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1 Introduction

We address the problem of computing an optimal schedule éximrizing the average
coverage of a wireless sensor network. We show that a tiseretized version of the
problem achieves the same optimal solution as one wheresravdeallowed to wake
up at any arbitrary time. We refer the reader to [1, 2] forHertinformation regarding
the problem.

2 Development

Notation: we consider a topology with a skf of nodes. The number of nodes is
N =|N|. The epocl¥ is divided intos slots. The awake interval has duratidslots,
and is such that

s=1-d

wherel is an integer. Thus, the epoch is divided ifitawake intervals.

Slots are ordered and identified by their positiofi £ < s — 1. We use a subscript
k to identify quantities related to slét We assume that operations on slot indices are
done modula, so thatindex is equal td), indexs + 1 is equal tol, index—1 is equal
tos — 1, and so on.

Noden has a wake-up timé < w,, < s— 1. An optimal schedule is an assignment
to the wake-up times of all nodes such that the integral o€thwerage over the epoch
is maximized. We say that a schedulelgyned if the nodes are scheduled at integer
multiples of the awake interval:

Definition 1 (Aligned nodes) A node n is alignedif and only if
w, modd = 0.

The line that identifies the slots at which aligned nodes aheduled is called an
alignment boundary. The slots between two consecutive alignment boundaredlesd
analignment region.



Definition 2 (Aligned schedule) A schedule 17 is alignedif all nodesin the schedule
arealigned.

If the scheduled is aligned, then all nodes are scheduldekatlignment bound-
aries, that is, they pairwise either completely overlaprimet or they don’t overlap at
all. We are going to prove the following.

Theorem 1. There exists an optimal aligned schedule.

To prove the theorem, observe that we can partition th&/sef nodes into those
that are already aligned, and those which are not:

Definition 3 (Aligned partition) The set of nodes .\ is partitioned into two sets:

A={ne N |nisaligned},
B={neN|nisnotaligned} =N —A

Definition 4 (Nodes per slot) For every slot £, let A, be the set of aligned nodes that
are awake at dot &, and let By, be the set of non-aligned nodes that are awake at slot
k:

Ar={neAlk—d+1<w, <k}
Be={neBlk—d+1<uw,<k}

It turns out that the set of non-aligned nodes at the slotssaan alignment bound-
ary are the same.

Lemma 1 (Same nodes across alignmeritgt & be a dlot at the beginning of an align-
ment boundary, i.e., k modd = 0. Then, By_1 = By.

Proof. By way of contradiction, assume< B, andn ¢ By_,. By Definition 4, since
n e Bk,

k—d+1<w, <k 1)
Similarly, sincen & By_1,
k—1—-d+1=k—d<Lw,Vw, £k—1. (2

Sincek —d+1 < w,, andsincé —d < k—d+1,itis alsok —d < w,,. Therefore, by
Equation 2, it must bey,, £ k — 1. Hence, since the order is total,, > k — 1, which
is equivalent tav,, > k. Since, by Equation Ly,, < k, by antisymmetryw,, = k. By
assumptionk modd = 0, which impliesw,, modd = 0. Therefore, by Definition 1,
n is aligned. Hence, by Definition 3, ¢ 5. Finally, by Definition 4,n ¢ By, which
contradicts the hypothesis.

The proof is similar if we assume € Bi_; andn ¢ Bi. ThereforeBy_1 =
Bk O

The aligned nodes in slots that belong to the same alignnegitn are, of course,
the same.



Lemma 2 (Same nodes in alignment regior)et £ and &’ be two slots in the same
alignment region, i.e,, suchthat dm < k, k' < d(m+1) — 1, for someinteger m. Then
A = Apr.

Proof. Assumen € A;. By hypothesisk > dm, thusk —d > d(m — 1) and
thereforek — d + 1 > d(m — 1). By Definition 4,w,, > k — d 4 1, so, by transitivity,
wy, > d(m — 1). Similarly, w,, < k, and since by hypothesis< d(m + 1) — 1, itis
alsow,, < d(m + 1). Therefore

dim—1) < w, <d(m+1).

Sincen is aligned, it must bev, modd = 0, so it must bew,, = dm. Now, by
hypothesisdm < k', and thereforew, < k’. Similarly, since by hypothesis’ <
d(m + 1) — 1, by rearranging the term&; — d + 1 < dm. Hencek' — d+ 1 < w,.
Therefore, by Definition 4p € Ay .

Symmetrically, one shows thatif € A;/, thenn € Ay. Therefored, = Ap,. O

On the other hand, the sets of aligned nodes across an aligrbonandary are
disjoint.
Lemma 3. Let k beadlot at the beginning of an alignment boundary, i.e., kmodd = 0.
Then“Ak,lquk::Q.

Proof. I'm not yet sure | will use this result in the following, so fapw the proof is
left to the reader. O

We are going to compute the gain (positive or negative) ineced area that is
obtained by shifting the schedule alf the non-aligned nodes by one slot to the left
or to the right. To do so, we must compute the coverage befudeafter the shift.
Letz : N — 2&° pe the function that to each node associates the sub&et tfat is
sensed by the node. Let: R?> — R be the function that to a subsetRf gives the
corresponding area. Lej, C R? be the area covered by the nodeslip, andb, C R?
the area covered by the nodedip:

ar = U z(n)

neAyg

b = U z(n)

neBy

3)

Corollary 1. Let k& and &’ be two dots in the same alignment region, i.e., such that
dm < k, k' < d(m+ 1) — 1, for someinteger m. Then ax = ay .

Proof. The proof follows from Lemma 2, sincé;, = Ay . O

The coverage for each slot can be computed as the area cdwetbd nodes in
Ay, plus the area covered by the node®in less the area covered by both. The total



coverages is simply the sum over all slots:

S

3

L

1
= Alar) + Y Albr) — Aar N by)

k=0 k=0

A(ay) + A(by) — A(ar N by)

= o

(4)

s—

The gain due to a shift of the non-aligned nodes to the righbeecomputed by shifting
theb, and leaving the:;, unaltered. We obtain:

GJF = Safter— Sbefore (5)

s—1 s—1

= > A(ar)+ > Albg-1) — Alar Nby_1) — (6)
k=0 k=0
s—1 s—1
> Alax) = > A(br) — Alax Nby) (7)
k=0 k=0
s—1 s—1

= 3 Abe—r) — Alar Nbg—1) = Y A(br) — Alar N by) ®)
k=0 k=0

by changingt into k£ + 1 in the first sum,

s—2 s—1

= ) A(b) = Alarsr Nbe) — > A(br) — A(ax N by) 9)
k=—1 k=0

by considering operations moduwan the first sum and by rearranging the summands,

s—1 s—1
A(br) = Alaksr Nbe) — Y A(br) — A(ag Nby) (10)
k=0 k=0
s—1 s—1
Z —A(akJrl N bk) — —A(ak n bk) (11)
k=0 k=0
s—1
> A(ag Nby) — Aaki1 N b) (12)

k=0

Given this expression, we may define than of slot & for a right shift as
g = Alar Nby) — Alagsr Nby), (13)

that is, the gain is given by the area overlap between theatigned and the aligned
nodes before the shift, minus the area overlap of the samaligmed nodes with the
aligned nodes in the new slot, after the shift. The total gaimtherefore be expressed

as:

s—1
Gt => gl (14)
k=0



Slots which are not near an alignment boundary give no gaishawn next.

Lemma 4. Let k beadot suchthat k modd < d — 2 (i.e, k is not to the immediate
|eft of an alignment boundary). Then, g;" = 0.

Proof. Let m be such thatm < k < d(m + 1) — 1. Letk’ = k+ 1. Then,
obviously,dm < k’. In addition,k’ < d(m + 1). Sincek modd < d — 2, it must be
1 < k’modd < d— 1. Hence k'’ modd # 0. Therefore it mustbé’ < d(m+1) — 1.
Consequently, by Corollary &y, = ax1. By formula 13,9,2r =0. O

By the previous lemma, the significant terms in formula 14 @mly those that
correspond to slots to the immediate left of an alignmentnidamy. Recalling that
I = s/d, we can therefore rewrite the formula as:

I—-1
GT=> gl (15)
i=0

Similarly, we can define the gain for a left shift of the norgakd nodes. We have:
91; e A(ak N bk) — A(ak,1 n bk), (16)

and therefore
s—1
G => g (17)
k=0

By arguments similar to the ones above, one showsghat 0 for all slots which
are not to the immediate right of an alignment boundary. ldepoe can rewrite for-
mula 17 as:

I-1
G => gu (18)
1=0
We are going to show that shifting right or shifting left giyains that are equal, but of

opposite sign. We first show it for gains of adjecent slots.

Lemma 5 (Local gains are opposite) et di = k be a dot marking the beginning of
an alignment region. Then,

- _ _at
9di = ~Ydi—1-
Proof. The proof consists of the following series of equalities:

9ai = Ik (19)
e A(ak N bk) — A(ak,1 n bk) (20)



Sincek = di, k modd = 0, therefore, by Lemma 33, = B. Hence, by formula 3,
br_1 = bi. Therefore,

= Aap Nbg—1) — A(ag—1 Nbr—1) (22)
= —(A(ag—1 Nbr—1) — A(ag Nbr_1)) (22)
= _gqu (23)
= —gdi1 (24)
O
Corollary 2 (Gains are opposite)
Gt =-G.
Proof. The proof follows easily by matching corresponding termshia expressions
of G andG~. O

Our last result shows that by shifting the non-aligned nddesne direction we
obtain a change in the covered area which is equal, but of Sifgpsign, to the change
obtained by shifting the non-aligned nodes in the oppositection. The next result
shows that if shifting does not result in any new node getiligned, then an additional
shift in the same direction will give the same gain as theiprevshift in that direction.

Lemma 6 (Shift again) Let W, and W, be two schedules obtained by shifting the
non-aligned nodes B to the right. Assume A; = A,. Then, G = —G5 = G5 .

Proof. SinceA; = As, the node partition does not change after the shift. Thufi; sh
ing back the non-aligned nodes must bring the coverage prétgous value. Hence,
Gy = —G; . By Corollary 2,-G5 = G5 . O

The result is similar if we shift to the left, and the partitidoes not change. We
are now in a position to prove the main theorem.

Proof of Theorem 1. Let a non-aligned schedule be given. We will construct agnaid
schedule which has equal or better coverage.

ComputeG™ andG—, and shift the non-aligned nodes in the direction of positiv
gain. If G* = G~ = 0, then shift to the right. Continue to shift in the same diiatt
until at least one non-aligned node becomes aligned. By L&i®since we started
in the direction of positive gain, we will continue to shift the direction of positive
gain. The process goes on until at least one node become®a@ligAt this point,
we repartition the nodes, and proceeds recursively witlerashifts, until all nodes
are aligned. At each step after some nodes have becomedliginee the partitions
change, we only shift the nodes that are not yet aligned ethé newly aligned nodes
remain fixed. Thus all gains change, and we might as well ahahdt direction. In
the process, we have moved only in the direction of positiveeoo gain, so the new
schedule has equal or better coverage than the starting one.

Let now W be an optimal schedule. W is aligned then the theorem is proved.
Otherwise, construct a new schedl€ using the procedure described above. By
construction,W’ is also optimal, and is aligned. Therefore, there exists gimal
aligned schedule. O
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