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1 Introduction

We address the problem of computing an optimal schedule for maximizing the average
coverage of a wireless sensor network. We show that a time-discretized version of the
problem achieves the same optimal solution as one where nodes are allowed to wake
up at any arbitrary time. We refer the reader to [1, 2] for further information regarding
the problem.

2 Development

Notation: we consider a topology with a setN of nodes. The number of nodes is
N = |N |. The epochE is divided intos slots. The awake interval has durationd slots,
and is such that

s = I · d

whereI is an integer. Thus, the epoch is divided intoI awake intervals.
Slots are ordered and identified by their position0 ≤ k ≤ s−1. We use a subscript

k to identify quantities related to slotk. We assume that operations on slot indices are
done modulos, so that indexs is equal to0, indexs+1 is equal to1, index−1 is equal
to s − 1, and so on.

Noden has a wake-up time0 ≤ wn ≤ s−1. An optimal schedule is an assignment
to the wake-up times of all nodes such that the integral of thecoverage over the epoch
is maximized. We say that a schedule isaligned if the nodes are scheduled at integer
multiples of the awake interval:

Definition 1 (Aligned nodes). A node n is alignedif and only if

wn mod d = 0.

The line that identifies the slots at which aligned nodes are scheduled is called an
alignment boundary. The slots between two consecutive alignment boundaries iscalled
analignment region.
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Definition 2 (Aligned schedule). A schedule W is alignedif all nodes in the schedule
are aligned.

If the scheduled is aligned, then all nodes are scheduled at the alignment bound-
aries, that is, they pairwise either completely overlap in time, or they don’t overlap at
all. We are going to prove the following.

Theorem 1. There exists an optimal aligned schedule.

To prove the theorem, observe that we can partition the setN of nodes into those
that are already aligned, and those which are not:

Definition 3 (Aligned partition). The set of nodes N is partitioned into two sets:

A = {n ∈ N | n is aligned },

B = {n ∈ N | n is not aligned } = N −A

Definition 4 (Nodes per slot). For every slot k, let Ak be the set of aligned nodes that
are awake at slot k, and let Bk be the set of non-aligned nodes that are awake at slot
k:

Ak = {n ∈ A | k − d + 1 ≤ wn ≤ k}

Bk = {n ∈ B | k − d + 1 ≤ wn ≤ k}

It turns out that the set of non-aligned nodes at the slots across an alignment bound-
ary are the same.

Lemma 1 (Same nodes across alignment). Let k be a slot at the beginning of an align-
ment boundary, i.e., k mod d = 0. Then, Bk−1 = Bk.

Proof. By way of contradiction, assumen ∈ Bk andn 6∈ Bk−1. By Definition 4, since
n ∈ Bk,

k − d + 1 ≤ wn ≤ k. (1)

Similarly, sincen 6∈ Bk−1,

k − 1 − d + 1 = k − d 6≤ wn ∨ wn 6≤ k − 1. (2)

Sincek−d+1 ≤ wn, and sincek−d ≤ k−d+1, it is alsok−d ≤ wn. Therefore, by
Equation 2, it must bewn 6≤ k − 1. Hence, since the order is total,wn > k − 1, which
is equivalent town ≥ k. Since, by Equation 1,wn ≤ k, by antisymmetry,wn = k. By
assumption,k modd = 0, which implieswn modd = 0. Therefore, by Definition 1,
n is aligned. Hence, by Definition 3,n 6∈ B. Finally, by Definition 4,n 6∈ Bk, which
contradicts the hypothesis.

The proof is similar if we assumen ∈ Bk−1 andn 6∈ Bk. Therefore,Bk−1 =
Bk.

The aligned nodes in slots that belong to the same alignment region are, of course,
the same.
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Lemma 2 (Same nodes in alignment region). Let k and k′ be two slots in the same
alignment region, i.e., such that dm ≤ k, k′ ≤ d(m+1)−1, for some integer m. Then
Ak = Ak′ .

Proof. Assumen ∈ Ak. By hypothesis,k ≥ dm, thusk − d ≥ d(m − 1) and
thereforek − d + 1 > d(m − 1). By Definition 4,wn ≥ k − d + 1, so, by transitivity,
wn > d(m − 1). Similarly,wn ≤ k, and since by hypothesisk ≤ d(m + 1) − 1, it is
alsown < d(m + 1). Therefore

d(m − 1) < wn < d(m + 1).

Sincen is aligned, it must bewn modd = 0, so it must bewn = dm. Now, by
hypothesis,dm ≤ k′, and therefore,wn ≤ k′. Similarly, since by hypothesisk′ ≤
d(m + 1) − 1, by rearranging the terms,k′ − d + 1 ≤ dm. Hence,k′ − d + 1 ≤ wn.
Therefore, by Definition 4,n ∈ Ak′ .

Symmetrically, one shows that ifn ∈ Ak′ , thenn ∈ Ak. ThereforeAk = Ak′ .

On the other hand, the sets of aligned nodes across an alignment boundary are
disjoint.

Lemma 3. Let k be a slot at the beginning of an alignment boundary, i.e., kmodd = 0.
Then, Ak−1 ∩ Ak = ∅.

Proof. I’m not yet sure I will use this result in the following, so fornow the proof is
left to the reader.

We are going to compute the gain (positive or negative) in covered area that is
obtained by shifting the schedule ofall the non-aligned nodes by one slot to the left
or to the right. To do so, we must compute the coverage before and after the shift.
Let z : N → 2R

2

be the function that to each node associates the subset ofR
2 that is

sensed by the node. LetA : R
2 → R be the function that to a subset ofR

2 gives the
corresponding area. Letak ⊆ R

2 be the area covered by the nodes inAk, andbk ⊆ R
2

the area covered by the nodes inBk:

ak =
⋃

n∈Ak

z(n)

bk =
⋃

n∈Bk

z(n)
(3)

Corollary 1. Let k and k′ be two slots in the same alignment region, i.e., such that
dm ≤ k, k′ ≤ d(m + 1) − 1, for some integer m. Then ak = ak′ .

Proof. The proof follows from Lemma 2, sinceAk = Ak′ .

The coverage for each slot can be computed as the area coveredby the nodes in
Ak, plus the area covered by the nodes inBk, less the area covered by both. The total
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coverageS is simply the sum over all slots:

S =

s−1∑

k=0

A(ak) + A(bk) − A(ak ∩ bk)

=

s−1∑

k=0

A(ak) +

s−1∑

k=0

A(bk) − A(ak ∩ bk)

(4)

The gain due to a shift of the non-aligned nodes to the right can be computed by shifting
thebk and leaving theak unaltered. We obtain:

G+ = Safter− Sbefore (5)

=

s−1∑

k=0

A(ak) +

s−1∑

k=0

A(bk−1) − A(ak ∩ bk−1) − (6)

s−1∑

k=0

A(ak) −
s−1∑

k=0

A(bk) − A(ak ∩ bk) (7)

=

s−1∑

k=0

A(bk−1) − A(ak ∩ bk−1) −
s−1∑

k=0

A(bk) − A(ak ∩ bk) (8)

by changingk into k + 1 in the first sum,

=

s−2∑

k=−1

A(bk) − A(ak+1 ∩ bk) −
s−1∑

k=0

A(bk) − A(ak ∩ bk) (9)

by considering operations modulos in the first sum and by rearranging the summands,

=
s−1∑

k=0

A(bk) − A(ak+1 ∩ bk) −
s−1∑

k=0

A(bk) − A(ak ∩ bk) (10)

=

s−1∑

k=0

−A(ak+1 ∩ bk) −
s−1∑

k=0

−A(ak ∩ bk) (11)

=

s−1∑

k=0

A(ak ∩ bk) − A(ak+1 ∩ bk) (12)

Given this expression, we may define thegain of slotk for a right shift as

g+

k
= A(ak ∩ bk) − A(ak+1 ∩ bk), (13)

that is, the gain is given by the area overlap between the non-aligned and the aligned
nodes before the shift, minus the area overlap of the same non-aligned nodes with the
aligned nodes in the new slot, after the shift. The total gaincan therefore be expressed
as:

G+ =

s−1∑

k=0

g+

k
. (14)
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Slots which are not near an alignment boundary give no gain, as shown next.

Lemma 4. Let k be a slot such that k mod d ≤ d − 2 (i.e., k is not to the immediate
left of an alignment boundary). Then, g+

k
= 0.

Proof. Let m be such thatdm ≤ k ≤ d(m + 1) − 1. Let k′ = k + 1. Then,
obviously,dm ≤ k′. In addition,k′ ≤ d(m + 1). Sincek modd ≤ d − 2, it must be
1 ≤ k′ modd ≤ d− 1. Hence,k′ modd 6= 0. Therefore it must bek′ ≤ d(m + 1)− 1.
Consequently, by Corollary 1,ak = ak+1. By formula 13,g+

k
= 0.

By the previous lemma, the significant terms in formula 14 areonly those that
correspond to slots to the immediate left of an alignment boundary. Recalling that
I = s/d, we can therefore rewrite the formula as:

G+ =

I−1∑

i=0

g+

di−1
. (15)

Similarly, we can define the gain for a left shift of the non-aligned nodes. We have:

g−
k

= A(ak ∩ bk) − A(ak−1 ∩ bk), (16)

and therefore

G− =

s−1∑

k=0

g−
k

. (17)

By arguments similar to the ones above, one shows thatg−
k

= 0 for all slots which
are not to the immediate right of an alignment boundary. Hence, one can rewrite for-
mula 17 as:

G− =
I−1∑

i=0

g−
di

. (18)

We are going to show that shifting right or shifting left givegains that are equal, but of
opposite sign. We first show it for gains of adjecent slots.

Lemma 5 (Local gains are opposite). Let di = k be a slot marking the beginning of
an alignment region. Then,

g−
di

= −g+

di−1
.

Proof. The proof consists of the following series of equalities:

g−
di

= g−
k

(19)

= A(ak ∩ bk) − A(ak−1 ∩ bk) (20)
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Sincek = di, k modd = 0, therefore, by Lemma 1,Bk−1 = Bk. Hence, by formula 3,
bk−1 = bk. Therefore,

= A(ak ∩ bk−1) − A(ak−1 ∩ bk−1) (21)

= −(A(ak−1 ∩ bk−1) − A(ak ∩ bk−1)) (22)

= −g+

k−1
(23)

= −g+

di−1
(24)

Corollary 2 (Gains are opposite).

G+ = −G−.

Proof. The proof follows easily by matching corresponding terms inthe expressions
of G+ andG−.

Our last result shows that by shifting the non-aligned nodesin one direction we
obtain a change in the covered area which is equal, but of opposite sign, to the change
obtained by shifting the non-aligned nodes in the opposite direction. The next result
shows that if shifting does not result in any new node gettingaligned, then an additional
shift in the same direction will give the same gain as the previous shift in that direction.

Lemma 6 (Shift again). Let W1 and W2 be two schedules obtained by shifting the
non-aligned nodes B to the right. Assume A1 = A2. Then, G+

1 = −G−
2 = G+

2 .

Proof. SinceA1 = A2, the node partition does not change after the shift. Thus, shift-
ing back the non-aligned nodes must bring the coverage to itsprevious value. Hence,
G+

1 = −G−
2 . By Corollary 2,−G−

2 = G+

2 .

The result is similar if we shift to the left, and the partition does not change. We
are now in a position to prove the main theorem.

Proof of Theorem 1. Let a non-aligned schedule be given. We will construct an aligned
schedule which has equal or better coverage.

ComputeG+ andG−, and shift the non-aligned nodes in the direction of positive
gain. If G+ = G− = 0, then shift to the right. Continue to shift in the same direction
until at least one non-aligned node becomes aligned. By Lemma 6, since we started
in the direction of positive gain, we will continue to shift in the direction of positive
gain. The process goes on until at least one node becomes aligned. At this point,
we repartition the nodes, and proceeds recursively with other shifts, until all nodes
are aligned. At each step after some nodes have become aligned, since the partitions
change, we only shift the nodes that are not yet aligned, while the newly aligned nodes
remain fixed. Thus all gains change, and we might as well change shift direction. In
the process, we have moved only in the direction of positive or zero gain, so the new
schedule has equal or better coverage than the starting one.

Let nowW be an optimal schedule. IfW is aligned then the theorem is proved.
Otherwise, construct a new scheduleW ′ using the procedure described above. By
construction,W ′ is also optimal, and is aligned. Therefore, there exists an optimal
aligned schedule.
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