of the “Synchronous/Reactive” languages in
the 1970’s and 1980’s. The analysis of the day was simple, and still holds:
most bugs in parallel software are due to uncoordinated updates of shared
variables. Complex interactions, in particular locking and semaphores, are
attempts to fix this problem, but are only partly successful. In a sema-
phore-based programming environment, the semaphores themselves be-
come the shared variables, and the locking action the update. In this case,
uncoordinated access to the semaphores leads to the characteristic problem
of semaphore-based parallel programming, deadlock.

In contrast, if threads run in zero time, updates to a variable by a single
thread are inherently coordinated. Semaphores are unnecessary—perhaps
it is easiest for a programmer schooled in that tradition to imagine that, in
reactive programming, all shared variables are controlled by a single
semaphore, automatically obtained by a thread when it resumes execution
and automatically relinquished when it waits on a signal.

Since concurrency is often a requirement in embedded software, and
given the differences between JVMs, we wanted to address this problem by
providing an alternative thread package for Java (PureSR), a robust
mechanism for execution and update that produces always the same
behavior across different platforms. In doing this we also decided to
support Synchronous/Reactive programming constructs, but with an asyn-
chronous overall communication mechanism. We achieved this goal with a
package which is itself written in Java, and therefore can run on any
platform; it was possible to do this because we provide our own classes for
process instantiation, management and synchronization, which do not
depend on the JVM thread scheduling algorithm.

3. REACTIVE JAVA AND PURESR

When developing the set of features that we wanted the language to
include, we looked for a minimal set that would make it possible to derive
others, and we wanted to implement them efficiently by leveraging the
constructs already available in Java. We therefore developed a library of
classes to program in Java with a reactive flavor. This essentially meant
supporting some of the main features found in reactive languages, such as
Esterel, Signal, or Lustre [Halbwachs 1993]. Given the imperative nature
of both Java and Esterel, this language was chosen as a main reference,

Modeling Reactive Systems in Java • 519

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

and in fact this work is strongly influenced by the available constructs in
Esterel. It should be noted that although Esterel is a synchronous lan-
guage, Java is not; however, we do preserve synchronicity by running
threads in cycles: in each cycle, all threads execute the code between two
successive await statements, but the emitted values are not seen until the
beginning of the next cycle. Therefore, the results do not depend on the
order in which the threads are run within a cycle.

To make the language reactive, we need ways to:

(1) define, instantiate and interconnect modules,
(2) send and receive events,
(3) abort computation in case a given event is received.

We will describe how these points are accomplished in the rest of this
section.

The package, called PureSR, consists of a collection of classes and
interfaces which implements the reactive methods by providing a frame-
work for better threads. This framework is depicted in Figure 1 and it
consists of the classes Braid and Fibre plus two interfaces Reactive and
Shared (not shown).

The first point is obtained simply by the mechanism of class definition
and object instantiation. A typical system using PureSR will contain a
single object of class Braid and several objects of class Fibre : a fibre is
analogous to a Java Thread, and implements one of the tasks of the system,
and the braid is used to manage the fibres and their intercommunication,
like an RTOS. Fibre implements the Reactive interface that defines the
methods to be used to describe the behavior of the process and to register
its objects with the braid, and can be subclassed by the developer to provide
the required behavior. The Braid class contains methods to register the
fibres, to interconnect their objects, to communicate data and to control the
execution using an equal-priority, round-robin scheduler. Each fibre is
allowed to run until it calls one of the braid’s communication methods.
More scheduling methods can be defined later to support real time require-
ments.

Fibres communicate via shared objects. A shared object is obtained by
instantiating any class that implements the Shared interface, which de-
fines methods to set and retrieve the value. Shared object can be connected
either automatically or manually using methods provided by the braid.

Fig. 1. Reactive framework.

520 • C. Passerone et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

The braid contains two registries: one holds an entry for each shared
object in the system, and a list of all fibres waiting on or watching it; the
other contains a pointer to each fibre and a list of all shared objects that
the fibre is watching. The braid also implements the reactive constructs
used to coordinate communication:

emit. Sets the value of the specified shared object and notifies all
awaiting fibres of the change.

await. Halts the execution of a fibre until a new value has been emitted
for the specified shared object.

The third point above required us to be able to interrupt a process during
the computation to deliver the event; this in turn may be dangerous, since
it could leave a process in an unknown state. Our solution is to provide
methods to establish safe recovery points where actions can be taken to
ensure a consistent behavior. This is accomplished by using the exception
mechanism: the AbortException class implements an Exception that is
thrown to a watching fibre each time another fibre emits to a shared object.
Since an exception can be thrown only from within the process, the
condition is only checked each time a signal is emitted or awaited in the
block of code executed under the watching of an event. AbortException
contains a single method called check , which allows the fibre to see which
shared object caused the abortion. This feature allows the use of nested
abortion clauses: the inner clause is called first, and if the emitted shared
object does not match the one the clause is watching, then the exception is
simply rethrown for the outer clause to catch. The constructs implemented
in the Braid class to handle exceptions are the following:

abortOn. Notifies the braid that the fibre is watching the specified shared
object. Any subsequent call to reactive constructs made by the fibre will
throw an AbortException if the shared object has been emitted.

endAbort. Notifies the braid that the fibre is no longer watching the
specified shared object.

synch. Throws an AbortException if any shared objects that the fibre is
watching have been emitted.

The synch is used to explicitly check the watched signals, and must be
used whenever a block of code that should be run while watching a certain
condition does not contain any await. One could also insert synch methods
automatically, in order to satisfy given abortion latency constraints.

As an example of the coding style using PureSR, consider the Seat Belt
Warning Light controller of a dashboard, whose code is shown in Figure 2.
The informal specification is as follows:

(1) When the ignition key is turned on, wait for x seconds.
(2) If the key is turned off or the belt is fastened, then go to 1.
(3) After x seconds have elapsed, turn the alarm on and wait for y seconds.
(4) If the key is turned off or the belt is fastened, turn the alarm off and go

to 1.

Modeling Reactive Systems in Java • 521

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

(5) After y seconds have elapsed, then turn the alarm off and go to 1.

The inputs to the belt controller are the events ignition , and beltOn ; it
interacts with another fibre, modeling a programmable timer, to wait for a
given number of seconds. The behavior of the Seatbelt fibre is provided by
the run method (3–18). After initially setting the alarm to the OFF state
(4), the fibre enters an infinite loop in which it waits for the ignition key to
be turned on (6). It then starts a timer for five seconds and waits for it to
finish (7,8). If the ignition key is still on and the seat belt is still unfastened
after five seconds, a seatbelt alarm signal is emitted (12). The fibre again
starts a timer for five seconds (13) and waits for it to finish while watching
the ignition key and the seat belt (14–16). If the ignition key is turned off,
or the seat belt is fastened before the timer runs out, the alarm is
immediately turned off (17). Note that ABORTON (14) and ENDABORT
(16) are just macros used to simplify the syntax, and are expanded by a
preprocessor to a try . . .catch clause, which uses the standard Java
exception mechanism.

The entire dashboard application in Java runs approximately four times
slower than a similar implementation in C, automatically synthesized from
the original Esterel specification.

4. CONCLUSIONS

An extension of the Java programming language towards reactive systems
programming has been presented. It provides means of describing different
concurrent modules and how they interact through an asynchronous event
passing communication mechanism. Concurrency and scheduling are han-
dled by the new thread package PureSR; reactiveness is achieved using
thread synchronization and exception handling.

Fig. 2. Reactive Java code for seat belt controller.

522 • C. Passerone et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

Our alternative thread package gives us true independence of the thread
mechanism implemented by the particular JVM being used. This allows us
to have a sort of execution sequence equivalence between different imple-
mentations, so that a virtual prototype running on a PC and the actual
system would behave the same. This could not be accomplished by using
the built-in Java thread scheduling mechanism, which would arbitrarily
preempt and execute threads, leading to nondeterminism. Moreover, in our
implementation there is no penalty with respect to the Java language itself
regarding the time needed to perform a context switch. In fact, we rely on
the Java mechanism, but we ensure that at most one thread is active at any
given time in order to achieve a deterministic schedule.

Given the close correspondence of the Reactive Java constructs to those
of the synchronous language Esterel, it is conceivable to use the latter for
the implementation by using automatic synthesis techniques.

REFERENCES

ARNOLD, K. AND GOSLING, J. 1996. The Java programming language. Addison-Wesley,
Reading, Mass.

BALARIN, F., SENTOVICH, E., CHIODO, M., GIUSTO, P., HSIEH, H., TABBARA, B., JURECSKA, A.,
LAVAGNO, L., PASSERONE, C., SUZUKI, K., AND SANGIOVANNI-VINCENTELLI, A. 1997. Hard-
ware-Software Co-design of Embedded Systems—The POLIS experience. Kluwer Academic,
Boston, MA.

BOUSSINOT, F., DOUMENC, G., AND STEFANI, J. 1996. Reactive objects. Ann. Telecommun. 51,
9–10 (September), 459–473.

HALBWACHS, N. 1993. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers.

HOARE, C. A. R. 1978. Communicating Sequential Processes. Commun. ACM 21, 8 (Aug.)
666–677.

LINDHOLM, T. AND YELLIN, F. 1996. The Java™ Virtual Machine Specification. Addison-
Wesley, Reading, Mass.

NIELSEN, K. 1997. See http://www.newmonics.com.
V.D. BEEK, M. 1994. A comparison of Statecharts variants. In Formal Techniques in Real-

Time and Fault-Tolerant Systems, Third International Symposium Proceedings (Sept. 1994).
Springer Verlag, New York, 128–148.

YOUNG, J. AND NEWTON, R. 1997. Embedding programs in the Java language in the
synchronous model of computation through the process of successive, formal refinement. In
Proceedings of the International Conference on Computer-Aided Design (Nov. 1997).

Received February 1998; revised August 1998; accepted September 1998

Modeling Reactive Systems in Java • 523

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 4, October 1998.

