
86

Coherent Extension, Composition, and Merging Operators

in Contract Models for System Design

ROBERTO PASSERONE, University of Trento

ÍÑIGO ÍNCER ROMEO and ALBERTO L. SANGIOVANNI-VINCENTELLI,
University of California, Berkeley

Contract models have been proposed to promote and facilitate reuse and distributed development. In this
paper, we cast contract models into a coherent formalism used to derive general results about the properties
of their operators. We study several extensions of the basic model, including the distinction between weak
and strong assumptions and maximality of the specification. We then analyze the disjunction and conjunction
operators, and show how they can be broken up into a sequence of simpler operations. This leads to the
definition of a new contract viewpoint merging operator, which better captures the design intent in contrast
to the more traditional conjunction. The adjoint operation, which we call separation, can be used to re-
partition the specification into different viewpoints. We show the symmetries of these operations with respect
to composition and quotient.

CCS Concepts: • Computer systems organization → Embedded hardware; Embedded software; • The-

ory of computation → Logic and verification;

Additional Key Words and Phrases: Interface, contract, merging, conformance, separation

ACM Reference format:

Roberto Passerone, Íñigo Íncer Romeo, and Alberto L. Sangiovanni-Vincentelli. 2019. Coherent Extension,
Composition, and Merging Operators in Contract Models for System Design. ACM Trans. Embed. Comput.

Syst. 18, 5s, Article 86 (October 2019), 23 pages.
https://doi.org/10.1145/3358216

1 INTRODUCTION

The escalating size and complexity of embedded and cyber-physical systems makes abstraction
and reuse indispensable tools for early system and software design and verification. In particular,
determining the correctness of designs made of library parts that are developed independently
implies the development of formal methods that can guarantee compositionality. To do this, sys-
tem and embedded software design are resorting to models for both verification and automatic
code generation. Viewpoints, i.e., orthogonal “sub-models” of components that come together (are

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on
Embedded Software (EMSOFT) 2019.
Authors’ addresses: R. Passerone, University of Trento, Dipartimento di Ingegneria e Scienza dell’Informazione, Via Som-
marive 9, Trento, Italy, 38123; email: roberto.passerone@unitn.it; Í. Íncer Romeo and A. L. Sangiovanni-Vincentelli, Uni-
versity of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, 94720; emails:
{inigo, alberto}@eecs.berkeley.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1539-9087/2019/10-ART86 $15.00
https://doi.org/10.1145/3358216

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

https://doi.org/10.1145/3358216
mailto:permissions@acm.org
https://doi.org/10.1145/3358216

86:2 R. Passerone et al.

merged) to form a comprehensive description of a component, are essential to consider heterogene-
ity of models and specifications. In this context, assume-guarantee contracts can play an important
role in developing a robust design methodology [6] for cyber-physical systems and in particular,
for the development of provably correct synthesis methods for embedded software while consid-
ering explicitly the constraints and effects of the design environment. Theories that encompass
both components and their environment have evolved from component models [17, 33] to inter-
face models, type systems [10, 15, 21, 25, 26, 29, 34], and contract models [5, 7, 8, 13, 36, 37]. In
this paper, we propose a number of extensions to these theories which are transversal to the form
of specification or model. In particular, we examine the general form of an interface or contract,
and study equivalent representations that facilitate the definition of the operators and refinement
relations. We deal with refinement between components at the same level of abstraction, which we
call conformance to distinguish from other forms of refinement. In particular, we are interested in
conformance and its related conjunction operator applied across different viewpoints. Our objec-
tive is to derive fundamental results in a sufficiently general setting, and apply them to understand
concrete aspects and issues that underlie and/or are faced by several models. To do this, we adapt
the mathematical frameworks proposed by Benveniste et al. [6, 14], with simplifications to facili-
tate the exposition. Our intent is not to provide a new or more comprehensive interface or contract
model, or a meta-model. Instead, we are interested in exploring the properties of several operators,
and deal primarily with the underlying theory. Nevertheless, several examples are introduced to
motivate and illustrate the methodology, and a use case shows the combined application of the op-
erators, which leads to a more accurate result compared to previous work. Questions of efficiency
and expressiveness, and the application to case studies, must instead be solved at the level of the
concrete models, and constitute our future work.

The first part of the paper builds our theory by increasingly adding structure to a simple com-
ponent model. We then introduce the actual interfaces, and show how to maximally extend the
interface specification while retaining equivalence. The theory sheds light into several construc-
tions employed when computing the composition operator or the normal form of many interface
models found in the literature. We also study closure properties of various sub-classes of interface
specifications. Subsequently, we apply our theory to discuss some subtle issues that we believe are
not yet well understood and may lead to unexpected or downright incorrect results. We focus on
these fundamental aspects:

• how weak forms of assumptions and guarantees, in the style of Damm [13], may coexist to
provide a more flexible specification mechanism;

• how to effect viewpoint merging of contracts in a way that correctly deals with both as-
sumptions and guarantees; and

• how to decompose contracts and separate viewpoints using the operations of quotient and
separation.

Proofs of our results can be found in a technical report [35]. We lay the foundations of our the-
ory in Section 2, while Section 3 presents the applications of our basic model, discussing a new
interpretation of weak and strong assumptions and introducing merging and decomposition oper-
ators. Section 4 is devoted to a discussion of the related work, while Section 5 provides concluding
remarks.

2 COMPONENT, INTERFACES AND CONTRACT MODELS

In this section we introduce various notions that range from simple components to full fledged
interfaces. The term “contract” will be reserved for a particular form of interface. After the basic
definitions, we explore the notion of conformance and of composition of interfaces. We build over

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:3

concepts developed for the Heterogeneous Rich Component model (HRC) [7, 14], where compo-
nents, environments and the assumptions and promises of interfaces are simply Extended State
Machines (ESMs), and are identified with the set of runs (or behaviors) that they accept, in the
form of denotational semantics [5]. Our theory significantly extends these basic notions by pre-
cisely characterizing the role of the elements of an interface.

2.1 Components

Components are the basic building blocks of a model, and are identified denotationally in our set-
tings simply as sets of possible behaviors. Components interact with one another through ports
(signals, variables, method calls, etc.) identified through “names” taken from a master alphabet
A. A behavior (trace) is some object constructed over the alphabet of the component, such as a
sequence of values assigned to the ports. We are not concerned with the specific form of the be-
havior, which depends on the particular model implementation. A component is therefore simply
a set of behaviors.

Definition 2.1 (Component). Let Σ ⊆ A be an alphabet, and let B (Σ) be the set of all behaviors
over alphabet Σ. A component M over alphabet Σ is a set of behaviors from B (Σ), i.e.,

M ⊆ B (Σ).

A component may further partition its alphabet into a set of inputs I and outputs O , such that
I ∪O = Σ.

Several styles can be used to concretely express component specifications. Damm et al. [13] use
a pattern-based assertion language to symbolically encode a set as the behaviors that satisfy the
assertion (see Section 3.6 for an example). Automata [7, 15] can be used as recognizers to select a set
of sequences as the component behaviors. A specification could also be explicit. An example is the
Tagged Signal Model (TSM) [27, 28], where an underlying set of partially ordered tagsT is used to
encode the interaction model (un-timed, precedence, synchronous, asynchronous, various notions
of time, etc.), while ports take on values from a setV . An event on a port a is a triple (a,τ ,v), where
τ ∈ T is the “time” at which the event occurs, and v is its value. Time, here, does not necessarily
correspond to “physical” time, and the tags may be used to simply encode precedence relations.
Let E be the set of all events E = Σ ×T ×V . Then a behavior x is defined as a set of events x ∈ E,
and the set of all behaviors is the powerset of E, i.e., B (Σ) = 2E = 2Σ×T×V .

Two components may have the same set of behaviors, but be defined over different alphabets
(one contained in the other). In this case, we consider the two components as distinct. Likewise,
components over the same alphabet that partition the ports into different input and output sets
are distinct.

The composition of two components is defined as the intersection of the corresponding sets
of behaviors. This operation is easy to define when the components are defined over the same
alphabet Σ. To be composable, the setO1 of outputs of M1 and the setO2 of outputs of M2 must be
disjoint. The underlying semantics is that components mutually constrain their behaviors.

Definition 2.2 (Component Composition). Let M1 and M2 be components over alphabet Σ, and let
O1 ∩O2 = ∅. Their composition M = M1 ‖ M2 is the component over alphabet Σ given by

M = M1 ∩M2.

The effect of composition is that components “synchronize” on their behaviors. This does not
necessarily imply a synchronous model. For instance, partially ordered sets of tags can be employed
in TSM to model asynchronous behaviors, using the same underlying notion of composition [4].

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:4 R. Passerone et al.

In practice, behaviors are retained after composition if the events on the shared ports share the
same tags, preserving the partial order relation.

Projection takes a behavior x ′ over alphabet Σ′ and computes a restriction x over an alphabet
Σ ⊆ Σ′. We denote the operation as x = projΣ′,Σ (x ′), where, obviously, Σ is the set of ports to be
retained. The inverse of the projection operator can be used to extend the alphabet of a behavior from
Σ to Σ′. Projection for components is the natural extension to sets of the projection on behaviors.

Definition 2.3 (Component Projection). Let M be a component over alphabet Σ′, and let Σ ⊆ Σ′.
The projection of M to Σ is defined as

projΣ′,Σ (M) = {x ∈ B (Σ) | ∃y ∈ M,x = projΣ′,Σ (y)}.

For instance, projection in TSM is computed by retaining only the events on ports that must not
be hidden. For a behavior x ∈ B (Σ′) we define the projection onto alphabet Σ ⊆ Σ′ as

projΣ′,Σ (x) = {(a,τ ,v) ∈ x | a ∈ Σ}.
Projection works at one level of abstraction, and does not alter the notion of time given by the
tags. Because projection hides ports, several different behaviors may project to the same one. The
inverse of projection is therefore a set. This works naturally for components.

Definition 2.4 (Component Inverse Projection). Let M be a component over alphabet Σ, and let
Σ′ ⊇ Σ. The inverse projection of M to Σ′ is defined as

proj−1
Σ′,Σ (M) = {x ∈ B (Σ′) | projΣ′,Σ (x) ∈ M }.

In TSM, inverse projection populates the behaviors with all possible events in the additional
ports to avoid constraining their behavior. When two components do not have the same alphabet,
their composition is computed by composing the components obtained by their inverse projection
to the union of the alphabets. Thus, for components M1 and M2 over alphabets Σ1 and Σ2, parallel
composition is the component M over alphabet Σ = Σ1 ∪ Σ2 given by

M = M1 ‖ M2 = proj−1
Σ,Σ1

(M1) ‖ proj−1
Σ,Σ2

(M2) .

Components can be ordered based on the level of specification they contain. If a component M
contains more information than a component M ′, we say that M conforms to M ′. We may charac-
terize conformance as a relation of substitutability: M conforms to M ′, written M 	 M ′, whenever
M can be substituted forM ′ everywhereM ′ occurs. Thus, conformance is usually taken as behavior
containment.

Definition 2.5 (Component Conformance). Let M and M ′ be components over the same alphabet
Σ, such that I1 = I2 and O1 = O2. Then, M conforms to M ′, written M 	 M ′, whenever

M ⊆ M ′.

With this definition, a component M ′ represents the potential behaviors of its refinements. Two
components are equivalent, written M ∼ M ′ when they conform to each other.

For each alphabet Σ there exist a top and a bottom component in the conformance order, corre-
sponding to the universe of behaviors � = B (Σ) and to the empty set of behaviors ⊥ = ∅, respec-
tively. Since the structure of components forms a lattice, it is natural to define the complement of
a component as the set of behaviors not included in the component.

Definition 2.6 (Component Complementation). Let M be a component over alphabet Σ. The com-
plement M of M is the component given by

M = B (Σ) −M .

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:5

Conjunction of components is achieved by taking their greatest lower bound, and is an operation
derived from the conformance order. Theorem 2.7 below shows that, with the given conformance
order, this operation again reduces to the intersection of the behaviors of the components, as
in parallel composition. The semantics of conjunction, however, differs significantly from that of
parallel composition. In conjunction, the “components” correspond to the specification of different
viewpoints that relate to the same underlying object; conversely, composition puts together the
specification of different parts of the system. Likewise, disjunction corresponds to union.

Theorem 2.7 (Component Conjunction and Disjunction). Let M1 and M2 be components

over alphabet Σ, such that I1 = I2 andO1 = O2. The conjunction M = M1 M2 is the component over

alphabet Σ given by

M = M1 ∩M2.

The disjunction M = M1 �M2 is the component over alphabet Σ given by

M = M1 ∪M2.

2.2 Interfaces

An interface expresses both the requirements demanded on the environment of a component and
its guarantees relative to the same environment. The requirements are the conditions under which
a component may be used by its context. A violation of the requirements indicates that the com-
ponent may fail or malfunction, because it is driven outside its intended range of use. Correspond-
ingly, a component implementing an interface must correctly accept the allowed behaviors from
the environment.

In the upcoming definition of interface, we will treat requirements and guarantees indepen-
dently. This is not the way it is done normally in contracts, where requirements and guarantees
are related. We do so for generality, and will show later how contracts are special cases of interfaces
that enjoy certain maximality and symmetry properties.

Definition 2.8 (Interface). An interface I over alphabet Σ is a pair (R,G) where R (the require-
ments) and G (the guarantees) are components over Σ.

We distinguish between the admissible implementations and the admissible environments of an
interface. An implementation or an environment is admissible when it conforms to the guarantees
and the requirements of the interface, respectively.

Definition 2.9 (Implementations and Environments). A component M is an implementation of the
interface I = (R,G), written M |=G I, if and only if M 	 G. It is an environment of I, written
E |=R I, if and only if E 	 R.

Parallel composition is defined by working independently on requirements and guarantees. As
usual, inverse projection is used when necessary to equalize the alphabets.

Definition 2.10. Let I1 = (R1,G1) and I2 = (R2,G2) be interfaces. Then,

I1 ‖ I2 = (R1 ‖ R2,G1 ‖ G2).

Because we handle requirements and guarantees independently, we have no interaction between
the two, as it happens in the majority of the interface and contract models found in the literature.
We will deal with this and show an example later when we consider how to propagate requirements
when constructing maximal interfaces.

Conformance can be defined in a way similar to components, again working separately for
requirements and guarantees. In the case of requirements, however, substitutability imposes that

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:6 R. Passerone et al.

they be weakened across conformance, rather than strengthened. With this choice, an interface
conforms to another interface whenever it has fewer implementations and more environments.

Definition 2.11 (Interface Conformance and Equivalence). Let I = (R,G) and I′ = (R′,G′) be
interfaces. We define

• I 	 I′ if and only if R′ 	 R and G 	 G′.
• I ∼ I′ if and only if R′ ∼ R and G ∼ G′.

These conditions can be restated in terms of implementations and environments.

Corollary 2.12. An interface I conforms to an interface I′, written I 	 I′, if and only if, for

all components M and E,

M |=G I ⇒ M |=G I′ and E |=R I′ ⇒ E |=R I.

Because of our definitions, equivalence is the same as equality. Conformance is a pre-order
relationship on interfaces. We can therefore derive the corresponding greatest lower bound (con-
junction) and least upper bound (disjunction) operators from conformance.

Lemma 2.13 (Interface Bounds). An interface I is a greatest lower bound of the interfaces I1
and I2, written I = I1 I2, if and only if, for all components M and E,

M |=G I ⇔ M |=G I1 ∧M |=G I2 and

E |=R I ⇔ E |=R I1 ∨ E |=R I2.

It is a least upper bound, written I = I1 � I2, if and only if, for all components M and E,

M |=G I ⇔ M |=G I1 ∨M |=G I2 and

E |=R I ⇔ E |=R I1 ∧ E |=R I2.

The conjunction of two interfaces can be computed by taking the greatest lower bound of their
guarantees and the least upper bound of their requirements. The condition is dual for the least
upper bound.

Theorem 2.14. Let I1 = (R1,G1) and I2 = (R2,G2) be interfaces. Then,

I1 I2 = (R1 � R2,G1 G2) and

I1 � I2 = (R1 R2,G1 � G2).

Unlike components, because we handle requirements and guarantees differently, conjunction
and parallel composition of interfaces are not the same.

2.3 Contracts

In Definition 2.8, the requirements and the guarantees are independent of each other. However,
since they both refer to the same object, we expect that there be some relation between them.
For instance, if the guarantees G ensure that all implementations do not have a behavior, then
a requirement that excludes this behavior from the environment can be eliminated, since the as-
sumption is automatically satisfied by the underlying component. In other words, if a behavior
is not possible in the implementation, then it should be allowed in the environment, since under
composition the behavior is in any case excluded by the implementation. The same holds between
the guarantees of the environment (the requirements) and those of the implementation (the guar-
antees). Eliminating such inconsistencies leads to the notion of a contract.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:7

We define the maximal system of an interface as the composition of its maximal implementation
and its maximal environment, relative to conformance. Any composition of an implementation and
an environment of the interface necessarily conforms to the maximal system.

Definition 2.15 (Maximal System). The maximal system of an interface I = (R,G) is the com-
ponent SI = G ‖ R .

Two interfaces are system equivalent when they have the same maximal system.

Definition 2.16 (System Equivalence). Two interfaces I1 and I2 are system equivalent, written
I1 ≡ I2, if and only if SI1 = SI2 .

If two interfaces are equivalent (Lemma 2.11), then they are also system equivalent.

Lemma 2.17. I1 ∼ I2 ⇒ I1 ≡ I2.

Interfaces can be extended by increasing both their set of implementations and environments.
This is unlike interface conformance (see Definition 2.11), where one is extended and the other
shrunk.

Definition 2.18 (Extension). An interface I′ is an extension of an interface I, written I � I′,
if and only if, for all components M and E,

M |=G I ⇒ M |=G I′ and E |=R I ⇒ E |=R I′.

Corollary 2.19. I � I′ ⇐⇒ G ⊆ G′ ∧ R ⊆ R′.

We are interested in extensions that do not alter the underlying semantics of an interface. A
completion of an interface is an extension that preserves system equivalence.

Definition 2.20 (Completion). An interface I′ is a completion of an interface I, written I �→ I′,
if and only if I ≡ I′ and I � I′.

Completion is a partial order (modulo equivalence). A maximal interface is one that cannot be
further completed.

Definition 2.21 (Maximal Interface). An interface I is maximal if and only if it is maximal under
completion, i.e., for all interfaces I′, if I �→ I′, then I ∼ I′.

Definition 2.21 says that an interface is maximal whenever it cannot be extended to another in-
terface that has strictly more implementations and/or environments, while preserving the maximal
system. This is useful to both simplify and enrich the interface, as the example at the end of this
section will show. In practice, completion can be used to add behaviors to either the requirements
or the guarantees, subject to the original specification, so that no behavior is left unassigned. A
maximal interface is in fact complete, or saturated, in the following sense.

Theorem 2.22. Let B (Σ) be the universe of behaviors over alphabet Σ. An interface I over Σ is

maximal if and only if G ∪ R = B (Σ).

Corollary 2.23. An interface I is maximal if and only if G = G ∪ R.

The possible implementations of a maximal interface are those that conform to G ∪ R, which
is equivalent to R ⇒ G.

A given interface has, in general, several different maximal completions. At the two extremes,
an interface may be completed by relaxing requirements only, or guarantees only.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:8 R. Passerone et al.

Fig. 1. Composition of simple interfaces.

Theorem 2.24. Let I = (R,G) be an interface. Then the interfaces IR and IG defined by

IR = (R ∪ G,G) and IG = (R,G ∪ R)

are maximal completions of I.

Maximal completions are similar to the HRC canonical form. Here, IR has maximally relaxed
requirements, and therefore more possible environments, while IG has maximally relaxed guar-
antees, and therefore more possible implementations. Other completions are also possible, which
relax partly the requirements and partly the guarantees. When composing interfaces it is useful to
complete the resulting interface by relaxing requirements. This is because, after composition, cer-
tain requirements of one component will be already fulfilled by the other. Thus, the environment
need not provide those guarantees any more. We denote the operation of composition, followed
by requirement relaxation, as ‖R .

Definition 2.25 (Product - Requirement Relaxation). Let I1 and I2 be interfaces. Then I is a prod-
uct with requirement relaxation of I1 and I2, written I = I1 ‖R I2, if and only if

G = G1 ∩ G2 and R = (R1 ∩ R2) ∪ (G1 ∩ G2).

Likewise, if we are interested in composing environments, rather than components, it may be
convenient to relax the guarantees of the interface.

Definition 2.26 (Product - Guarantee Relaxation). Let I1 and I2 be interfaces. Then I is a product
with guarantee relaxation of I1 and I2, written I = I1 ‖G I2, if and only if

G = (G1 ∩ G2) ∪ (R1 ∩ R2) and R = R1 ∩ R2.

In general, the regular interface product of maximal interfaces is not maximal, so that maximal
interfaces are not closed under interface product. However, by using requirement or guarantee
relaxation we always obtain a maximal interface, as shown by the following lemma.

Lemma 2.27. Let I1 and I2 be interfaces. Then I1 ‖R I2 and I1 ‖G I2 are maximal interfaces.

Thus, one can always work with maximal interfaces, and use one of the above products as the
definition of interface product to have closure.

Definitions 2.25 and 2.26 are useful because they propagate assumptions and guarantees through
a composition. This is particularly important when dealing with inputs and outputs. In fact, once
the input of one component is driven by an output of another component, then the environment
has no way of driving that input (because composition is not defined when two components drive
the same signal). In practice, that signal can be projected out after composition. However, unless
we propagate assumptions and guarantees, we will obtain a sub-optimal interface, in the sense
that there are possible system equivalent extensions that are lost.

Consider for example the stateless interface I1 = (R1,G1) over alphabet {w, z} and interface
I2 = (R2,G2) over {x ,y, z}, with w,x ,y, z reals, shown in Figure 1, defined as follows:

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:9

I1 : R1 = {w ≥ 0},G1 = {z ∈ even}
I2 : R2 = {(z ∈ odd ∧ x ∈ even) ∨ (z ∈ even ∧ x ≥ 0)}

G2 = {y ≥ 0}
Inverse projection and composition leads to I = (R,G) = I1 ‖ I2:

R = {w ≥ 0, (z ∈ odd ∧ x ∈ even) ∨ (z ∈ even ∧ x ≥ 0)}
G = {y ≥ 0, z ∈ even}

Because I1 guarantees that z is even, we can extend I by maximally relaxing the requirements.
Computing the complement of the guarantees, taking the union with the requirements, and after
logic simplification, we obtain:

R = (R1 ∩ R2) ∪ (G1 ∩ G2)

(G1 ∩ G2) = {y < 0 ∨ z ∈ odd}
R = {w ≥ 0, z ∈ odd ∧ x ≥ 0}

Signal z can now be considered internal to the compound and can be projected away, leading to
the final result:

R = {w ≥ 0,x ≥ 0}
G = {y ≥ 0}.

The operator has correctly accounted for the already discharged assumptions, resulting in the
expected more permissive contract. We therefore define the following:

Definition 2.28 (Contract Model). The set of maximal interfaces equipped with conformance and
product with requirement relaxation forms a contract model closed under composition.

Whenever a contract is defined which is not maximal, it is completed by relaxing the guar-
antees, to make the underlying implication explicit. This theory generalizes the contract theory
introduced for the HRC model. There, a contract is defined as a pair (A,G), and is treated essen-
tially as an implication. Difficulties, however, arise with the handling of conformance, there called
dominance, due to the lack of uniqueness of its expression. Contracts are therefore restricted to
only expressions in canonical form, as described previously in Theorem 2.24. If interpreted as an
interface, the expression is equivalent to maximally relaxing the guarantees of the contract. Prod-
ucts are handled using the device of requirement relaxation, as shown in Definition 2.25. This is
both convenient from a logical point of view, and helps maintain closure in the model when us-
ing only canonical forms. In addition, our theory shows that contracts are concerned with system
equivalence, rather than with the stronger general equivalence.

In summary, contracts are maximal interfaces with requirement relaxation for composition, and
guarantee relaxation for the initial canonical form. This favors flexibility of the implementation
when contracts are defined, while it favors environments when contracts are put together in com-
position. In the previous sections we have generalized this theory and shown how these are only
some of the possible choices to achieve maximality.

3 SYMMETRIES AND VIEWPOINTS

In Section 2 we have presented the basic contract theory, building from the simple notion of com-
ponent and behavior containment to develop more complex objects able to express assumptions
and guarantees. In this section, we consider whether the assumptions should or should not con-
strain the environment, a distinction that has been referred to in the literature as strong and weak

assumptions [13]. We then more closely look at the operators of composition, and consider the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:10 R. Passerone et al.

relation between parallel composition and the process of merging of viewpoints. We show how
decomposing the operators leads to a coherent definition of merging, which closely captures the
design intent.

3.1 Weak and Strong Assumptions

We have defined an interface, and therefore a contract, as a pair I = (R,G) of requirements and
guarantees, represented by component specifications. The contract works as an implication: if the
requirements are satisfied, then also the guarantees must be satisfied. We can model an implication
at the level of the component model by using its lattice structure.

Definition 3.1 (Implication). An implication C over alphabet Σ is a pair (A,G), where A (the
assumption) and G (the promise) are components over Σ. The implication is equivalent to the
component M given by

M = A→ G = G �A = G ∪A.

The difference between a contract and an implication is that a contract also constrains the en-
vironment, while an implication simply expresses a logical connective. By Definition 2.5, a com-
ponent M over Σ satisfies an implication C = (A,G) over Σ, written M |= C, if and only if

M ⊆ A→ G = G ∪A,

or, equivalently, whenever
M ‖ A ⊆ G .

Implications can be used as a specification mechanism for contracts to model concepts such as
the weak and strong assumptions introduced by Damm et al. [13]. In particular, the guarantees
G of a contract can be naturally expressed as an implication G = (A,G) over its alphabet. The
requirements R may also be expressed as an implication R = (H ,R), whereH represent conditions
on the implementations (i.e., assumptions made by the environment) under which the environment
must satisfy its promises R (i.e., the contract requirements). When requirement and guarantees are
specified as implications, a contract is of the form

I = ((H ,R), (A,G)).

The interest in this form lies in the explicit specification of different degrees of assumptions. Here,
the requirements R = (H ,R) = R ∪ H express assumptions that the environment must satisfy in
order for the underlying component to function correctly. Their violation is therefore considered
a failure of the system, and the assumption R is referred to as strong [13]. Conversely, the assump-
tions A of the second implication are the conditions under which the propertyG is guaranteed by
the component. However,A does not constrain the environment: if violated, the implication simply
does not hold and the promise is not guaranteed. The assumption A is therefore called weak [13].
Formalizing weak and strong assumptions this way clearly defines their scope, and does not re-
quire introducing any new theory to handle them correctly, as was instead proposed by Damm
et al. [13]. In particular, we do not need the extra condition that “the strong assumptions of the
parts are either discharged by the guarantees of other parts or covered by the strong assumption
of the aggregate” [13], since composition will automatically take care of propagating assumptions
through the device of requirement relaxation. We will further analyze these aspects, and provide
examples, in Section 3.6 after we discuss merging.

3.2 Symmetric Interfaces

One can freely manipulate weak and strong assumptions using the results of the previous sections,
and define products and logical operations. The difficulty with weak assumptions is that implica-
tions do not have unique representations, and may therefore lose their significance after going

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:11

through composition and merging. This can be overcome by considering the semantics of implica-
tions. The standard interpretation of the implication is that a component should provide the stated
promise under the given assumption. A stronger interpretation also dictates that the environment
should guarantee the assumption given the promise. This can be expressed by an interface that
uses, as requirement, the dual of the implication used for the guarantees. An interface of this kind
is said to be symmetric.

Definition 3.2 (Dual). Let C = (A,G) be an implication. The dual of C is the implication Ĉ such
that Ĉ = (G,A).

Definition 3.3 (Symmetric Interface). An interface I = (R,G) is symmetric if and only if R = Ĝ.
The interface is symmetric because, assuming G = (A,G), then I can be written as ((G,A),

(A,G)). Symmetric interfaces enjoy several properties. First, a symmetric interface is also maximal.

Theorem 3.4. If I is a symmetric interface, then I is also maximal.

In addition, a maximal interface has always an equivalent interface that is symmetric.

Theorem 3.5. Let I = (R,G) be a maximal interface. Then there exists a symmetric interface

I′ = ((G,A), (A,G)) such that I ∼ I′.
Like maximal interfaces, symmetric interfaces are not closed under products. However, the use

of requirement and/or guarantee relaxation (Definitions 2.25 and 2.26) will always yield a maximal
interface, which has a symmetric equivalent. Thus, the operation of parallel composition is well
defined up to equivalence.

Because maximal interfaces always have equivalent (not just system equivalent) symmetric in-
terfaces (Theorem 3.5), then symmetric interfaces are sufficient as a representation if we plan to
work only with maximal interfaces. The representation is sufficient because the pair of assump-
tions and promises (A,G) of an implication is a highly redundant representation, and one set,
the component to which the implication is equivalent (see Definition 3.1), is enough. Thus, two
sets are enough for the representation of an interface, provided we are only interested in system
equivalence. Obviously, since any interface has a maximal system-equivalent extension, it also has
a symmetric system equivalent extension, which justifies the use of symmetric interfaces as the
only specification theory. Most interface and contract models implicitly rely on this result, which,
to the best of our knowledge, was not reported before.

We can define a canonical form for symmetric interfaces similar to the one defined for
implications.

Definition 3.6 (Symmetric Canonical Form). A symmetric interface I = (Ĉ,C), with C = (A,G)

is in canonical form whenever A = A∪G and G = G ∪A.

This definition is one particular instance of Theorem 3.5. Therefore, every maximal interface
has an equivalent symmetric interface in canonical form. When we restrict our formalism to using
only symmetric interfaces in canonical form, then interface conformance can be checked on the
individual assumptions and promises of C.

Theorem 3.7 (Conformance of Symmetric Interfaces in Canonical Form). Let I = (Ĉ,C),
and I′ = (Ĉ′,C′) be symmetric interfaces in canonical form, with C = (A,G) and C′ = (A′,G ′).
Then, I 	 I′ if and only if

G ⊆ G ′ and A′ ⊆ A.

This result matches the expression for refinement of the majority of interface and contract mod-
els, which in fact are generally expressed as symmetric interfaces in canonical form.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:12 R. Passerone et al.

Fig. 2. Requirements: rate, temperature, and their union.

3.3 A Revised Notion of Contract Merging

Besides parallel composition, there is another binary operation we would like to carry out on
pairs of contracts. Assume two contracts specify different aspects of the same component. One
contract could specify, for example, how the component behaves functionally, and another could
describe its timing or power characteristics. We call these aspects viewpoints. The operation of
viewpoint merging consists in combining various contracts describing different aspects of the same
component into a single contract object. A natural choice for merging, and one that is followed
by most of the literature on contracts, is the conjunction operation [5, 6]. We here show, however,
that conjunction has some undesirable effects.

Suppose a device guarantees to output data at certain rate Ro provided the data rate ri of the
input is higher than some minimum RL . Suppose the same device guarantees it will consume less
than P units of power if the temperature is bounded above by TH . The contract rejects environ-
ments that do not satisfy such requirements. We can write the following functional and power
contracts for this device:

IF = (ri > RL, ro = Ro) and IP = (T < TH ,p < P).

We can take their conjunction after inverse projecting to equalize the alphabets. From a syntac-
tic standpoint, inverse projection has no impact on the definition of the contract: if a variable is
added to the requirements or guarantees, the proposition added must allow the variable to take
any value in its domain, which is a true proposition. For example, the requirements of IF can
be extended with the proposition 0 < T < ∞, which is always true since T is a non-negative real
number. The extended requirements are shown graphically in Figure 2(a) and 2(b). Before carrying
out conjunction, it is necessary to saturate both contracts. We obtain

IF = (ri > RL, ro = Ro ∨ ¬(ri > RL)) and

IP = (T < TH , p < P ∨ ¬(T < TH)).

The conjunction is given by

Iconj = (ri > RL ∨T < TH ,

(ro = Ro ∧ p < P) ∨ (ro = Ro ∧T ≥ TH) ∨
(p < P ∧ ri ≤ RL) ∨ (T ≥ TH ∧ ri ≤ RL).

The resulting contract allows a satisfying component to guarantee either the guarantees of both
viewpoints (i.e., ro = Ro ∧ p < P) or the guarantees of only one of the viewpoints when the as-
sumptions of only one of them holds (e.g., ro = Ro ∧T ≥ TH) or to guarantee nothing when none
of the assumptions hold (i.e., T ≥ TH ∧ ri ≤ RL). The requirements of the conjunction, shown in

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:13

Figure 2(c), are computed as the union and include the entire shaded area. These requirements
appear too permissive, as a satisfying component must now be able to accept environments that
produce rates below RL , and must work at temperatures potentially higher than TH . The problem
lies in the inverse projection combined with the union. Ideally, we would like instead to consider only
the intersection, which corresponds to only the green area in Figure 2(c). This must be regarded
as a new operator, since the form of conjunction depends on the conformance order, and cannot
simply be redefined (see Theorem 2.14).

The idea is that viewpoint merging should tell us what all viewpoints guarantee simultaneously
since the contract for each viewpoint demands that its assumptions be met. Thus, contract merging

is defined as product with guarantee relaxation:

Definition 3.8 (Merging). Let I1 and I2 be contracts. Then I is the resulting of merging I1 and
I2, written I = I1 · I2, if and only if

G = (G1 ∩ G2) ∪ (R1 ∩ R2) and R = R1 ∩ R2.

Applying the merging operator to our example yields:

IF · IP = (ri > RL ∧T < TH , (ro = Ro ∨ ¬(ri > RL)) ∧
(p < P ∨ ¬(T < TH)) ∨ ri ≤ RL ∨T ≥ TH)

= (RL < ri ∧T < TH ,

(ro = Ro ∧ p < P) ∨T ≥ TH ∨ ri ≤ RL) .

The guarantees of IF · IP now require that the guarantees of both contracts hold; moreover, this
contract forces the environment to meet the requirements of both contracts. Thus, the merging
operation correctly captures the intuitive notion of viewpoint merging. In what follows, we discuss
the properties of the operator and how it fits coherently in the overall contract theory.

3.4 Composition, Merging, and the Contract Lattice

At this point, for a contract model we have two binary operations with semantic meaning: com-
position and merging. The contract model, however, is a partial order on conformance with well
defined lattice operations. How are merging and composition related to the contract lattice? The
following theorem tells us that merging is one of the components of the GLB.

Theorem 3.9. Let I = (R,G) and I′ = (R′,G′) be contracts. Then the contract I I′ is equal

to the conjunction of the following three contracts:

(1) (R − R′,G ∪ R − R′)
(2) (R′ − R,G′ ∪ R′ − R)

(3) (R ∩ R′,G ∩ G′ ∪ R ∩ R′)

We think of Theorem 3.9 as providing a factorization of the conjunction of two contracts into
three contracts. The first two contracts of this factorization require the environment to support
the environments of only one of I or I′, and provide the guarantees only of one of the contracts.
The third contract, on the other hand, which corresponds to merging, requires the environment
to support the assumptions of both contracts simultaneously, and provides the guarantees of both
contracts. The use of the first two contracts in the factorization is likely to be limited. The third
contract, however, represents what the component does when both viewpoints being conjoined are

active simultaneously. As we discussed, this corresponds exactly to the notion of viewpoint merging,
hence the name of the operation.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:14 R. Passerone et al.

Fig. 3. Given contracts I and I ′, their operations of conjunction, disjunction, composition, and merging are
ordered.

We now observe that composition is, dually to merging, a component of the factorization of the
disjunction of two contracts.

Theorem 3.10. Let I = (R,G) and I′ = (R′,G′) be contracts. Then the contract I � I′ is equal

to the disjunction of the following three contracts:

(1) (R ∪ G − G′,G − G′)
(2) (R′ ∪ G′ − G,G′ − G)

(3) (R ∩ R′ ∪ G ∩ G′,G ∩ G′)

As with merging, composition is the third element of this factorization of the LUB. These two
factorizations show that there is great duality between the notions of composition and merging.
Both operations appear as a component of the factorizations of elementary operations of contracts,
namely conjunction and disjunction, operations which are generated from the contract partial
order. Figure 3 shows how merging, composition, conjunction, and disjunction are ordered.

3.5 Decomposition of Contracts and Separation of Viewpoints

In order to support a modular design process, the ability to decompose contracts into simpler ones
is crucial; we call quotient the operation that allows us to carry out decomposition. The quotient
is defined in terms of composition and conformance. Like composition, the quotient takes two
contractsI andI1 with alphabets Σ and Σ1, respectively, and computes a contractI′with alphabet
Σ′ = Σ ∪ Σ1. The output of the quotient, denoted I /I1, has the property that its composition with
I1 conforms to I, and is maximal for this property in the conformance order:

∀I′. I′ ‖ I1 	 I ⇐⇒ I′ 	 I /I1. (1)

Suppose I corresponds to a top-level specification, and I1 to the specification of a component that
will be used in the design. The quotient I /I1 yields the specification of the functionality that I1
is missing for it to conform to I. Thus, the quotient is key in the decomposition of specifications.

We use the language of categories to describe some transformations between contracts. Cate-
gories are composed of objects and arrows between these objects. For instance, in the category of
sets, objects are sets, and arrows are functions between sets. Functors are transformations between
categories; they map objects to objects and arrows to arrows. Since refinement is a partial order
for contracts, we can speak about a category of contracts, in which objects are contracts and an
arrow from contract I to contract I′ exists if and only if I 	 I′. We use the language of category
theory to point out that some operations we have discussed have deep connections to each other
(i.e., are not arbitrary definitions). For an in-depth treatment of category theory, see Mac Lane [30].

LetI1 be a contract. Let C (I) = I ‖ I1 be an endofunctor (i.e., a transformation of objects within
the same category) in the category of contracts. Let Q (I) = I /I1 be another endofunctor. Then
the definition (1) can be represented graphically as the universal property that the arrow α exists
if and only if β exists in the diagram shown in Figure 4(a). This means that C is a left adjoint to the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:15

Fig. 4. Let I1 be a contract and define the functors C I = I ‖ I1, M I = I · I1, Q I = I / I1, and S I = I ÷ I1.
Then C is a left adjoint of Q, andM is a right adjoint of S.

functor Q. From this universal property of the quotient, we can derive a closed-form expression
which permits its calculation:

Theorem 3.11 (Contract Quotient). Let I and I1 be contracts. Then Iq is the quotient between

contracts I and I1, written Iq = I /I1, if and only if

Gq = G ∩ R1 ∪ (R ∩ G1) and Rq = R ∩ G1.

There exists a dual operation related to merging. We call separation the operation that allows us
to separate a viewpoint from a given merged contract. Given a merged contract I and a viewpoint
I1, the separation I ÷ I1 is defined as follows:

∀I′. I 	 I′ · I1 ⇐⇒ I ÷ I1 	 I′. (2)

In the category of contracts, if we letM be the endofunctorM (I) = I · I1 andS (I) = I ÷ I1,
we observe that the given universal property (2) means that, in Figure 4(b), arrow γ exists if and
only if arrow δ exists. It follows that S is a left adjoint of the functorM . From the universal property
of separation, we can obtain an explicit form that enables its computation:

Theorem 3.12 (Separation). Let I and I1 be contracts. Then Is is the separation of contracts I
and I1, written Is = I ÷ I1, if and only if

Gs = G ∩ R1 and Rs = R ∩ G1 ∪ (G ∩ R1).

Note the duality between quotient and separation. Suppose we are given a high level specifica-
tion I of a design, and the specification I ′ of a component which will be used in the design. The
quotient represents the most relaxed missing specification, I/I ′, such that this missing specification
in composition with I ′ refines I . Merging, on the contrary, works as follows: suppose we are given
a specification I and suppose we are told that a specification I ′ is part of a covering of I (i.e., a set of
specifications whose merging is refined by I); separation gives us the strictest specification which,
when merged with I ′, is refined by I . In other words, quotient is used to find decompositions, while
separation is used to find coverings (e.g., abstractions) of specifications.

To illustrate quotient and separation, suppose we have a top level specification I = (R,G1 ∩
G2 ∪ R). This top level specification requires environments to satisfyR, and components to satisfy
G1 ∩ G2 ∪ R. Suppose an existing component satisfies the contractI′ = (R′,G1 ∪ R′), whereR ⊆
R′, i.e., this component provides part of the requirements of the top-level contract. We expect
the quotient to tell that we need another component which implements the guarantees G2. The
quotient yields

I /I′ = (R ∩ G1,G2 ∪ R ∩ G1),

as we expected. Note that the quotient allows its implementations to make use of the guarantees
G1 as an assumption. In other words, the quotient allows its implementations to expect that the
components satisfying the specification I′ will do their job.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:16 R. Passerone et al.

Table 1. Behavior of Composition, Quotient, Merging, and
Separation with Respect to the Distinguished Elements of

the Theory of Contracts

I ‖ ⊥ = ⊥ I ‖ � = (G,G) I ‖ 1 = I
I · ⊥ = (R,R) I · � = � I · 1 = I
I /⊥ = � I /� = (R,R) I / 1 = I
⊥ /I = (G,G) � /I = � 1 /I = (G,R)

I ÷ ⊥ = (G,G) I ÷ � = ⊥ I ÷ 1 = I
⊥ ÷ I = ⊥ � ÷ I = (R,R) 1 ÷ I = (G,R)

Now consider the following application of separation. Instead of looking for decompositions of
a specification, we look for coverings of a specification. Suppose we have a top-level specification
I′ = (R,G ∪ R) that we wish to implement, say, through synthesis. Suppose the implementation
resulting from synthesis has the specification I = (R ∩ Re ,G′ ∪ R ∩ Re), where G′ ∪ R ∩ Re ⊆
G ∪ R ∩ Re . That is, the implementation fails to be a refinement of the top-level specification
because the implementation uses more assumptions. Note that this scenario is rather typical: top-
level specifications often fail to include assumptions which are necessary for an implementation
to work. These additional requirements are captured by Re . We wish to compute the smallest
specification we need to add to I′ so that I′ merged with this missing specification covers I.
Computing separation yields

I ÷ I′ = (Re ∪ R,G′ ∩ R ∪ (Re ∪ R)).

We can abstract this separation result to the contract (Re ,G′ ∪ Re) (verification that this is indeed
an abstraction is left to the reader). This contract adds the missing requirements and enforces the
stricter guarantees G′. If the previous guarantees were acceptable, one can abstract this contract
even further to (Re ,B (Σ)), where B (Σ) is the set of all behaviors under consideration.

The operations we have introduced have identities that characterize them in the contract lattice.

Definition 3.13 (Composition and Merging Identity). A composition identity, denoted 1c , is a con-
tract such that I ‖ 1c = 1c ‖ I = I. Likewise, a merging identity, denoted 1m , satisfies I · 1m =

1m · I = I.

The definition of the identities does not imply their uniqueness. The following lemma settles
this issue:

Lemma 3.14. Let Σ be the union of all alphabets over which components are defined. The contract

identities just introduced and the contracts ⊥ and � have the following explicit forms: � = (∅,B (Σ)),
⊥ = (B (Σ), ∅), and 1m = 1c = (B (Σ),B (Σ)). Since both identities are equal, we call 1 = 1c = 1m the

identity.

How do these distinguished elements behave with respect to the contract operations? These
relations are shown in Table 1. We observe in this table that taking the quotient or separation
from the identity results in a contract with flipped requirements and guarantees. This behavior
motivates the following definition:

Definition 3.15 (Reciprocal). Let I = (R,G). Its reciprocal, denoted I−1, is given by I−1 = 1 /I =
1 ÷ I = (G,R).

Finally, let I = (R,G) be a contract defined over an alphabet Σ. The following table provides
some identities pertaining merging and composition and their adjoint operations:

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:17

Fig. 5. The Break System Control Unit [13].

I ‖ I = I I /I = (R ∩ G,B (Σ)) I /I′ = I · I′−1

I · I = I I ÷ I = (B (Σ),R ∩ G) I ÷ I′ = I ‖ I′−1

The operation of reciprocal allows us to create a contract representing the perspective of the
environment in which the design operates (as the reciprocal flips requirements and guarantees).
We obtained several identities showing how the reciprocal interacts with the other contract op-
erations. It will be future work to better understand the role of the reciprocal in system design
methodologies.

3.6 Multiviewpoint Design

We can use the device of merging to analyze systems described under different viewpoints, and
derive stronger combined results. To illustrate the procedure, we employ the case study introduced
by Damm et al. [13] and there solved by manually combining a timing and a safety specification.
We show that the application of our operators produces a more accurate result, which refines the
one derived there.

The example consists of a redundant wheel brake system composed of a dual Break System

Control Unit (BSCU) and a Hydraulic actuator. We will be concerned mainly with the BSCU, which
is shown schematically in Figure 5. The two units receive information regarding the position of the
break pedal, and deliver a break command. The switch determines which of the two versions of the
command to forward on the basis of the valid signals coming from the monitoring components.
Without going into the details, the unit can sustain a single fault (at least one unit will have a
valid signal), and must produce a command within 5 ms from a change in the pedal position.
The specification makes use of the Requirements Specification Language, a natural-looking formal
pattern-based assertion language. The timing and the safety analysis produce two contracts of
the form I = ((H ,R), (A,G)), where H is the universe of behaviors (the requirements make no
assumptions),R are the strong assumptions,A are the weak assumptions andG are the guarantees1.
The contracts for the above properties are:

1In the original paper [13], the strong assumptions were denoted by A, the weak assumptions by B and the guarantees
by G .

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:18 R. Passerone et al.

Safety contract

R: fail(PedalPos1) and fail(PedalPos2) do not occur

A: No double fault

G: Valid1 or Valid2

Timing contract

R: PedalPos1 == PedalPos2
A: Valid1 or Valid2
G: Delay from change(PedalPos1) orchange(PedalPos2) to

change(Cmd) within [0, 5] ms

Merging the two contracts requires taking the intersection of the requirements after inverse pro-
jection, as well as the intersection of the guarantees, which we extend with the complement of the
weak assumptions to obtain a canonical form. The addition of the complement of the requirements
is not shown for brevity, as the semantics of the contract is not changed.

Merged contract

R: fail(PedalPos1) and fail(PedalPos2) do not occur and

PedalPos1 == PedalPos2
A: null

G: ((Valid1 or Valid2) or No double fault) and ((Delay. . .)

or (Valid1 or Valid2))

By logical manipulation, simplification and extracting the weak assumptions, we obtain:

Merged contract

R: fail(PedalPos1) and fail(PedalPos2) do not occur and

PedalPos1 == PedalPos2
A: (Valid1 or Valid2) or No double fault

G: ((Valid1 or Valid2) and (Delay. . .))

The result shows that under the assumption that the inputs are correct, and if there is no double
fault, the system guarantees the stated delay between the change of the pedal position and the
braking command. While the results in the original paper are only informally stated, they do ap-
pear to lack the first term of the weak assumption, making ours a more refined contract (it accepts
more environments). The first term is necessary, as the original specification only expressed the
forward implication (no double fault implies at least one valid signal is asserted), but not the con-
verse. Having a coherent theory is therefore fundamental to ensure correctness, and to cover all
corner cases. In this case, the risk is to have contract satisfaction despite a possible double failure.
This may or may not be important in the context of the system, but we believe the designer should
be aware of the possibility and take action as required.

Separation can be used to go back to the individual contracts. For instance, if we separate the
timing viewpoint and project away its variables we reconstruct the safety contract:

Separating timing viewpoint from merged contract

R: fail(PedalPos1) and fail(PedalPos2) do not occur

A: No double fault or (Valid1 or Valid2)
G: (Valid1 or Valid2)

Again, the result is a refinement of the original contract, recovering the implicit single
implication.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:19

4 RELATED WORK

The notion of contract as used in our framework derives from the theory of abstract data types and
was first suggested by Meyer in the context of the programming language Eiffel [32], following the
original ideas introduced by Floyd and Hoare [19, 22] to assign logical meaning to sequential im-
perative programs in the form of triples of assertions. In his work, Meyer introduces preconditions

and postconditions as assertions or specifications for the methods of a class, and invariants for the
class itself. Similar ideas were already present in seminal work by Dijkstra [16] and Lamport [24]
on weakest preconditions and predicate transformers for sequential and concurrent programs, and in
more recent work by Back and von Wright, who introduce contracts in the refinement calculus [2].
Contracts are composed of assertions (higher-order state predicates) and state transformers. These
contracts are of a very different nature, since there is no clear indication of the role (assumption or
promise) a state predicate or a state transformer may play. This formalism is best suited to reason
about discrete, un-timed process behavior.

Our work is based, in particular, on three models that were subsequently developed in the lit-
erature. The work of Dill on asynchronous trace structures was the first to differentiate between
acceptable and non-acceptable uses of a component [17]. Safe substitutability is expressed as trace
containment between the successes and failures of the specification and the implementation. The
conditions obtained by Dill are equivalent to requiring that the implementation weaken the as-
sumptions of the specification while strengthening the promises. The notion of refinement and
composition are the same as for maximal interfaces, where composition is taken as the product
with requirement relaxation. We have shown in this paper how this is only one possible choice
for these operators, by working in a more general settings. Wolf later extended the same tech-
nique to a discrete synchronous model [40]. Finally, Process Spaces [33] is a more general model
proposed by Negulescu following the work of Dill and Wolf, and is based on processes equiva-
lent to our maximal interfaces. The notion of conformance corresponds to the one proposed here.
While several operators are introduced, Process Spaces ignore the issues with inverse projection
in conjunction, and weak and strong assumptions. Process Spaces define the operations of product
and exclusive sum, which are syntactically the same as our operations of parallel composition and
merging for contracts, respectively. Product is used to compose design elements, but no insight is
given into the use of exclusive sum. In particular, the paper does not address multiple viewpoints
for the same design element. Also, this work does not show how these operations relate to the
lattice operations generated by the conformance order, as we do in Section 3.4. In process spaces,
an operation called reflection is defined. This operation has the same closed form as the operation
of reciprocal that we introduced. Nonetheless, while Negulescu defines the closed-form expression
for reflection, in our development the closed-form of the reciprocal is derived from an expression
involving the identity and the quotient. The classic Interface Automata [15] and HRC [7, 14] mod-
els are similar to synchronous trace structures, where failures are implicitly all the traces that are
not accepted. Thus, the interface is maximal. Composition is defined on automata, rather than on
traces, and requires a procedure similar to requirement relaxation in order to maintain maximal-
ity. The authors have also extended the approach to several other kinds of behaviors, including
resources and asynchronous behaviors [10, 21]. We take these concepts a lot further in this paper
to include several other operators.

One of the early foundational works that concerns interface and contract specification is due
to Abadi and Lamport, who were first to thoroughly discuss and differentiate between the com-
ponent guarantees and the environment assumptions [1]. In this work, the authors focus on the
formulation of the specification as an implication, in the sense described in Section 3.1. In par-
ticular, while a specification is allowed to make assumptions, it is not interpreted as constraining

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:20 R. Passerone et al.

the environment, or else the specification is considered unrealizable. In this paper we formalize
the difference between these two interpretations as weak and strong assumptions. The main re-
sult of Abadi and Lamport is a full set of proof rules that show when the parallel composition of
components satisfies a given property, under a set of assumptions. These proof rules have later
been reformulated in similar ways in several other contract models and tools [3, 12, 18, 20]. Com-
position, expressed as intersection of behaviors, takes primarily the view of the component. Our
work builds on these concepts, and evolves in complementary directions. First, we emphasize an
approach to composition that is balanced between component and environment, leading to the
notions of maximal and symmetric interfaces. More importantly, while Abadi and Lamport touch
upon the need for inverse projection during composition, they do not discuss the operation of con-
junction and all that it entails. They also discusses the validity of the circular reasoning principle
when liveness properties are considered. Our work is largely orthogonal to these aspects. Dill uses
failures in infinite traces to express causality and liveness [17], a method that could be reflected in
contracts. Also, proof rules similar to those proposed by Graf et al. [20] in HRC could be employed
to determine how and when circular reasoning allows a component and its environment to be
refined concurrently, each relying on the abstract description of its context, and therefore prove
conformance.

Bauer et al. [3] present a meta-theory similar in spirit to our work. The objective is to provide
a method with which to construct a contract framework given a specification (or component, with
our terminology) framework with sufficient reasonable properties. The work focuses on the rela-
tion of refinement and defines operators for composition, conjunction and quotient. In particular,
they show how to constructively define the composition operator. Their method is based on the
use of canonical forms, and treats environments and implementations asymmetrically. We follow
a similar approach, and start from a generic component model to build interface and contract
models with increasing levels of structure. Our objectives, however, are complementary. We focus
in particular on dissecting the interface models to thoroughly understand the role of each of its
parts. Unlike the cited work, we treat environments and implementations on an equal ground, to
include methodologies that favor both component optimization and component reuse. We show
the pitfalls associated with applying inverse projection and union and propose an effective solu-
tion, using merging (see Section 3.3). In particular, we do so from a purely semantic point of view,
instead of employing the traditional transition systems.

Chilton et al. [11] develop an algebraic theory of interface automata which is also useful to
shed light on the properties of the operators and relations. The formalism is reminiscent of Dill’s
trace structures, and extends that work with additional operators, such as quotient. The authors
also address issues of progress in the context of finite traces, unlike trace structures which use
infinite traces. Of particular interest is the definition of refinement, which allows the refining
component to have signatures with different sets of inputs and outputs. Consequently, conjunction
can also be defined on components with different signatures. This facilitates a multiple viewpoint
approach. However, the issue of inverse projection is not resolved, and the conjunction “yields the
coarsest component that will work in any environment safe for at least one of its operands” [11].
Hence, a viewpoint that makes no assumption will necessarily wipe out the assumptions of all
other viewpoints, as discussed in Section 3.3. We believe the merging operator that we introduce
could be applied to their model to properly handle these cases.

Most recently, Benveniste et al. have introduced a meta-theory of contracts to frame several
models in the same formalism [6], and discuss their operators. We also reason about the contract
operators in a general settings, and cover aspects, such as completion and merging, which were
not analyzed previously. Our aim, however, is not to construct another or better meta-theory.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:21

Instead, the formalism that we use is largely derived from previous models (such as the mentioned
HRC) and has been adapted to simplify the algebraic expression of our main results. The quotient
operation we discussed is the same as that defined in terms of its universal property (1) in
Benveniste et al. [6]. The closed-form expression for the quotient operation of contracts was in-
troduced in [23]. As far as we know, the separation operation we discussed has no precedent in the
literature.

Tripakis et al. [39] also study the connection between different kinds of interface specification.
In particular, they show how to transform Relational Interfaces [38], which are not input complete
(or receptive), into an equivalent set of input complete specifications, in order to avoid game-
theoretic methods and have a more efficient analysis. We believe this procedure is akin to going
from Interface Automata to Trace Structures. Similarly, Carmona and Kleijn [9] explore the issue of
compatibility in a general multi-component settings. This work deals primarily with questions of
receptiveness, progress and deadlock freedom. However, the authors do not develop a full interface
or contract model, but express assumptions implicitly in terms of the actions which are enabled
at each state of the components. An analysis of these aspects, which are orthogonal to the work
presented in this paper, and their application to our context are part of our future work.

Damm et al. [13] introduce the distinction between weak and strong assumptions, which we
extend using the concept of implication. Mangeruca et al. [31] use a similar notion, called precondi-

tion, to define the conditions under which the promises must hold, in a form similar to implications.
The authors use this concept to define the completeness of a contract relative to the requirements,
and avoid implementations that vacuously satisfy their contract. The formalism is also used to
define extensions of the contract, by properly combining the promises and their preconditions.
This differs from our notion of completion, and is used to help designers cope with evolving spec-
ifications. The authors also provide an operator to override a promise by another promise. These
extensions naturally fit in our formalism when promises are defined as implications. Using our
theory, the same operators can similarly be extended to cover also the environment requirements.

5 CONCLUSIONS

Starting from a traditional component model, we used a layered approach to incrementally con-
struct interface and contract models with increasing level of structure. While doing so, we dis-
cussed expressiveness, equivalence and closure of the operators, including weak and strong as-
sumptions, and a characterization of contract models as symmetric interfaces. We then focused on
how to combine properly contracts related to different viewpoints, and introduced the operation of
merging as a component of the greatest lower bound. We showed that parallel composition is sym-
metric in terms of the least upper bound. We then showed how the adjoint operations of quotient
and separation can be used to decompose specifications. A use case shows that the formalization
properly accounts for different viewpoints when merging specifications, avoiding potential errors.

In the near future, we plan to develop a thorough treatment of the questions of consistency
and compatibility, and a study of “don’t care” conditions, which could be useful in the context
of synthesis. In this paper we have laid down the essential definitions and mechanisms that are
required to express these conditions. In particular, “don’t care” conditions could be useful not only
during synthesis optimization, but also as a way to shift responsibilities between environment and
implementation, thus facilitating the construction of compatible sets of components.

ACKNOWLEDGMENTS

This work was supported in part by NSF Contract CPS Medium 1739816.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

86:22 R. Passerone et al.

REFERENCES

[1] Martín Abadi and Leslie Lamport. 1993. Composing specifications. ACM Transactions on Programming Languages and

Systems 15, 1 (January 1993), 73–132.
[2] Ralph-Johan Back and Joakim von Wright. 2000. Contracts, games, and refinement. Information and Communication

156 (2000), 25–45.
[3] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej

Wasowski. 2012. Moving from specifications to contracts in component-based design. In Proceedings of the 15th Inter-

national Conference on Fundamental Approaches to Software Engineering (FASE’12). Springer-Verlag, Tallinn, Estonia,
43–58.

[4] Albert Benveniste, Benoît Caillaud, Luca Carloni, Paul Caspi, and Alberto Sangiovanni-Vincentelli. 2008. Composing
heterogeneous reactive systems. ACM Transactions on Embedded Computing Systems 7, 4 (2008), 43:1–43:36.

[5] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto Passerone, and Christos Sofronis.
2008. Multiple viewpoint contract-based specification and design. In Formal Methods for Components and Objects, 6th

International Symposium (FMCO’07), Amsterdam, The Netherlands, October 24–26, 2007, Revised Papers, Frank S. de
Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever (Eds.). Lecture Notes in Computer Science,
Vol. 5382. Springer Verlag, Berlin Heidelberg, 200–225.

[6] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet, Philipp Reinkemeier,
Alberto L. Sangiovanni-Vincentelli, Werner Damm, Thomas A. Henzinger, and Kim G. Larsen. 2018. Contracts for

System Design. Foundations and Trends in Electronic Design Automation, Vol. 12. now publishers.
[7] Luca Benvenuti, Alberto Ferrari, Leonardo Mangeruca, Emanuele Mazzi, Roberto Passerone, and Christos Sofronis.

2008. A contract-based formalism for the specification of heterogeneous systems. In Proceedings of the Forum on

Specification & Design Languages (FDL08). Stuttgart, Germany, 142–147.
[8] Luca Benvenuti, Alberto Ferrari, Emanuele Mazzi, and Alberto L. Sangiovanni Vincentelli. 2008. Contract-based de-

sign for computation and verification of a closed-loop hybrid system. In Hybrid Systems: Computation and Control,
Magnus Egerstedt and Bud Mishra (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 58–71.

[9] Josep Carmona and Jetty Kleijn. 2013. Compatibility in a multi-component environment. Theoretical Computer Science

484 (May 2013), 1–15.
[10] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Marielle Stoelinga. 2003. Resource interfaces. In

Proceedings of the Third Annual Conference on Embedded Software (EMSOFT’03) (Lecture Notes in Computer Science),
Vol. 2855. Springer, 117–133.

[11] Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. 2014. An algebraic theory of interface automata. Theoretical

Computer Science 549 (September 2014), 146–174.
[12] Alessandro Cimatti and Stefano Tonetta. 2015. Contracts-refinement proof system for component-based embedded

systems. Science of Computer Programming 97, Part 3 (2015), 333–348.
[13] Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, and Ingo Stierand. 2011. Using contract-based

component specifications for virtual integration testing and architecture design. In Design, Automation Test in Europe

Conference Exhibition (DATE11). Grenoble, France, 1–6.
[14] Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard Josko, Thomas Peikenkamp, and Eckard Böde.

2005. Boosting re-use of embedded automotive applications through rich components. In Foundations of Interface

Technologies (FIT’05).
[15] Luca de Alfaro and Thomas A. Henzinger. 2001. Interface automata. In Proceedings of the Ninth Annual Symposium

on Foundations of Software Engineering. ACM Press, 109–120.
[16] Edsger W. Dijkstra. 1975. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM

18, 8 (August 1975), 453–457.
[17] David L. Dill. 1989. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. MIT Press.
[18] Iulia Dragomir, Iulian Ober, and Christian Percebois. 2015. Contract-based modeling and verification of timed safety

requirements within SysML. Software & Systems Modeling (2015), 1–38.
[19] Robert W. Floyd. 1967. Assigning meaning to programs. In Proceedings of Symposium on Applied Mathematics, Vol.

19. 19–32.
[20] Susanne Graf, Roberto Passerone, and Sophie Quinton. 2014. Contract-based reasoning for component systems

with rich interactions. In Embedded Systems Development: From Functional Models to Implementations, Alberto L.
Sangiovanni-Vincentelli, Haibo Zeng, Marco Di Natale, and Peter Marwedel (Eds.). Embedded Systems, Vol. 20.
Springer New York, Chapter 8, 139–154.

[21] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2005. Permissive interfaces. In Proceedings of the 13th

Annual Symposium on Foundations of Software Engineering (FSE’05). ACM Press, 31–40.
[22] Charles A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969), 576–580.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

Coherent Extension, Composition, and Merging Operators 86:23

[23] Íñigo Íncer Romeo, Alberto Sangiovanni-Vincentelli, Chung-Wei Lin, and Eunsuk Kang. 2018. Quotient for assume-
guarantee contracts. In 16th ACM/IEEE International Conference on Formal Methods and Models for System Design

(MEMOCODE).
[24] Leslie Lamport. 1990. win and sin: Predicate transformers for concurrency. ACM Transactions on Programming Lan-

guages and Systems 12, 3 (July 1990), 396–428.
[25] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. 2006. Interface input/output automata. In 14th International

Symposium on Formal Methods, FM’06 (Lecture Notes in Computer Science), Vol. 4085. Springer, 82–97.
[26] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. 2007. Modal I/O automata for interface and product line theo-

ries. In Programming Languages and Systems, 16th European Symposium on Programming, (ESOP’07) (Lecture Notes in

Computer Science), Vol. 4421. Springer, 64–79.
[27] Hoa Thi Thieu Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay. 2016. A tag contract framework for modeling

heterogeneous systems. Science of Computer Programming 115–116 (2016), 225–246.
[28] Edward A. Lee and Alberto Sangiovanni-Vincentelli. 1998. A framework for comparing models of computation. IEEE

Transactions on Computer-Aided Design of Circuits and Systems 17, 12 (1998), 1217–1229.
[29] Edward A. Lee and Yuhong Xiong. 2004. A behavioral type system and its application in Ptolemy II. Formal Aspects

of Computing Journal 16, 3 (2004), 210–237.
[30] Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Vol. 5. New York, NY: Springer. xii +

314 pages.
[31] Leonardo Mangeruca, Orlando Ferrante, and Alberto Ferrari. 2013. Formalization and completeness of evolving re-

quirements using contracts. In Proceedings of the 8th IEEE International Symposium on Industrial Embedded Systems

(SIES’13). Porto, Portugal, 120–129.
[32] Bertrand Meyer. 1992. Applying “design by contract”. IEEE Computer 25, 10 (October 1992), 40–51.
[33] Radu Negulescu. 2000. Process spaces. In CONCUR 2000 — Concurrency Theory, Catuscia Palamidessi (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 199–213.
[34] Ulrik Nyman. 2008. Modal Transition Systems as the Basis for Interface Theories and Product Lines. Ph.D. Dissertation.

Aalborg University, Department of Computer Science.
[35] Roberto Passerone, Íñigo Íncer Romeo, and Alberto L. Sangiovanni-Vincentelli. 2019. Contract model operators for

composition and merging: extensions and proofs. Technical Report DISI-19-004. Dipartimento di Ingegneria e Scienza
dell’Informazione, University of Trento.

[36] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud, Axel Legay, and Roberto Passerone. 2011. A
modal interface theory for component-based design. Fundamenta Informaticae 108, 1–2 (2011), 119–149.

[37] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud, and Roberto Passerone. 2009. Why are modal-
ities good for interface theories? In Proceedings of the Ninth International Conference on Application of Concurrency to

System Design (ACSD’09). Augsburg, Germany, 119–127.
[38] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee. 2011. A theory of synchronous relational

interfaces. ACM Transactions on Programming Languages and Systems 33, 4 (July 2011).
[39] Stavros Tripakis, Christos Stergiou, Manfred Broy, and Edward A. Lee. 2013. Error-completion in interface theories.

In Model Checking Software, Ezio Bartocci and C. R. Ramakrishnan (Eds.). Lecture Notes in Computer Science, Vol.
7976. Springer Berlin Heidelberg, 358–375.

[40] Elizabeth S. Wolf. 1995. Hierarchical Models of Synchronous Circuits for Formal Verification and Substitution. Ph.D.
Dissertation. Department of Computer Science, Stanford University.

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 86. Publication date: October 2019.

