
Modeling Reactive Systems in Java

Claudio Passerone, Roberto Passerone, Claudio Sanso�e

Politecnico di Torino, Cadence European Labs

Torino, Italy

Jonathan Martin, Alberto Sangiovanni-Vincentelli

University of California at Berkeley

Department of EECS

Rick McGeer

Cadence Berkeley Laboratories

Berkeley, CA

Abstract

We present an application of the JavaTM programming
language to specify and implement reactive real-time
systems. We have developed and tested a collection of
classes and methods to describe concurrent modules and
their asynchronous communication by means of signals.
The control structures are closely patterned after those
of the synchronous language Esterel , succinctly describ-
ing concurrency, sequencing and preemption. We show
the user-friendliness and e�ciency of the proposed tech-
nique by using an example from the automotive domain.

1 Introduction

A reactive system continuously interacts with the envi-
ronment, generally under some timing constraints. A
convenient modeling paradigm for embedded systems is
based on the notion of decomposition into a set of con-
current processes (see e.g. [7]). Processes can commu-
nicate with each other and with the environment either
by means of synchronous protocols, such as rendezvous
or Remote Procedure Call, or by means of exchange of
signals. The latter method has been mostly used so far
in Hardware Description Languages (e.g. VHDL or Ver-
ilog), and in the synchronous languages such as Esterel or
StateCharts ([6, 11]). The signaling paradigm seems to
be more 
exible, because it also admits an asynchronous
interpretation, that seems better suited to a heteroge-
neous implementation than strict synchronization (im-
plied by rendezvous) or caller suspension (implied by
RPC).
We thus considered an important feature allowing the

designer to use the signal/process paradigm to spec-
ify the reactive control aspects of the design. In [3]
a HW/SW co-design methodology is presented that
uses a combination of Esterel and C as the speci�ca-
tion languages; in the underlying model of computation,
the modules are internally synchronous, and externally
asynchronous, communicating using the signal/process
paradigm. The functional veri�cation is currently ob-
tained by translating the speci�cation to an intermediate
format, and then by generating the appropriate descrip-
tion in the Ptolemy ([1]) simulation framework, where a

graphical language is used to interconnect modules to-
gether. The non homogeneity in terms of speci�cation
languages and simulation environment has proven very
inconvenient, especially in the earliest phase of the de-
sign, when only the functionality is to be tested and
timing information is less of an issue. Moreover, a more
structured programming language would be highly de-
sirable, so that common mistakes would be caught and
corrected earlier in the design.

Di�erent programming languages have already been
considered as alternatives. We have chosen Java as
the language to specify the object hierarchy implement-
ing the data computation, and we have added a class
library to specify concurrent processes communicating
asynchronously via a set of multicast signals. The sys-
tem can therefore be simulated directly in the language
of the speci�cation. Choosing Java as the implemen-
tation language has several advantages over, e.g., C or
C++: portability is not an issue, since it was taken into
account very carefully during the design of the language
itself; moreover, Java is a truly object oriented language,
with all the advantages of object encapsulation and with-
out the numerous historical legacy problems that plague
C and C++.

Of course, the current performance of Java inter-
preters on a standard processor is worse (generally by
an order of magnitude) than that of native object code.
However, our goal is to use Java as a speci�cation lan-
guage for embedded systems, the actual code to be ob-
tained by optimized software synthesis technique simi-
lar to the ones applied in the Esterel and C approach.
In addition, there are emerging architectures, such as
the picoJava processor ([10]) that can execute Java byte
code at speeds that are competitive with state-of-the-
art micro-processors running their own native code, and
Just In Time compilers are making rapid performance
improvements. There are also proposed real-time exten-
sions to the Java Virtual Machine ([9]) that could extend
the range of applicability of the modeling paradigm ad-
vocated in this paper to hard real-time applications.

In this paper hence we present an extension to the
Java language ([2]) which provides methods to describe
a reactive systems. The extension itself is written in
Java and is a superset of the language; it can therefore



be used with any architecture for which there exists an
implementation of the Java Virtual Machine. Our goals
were

1. to be able to have di�erent concurrent modules,

2. to describe their interconnections and provide an
event driven communication scheme, with methods
to suspend and resume a process, or abort a certain
task when a given condition occurs.

3. to address the problem of scheduling concurrent pro-
cesses in a more predictable way than that provided
by the language itself.

The approach is inspired, as discussed above, by the
family of Synchronous Languages ([6]), and in particular
by the Reactive C language developed by Boussinot et
al. [4]. Our work di�ers from the former because we
did not develop a new language, but rather extended an
existing one. We can thus build on top of a wealth of
experience and software tools. Our work also di�ers from
the latter, because we tried to add a minimal amount of
new constructs, in order to keep the extended language
as simple and close to the original as possible.
The paper is divided as follows: Section 2 brie
y out-

lines some of the features of the Java language used to
develop this extension. Section 3 describes in detail the
system and how we implemented it. Section 4 presents
an application example. Section 5 concludes the paper
and discusses opportunities for future work.

2 Java and Embedded Systems

Java already has many features that make it easy to pro-
gram algorithms for embedded systems: in fact it sup-
ports multi{threading, synchronization among di�erent
threads when accessing shared resources and exception
handling. Moreover, Java is a fully object oriented lan-
guage, with all the constructs to handle complex data
structures and 
ow control; being close to the C++ lan-
guage, software developers don't have to learn a com-
pletely new paradigm.
What Java lacks is an easy way to make it react to

stimuli: this can be achieved by using thread synchro-
nization, but as the number of signals increases it be-
comes less tractable, especially when more than one in-
put is expected at the same time; in fact communication
among threads should be made explicit by instantiating
a shared object and providing mechanisms to access it.
The problem gets even more complex when we want a
process to react when it is performing a long computa-
tion.
There are also several problems with the Java thread

implementation:

1. it provides designers with a low-level control of par-
allelism and a great deal of freedom for developing
parallel applications, which is usually not required,
and often leads to bad designs with di�cult-to-�nd
bugs,

2. it lacks control structures for communication be-
tween threads: Java does support object locks which
allow for the creation of synchronization points us-
ing wait and notify ; however, Sun Microsystem's
Java Virtual Machine (JVM) Speci�cation ([8]) does
not specify an order in which threads receive an ob-
ject lock, so the behavior of the application may be
dependent on the JVM being used,

3. it lacks a standard scheduling algorithm, so that
the thread scheduling order may be di�erent de-
pending on the scheduling algorithm implemented
by the JVM being used. This variation in thread
scheduling results in designs that may execute nor-
mally on one system, but execute erroneously on
another system.

Our work provides an alternative thread package for
Java (PureSR) to support Synchronous/Reactive pro-
gramming constructs, but with an asynchronous overall
communicationmechanism. A new scheduler is provided
that produces always the same behavior across di�erent
platforms.

3 Reactive Java and PureSR

When developing the set of features that we wanted
the language to include, we looked for a minimal set
that would make it possible to derive others, and we
wanted to implement them e�ciently by leveraging the
constructs already available in Java. We therefore de-
veloped a library of classes to program in Java with a
reactive 
avor. This essentially meant supporting some
of the main features found in reactive languages, such
as Esterel, Signal or Lustre ([6]). Given the imperative
nature of both Java and Esterel, this language was cho-
sen as a main reference, and in fact this work is strongly
in
uenced by the available constructs in Esterel. How-
ever, it should be noted that although Esterel is a syn-
chronous language, Java is not: processes are in fact
not supposed to execute instantly, as in the synchronous
hypothesis, and they do take time. Also no causality
analysis is performed, and processes are free to perform
data-dependent loops.
To make the language reactive we need ways to:

1. de�ne, instantiate and interconnect modules,

2. send and receive events,

3. abort computation in case a given event is received.

We will describe how these points are accomplished in
the rest of this section.
The package, called PureSR, consists of a collection of

classes which implements the reactive methods by pro-
viding a framework for better threads. This framework
is depicted in �gure 1 and it consists of the classes Braid
and Fibre plus two interfaces Reactive and Shared (not
shown).

2



Variable2
Variable1
Signal2
Signal1Braid

Fibre1
Fibre2

Shared
Registry

Registry

Fibre1

Fibre2
Signal2

Signal2
Signal1

Fibre

Figure 1: Reactive framework

The �rst point is obtained simply by the mechanism
of class de�nition and object instantiation. A typical
system using PureSR will contain a single object of class
Braid and several objects of class Fibre: a �bre is anal-
ogous to a Java Thread, and implements one of the task
of the system, and the braid is used to manage the �bres
and communication, like an RTOS. Fibre implements
the Reactive interface that de�nes the methods to be
used to describe the behavior of the process and to reg-
ister its objects with the braid, and can be subclassed
by the developer to provide the required behavior. The
Braid class contains method to register the �bres, to
interconnect their objects, to communicate data and
to control the execution using an equal-priority, round-
robin scheduler. More scheduler methods can be de�ned
later to support real time requirements. Shared objects
can be connected in two ways:

� automatically, by using the
braid methods autoConnect and autoConnectAll,
which connect shared objects with the same name.

� manually, by using the connect method which al-
lows explicit connection of two objects, regardless
of their names.

Fibres communicate via shared objects. A shared ob-
ject is obtained by instantiating any class that imple-
ments the Shared interface, which de�nes methods to set
and retrieve the value. As shown in �gure 1, a braid con-
tains two registries: the �rst registry contains an entry
for each shared object in the system, the second registry
contains an entry for each �bre. Each entry in the �rst
registry contains a shared object and a list of all �bres
waiting on or watching the shared object, while entries
in the second registry contain a pointer to the �bre and
a list of all shared objects that the �bre is watching.
In the example in �gure 1, Fibre1 communicates with
Fibre2 by setting the value Fibre1.Signal1; Fibre2
then receives the information by reading the value of
Fibre2.Signal2.
The communication is coordinated by using reactive

constructs similar to those used in Esterel. They are
implemented in the Braid class and are:

emit sets the value of the speci�ed shared object and
noti�es all awaiting �bres of the change.

await halts the execution of a �bre until a new value
has been emitted for the spci�ed shared object.

The third point above required us to be able to in-
terrupt a process during the computation to deliver the
event; this in turn may be dangerous, since it could leave
a process in an unknown state. Our solution is to provide
methods to establish safe recovery points (see e.g. [5], in
which safe recovery points were also used for preemp-
tion), where actions can be taken to ensure a consis-
tent behavior. This is accomplished by using the excep-
tion mechanism: the AbortException class implements
an Exception that is thrown each time a shared object
which is being watched by a �bre is emitted. Since an
exception can be thrown only from within the process,
the condition is only checked each time a signal is emit-
ted or awaited in the block of code executed under the
watching of an event. AbortException contains a single
method called check, which allows the �bre to see which
shared object caused the abortion. This feature allows
the use of nested abortion clauses: the inner clause is
called �rst, and if the emitted shared object does not
match the one the clause is watching, then the excep-
tion is simply re-thrown for the outer clause to catch.
The constructs implemented in the Braid class to han-
dle exceptions are the following:

abortOn noti�es the braid that the �bre is watching
the speci�ed shared object. Any subsequent call
to reactive constructs made by the �bre will throw
an AbortException if the shared object has been
emitted.

endAbort noti�es the braid that the �bre is no longer
watching the speci�ed shared object.

synch throws an AbortException if any shared objects
that the �bre is watching have been emitted.

The synch is used to explicitly check the watched sig-
nals, and must be used whenever a block of code that
should be run while watching a certain condition does
not contain any emit or await. One can also insert
synch methods automatically, in order to satisfy given
abortion latency constraints.
Several classes that implement the Shared inter-

face are included in the package. These classes
implement the more common types of shared data:
SharedBoolean, SharedInt and SharedFloat are used
to share Booleans, Integers and Float, respectively,
while SharedSignal objects share no data, but are used
to signal other �bres that a pure event has occured.

4 A real life example

As an example of the application of our rapid proto-
typing methodology, we consider a car dashboard. The
typical elements are:

� The Speedometer which displays the vehicle speed
in the range of 0 km/hr to 260 km/hr.

� The Fuel Gauge which displays the fuel level from
empty (E) to full (F).

3



� The Coolant Gauge which displays the water tem-
perature ranging from ambient to 250 C.

� The Lifetime Odometer which displays the distance
in the range between 0.0 km and 999,999 km.

� The Resettable Trip Odometer which displays the
distance in the range between 0.0 km and 999.9 km.

� The Seat Belt Warning Light which is illuminated
if the seat belt has not been fastened.

� The Fuel Warning Light which is illuminated when
the fuel level becomes low.

� The Coolant Temperature Light which is illuminated
when the coolant temperature is too high.

The system is modeled in a hierarchical fashion. There
are �ve computation chains: the speedometer, the
odometer, the fuel sensor, the temperature sensor, and
the seat belt controller. Each computation chain is im-
plemented in a �bre or a network of �bres, using the
primitives described in the previous section.
The speedometer and odometer use the same strat-

egy to display the speed and the kilometers traveled: a
proximity sensor placed near the wheel shaft detects the
passing of an indentation; at each passage a pulse is sent
to the dashboard. There are usually four indentations
on the shaft so that each pulse represents 1/4 of a revo-
lution. The dashboard senses the pulses from the wheel
and displays the current speed and the total amount of
kilometers traveled.
The implementation style that we have chosen is

closely patterned after an existing Esterel speci�cation of
the dashboard controller, that in turns derives by func-
tional decomposition from a real industrial speci�cation.
The methods that have been described in the previous
section have greatly helped in making this speci�cation
easy and faithful to the original. As an illustration of the
style consider the Seat Belt Warning Light controller.
The informal speci�cation is as follows:

1. When the ignition key is turned on, wait for x sec-
onds.

2. If during these x seconds the key is turned o� or the
seat-belt is fastened, then go to 1.

3. After x seconds have elapsed turn the alarm on and
wait for y seconds.

4. If during these y seconds the key is turned o� or the
seat-belt is fastened, then turn the alarm o� and go
to 1.

5. After y seconds have elapsed, then turn the alarm
o� and go to 1.

The inputs to the belt controller are the events
ignition, and beltOn; it interacts with the RTL model
of the microcontroller timing unit to wait for a given

number of seconds (speci�ed by the FIVE SECONDS con-
stant in the code). A code fragment is shown in Fig-
ure 2. In lines 3-4, the shared objects are declared and
assigned names. The register method (6-9) automat-
ically registers all of the shared objects with the braid.
The behavior of the Seatbelt �bre is provided by the
run method (10-39). After initially setting the alarm to
the OFF state (12), the �bre enters an in�nite loop in
which it waits for the ignition key to be turned on (16).
It then starts a timer for �ve seconds and waits for it to
�nish (18,19). If the ignition key is still on and the seat
belt is still unfastened after �ve seconds, a seatbelt alarm
signal is emitted (26). The �bre again starts a timer for
�ve seconds (28) and waits for it to �nish while watching
the ignition key and the seat belt (29-30). If the ignition
key is turned o�, or the seat belt is fastened before the
timer runs out, an AbortException is thrown, and the
try...catch clause (29-33) is halted, and the belt alarm
is turned o� (35).
The PureSR alternative thread package gives us true

independence of the thread mechanism implemented by
the particular Virtual Machine being used. This allows
us to have a sort of execution sequence equivalence be-
tween di�erent implementations, so that a virtual proto-
type running on a PC and the actual system would be-
have the same. This could not be accomplished by using
the built-in Java thread scheduling mechanism, which
would arbitrarily preempt and execute threads, leading
to non determinism.

5 Conclusion and future work

An extension of the Java programming language towards
reactive systems programming has been presented. It
provides means of describing di�erent concurrent mod-
ules and how they interact through an asynchronous
event passing communication mechanism. Concurrency
and scheduling are handled by the new thread package
PureSR; reactiveness is achieved using thread synchro-
nization and exception handling. Given the close corre-
spondence of the Reactive Java constructs to those of the
synchronous language Esterel, it is conceivable to use the
latter for the implementation by using automatic synthe-
sis technicques, like the one applied in [3].
In the future we would like to be able to experi-

ment with di�erent scheduling policies, rather than only
the round-robin one. Moreover, currently designs using
PureSR must be 
at; if communication between braids
was implemented, hierarchical designs would be feasible.
This would facilitate the design of larger systems that
re-use smaller systems as components.

References

[1] See http://ptolemy.eecs.berkeley.edu.

[2] K. Arnold and J. Gosling. The Java programming

language. Addison Wesley, 1996.

4



1: public class Seatbelt implements Reactive {

2: // Shared objects.

3: public SharedBoolean ignition = new SharedBoolean("ignition");

4: ...

5: Braid b;

6: public void register(Braid braid) {

7: b = braid;

8: b.autoRegisterObjects(this);

9: }

10: public void run() {

11: // Initialize the alarm to off.

12: beltOn.setValue(new Boolean(false));

13: // Loop forever.

14: while(true) {

15: // Wait for the ignition key to be turned on.

16: b.await(ignition);

17: // Ignition key has been turned on, so wait for five seconds.

18: b.emit(startTimer, FIVE_SECONDS);

19: b.await(timerFinished);

20: // If the ignition key is still on and the seat-belt has not

21: // been fastened, turn on the alarm.

22: Boolean belt = (Boolean)beltOn.getValue();

23: Boolean ig = (Boolean)ignition.getValue();

24: if(!belt.booleanValue() && ig.booleanValue()) {

25: // Ignition is on and the seatbelt is off, so emit the alarm

26: b.emit(beltAlarm, new Boolean(true));

27: // Start the timer, and wait for it to time out.

28: b.emit(startTimer, FIVE_SECONDS);

29: try { b.abortOn(beltOn);

30: b.abortOn(ignition);

31: b.await(timerFinished);

32: } catch (AbortException e) {}

33: finally { b.endAbort(beltOn); b.endAbort(ignition);}

34: // Turn the alarm off.

35: b.emit(beltAlarm, new Boolean(false));

36: // Loop back and wait for conditions to change again.

37: }

38: }

39: }

40: }

Figure 2: Reactive Java code for seat belt controller

[3] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto,
H. Hs ieh, B. Tabbara, A. Jurecska, L. Lavagno,
C. Passerone, K. Suzuk i, and A. Sangiovanni-
Vincentelli. Hardware-Software Co-design of Em-

bedded Systems { The POLIS experience. Kluwer
Academic Publishers, 1997.

[4] F. Boussinot, G. Doumenc, and J.-B. Stefani. Re-
active objects. Annales des Telecommunications,
51(9-10):459{473, September 1996.

[5] P. Chou, E.A. Walkup, and G. Borriello. Schedul-
ing for reactive real-time systems. IEEE Micro,
14(4):37{47, August 1994.

[6] N. Halbwachs. Synchronous Programming of Reac-
tive Systems. Kluwer Academic Publishers, 1993.

[7] C. A. R. Hoare. Communicating Sequential Pro-
cesses. In Communications of the ACM, pages 666{
677, August 1978.

[8] T. Lindholm and F. Yellin. The JavaTM Virtual

Machine Speci�cation. Addison Wesley, 1996.

[9] K. Nielsen, 1997. See http://www.newmonics.com.

[10] SunSoft, 1996. See http://java.sun.com.

[11] M. v.d.Beek. A comparison of Statecharts vari-
ants. In Formal Techniques in Real-Time and Fault-

Tolerant Systems, Third International Symposium

Proceedings, September 1994.

5


