
Form Method Syst Des (2007) 31:1–33
DOI 10.1007/s10703-006-0024-z

Refinement preserving approximations for the design
and verification of heterogeneous systems

Roberto Passerone · Jerry R. Burch ·
Alberto L. Sangiovanni-Vincentelli

Received: 26 July 2005 / Accepted: 12 September 2006 /
Published online: 12 October 2006
C© Springer Science + Business Media, LLC 2006

Abstract Embedded systems are electronic devices that function in the context of a real
environment, by sensing and reacting to a set of stimuli. Because of their close interaction
with the environment, and to simplify their design, different parts of an embedded system
are best described using different notations and different techniques. In this case, we say that
the system is heterogeneous. We informally refer to the notation and the rules that are used
to specify and verify the elements of heterogeneous systems and their collective behavior
as a model of computation. In this paper, we consider different classes of relationships be-
tween models of computation and discuss their preservation properties with respect to the
model’s refinement relation and composition operator. In particular, we focus on abstraction
and refinement relationships in the form of abstract interpretations and introduce the notion
of conservative approximation. We show that, unlike abstract interpretations, conservative
approximations preserve refinement verification results from an abstract to a concrete model
while avoiding false positives. We also characterize the relationship between abstract inter-
pretations and conservative approximations, and derive necessary and sufficient conditions
to obtain a conservative approximation from a pair of abstract interpretations. In addition,
we use the inverse of a conservative approximation to identify components that can be used
indifferently in several models, thus enabling reuse across models of computation. The con-
cepts described in this paper are illustrated with examples from continuous time and discrete
time models of computation.

R. Passerone (�)
Cadence Design Systems, 1995 University Ave Suite 460, Berkeley CA 94709

Present Address: Department of Information and Communication Technology,
University of Trento, via Sommarive 14, 38050 Povo (TN), Italy

J. R. Burch
Synopsys, Inc., 2025 NW Cornelius Pass Rd., Hillsboro, OR 97124

A. L. Sangiovanni-Vincentelli
Department of EECS, University of California, Berkeley, Berkeley CA 94720

Springer

2 Form Method Syst Des (2007) 31:1–33

Keywords Refinement . Preserving . Approximation . Abstraction . Verification .

Heterogeneous . Reuse . Polymorphism . Model of computation . Galois connection .

Abstract interpretation . Conservative approximation . Continuous time . Discrete time .

Refinement . Concretization

1 Introduction

Embedded systems are electronic devices that function in the context of a real environment,
by sensing and reacting to a set of stimuli. Because of their close interaction with the
environment, and to simplify their design, different parts of an embedded system are best
described using different notations and different techniques. In this case, we say that the
system is heterogeneous. For example, the model of the software application that runs on a
distributed collection of nodes in a sensor network is often concerned only with the initial
and final state of the behavior of a reaction. In contrast, the particular sequence of actions of
the reaction could be relevant to the design of one instance of a node. Likewise, the notation
employed in reasoning about a resource management subsystem is often incompatible with
the handling of real time deadlines, typical of communication protocols. This form of
heterogeneity is also reflected in the structure of the design teams, which increasingly
consist of highly specialized groups that focus on the solution of a particular task, under the
direction of the system architects.

Designers benefit from this separation. First, the system is naturally partitioned into
smaller and more manageable parts. Secondly, and more importantly, designers are free to
select for each subsystem the rules that are used to specify its behavior as a hierarchical
collection of modules (composition), and to verify that such behavior conforms to a specifi-
cation (refinement verification). These rules vary widely across different modeling domains,
such as the ones outlined above. The restrictions and the intrinsic properties of these rules,
which we collectively refer to as a model of computation, are the basis of domain specific
techniques that can be used to more easily guarantee the correctness of the implementation.

While specified separately, subsystems must eventually interact to form the system be-
havior, and will in fact do so in the physical implementation. However, system designers are
typically unwilling to wait until the final stages of the implementation to validate the system
functionality and performance metrics, because the cost of fixing design and specification
errors increases dramatically in the later phases of the design flow as amply documented for
electronic systems, software and integrated circuits. The costs associated with late discovery
of errors and, in particular, of integration errors, have risen to a point that they are no longer
sustainable. To witness, consider the recent recalls by Mercedes-Benz of 1.5 million cars
for problems with the braking subsystem. Consequently, the ability of the system designer
to specify, manage, and verify the functionality and performance of concurrent behaviors,
within and across heterogeneous boundaries, is essential. Most design methodologies that
address these problems are based on the processes of abstraction and refinement, that is, of
the application of maps that convert and relate different models of computation. However,
crossing the boundaries between abstraction levels by abstracting and refining a specification
is often not trivial. The most common pitfalls include mishandling of corner cases and in-
advertently misinterpreting changes in the communication semantics. These problems arise
because of the poor understanding and the lack of a precise definition of the abstraction and
refinement maps used in the flow, which are therefore likely to provide little if any guarantee
of satisfying a given set of constraints and specifications, without resorting to extensive
simulation or tests on prototypes. However, in the face of growing complexity, this approach

Springer

Form Method Syst Des (2007) 31:1–33 3

will have to yield to more rigorous methods. In addition, abstraction and refinement should
be designed to preserve, whenever possible, the properties of the design that have already
been established. This is essential to increase the value of early, high level models and to
guarantee a speedier path to implementation.

The objective of this paper is to approach the problem of abstraction and refinement
from a formal standpoint, and to study and compare the preservation properties of different
forms of abstraction. In particular, we study abstractions that preserve positive refinement
verification results (the relation between an implementation and a specification) from an
abstract modeling domain to a concrete modeling domain. This property of an abstraction
is useful because, presumably, verification is more efficient at the abstract level than it is at
the concrete. In this paper, we focus in particular on abstraction and refinement relationships
in the form of abstract interpretations [8, 9] and of conservative approximations [3–6, 24].
Abstract interpretations are a widely used means of relating different domains of computation
for the purpose of facilitating the analysis of a system. An abstract interpretation between two
domains of computation consists of an abstraction function and of a concretization function
that form a Galois connection. The distinguishing feature of an abstract interpretation is that
the concretization of the evaluation of an expression using the operators of the abstract domain
of computation is guaranteed to be an upper bound of the corresponding evaluation of the
same expression using the operators of the concrete domain. Hence, a conservative evaluation
can be carried out at the more abstract level, where it is potentially computationally more
efficient. Refinement verification, however, is unsound: a positive refinement verification
result at the abstract level does not guarantee a corresponding refinement verification result
at the concrete level.

This problem is overcome by using conservative approximations. The concept of a con-
servative approximation in our work is derived from the one introduced by Burch [3]. Here
we generalize this approach and apply it to a domain of arbitrary agents, rather than assuming
that an agent is modeled by a set of executions. We also decompose the definition of conser-
vative approximation to highlight and discuss its compositionality properties, and study its
relationship with traditional notions of abstraction. Conservative approximations are closely
related to abstract interpretations, as will be shown later in Section 6. We show, however,
that unlike Galois connections, conservative approximations preserve refinement verification
from an abstract to a concrete model while avoiding the occurrence of false positive results.
This can be accomplished with conservative approximations because they employ two sep-
arate abstraction functions, one for the implementation and one for the specification. Our
study also shows that this is a necessary condition for the preservation of refinement, and
one that is not satisfied by a Galois connection. Conservative approximations and abstract
interpretations are however strongly related. The main result of this paper is that a pair of
Galois connections can be used to construct a conservative approximation. This result is im-
portant because it extends the rich field of abstract interpretations to refinement verification.
We examine and determine the exact conditions under which this result holds.

The study of heterogeneous systems is also a central theme of both the Metropolis [2]
and the Ptolemy [18] projects. In Metropolis, a system is composed of processes that com-
municate over media expressed in a meta-model of computation. Their combination, and
their relationships, implicitly determine the interaction semantics. Because of its generality,
the underlying meta-model fabrics can be used to promote reuse of diverse components.
The communication media, however, must be carefully designed to resolve possible incom-
patibilities. Our work can be thought of as the theory base for the use of the meta-model
to represent heterogeneous systems. The techniques presented in this paper, in fact, expose
the relationships between the different models and help the designer build media that adapt

Springer

4 Form Method Syst Des (2007) 31:1–33

processes by “completing” their set of behaviors, and that therefore comply with a different
interaction semantics. In addition, conservative approximations have been used to make
the process of platform-based design advocated in the Metropolis project precise, and their
application in this area is part of our current work [24].

Similarly, Ptolemy consists of several executable domains of computation that can be
mixed in a hierarchy controlled by a global scheduler. Ptolemy does not currently provide
a notion of abstraction between the different models in the system. However, an important
innovative concept in the design of the Ptolemy II infrastructure is the notion of domain
polymorphism [19]. An actor (agent) is domain polymorphic if it can be used indifferently,
i.e., without modification, in several domains of computation. To check whether an actor can
be used in a particular domain, the authors set up a type system based on state machines,
which is used to describe the assumptions of each model and each actor relative to an abstract
semantics.

Conservative approximations offer a formal way of defining a similar concept of poly-
morphism, even though they do not rely upon a common underlying semantics, as in the
case of Ptolemy. A distinctive feature of conservative approximations is their ability to de-
termine which parts of the models are unaffected by the application of the abstraction. This
information is useful because it identifies the elements of the models that can be expressed
indifferently under the interpretation of either model, without changing their meaning. Our
interpretation of this notion is, however, broader than that introduced in Ptolemy II. In par-
ticular, an actor (agent) is polymorphic in our framework when it makes no assumption
regarding its behavior based on information that cannot be expressed in the other model.
When this is the case, reuse of subsystems can be extended across the boundaries of het-
erogeneous models. This leads to the notion of the inverse of a conservative approximation,
which is a refinement map that is used to embed one model into another. The embedding
provides us with an interpretation of agents across different models which is consistent with
the corresponding abstraction. An agent is polymorphic precisely when this interpretation is
exact. This has the advantage of making the process of abstraction and refinement of an agent
explicit. Elements that do not fall in the range of the inverse can only be approximated by
the other model. Nonetheless, we show how the inverse can be used in conjunction with the
abstraction maps to construct operators that add or remove behaviors to ensure compatibility
across model boundaries.

To simplify the exposition, and to be precise about the relation of our approach with previ-
ous literature, other forms of abstraction are discussed at the end of this paper in Section 8. In
all cases, the specific abstraction is shown to be either an instance of an abstract interpretation
(and is therefore unsound for refinement verification), or is a particular case of conservative
approximations. The rest of the paper is structured as follows. Section 2 introduces various
forms of abstractions, including Galois connections and conservative approximations, and
compares their preservation properties relative to refinement verification. Section 3 presents
an extensive example of the use of conservative approximations for an abstraction from a
continuous time to a discrete time model of computation. Section 4 is devoted to examining
the compositionality properties of the abstractions, relative to the operators of the models.
Then, we introduce refinement functions in Section 5. Section 6 presents the main result
of this paper, an exact characterization of the relationships between the different kinds of
abstractions introduced here. Finally, we use both abstraction and refinement maps to de-
velop a notion of polymorphism for the elements of different models of computation, and we
explore ways to translate agents from one model to another. To avoid interrupting the flow

Springer

Form Method Syst Des (2007) 31:1–33 5

of the paper, the proofs of the main results are included at the end in Appendix A. The other,
more technical, proofs are omitted. The interested reader is referred to [24] for more details.

2 Preservation properties

We have made the case in the introduction that it is essential in a heterogeneous design
methodology to understand how different abstraction levels, or models, relate to each other.
As we have noted, this can be done by building certain relationships between the models.
These relationships are usually classified as abstractions (going from the more concrete to
the abstract) or refinements (going from the more abstract to the concrete). After presenting
preliminary material, this section reviews several forms of abstraction (and their correspond-
ing refinements) and compares their ability to preserve certain properties of interest. In
particular, we show that monotonic functions are insufficient to preserve certain refinement
relationships, and that Galois connections can be used for that same purpose only in restricted
circumstances. Conservative approximations are introduced to overcome these problems.

2.1 Preliminaries

Before we can investigate the notion of an abstraction, we must provide a way to describe its
domain and range, namely the models of computation. In general, an abstraction transforms
a block of computation in one model into a block of computation in another model. For
example, it may transform a module written in a discrete event language (such as Verilog or
VHDL) into a transaction level module that ignores the precise time at which events occur,
such as a dataflow language. We therefore represent models of computation at the granularity
of the module, or block. In other words, a model of computation is simply the set of blocks
that can be expressed in the model. For instance, we represent a model of computation
based on finite state machines as the set of finite state machines, or a dataflow model of
computation as the set of dataflow actors. However, the representation of the blocks need not
be in the form of a programming language. In fact, to simplify the task of defining abstraction
functions, we typically represent blocks as the set of behaviors that they can exhibit. The
nature of these behaviors obviously depends on the particular model of computation: for
instance, they may consist of sequences of values (as in the case of synchronous models),
functions of real variables (for more accurate continuous time models), or simply sets of
values representing certain performance metrics (power models, constraints). Because we
use behaviors, we will refer to blocks in any model of computation generically as agents, and
they will be denoted by the letters p and q . Nonetheless, our discussion about abstraction
maps below is independent of the particular way the agents are represented.

Agents in a model of computation do not exist in isolation. In general, they can be
combined with the operation of parallel composition (denoted by the symbol ‖) to yield
a new agent in the same model of computation. The new agent combines the behaviors
of the original components. For example, finite state machines can be combined by taking
their product, while discrete event processes are combined by synchronizing their respective
event queues. Several different forms of composition are possible, and each characterizes
a different communication semantics for a model of computation. Alternatively, one can
use a fixed communication scheme and model different communication semantics explicitly
by employing appropriate “communication” agents to mediate the transactions between
“computation” agents (this is, for example, the approach taken in the Metropolis meta-
model [2], where communication media are used to define the interaction semantics).

Springer

6 Form Method Syst Des (2007) 31:1–33

Other operations on the model can also be used to hide or expose internal details of the
components, or to instantiate them to form a system. We refer to the first as projection (and
its inverse), and denote it by the operator proj. Instantiation, on the other hand, can be seen
as changing the name of formal parameters into actual parameters. We therefore refer to it
as a renaming operation, and denote it by the operator rename.

Different means can often be used to achieve the same goal. Likewise, agents with
different behavior may sometimes yield the same result when applied to a particular context.
In particular, if an agent p can always be replaced for an agent q in any context without
materially changing the outcome of the composition, then we say that p refines q . In the rest
of this paper we use the symbol � to denote this refinement relationship, and we write p � q
whenever p refines q . We also refer to q as a specification, and to p as an implementation of
q . Notice that the word “refinement” denotes both the refinement relationship within each
model of computation, and the refinement function that maps a more abstract model into a
more concrete one. This is unfortunate, but is part of the common usage. In particular, the
symbol � will be used here exclusively to denote the refinement relationship between agents
that belong to the same model of computation.

The following definition summarizes the above discussion.

Definition 2.1. A model of computation Q consists of a set of agents D, certain operators on
D, such as parallel composition, projection and renaming, and a partial order relationship �
on D, called refinement.

In informal discussions, and to simplify our notation, we will often use the symbol Q to
denote its set of agents D, thus ignoring the distinction between a model and its elements.
The context will make clear what is meant. We also restrict our attention to models that are
partially ordered according to the refinement relationship. Refinement, however, is often not
antisymmetric, yielding a preorder instead of a partial order. Our theory is easily extended to
this case by simply considering the equivalence classes induced by the preorder [24]. This
restriction is used here to simplify our notation and arguments.

2.2 Refinement preserving abstractions

The choice of levels of abstraction, or models, in a heterogeneous design methodology is
obviously very important. Each model must in fact be capable of supporting the desired
techniques, and must be detailed enough to provide answers to the specific questions under
consideration for the particular subsystems it applies to. An equally important choice has
to do with the way the levels of abstraction are connected, or, in other words, with the
abstraction and refinement functions that are used to relate the models. In general, many
forms of abstraction and refinement are possible. In practice, only those that preserve certain
properties of interest are useful. In particular, we are interested in abstractions that preserve
the refinement relationship � when moving from a more abstract model to a more concrete
one. More formally, assume p and q are agents in a model Q, and that p′ and q ′ are the
corresponding abstractions in a model Q′. Then we say that the abstraction preserves the
refinement relationship from the abstract to the concrete model if p′ � q ′ implies that also
p � q .

This property is useful for several reasons. First, refinement verification can be used
to establish that an agent satisfies some requirement by comparing it to a specification. It
would therefore be at best inconvenient if the result of this verification were lost during a
refinement step of the methodology. In the worst case, it could lead to incorrect designs.

Springer

Form Method Syst Des (2007) 31:1–33 7

A second advantage has to do with the efficiency of refinement verification. The process
is in fact potentially more efficient at the abstract level because of the lesser amount of
information included in the model. An abstraction that preserves the refinement relationship
can thus be used to translate a complex verification problem at the concrete level to a simpler
problem at the abstract level. This translation is conservative: while the loss of information
may make it impossible to establish a refinement relationship between the abstracted agents,
it ensures that when the relationship is indeed established it also holds at the concrete level.
In other words, false positive results are ruled out.

We say that an abstraction is proper if knowing the abstraction of an agent p is not suffi-
cient to determine p uniquely. A proper abstraction thus loses information when translating
from one model to another. Proper abstractions are most useful in the context of refine-
ment verification. Assume, in fact, that a model Q′ is related to a model Q by a refinement
preserving abstraction which is not proper. Then, assuming the complexity of computing
the abstraction and its inverse is negligible compared to the complexity of checking re-
finement, verification in Q is as efficient as in Q′, since it is possible to simply translate
back and forth between the two models. Abstractions that are not proper are therefore
not very interesting for refinement verification. In the following we will consider differ-
ent classes of abstractions and discuss when they can be both refinement preserving and
proper.

2.3 Monotonic functions

Abstraction functions that preserve the refinement relationship from the concrete to the
abstract model are easy to find. Since the refinement relationship is an order, the function
simply needs to be monotonic. For instance, if the concrete model is the set of real numbers
R, and the abstract model is the set of integers Z, and the ordering � corresponds to the
usual ordering, then the ceiling operator �r� (the closest integer greater than or equal to r)
preserves the ordering.

We are interested, however, in abstractions that preserve the ordering in the opposite
direction. Monotonic functions from the abstract to the concrete model (i.e., refinement
maps) have this property, but they cannot be used to abstract verification problems, since
their inverse (the abstraction) will probably be a partial function. Instead, we need a function
from the concrete to the abstract model that is intuitively “inverse” monotonic. The ceiling
operator does not have this property. Assume, in fact, that r = 2.8 and s = 2.3. Then
�r� � �s�, however it is not the case that r � s. In fact, no proper abstraction, based on
a single function H , from a concrete model Q to a more abstract model Q′ is refinement
preserving, as shown by the following lemma.

Lemma 2.2. Let Q and Q′ be models of computation, and let H : Q → Q′ be a function
that preserves refinement from Q′ to Q. Then, H (p1) = H (p2) implies that p1 = p2.

The proof goes as follows. The assumption H (p1) = H (p2) implies that H (p1) � H (p2)
and that H (p2) � H (p1). Thus, since H preserves refinement from Q′ to Q, also p1 � p2

and p2 � p1. Therefore, p1 = p2.
Lemma 2.2 shows that if the function H preserves refinement from abstract to con-

crete, then H is injective, and therefore is not a proper abstraction since it has an inverse
function. Thus, a function H is refinement preserving only if it implies no loss of informa-
tion when moving between the two levels. Continuing our previous example, no function

Springer

8 Form Method Syst Des (2007) 31:1–33

f : R → Z preserves the ordering from Z to R, since there exists no injection from R

to Z.

2.4 Galois connections

One way to address the problem is to consider abstractions whose structure is more complex
than that of a simple function. One abstraction of this kind, which has been extensively studied
in the literature, is a Galois connection [9]. A Galois connection between two models Q and
Q′ consists of an abstraction function α from Q to Q′, and of a concretization function γ

from Q′ to Q. A pair 〈α, γ 〉 forms a Galois connection whenever for all p ∈ Q and p′ ∈ Q′,

α(p) � p′ ⇐⇒ p � γ (p′).

The defining property of a Galois connection can be rephrased in the following terms.

Theorem 2.3 ([12], Proposition 4). Let D and D′ be partially ordered sets of agents. Then
〈α, γ 〉 is a Galois connection from D to D′ if and only if

Ĺ α and γ are monotonic, and
Ĺ for all p ∈ D and p′ ∈ D′,

p � γ (α(p))

α(γ (p′)) � p′.

Theorem 2.3 establishes a relation that can be used to connect the order of the two models.
However, the application of Galois connections to refinement verification is restricted by the
following result.

Theorem 2.4. Let 〈α, γ 〉 be a Galois connection between partially ordered sets of agents
D and D′, and let q be an agent of D. Then, q = γ (α(q)) if and only if for all agents p,
α(p) � α(q) ⇒ p � q.

The proof goes as follows. Assume q = γ (α(q)) and let p be an agent such that α(p) �
α(q). Then, since γ is monotonic, γ (α(p)) � γ (α(q)). By Theorem 2.3, p � γ (α(q)). By
hypothesis, p � q . For the reverse direction, assume that for all agents p, α(p) � α(q) ⇒
p � q . By Theorem 2.3, both q � γ (α(q)) and α(γ (α(q))) � α(q). Therefore, by hypothesis,
γ (α(q)) � q . Hence, q = γ (α(q)).

Theorem 2.4 shows that a Galois connection preserves the refinement relation from
abstract to concrete only if there is no loss of information when the abstraction is applied
to the specification. To state it differently, the abstract model must be able to represent
the specification exactly. In the other cases, the verification methodology is unsound and
may lead to false positive results. Our example illustrates this. If we let α(r) = �r�, and
take the identity function γ (r ′) = r ′ as the concretization function, then 〈α, γ 〉 forms a
Galois connection from R to Z. Thus, if r and s are real numbers, and if we know that
α(r) � α(s), then, since γ is monotonic, γ (α(r)) � γ (α(s)). By Theorem 2.3, we conclude
that r � γ (α(s)). However, we may conclude that r � s only if s = γ (α(s)), i.e., s is an
integer.

Springer

Form Method Syst Des (2007) 31:1–33 9

2.5 Conservative approximations

Conservative approximations get around the problem outlined above by employing two
abstraction functions, instead of just one. The first function, usually denoted �u , is applied to
the implementation p, while the second function, denoted �l , is applied to the specification
q . The pair (�l , �u) forms a conservative approximation whenever �u(p) � �l (q) implies
p � q . Thus, by definition, a conservative approximation always preserves the refinement
relationship from the abstract to the concrete model. Unlike Galois connections, the two
functions of a conservative approximation are both abstractions from the concrete model Q
to the abstract model Q′.

Conservative approximations enjoy several properties similar to those of Galois con-
nections. For instance, if � ′ = (� ′

l , �
′

u) provides looser lower and upper bounds than a
conservative approximation � (i.e., if � ′

l (p) � �l (p) and �u(p) � � ′
u(p) for all p), then � ′

is also a conservative approximation. Also, the functional composition of two conservative
approximations yields another conservative approximation. Usually a conservative approx-
imation � = (�l , �u) has the additional property that �l (p) � �u(p) for all p, but this is
not required. Also, having �l and �u be monotonic (relative to the ordering on agents) is
common, but not required.

Unlike abstractions based on a single function, conservative approximations need not be
injective to preserve refinement. To continue our example of an abstraction from the set of
real numbers R to the set of integers Z, we define

�u(r) = �r�,
�l (s) = s�,

where now s� is the floor of s (the closest integer less than or equal to s). Clearly, if
�r� � s�, then r � s (which shows the pair forms a conservative approximation). However,
neither �u(x), nor �l (x), nor the two in combination, are sufficient to determine x uniquely.
Hence, the conservative approximation is indeed a proper abstraction. This can be accom-
plished because different abstraction functions are applied to the implementation and to the
specification. In particular, the abstraction �u acts as an upper bound of the implementation,
while the abstraction �l acts as a lower bound of the specification.

3 An example: Continuous and discrete time

To illustrate our definitions, we extend our example of continuous versus discrete numbers
and build models of computation QC and QD that can be used to model event-based systems
in continuous and discrete time.

In the continuous model, a pair (a, τ) is an event that denotes the occurrence of an action
a ∈ A, at a time τ ∈ R (where A is some universe of actions). Each behavior of an agent
consists of a set of events, such as

x = {(a, 1.4), (b, 2.1), (c, 2.3), (b, 3.01), . . .}.

An agent p can thus be seen simply as a set P of behaviors of this sort. In addition, we
characterize an agent by two disjoint sets I ⊆ A and O ⊆ A of input and output actions,
which together form its alphabet A. The behaviors P of an agent p = (I, O, P) are restricted

Springer

10 Form Method Syst Des (2007) 31:1–33

to events that perform actions in A. In order to complete the model, we must define operators
such as projection and parallel composition. However, we defer these definitions to Section 4
when we discuss the compositionality properties of abstractions. The construction of an agent
as a set of behaviors is quite general and can be employed with other models of behavior.
In addition, the model may sometimes restrict the acceptable sets of behaviors for agents to
express requirements such as receptiveness, or to avoid certain phenomena, such as Zeno
behaviors. We will not, however, be concerned with these aspects in this paper.

It is straightforward to construct a similar, but more abstract, model of computation QD

to be used for event-based systems in discrete time. It is in fact sufficient to restrict the time
stamp τ to the set of integers Z. This model is more abstract since any discrete time behavior
is also a continuous time behavior, but not the other way around.

Our continuous and discrete time models can be seen as instances of the general definition
of a Tagged-Signal Model (TSM) [17]. In TSM, a model of computation is constructed in a
fixed way by considering a set of values V , and a set of tags T . The set of values represents
the type of data that can be exchanged by objects in the model. The set of tags, on the
other hand, carries an order relationship that is used in the model to encode the particular
notion of time, or, more properly, of precedence. An event is represented by the pair 〈t, v〉,
where t ∈ T tags the “time” of the event, and v ∈ V provides the new value. Processes are
constructed by aggregating events into signals. In our examples, the set of tags T corresponds
to R for the continuous time model, and to Z for the discrete time model. Here we present
them in a more general form (our models are, in fact, agent algebras [24]) because we are
interested in variations of these models that cannot be expressed in TSM. More importantly,
our focus is on building relationships between these models. However, we are not aware of
a general theory that explains the relation between different models expressed in TSM. The
specialization of conservative approximations to this case is part of our future work.

Before we construct abstractions from the continuous time to the discrete time domain
we must first define what it means in these models for an agent to refine another agent.
Because agents in this case are simply sets of behaviors, specifications (which are themselves
agents) can be seen as representing the set of acceptable behaviors. Any agent that contains
only behaviors that are acceptable can be considered a refinement of the specification.
Refinement is thus simply behavior containment. This is consistent with formal methods
based on automata and language containment [7, 11]. More formally, an implementation
p = (I, O, P) refines a specification q = (I, O, Q), written p � q , whenever P ⊆ Q. This
definition requires that p and q have the same set of inputs I and outputs O for the refinement
to hold. A more elaborate model might consider relaxing this requirement, which is used
here to simplify the exposition.

Abstractions from the continuous to the discrete time models may be constructed by
first considering a function h that transforms a continuous time behavior into a discrete
time behavior. One such abstraction simply truncates the real time stamp of the events in a
continuous time behavior by applying the floor operator τ� to obtain a discrete time tag,
and therefore a discrete time behavior. For instance,

h({(a, 1.4), (b, 2.1), (c, 2.3), (b, 3.01), . . .}) = {(a, 1), (b, 2), (c, 2), (b, 3), . . .}.

The abstraction H (p) of an agent p = (I, O, P) can then be obtained by extending h to sets
of behaviors:

H (p) = (I, O, h(P)).

Springer

Form Method Syst Des (2007) 31:1–33 11

Here, clearly, H (p) is a discrete time agent that is an abstract representation of p. In fact, the
behaviors of p that have events that differ only for time stamps that are contained in the same
integral interval are mapped onto the same behavior in H (p). For example, the continuous
time events (a, 2.1) and (a, 2.2) correspond to the same event (a, 2) in the discrete time
model. Consequently, the relative ordering of two actions a and b may be lost.

A Galois connection betweenQC andQD can be constructed as follows. We select α = H
as the abstraction function. For the concretization of an agent p′ = (I, O, P ′) we use the
inverse image of h extended to sets, and thus we define

γ (p′) = (I, O, {x : h(x) ∈ P ′}) = (I, O, h−1(P ′)),

where x ranges on the set of continuous time behaviors (2A×R). In other words, the con-
cretization p of p′ contains all and only the behaviors whose abstraction is in P ′. It follows
from the definitions that α and γ form a Galois connection between QC and QD relative to
the behavior containment order of agents. In fact, both α and γ are monotonic, and the set
theoretic properties

P ⊆ h−1(h(P)),

P ′ = h(h−1(P ′)),

can be used to prove that the conditions of Theorem 2.3 are satisfied.
Similarly, we construct a conservative approximation between the continuous and the dis-

crete time model. Recall that the order for the agents is expressed in terms of set containment,
and is structurally very different from the traditional order on R and Z that we employed in
our earlier example. Thus, using a combination of the floor and the ceiling operator will not
work. In fact, the function H (p) that employs the floor operator can be shown to be an upper
bound since, in this case, every behavior of p is represented by at least one abstract behavior
of H (p). In turn, H (p) represents potentially more behaviors than p, corresponding to all
its possible concretizations. Thus, we choose

�C
u (p) = H (p) = (I, O, h(P)),

which corresponds to α above. Conversely, for a lower bound, we would like the discrete
agent to include abstractions of only the behaviors that are contained in the continuous time
agent. Thus, a behavior x ′ is included in the abstraction �C

l (p) only if p contains all the
concretizations of x ′. This can be represented formally as

�C
l (p) = (I, O, h(P) − h(B(A) − P)),

where B(A) is the set of all the behaviors that can be constructed with actions in the set A
(the alphabet of the agent). For example, the behavior {(a, 1)} is in �C

l (p) only if p contains
a behavior {(a, τ)} for every τ ∈ [1, 2). Note that �l does not correspond to either α or γ

above.
Defining abstraction functions that satisfy the properties for Galois connections and

conservative approximations (Sections 2.4 and 2.5) may appear to be difficult. Here, we
have used a process to derive Galois connections and conservative approximations based
on extending a function on behaviors to act on sets of behaviors. This process can be
generalized by using the notion of an axiality [24], which is similar to the pre and

Springer

12 Form Method Syst Des (2007) 31:1–33

post images of a binary relation proposed by Loiseaux et al. [20], and to the optimistic
and pessimistic process abstractions of Negulescu [22]. This construction, which guaran-
tees that the resulting abstraction have the required properties, can be applied to most
behavior-based models. Because reasoning on individual behaviors is easier than acting
directly on agents, this construction greatly simplifies the process of creating abstractions
between two agent models [5, 6, 24]. Conservative approximations, however, are not just
limited to axialities [24], and can be derived using other set theoretic constructions [3].

Functions other than h (which is based on the floor operator) can be used to relate our
continuous time and discrete time model. For example, we may consider rounding rather
than truncating the real time stamps. Different functions give rise to different Galois con-
nections and conservative approximations. These, in turn, can be used to represent different
implementation strategies in a design flow. While the techniques described in this paper are
independent of the particular form of the functions, this discussion is beyond the scope of
this paper.

We can use our continuous and discrete time models to illustrate the differences between
conservative approximations and Galois connections. Consider, for example, the continuous
time specification that says that an action b must always be preceded by a corresponding
action a. This specification can be expressed in QC by an agent q that contains all and only
the behaviors that have such property. Ignoring the presence of actions other than a and b,
one such behavior is, for example,

x = {(a, 1.1), (b, 2.3), (a, 3.4), (b, 3.8), . . .}.

The Galois connection makes use of the abstraction function α (which corresponds to the
upper bound �C

u of the conservative approximation). The behavior x above, for example, is
represented in α(q) as

x ′ = {(a, 1), (b, 2), (a, 3), (b, 3), . . .}.

The order between (a, 3.4) and (b, 3.8) has been lost. As a result, the concretization γ (α(q))
may contain behaviors such as

y = {(a, 1.1), (b, 2.3), (b, 3.8), (a, 3.9), . . .},

which clearly violate our specification. In other words, even if one shows that α(p) � α(q),
it may still be the case that p �� q .

The above verification technique based on Galois connections is unsound because q ,
our specification, is not represented exactly in QD . Conservative approximations avoid
this problem by explicitly using the lower bound. Because y above does not satisfy the
specification, then clearly y is not a behavior of q . Thus, since x ′ is an abstraction of y, it
follows that x ′ is not included in the lower bound �C

l (q) of the specification, or else q would
have to include y. Therefore, if y were a behavior of some implementation p, then x ′ would
be a behavior of �C

u (p) (since we are using the upper bound for the implementation), and
�C

u (p) � �C
l (q) would not hold. The same occurs if x , rather than y, is a behavior of p, even

though in this case p would satisfy the specification. Hence, the conservative approximation
correctly concludes that the abstract model is unable to tell whether p is a refinement of q
or not.

The lower bound �C
l (q) of the specification is, however, not empty. It contains, for in-

stance, all those behaviors in which the action a and the corresponding action b occur in

Springer

Form Method Syst Des (2007) 31:1–33 13

two different time intervals [t, t + 1), where t ∈ Z, and are ordered according to the speci-
fication. For such behaviors, the concretization cannot possibly invert the order relationship
between the actions. Hence, if �C

u (p) � �C
l (q), then necessarily p � q . In other words, if

the implementation p is “slow enough” compared to the abstract model, verification at the
abstract level is possible. Unlike the abstract interpretation, the conservative approximation
automatically detects this condition.

Our continuous time specification could be represented exactly at the abstract level if, for
example, we were to use sequences of events as behaviors, as opposed to sets of events. This
amounts to decreasing the level of abstraction of the discrete time model. In that case, in fact,
the order of the actions can be preserved, and the verification problem can be addressed using
Galois connections. This technique, however, becomes again unsound if we were to consider
a different specification in continuous time, such as one that requires a certain real-time
deadline, or a certain response time, to be met by the implementation (Burch discusses several
models for both continuous and discrete time [3]). For this case, Galois connections may again
lead to false positive verification results. The situation can be fixed by yet again lowering
the level of abstraction of the discrete time model. This dependency between the verification
methodology and the level of abstraction of the models employed is, however, troublesome.
In particular, it is contrary to the principle of orthogonalization of concerns, whereby we
would like to choose our models, the specification and verification techniques independently,
while ensuring correct results. In addition, the models employed in a design are often fixed
and determined by the particular tools used in the design flow. Conservative approximations,
on the other hand, do not suffer from this problem. Specifically, a conservative approximation
guarantees that if a verification problem can be positively solved at the abstract level, then
it holds at the concrete level, as well. This fact allows the verification methodology to adapt
to the specific models being used, while guaranteeing correct results in the cases that can be
handled at the abstract level. We therefore view conservative approximations and abstract
interpretations as related, but complementary, concepts.

4 Compositionality properties

So far, our discussion has revolved around the relationships that exist between individual
agents. Systems are, however, typically constructed by composing agents, using the operators
of projection, renaming and parallel composition introduced in Section 2.1. In this section
we introduce abstractions that “behave well” with respect to these operators. Before we do
so, we complete the description of the continuous and discrete time models by defining the
exact form of these operators. Other definitions are possible, these are specific choices that
we make for these models.

Consider the continuous time model of computation QC . Projection may be defined by
simply removing from the behaviors of an agent those events that correspond to actions that
must not be retained. For example, if {a, c} is the set of actions that we want to retain, then
the projection of the behavior x = {(a, 1.4), (b, 2.1), (c, 2.3), (b, 3.01), . . .} is

proj({a, c})(x) = {(a, 1.4), (c, 2.3), . . .}.

Renaming is defined similarly by extending to events and to the sets I and O the application
of a renaming function r , i.e., a bijection on the set of signals A. For instance, if a renaming

Springer

14 Form Method Syst Des (2007) 31:1–33

function r maps signal a to in1, signal b to in2 and signal c to out , then

rename(r)(x) = {(in1, 1.4), (in2, 2.1), (out, 2.3), (in2, 3.01), . . .}.

Parallel composition is more complex. Let p1 = (I1, O1, P1) and p2 = (I2, O2, P2) be agents
with alphabets A1 = I1 ∪ O1 and A2 = I2 ∪ O2, respectively. The parallel composition p =
p1 ‖ p2 is defined only if the sets O1 and O2 are disjoint, to ensure that only one agent drives
each action. When defined, an action is an output of the parallel composition if it is an output
of either agent. Conversely, it is an input if it is an input of either p1 or p2, and it is not an
output of the other agent. Thus

O = O1 ∪ O2,

I = (I1 ∪ I2) − (O1 ∪ O2).

The alphabet of the composition is therefore A = A1 ∪ A2. A behavior y is part of the
parallel composition if and only if the projection of y to the alphabet of p1 is a behavior of
p1, and the projection to the alphabet of p2 is a behavior of p2. Formally,

P = {y ∈ B(A) : proj(A1)(y) ∈ P1 ∧ proj(A2)(y) ∈ P2},

where B(A) denotes the set of behaviors that have events with actions in A. This definition
ensures that the behaviors of the composition are consistent with the behaviors of each
component. The same result can be obtained by taking the intersection of the sets of behaviors
of the individual agents, after an operation of inverse projection to the common alphabet. This
is, for example, the way parallel composition is defined in the Tagged-Signal Model [17].

The operators for the discrete time model QD are defined similarly. In fact, these defini-
tions can be equally applied to all models of computation based on the notion of behavior
or execution. As already pointed out, however, the results presented in this paper are more
general and apply also to models whose agents are not derived as sets of executions or
behaviors [24].

Different operators can be used in sequence to build complex systems. We handle this
case in the standard way, by constructing expressions that denote the order of application of
the operators. For instance, a system may be constructed by first instantiating two agents p1

and p2 through a renaming operation, then taking their parallel composition, and finally by
hiding certain internal signals (or actions) that are not relevant to the environment. This can
be represented by an expression E of the form

E = proj(A)(rename(r1)(p1) ‖ rename(r2)(p2)),

where A, r1 and r2 are appropriate projection sets and renaming functions. The expression
E can be evaluated by applying the operators in their order to yield an agent in the model,
which stands for the entire system. In the rest of the paper, we will use the symbol E to
denote both the expression and its evaluation. The context will make clear what is intended.

In general we say that an abstraction H from Q to Q′ is compositional if it commutes with
the operators of the models. The terminology derives from the application of the composition
operator. In this case, we require that for all agents p1 and p2,

H (p1 ‖ p2) = H (p1) ‖ H (p2),

Springer

Form Method Syst Des (2007) 31:1–33 15

where the left hand side is evaluated with the composition operator of Q, while the right
hand side with the one of Q′. The condition above amounts to restricting our attention to only
homomorphisms between models of computation. In practice, however, weaker conditions
are sufficient to guarantee that certain results of interest hold. The next two sections show how
to extend Galois connections and conservative approximations to deal with compositionality.
In the following, we also rely on the assumption that the operators are monotonic relative
to the refinement order of the model. This is a common assumption when dealing with
compositionality, and one that is satisfied by our continuous and discrete time model.

4.1 Abstract interpretations

The extension of Galois connections to compositional functions is traditionally called an
abstract interpretation. Abstract interpretations were originally developed for static analysis
of sequential programs in optimizing compilers [8]. They have also been used for abstracting
and formally verifying models of both sequential and reactive systems. An abstract inter-
pretation between models of computation is essentially a Galois connection with certain
additional properties. It can be defined as follows.

Definition 4.1 (Abstract interpretation). Let Q and Q′ be models of computation. Then Q′

is an abstract interpretation of Q if and only if there exists a Galois connection 〈α, γ 〉 from
Q to Q′ such that for all agents p′, p′

1 and p′
2 in Q′,

1. if p′
1 ‖ p′

2 is defined, then α(γ (p′
1) ‖ γ (p′

2)) � p′
1 ‖ p′

2,

2. if proj(B)(p′) is defined, then α(proj(B)(γ (p′))) � proj(B)(p′),
3. if rename(r)(p′) is defined, then α(rename(r)(γ (p′))) � rename(r)(p′).

The abstraction and concretization functions α and γ from QC to QD introduced in
Section 3 satisfy the three properties of Definition 4.1. Thus, QD is an abstract interpretation
of QC .

Abstract interpretations are used in program analysis because they preserve the application
of the operators from the abstract model to the concrete model. In fact, assume that Q′ is
an abstract interpretation of Q by a Galois connection 〈α, γ 〉, and that E is an expression.
We use the notation E[p/α(p)] to denote the expression E ′ in the abstract domain that is
structurally identical to E (it uses the same operators and in the same order), but where each
leaf agent p in E has been replaced by its abstraction α(p). It can be shown that if E[p/α(p)]
is defined, then

E � γ (E[p/α(p)]).

Hence, abstract interpretations can be used to approximate the evaluation of an expression
at the concrete level by the concretization of the evaluation of the corresponding expression
at the abstract level. The abstract interpretation guarantees that the result computed at the
concrete level conforms to (or refines) the one computed at the abstract level. This is useful
when the evaluation of E is easy (or at least feasible) inQ′, while it is difficult (or impossible)
in Q. If the concretization of the abstract evaluation satisfies the specification, then so does
the evaluation of the original expression (by transitivity).

Since abstract interpretations are derived from Galois connections, they again fail to
preserve refinement verification results. This can be accomplished with the compositional
version of conservative approximations.

Springer

16 Form Method Syst Des (2007) 31:1–33

4.2 Compositional conservative approximations

A refinement verification problem is often of the form E � q , where q is the specification and
E is an expression using the operators of the model. Computing �u(E) involves evaluating
the expression E in the concrete domain, a potentially expensive operation. A compositional
conservative approximation allows us to avoid this computation by translating the expression
into the abstract domain. As an example, consider the verification problem

proj(A)(p1 ‖ p2) � q,

where p1, p2 and q are agents inQ. This corresponds to checking whether an implementation
consisting of two components p1 and p2 (along with some internal signals that are removed
by the projection operation) satisfies the specification q . To take advantage of a conservative
approximation �, one would need to check whether

�u(proj(A)(p1 ‖ p2)) � �l (q),

which requires the evaluation of the composition p1 ‖ p2 (in fact of the whole expression)
in the concrete domain before the abstraction is applied. We say that a conservative approx-
imation � is a compositional conservative approximation if showing

proj(A)(�u(p1) ‖ �u(p2)) � �l (q)

is sufficient to show that the original implementation satisfies its specification. Here, the
abstraction is applied to the components first, and the expression (including the composition)
is then evaluated in the abstract model, where the computation may be simpler. The following
definition makes this notion precise.

Definition 4.2 (Compositional conservative approximations). A conservative approxima-
tion � = (�l , �u) from Q to Q′ is a compositional conservative approximation if and
only if for all expressions E and for all agents q ∈ Q,

E[p/�u(p)] � �l (q) ⇒ E � q,

where the notation E[p/�u(p)] again indicates that every agent p in E must be replaced by
the corresponding agent �u(p).

Again, a compositional conservative approximation is defined so that it has the required
properties. The following theorem provides weaker sufficient conditions (which are easier
to verify) that the upper bound of a conservative approximation must satisfy in order for the
approximation to also be compositional.

Theorem 4.3. Let � = (�l , �u) be a conservative approximation from Q to Q′. If the
following propositions S1 through S3 are satisfied for all agents p, p1 and p2 in Q, then �

is a compositional conservative approximation.

Springer

Form Method Syst Des (2007) 31:1–33 17

S1. If �u(p1) ‖ �u(p2) is defined, then �u(p1 ‖ p2) � �u(p1) ‖ �u(p2).

S2. If proj(B)(�u(p)) is defined, then �u(proj(B)(p)) � proj(B)(�u(p)).

S3. If rename(r)(�u(p)) is defined, then �u(rename(r)(p)) � rename(r)(�u(p)).

The conservative approximation �C from QC to QD is compositional. Recall, in fact, that
the upper and lower bound of �C are derived from a function h that truncates the time stamp
of all events in a behavior by applying the floor operator τ�. We have shown in Section 3
that, in order to obtain a conservative approximation, it is sufficient to extended the function
h, which is a homomorphism on behaviors, to sets of behaviors. There is a general result
that guarantees, by applying Theorem 4.3, that this construction produces a compositional
conservative approximation [3, 24]. This is true regardless of the behavior model, as long
as it satisfies certain basic properties related to the requirements of our agent models. In
particular, and to illustrate our argument, if we interpret the parallel composition operator as
intersection of sets of behaviors, and refinement as set containment, proposition S1 above
follows from the property

h(P1 ∩ P2) ⊆ h(P1) ∩ h(P2),

that holds in general for any function h extended to sets. This result dramatically simplifies the
problem of constructing compositional conservative approximations between agent models.

In a refinement verification problem we might sometimes be interested in applying com-
positionality to the specification as well as to the implementation side of the inequality. In
this case we talk about a fully compositional conservative approximation.

Definition 4.4 (Fully compositional conservative approximations). A conservative approxi-
mation � = (�l , �u) from Q to Q′ is a fully compositional conservative approximation if
and only if for all expressions E1 and E2,

E1[p/�u(p)] � E2[p/�l (p)] ⇒ E1 � E2.

A result similar to Theorem 4.3 can be derived by adding appropriate conditions to the
lower bound of a conservative approximation.

Theorem 4.5. Let � = (�l , �u) be a conservative approximation from Q to Q′ satisfying
propositions S1 through S3 and S4 through S6 below. Then � is a fully compositional
conservative approximation.

S4. If �l (p1 ‖ p2) is defined, then �l (p1) ‖ �l (p2) � �l (p1 ‖ p2).

S5. If �l (proj(B)(p)) is defined, proj(B)(�l (p)) � �l (proj(B)(p)).

S6. If �l (rename(r)(p)) is defined, then rename(r)(�l (p)) � �l (rename(r)(p)).

Again, it can be shown that the conservative approximation �C from QC to QD satisfies
S4 through S6, and therefore is fully compositional. However, unlike propositions S1 through
S3, the corresponding properties S4 through S6 are not necessarily satisfied by a conservative
approximation derived from a homomorphism on behaviors. This may occur since the
projection at the abstract level may overestimate the projection at the concrete level (because

Springer

18 Form Method Syst Des (2007) 31:1–33

it has less information), instead of underestimating it as required. This fact affects the
properties of the refinement maps, as discussed below.

5 Inverse approximations

As we have discussed, if � = (�l , �u) is a conservative approximation from Q to Q′, then
p′ = �u(p) represents a kind of upper bound on p. It is instructive to investigate whether
there is an agent in Q that is represented exactly by p′ rather than just being bounded by p′.
If no agent in Q can be represented exactly, then � is abstracting away too much information
to be of much use for verification. If every agent in Q can be represented exactly, then �l

and �u are equal and are isomorphisms from Q to Q′. These extreme cases illustrate that the
amount of abstraction in � is related to what agents p are represented exactly by �u(p) and
�l (p).

To formalize what it means to be represented exactly in the context of conservative
approximations, we define the inverse �inv of the conservative approximation �. The inverse
of an approximation is a function from the abstract model Q′ to the concrete model Q that,
as we shall see in this section, completes the relationships between Q and Q′ by establishing
a refinement map across the models. The combination of abstraction and refinement will
be used later in Section 7 to discuss the polymorphic properties of agents employed in
heterogeneous systems.

Normal notions of the inverse of a function are not adequate for constructing the inverse
of a conservative approximation �, since � is a pair of functions. Our notion of an inverse
is thus based on the following result.

Lemma 5.1. Let Q and Q′ be models of computation, and let (�l , �u) be a conservative
approximation from Q to Q′. For all p1 and p2 in Q, if �l (p1) = �u(p1) = p′ and �l (p2) =
�u(p2) = p′, then p1 = p2.

Lemma 5.1 shows that when the upper and the lower bound coincide for a particular agent
p, then, intuitively, the abstraction p′ is an exact representation of p. To put it another way,
p does not use any of the additional information provided by the concrete level, since it can
be determined uniquely from its abstraction p′. It is therefore natural to define �inv(p′) = p,
where p is the agent in Q such that �u(p) = �l (p) = p′. If �l (p) �= �u(p), then p is not
represented exactly in Q′. In this case, p is not in the image of �inv.

Definition 5.2 (Inverse of a conservative approximation). Let � = (�l , �u) be a conserva-
tive approximation from Q to Q′. For p′ ∈ Q′.D, the inverse �inv(p′) is defined and is equal
to p if and only if �l (p) = �u(p) = p′.

It follows from the definition that, when �inv is defined, the following identity holds:

�l (�inv(p′)) = �u(�inv(p′)).

The function �inv need not be defined for all p′. This may happen, for example, if the
model Q′ includes information that cannot be expressed exactly in Q. In that case, �inv is a
partial function and is only defined for the agents that have an exact representation in both
models. When an agent has an exact representation in Q and Q′, we say that it can be used
indifferently in the two models, or that it is polymorphic. This is because the agent makes no

Springer

Form Method Syst Des (2007) 31:1–33 19

assumption regarding its behavior based on information that can be expressed exclusively
in either model of computation. However, the representation of the agent in Q and Q′ is, in
general, different. Thus, this notion extends our ability to reuse agents across models that
employ different representations. We will discuss this aspect of our theory in more details in
Section 7.

A conservative approximation thus induces its own inverse in the form of a (possibly
partial) refinement map. The inverse is uniquely determined, and, because of the defining
properties of a conservative approximation, �inv is one-to-one, and, when restricted to the
image of �inv, the functions �l and �u are equal and are the inverse of �inv. In addition, when
defined, �inv is always monotonic and, if either �l or �u is also monotonic, it preserves the
ordering of the agents in both directions. Hence, the inverse embeds the abstract model of
computation (or at least the part of it where it is defined) into the more concrete model, in
a way that is consistent with the chosen abstractions. Different conservative approximations
between the same models may therefore induce different embeddings. This is again an
indication of the importance of choosing the right abstraction for the problem at hand. The
nature of the embedding, in fact, determines how one model is interpreted in terms of the
other, and quantifies the amount of information lost during the abstraction.

As noted, the inverse of a conservative approximation enjoys several properties. The
inverse can also be used to formally understand the roles of the upper and the lower bounds.
Let p be an agent in a model Q such that �inv(�l (p)) and �inv(�u(p)) are defined (since
p is arbitrary, �l (p) and �u(p) are not necessarily equal). From the defining properties of
conservative approximations, it follows that

�inv(�l (p)) � p � �inv(�u(p)).

This fact makes precise the intuition that �l (p) and �u(p) represent a lower and an upper
bound of p, respectively.

Every agent in the abstract model Q′ corresponds, through each abstraction function, to a
(possibly empty) set of agents in the concrete model Q. These sets, in fact, form a partition
of Q, and they are therefore equivalence classes. For conservative approximations, because
there are two abstraction functions, each agent p′ ∈ Q′ determines two equivalence classes
in Q: the class of the agents p such that �u(p) = p′, and the class of the agents p such that
�l (p) = p′. It is interesting to examine the relationship between these equivalence classes
and the inverse. It can be shown that the inverse �inv(p′) of p′ is defined if and only the
greatest element of the class induced by �u is equal to the least element the class induced
by �l , and that, when defined, the inverse is equal to both. Formally, the following results
holds.

Theorem 5.3. Let � = (�l , �u) be a conservative approximation from Q to Q′. Then the
following two statements are equivalent:

Ĺ �inv(p′) is defined and is equal to p,
Ĺ max{p1 : �u(p1) = p′} and min{p1 : �l (p1) = p′} exist and are equal to p.

This is an alternative characterization of the inverse of a conservative approximation
which is useful to explain the role of the abstraction functions.

Using the above characterization we can determine the inverse �C
inv of the conservative

approximation �C = (�C
l , �C

u) from our continuous time model QC to the discrete time
model QD . Given p′ ∈ QD , the equivalence class induced by �C

u includes all agents p ∈ QC

Springer

20 Form Method Syst Des (2007) 31:1–33

that have at least one concrete behavior for every abstract behavior of p′, and at the same
time none of the behaviors which are not concretizations of behaviors of p′. This set has a
maximum element, which is the agent p̂ that includes all the concretizations of the behaviors
of p′ (and nothing else). In addition, of those agents that include all the concretizations, but
possibly more, p̂ is the least, since it does not include any other behavior. Thus p̂ is also the
minimum of the equivalence class induced by �C

l . Hence, �C
inv(p′) = p̂. By these definitions,

the inverse of the conservative approximation is equal to the concretization function of the
Galois connection described in Section 3 (this is not accidental, see Section 6 below). Also,
in this case, the inverse is always defined.

As an example, consider the agent p′ that has only one behavior {(a, τ ′)}, where τ ′ ∈ Z.
Then its inverse is the agent p̂ with the following set of behaviors:

P = {{(a, τ)} : τ ′ ≤ τ < τ ′ + 1}.

Thus, as discussed, p̂ is represented exactly in QD by p′. This is because p̂ may non-
deterministically execute the action a at any time in the interval [τ ′, τ ′ + 1) (since it includes
all such behaviors). The abstraction functions determine this interpretation, which is made
explicit by their inverse. This also explains why the specification q in Section 3 could not be
represented exactly in QD . In fact, x ′ is not contained in �C

l (q). If it were, q would have to
contain behaviors, such as y in Section 3, where action b precedes action a in the time span
from 3 to 4, which contradicts the specification. Hence �C

u (q) �= �C
l (q).

There exist several injective functions from QD to QC . One could for instance define a
different refinement map G where G(p′) above is the agent with only the behavior {(a, τ)},
where τ = τ ′ is the original integer time stamp interpreted as a real. This choice, however,
is arbitrary relative to the abstraction functions. An equally valid choice would be to assign
τ = τ ′ + ε, where 0 ≤ ε < 1. These functions are therefore not inverses of our conservative
approximations. Nonetheless, G could potentially be the inverse of a different conservative
approximation, provided that the abstraction functions and, potentially, the order on the
agents are changed appropriately to reflect the intended implementation strategy. In this
case, also the interpretation of what is represented exactly by the two models would change.

It is interesting to consider the compositionality properties of the inverse of a conservative
approximation with respect to the operators of the models, as discussed for the abstraction
functions in Section 4. We have already pointed out that the inverse of a conservative
approximation is monotonic, and in fact, if the abstraction functions are also monotonic, it
preserves the refinement relationship in both directions. In addition, when the upper bound
of a conservative approximation satisfies S1 through S3 of Theorem 4.3, then we can prove
similar properties for the inverse of the conservative approximation.

Theorem 5.4. Let � = (�l , �u) be a compositional conservative approximation from Q to
Q′ satisfying S1 through S3. Let p′

1 and p′
2 be agents in Q′ such that �inv(p′

1) and �inv(p′
2)

are both defined. Then

1. If �inv(p′
1 ‖ p′

2) is defined, then �inv(p′
1) ‖ �inv(p′

2) � �inv(p′
1 ‖ p′

2).
2. If �inv(proj(B)(p′

1)) is defined, then proj(B)(�inv(p′
1)) � �inv(proj(B)(p′

1)).
3. If �inv(rename(r)(p′

1)) is defined, then
rename(r)(�inv(p′

1)) � �inv(rename(r)(p′
1)).

Theorem 5.4 shows that the inverse of a compositional conservative approximation can be
used as a concretization function, similarly to the one employed by an abstract interpretation,

Springer

Form Method Syst Des (2007) 31:1–33 21

to give an upper approximation of the evaluation of an expression (this fact will be made
precise in Section 6).

Since the inverse �inv of a conservative approximation is one-to-one, it is natural to ask
whether it also commutes with the operators, instead of just approximating them. This is the
case for a particular class of fully compositional conservative approximations.

Theorem 5.5. Let � = (�l , �u) be a fully compositional conservative approximation from
Q to Q′ satisfying propositions S1 through S3 and S4 through S6. Further assume that for
all agents p ∈ Q, �l (p) � �u(p). Then, for the subset of Q′ where �inv is defined,

�inv(p′
1 ‖ p′

2) = �inv(p′
1) ‖ �inv(p′

2),

�inv(rename(r)(p′)) = rename(r)(�inv(p′)),

�inv(proj(B)(p′)) = proj(B)(�inv(p′)).

In this case, the inverse is effectively a full embedding of the abstract model (or the portion
of the abstract model where the inverse is defined) into the concrete model. In other words,
the abstract model is isomorphic to a subset of the concrete model. We will consider this fact
in more details when discussing polymorphism in Section 7.

6 Conservative approximations induced by Galois connections

In Section 1 we have argued that there exists a close relationship between conservative
approximations, Galois connections and abstract interpretations. In this section we explore
this relationship in more detail.

Let Q and Q′ be two models of computation. Recall from Section 2 that a Galois
connection from Q to Q′ is composed of an abstraction function α from Q to Q′ and of a
concretization function γ from Q′ to Q. In contrast, a conservative approximation consists
of a pair of functions �l and �u that go from Q to Q′, with an induced inverse function �inv

from Q′ to Q. We have discussed how the two functions �l and �u have a distinguished role
as the abstraction of the specification and the implementation, respectively.

The relationship between Galois connections and conservative approximations can be
understood by introducing a second Galois connection that takes the role of the lower bound
of a conservative approximation. To function as a lower bound, the order properties of the
Galois connection must be reversed. Such an “inverted” Galois connection is equivalent to a
regular one that goes in the reverse direction, i.e., from Q′ to Q. In the rest of this paper, we
will take advantage of this correspondence. For our notation, we will use symbols 〈αu, γu〉
for a Galois connection from Q to Q′, and 〈γl , αl〉 for a Galois connection from Q′ to Q.
In the case of the Galois connection from Q′ to Q, we use the symbol γl for the abstraction
map, and αl for the concretization map. This choice is made clear by our results on the
correspondence between conservative approximations and abstract interpretations.

Our first result exactly characterizes the conditions under which a pair of Galois connec-
tions forms a conservative approximation.

Theorem 6.1. Let 〈αu, γu〉 be a Galois connections from Q to Q′ and 〈γl , αl〉 a Galois
connection from Q′ to Q. Then, (αl , αu) is a conservative approximation from Q to Q′ if and
only if for all agents p′ ∈ Q′, γu(p′) � γl (p′).

Springer

22 Form Method Syst Des (2007) 31:1–33

In that case, we say that (αl , αu) is the conservative approximation induced by the pair of
Galois connections 〈αu, γu〉 and 〈γl , αl〉. The degree by which γu and γl differ influences the
accuracy of the conservative approximation. In particular, the closer γl is to γu , the tighter
the resulting conservative approximation, as shown by the next result.

Corollary 6.2. Let 〈αu, γu〉 be a Galois connections from Q to Q′ and 〈γl , αl〉 a Galois
connection from Q′ to Q. Let 〈γ ′

l , α
′
l〉 be a Galois connection between Q′ and Q such that

for all agents p′ ∈ Q′,

γu(p′) � γl (p′) � γ ′
l (p′).

Then � = (αl , αu) and � ′ = (α′
l , αu) are conservative approximations such that for all

agents p ∈ Q,

α′
l (p) � αl (p).

Given a Galois connection 〈αu, γu〉 between Q and Q′, the tightest approximation is
obtained using a Galois connection 〈γl , αl〉 from Q′ to Q such that γu = γl . If no such
connection can be found, then several “maximal” approximations may exist, but no tightest
approximation. This is possible because γu is a concretization function and γl is an abstraction
function of their respective Galois connections. These functions are not arbitrary, and must
satisfy certain conditions that can be derived from the definition of Galois connection. While
it is possible that some function γu satisfy both sets of conditions (which is necessary in
order for γu to also be an abstraction map), this is not required.

A related result characterizes the inverse of a conservative approximation � = (αl , αu)
induced by a pair of Galois connections. It shows that the inverse is defined at an agent
p′ ∈ Q′ if and only if γu(p′) and γl (p′) are equal, and are “mutually” injective.

Theorem 6.3. Let � = (αl , αu) be the conservative approximation from Q to Q′ induced by
the Galois connections 〈αu, γu〉 from Q to Q′ and 〈γl , αl〉 from Q′ to Q. Then, for all agents
p′ ∈ Q′, �inv(p′) is defined and is equal to p if and only if

Ĺ γu(p′) = γl (p′) = p, and
Ĺ if p′

1 ∈ Q′ is an agent such that γu(p′
1) = γl (p′

1) = p, then p′
1 = p′.

The conditions on γu and γl expressed in Theorem 6.3 are weaker than having γu and γl

be injective. This is because the condition of injectivity (the second bullet above) must be
satisfied only on those elements p′

1 for which both γu and γl evaluate to p. Because these
results can be inverted to apply in the reverse direction (see Section 7 below), the weaker
condition gives us a higher degree of freedom to construct abstractions.

Conversely, we can provide sufficient conditions for a conservative approximation to
form a pair of Galois connections. It is sufficient that the upper and lower bound be mono-
tonic (which is a necessary condition for Galois connections), and that the inverse of the
conservative approximation be defined everywhere.

Theorem 6.4. Let Q and Q′ be models of computation and let � = (�l , �u) be a conser-
vative approximation from Q to Q′ such that

Springer

Form Method Syst Des (2007) 31:1–33 23

1. �u and �l are monotonic, and
2. �inv(p′) is defined for all p′ ∈ Q′.D.

Then

Ĺ 〈�u, �inv〉 is a Galois connection from Q.D to Q′.D, and
Ĺ 〈�inv, �l〉 is a Galois connection from Q′.D to Q.D.

The condition that �inv be defined everywhere is crucial. In fact, there are monotonic
conservative approximations such that the abstraction functions are not abstraction maps of
any Galois connection. This occurs when the equivalence classes induced by �u and �l do
not have the necessary greatest and lowest element, as described by Theorem 5.3.

The same relationship that holds between Galois connections and conservative approxi-
mations can be established between abstract interpretations and compositional conservative
approximations. This correspondence follows from the fact that, despite being defined in dif-
ferent terms, the three conditions of Definition 4.1 are equivalent to the conditions S1 through
S3 of Theorem 4.3. Therefore, abstract interpretations, when used in conjunction with a sec-
ond Galois connection from Q′ to Q, induce compositional conservative approximations.

Corollary 6.5. Let Q′ be an abstract interpretation of Q by a Galois connection 〈αu, γu〉.
Let 〈γl , αl〉 be Galois connection between Q′ and Q. Then the following two statements are
equivalent:

Ĺ For all p′ ∈ Q′.D, γu(p′) � γl (p′).
Ĺ (αl , αu) is a compositional conservative approximation from Q to Q′.

The inverse of the conservative approximation is again characterized as already discussed
in Corollary 6.2 and Theorem 6.3.

The relationship between the Galois connection and the conservative approximation from
the continuous time model QC to the discrete time model QD derived in Section 3 can
now be made precise. In particular, because the inverse of the conservative approximation
is defined everywhere (Section 5), and because �C

l and �C
u are both monotonic, the pairs

〈�C
u , �C

inv〉 and 〈�C
inv, �

C
l 〉 are Galois connections. In addition, �C

u = α and �C
inv = γ . There-

fore, 〈�C
inv, �

C
l 〉 is the additional Galois connection to be used in conjunction with 〈α, γ 〉 to

obtain a conservative approximation. Our results also show that this approximation is the
tightest that can be induced by 〈α, γ 〉.

7 Refinement and polymorphism

In Section 2.5 we have characterized a conservative abstraction as a pair of functions that
form a conservative approximation. Similarly, a refinement can be established in the form
of a conservative approximation that goes in the opposite direction. Thus, our notion of
refinement does not correspond exactly to the inverse of the abstraction, since, as we have
noted, the inverse may not be defined for all agents. Nonetheless, our results show that if the
inverse is defined for some agent, then the upper and the lower bounds of the refinement are
the same and are equal to the inverse.

In the rest of the paper, we will restrict our attention to conservative approximations
induced by a pair of Galois connections. In fact, because abstraction and refinement are

Springer

24 Form Method Syst Des (2007) 31:1–33

symmetric, Galois connections are particularly well behaved and make it easy to derive the
tight relationship that exists between the abstraction and the refinement functions. Observe,
in fact, that in our previous results about Galois connections, the hypothesis were symmetric
relative to our domains of agents: a Galois connection exists from Q to Q′, and a second
Galois connection exists from Q′ to Q. Thus, those results are dually valid by simply
replacing all occurrences of αu by γl , and all occurrences of γu by αl , and by exchanging
the domains of agents. Therefore, the same pair of Galois connections may induce two
conservative approximations, one from Q to Q′ (the abstraction), and a second from Q′ to Q
(the refinement). As a special case, if Q is a refinement of Q′, in the sense that it implements
all of the agents in Q′, then the conservative approximation from Q′ to Q is not a proper
abstraction.

Suppose now that Q and Q′ are models, and that � = (αl , αu) is a conservative ap-
proximation from Q to Q′ induced by a pair of Galois connections 〈αu, γu〉 and 〈γl , αl〉.
Theorem 6.1 shows that in order for � ′ = (γu, γl) to be a conservative approximation from
Q′ to Q we need that αl (p) � αu(p) for all agents p ∈ Q.D. This condition is commonly
satisfied by a conservative approximation �, and simply formalizes the intuition that the
lower bound of an agent must be less than or equal to its upper bound (although, as noted
earlier, this is not a necessary condition for a conservative approximation). In addition, the
inverses �inv and � ′

inv of the conservative approximations are inverse of each other, i.e., for all
p ∈ Q.D and p′ ∈ Q′.D, �inv(p′) = p if and only if � ′

inv(p) = p′. The situation is therefore
the one depicted in Fig. 1, where Galois connections are denoted by pairs of dotted arcs and
by a straight arrow that indicates the direction of the connection. The shaded region in Q
corresponds to the set of agents that can be represented exactly in Q′. This region is isomor-
phic to the corresponding shaded region in Q′ which consists of the agents in Q′ that can be
represented exactly in Q. In other words, a subset of the agents of the two semantic domains
can be represented indifferently in either domain, while the remaining agents can only be
approximated by the other domain (i.e., their upper and lower bounds do not coincide; see
Section 5, Definition 5.2). We say that an agent p that can be represented exactly in two

Fig. 1 Abstraction, Refinement
and their Inverses

Springer

Form Method Syst Des (2007) 31:1–33 25

different models of computation Q and Q′ is polymorphic relative to Q and Q′. In this case,
while the form in which the agent is represented in the two models may be different, its
behavior is such that it does not rely on any assumption that can be expressed in only one of
the models. This notion of polymorphism depends upon the particular choice of conservative
approximation between the agent models. This is because the approximation determines how
each model interprets the agents that belong to the other model. In particular, the approxi-
mation determines what information is and is not expressible in one model, relative to the
other. Different approximations may thus lead to different forms of interpretations. This is
unlike other notions of polymorphism that rely upon a common underlying semantics, such
as the automata model in Ptolemy II [19].

If Q′ is strictly more abstract than Q, in the sense that the agents in Q′ contain strictly
less information than those in Q, then �inv is total (assuming � is the tightest conservative
approximation). In that case, the conservative approximation from Q′ to Q is essentially an
embedding of Q′.D into Q.D, equipped with the respective orders, and the shaded region in
Q′ extends to the entire domain of Q′. Hence, all agents of Q′ can be represented exactly in
Q, and it is therefore straightforward to consider the heterogeneous composition of agents in
the context of Q. This is the case, for example, of our continuous and discrete time models
QC and QD . There, as already discussed, a continuous time agent is polymorphic whenever
the actions that it executes occur non-deterministically in an integer time interval.

The composition of non-polymorphic agents across model boundaries is more problem-
atic. Assume in particular that p ∈ Q.D is an agent such that �u(p) �= �l (p). In that case,
p is not represented exactly in Q′, or, to put it another way, p is not polymorphic relative to
the chosen domains. There are different ways to get around this problem, and they mainly
consist of encapsulating p using a translator that does make the combination polymorphic.
This is, for example, the technique used in the Ptolemy II framework, where an intermediate
director compatible with the agent is used to mediate the communication between the agent
that is not polymorphic, and the domain in which the designer wishes to use it.

Translations in our framework take the form of the topological notions of closure and
interior systems [26]. We have already seen that a conservative approximation � = (�l , �u)
determines for each agent the equivalence classes of the agents that have the same upper
bound and the same lower bound, respectively. Theorem 5.3 shows that if the inverse of a
conservative approximation is defined for an agent p′, then �inv(p′) is the greatest and least
element, respectively, of these equivalence classes. When the upper and lower bound are
monotonic functions, these elements constitute a closure and an interior for the elements of
their respective equivalence classes.

Theorem 7.1. Let � = (�l , �u) be a conservative approximation from Q to Q′ such that
�l and �u are monotonic and �inv is defined for all agents p′ in Q′. Let C, I : Q.D �→ Q.D
be operators of Q defined as

C(p) = �inv(�u(p)),

I (p) = �inv(�l (p)).

Then C is a closure operator, and I is an interior operator.

The closure and the interior operator essentially “complete” an agent in order to make it
compatible with the requirements of the abstract domain. The closure produces an abstraction
within Q by choosing the greatest element of the equivalence class induced by �u , thus

Springer

26 Form Method Syst Des (2007) 31:1–33

potentially “adding” behaviors that are required by the abstract domain. The interior, on the
other hand, computes a refinement in Q, by choosing the least element of the equivalence
class induced by �l , and thus “removing” behaviors that are incompatible with the abstract
domain. Other forms of completion that, for example, handle the case in which �inv is not
total are also possible. We do not however explore them further here, and reserve them for
our future work. Our current interest is also directed towards understanding the relationships
between the operational semantics of simulators for different models of computation, and to
derive synchronization constraints that make the simulation consistent with the abstraction.
Our approach consists of augmenting the models with partial behaviors that denotationally
represent the progress in terms of simulation steps.

8 Related work

In addition to abstract interpretations and conservative approximations, other forms of ab-
straction and methods for heterogeneous modeling and for verification have been proposed
in the literature.

One example is the homomorphic reduction proposed by Kurshan [15, 16]. This technique
can be applied to models of behavior that consist of languages (sets of sequences) that are
recognized by a class of automata. Here, each automaton P constructed over a set of symbols
L (an L-automaton) accepts a language L(P) ⊆ Lω, where Lω denotes the set of all infinite
sequences of symbols from L . Verification in this context is the process of determining
whether the language L(P) recognized by an implementation automaton P is contained in
the language L(T) accepted by the specification automaton T , i.e., that L(P) ⊆ L(T). This
problem can be reduced to a more abstract language L ′ by verifying that L(P ′) ⊆ L(T ′),
for appropriate abstract L ′-automata P ′ and T ′. The main result1 states that L(P ′) ⊆ L(T ′)
implies L(P) ⊆ L(T) provided there exists a language homomorphism � : Lω �→ L ′ω such
that �(L(P)) ⊆ L(P ′) and �(L(T #)) ⊆ L(T ′#). In this case, � is said to be co-linear2

for (P, T ; P ′, T ′). In the co-linearity condition above, the notation T # denotes the dual
automaton3 of T , which is closely related to language complementation.

In Lemma 2.2 we have argued that one function on languages is not sufficient to guarantee
the preservation of such verification result. The apparent contradiction with the use of just
one language homomorphism � can be reconciled by accounting for the use of the dual
automaton in the co-linearity condition. Effectively, if � is co-linear for (P, T ; P ′, T ′), then

it can be shown that not only is �(L(P)) ⊆ L(P ′), but also that L(T ′) ⊆ �(L(T)), where the
overline bar denotes language complementation. Hence, the language of the specification T

is transformed according to a different abstraction functions, namely �(L(T)) = �(L(T)).
Interestingly, � and � form the upper and lower bound of a conservative approximation
that is closely related (and under certain conditions equal) to the conservative approximation
induced by a homomorphism [3, 4, 24]. Co-linearity of � thus simply ensures that L(P ′) and
L(T ′) provide looser bounds, a condition that still guarantees soundness in the verification.
Conservative approximations generalize the technique of homomorphic reduction to arbitrary
agent models, and can therefore be applied to models that are not described by automata.

1 Theorem 8.5.2 in [16].
2 Definition 8.5.1 in [16].
3 Definitions 6.2.19 and 6.2.26 in [16].

Springer

Form Method Syst Des (2007) 31:1–33 27

Model checking techniques based on abstraction/refinement is also a well studied related
field of application for abstraction mappings [1, 7, 10], and is a typical application of
the framework of abstract interpretations. The technique consists of first deriving an over-
approximation of a state-based model using, for instance, predicate abstraction [13], in which
each state is characterized by the predicates that it satisfies. A transitions exists between
two abstract states whenever a transition exists between any of the possible corresponding
concrete states. The abstract model is constructed in a way that ensures that the property
to be verified can be represented exactly (by, for example, an appropriate choice of the
predicates). Therefore, if the property is verified in the abstract domain, it is also verified
in the concrete domain (see Theorem 2.4). If not, an abstract counter-example is generated
and compared to the concrete model. If a corresponding concrete counter-example exists,
then the property is violated. Otherwise, the abstract domain is refined by introducing
additional predicates in a way that rules out the abstract counter-example, and the procedure
is repeated until the satisfaction of the property is determined. The approach based on
conservative approximations differs because, as explained, it allows non-trivial abstraction
of the specification, as well as of the implementation. Exploring the ramifications of our
technique in the area of model checking is, however, part of our future work. Model checking
techniques also exist that use under-approximations, rather than over-approximations, to
derive an abstracted model [23]. This is similar to our use of the lower bound function.
However, unlike our use of the lower bound, the under-approximation is applied to the
implementation, rather than to the specification. This corresponds again to using a Galois
connection, one that goes in the reverse direction. By doing this, if the abstract model
violates the property under verification, then it can be concluded that also the concrete model
violates the property. Instead, if the abstract model satisfies the property, the verification is
inconclusive and the abstract model must be refined until the property is proved incorrect,
or the abstraction becomes exact. This approach may be useful when the interest lies in
finding true counter-examples and bug traces. One could apply a similar technique using
conservative approximations, where the lower bound is applied to the implementation and
the upper bound to the specification. In this case, the negative refinement result would be
preserved from the abstract to the concrete model. This is also part of our future work.

Another formalization of abstraction is based on theory interpretations [21]. Here, an
abstract architecture description and a concrete architecture description are both translated
to theories in a logical language (typically first-order logic). The concrete architecture is
correct relative to the abstract architecture if there is a theory interpretation I from the
abstract theory � to the concrete theory �′; that is, for every formula F ,

F ∈ � ⇒ I (F) ∈ �′.

In addition, it may be required that I be faithful:

F /∈ � ⇒ I (F) /∈ �′.

Our approach does not interpret architectures, or other agents, as logical theories. Instead,
they are directly modeled as mathematical objects. This can be thought of as a model based
approach, as opposed to a theory based approach. In a model based approach, within a given
model of computation, the refinement relation is just a binary relation on objects in the model.
This notion of refinement is easier to reason about than theory interpretations, but it is less
flexible for comparing agents in different models of computation. This can be addressed by

Springer

28 Form Method Syst Des (2007) 31:1–33

introducing abstract interpretations or conservative approximations. A major contribution of
this paper is new insights into the relationship between these model based approaches.

Process Spaces [22] is a very general class of concurrency models, and it compares quite
closely to trace-based agent models [24]. Given a set of executions E , a Process Space SE
consists of the set of all the processes (X, Y), where X and Y are subsets of E such that
X ∪ Y = E . The sets of executions X and Y of a process are not necessarily disjoint, and
they represent the assumptions (Y) and the guarantees (X) of the process with respect to its
environment. As in trace-based agent models, executions are abstract objects.

Different sets of abstract executions E1 and E2 induce different Process Spaces SE1 and
SE2 . The notion of process abstraction from SE1 to SE2 in Process Spaces is related to the
notion of conservative approximation. In particular, process abstractions are defined as the
Galois connections between process spaces that are derived from a relation on the set of
abstract executions. The connections are obtained as axialities [12]. A process abstraction is
classified as optimistic or pessimistic according to whether it preserves certain verification
results from the concrete to the abstract or from the abstract to the concrete model. These
two kinds of abstraction can be used in combination to preserve verification results both
ways. However, in that case, the two models are isomorphic since there is effectively no loss
information. Optimistic and pessimistic process abstractions roughly correspond to the two
abstraction functions of conservative approximations. However, our use of these functions
is significantly different, since we apply them in combination (one for the specification, the
other for the implementation). Consequently, even when used in combination, our models
need not be isomorphic, so that we obtain stronger preservation results without sacrificing
the abstraction.

Winskel et al. [25] propose a framework based on category theory that is related to ours.
In their formalism, each model of computation is turned into a category where the objects
are the agents, and the morphisms represent a refinement relationship based on simula-
tions between the agents. The authors study a variety of different models that are obtained
by selecting arbitrary combinations of three parameters: behavior vs. system (e.g., traces
vs. state machines), interleaving vs. non-interleaving (e.g., state machines vs. event struc-
tures) and linear vs. branching time. The common operations in a model are derived as
universal constructions in the category. Relationships can be constructed by relating the cat-
egories corresponding to different models by means of functors, which are homomorphisms
of categories that preserve morphisms and their compositions. When categories represent
models of computation, functors establish connections between the models in a way sim-
ilar to abstraction maps and semantic functions. In particular, when the morphisms in the
category are interpreted as refinement, functors become essentially monotonic functions
between the models, since preserving morphisms is equivalent to preserving the refinement
relationship.

In [25], the authors thoroughly study the relationships between the eight different models
of concurrency above by relating the corresponding categories through functors. In addition,
these functors are shown to be components of reflections or co-reflections. These are particular
kinds of adjoints, which are pairs of functors that go in opposite directions and enjoy
properties that are similar to the order preservation of the abstraction and concretization maps
of a Galois connection. When the morphisms are interpreted as refinement, reflections and co-
reflections generalize the concept of Galois connection to preorders. In fact, the relationships
between categories based on adjoints are similar in nature to the abstractions and refinements
obtained by abstract interpretations and conservative approximations. However, as described
above for abstract interpretations, conservative approximations use independent abstractions
for the implementation and the specification in order to derive a stronger result in terms of

Springer

Form Method Syst Des (2007) 31:1–33 29

preservation of the refinement relation, and avoidance of false positive verification results.
Indeed, we require two Galois connections, instead of one, to determine a single conservative
approximation (see Section 6). In the work presented in [25], this translates in two adjoints
per pair of categories.

9 Conclusions

We presented the use of abstraction and refinement functions between models of computa-
tion for the verification and design of heterogeneous systems. We compared conservative
approximations to abstract interpretations and we showed that, unlike abstract interpreta-
tions, conservative approximations always preserve refinement verification results from an
abstract to a concrete model, while avoiding false positives. Therefore, conservative approxi-
mations are better suited for design methodologies that use several models of computation. In
particular, because they always guarantee correctness, conservative approximations provide
more flexibility in choosing the verification strategy and the hierarchy of models used in
the design flow. We then completed our comparison by showing that a class of conservative
approximations can be derived by using pairs of abstract interpretations (or Galois connec-
tions), going in opposite directions. A set of necessary and sufficient conditions characterizes
the abstraction and concretization functions that can be used for this purpose. In addition,
we introduced the inverse of a conservative approximation to identify components that can
be used indifferently in several models, thus enabling reuse across domains of computation.
By providing embeddings between agent models, inverses induce topological closure and
interior operators that identify ways of adapting agent behaviors when interfacing between
different models. The resulting theory can be used as the basis of frameworks that support
heterogeneous modeling.

Our current work focuses on extending techniques that make it easier to construct conser-
vative approximations between agent models. The axialities of homomorphisms on behaviors
described in this paper is one such example. However, homomorphisms are usually defined
to preserve the alphabet of behaviors, so that the induced conservative approximations, too,
must preserve the alphabet of agents. More interesting conservative approximations can be
constructed by letting the homomorphism change the alphabet of a behavior, for example
by hiding certain signals, like clocks and activation signals, that have no meaning in a more
abstract model. This is also appropriate for converting a detailed protocol specification into
a more abstract, transaction-based, specification. Arbitrary changes of the alphabet are also
possible. In this case, however, the homomorphism must not only be applied to the behaviors,
but also to the operators, in order to correctly translate expressions. In this case the homo-
morphism becomes similar to a functor between categories, where a category has behaviors
as objects and the operators as morphisms.

A model that uses behaviors as its underlying structure may impose restrictions on the
kind of agents that can be constructed. For example, only receptive (or progressive, or input
enabled) agents might be allowed. The axialities of a homomorphism, however, may not
necessarily yield agents that satisfy such conditions. A promising avenue of future research
consists therefore in identifying the agent that most faithfully approximates the missing
abstraction, while satisfying the constraints imposed by the model, and while still functioning
as the bound of a conservative approximation. This would constitute a generalization of the
technique proposed by Loiseaux et al. [20] on property-preserving abstractions in the context
of transition systems.

Springer

30 Form Method Syst Des (2007) 31:1–33

A Appendix: Proofs of main results

A.1 Proof of Theorem 6.1

The proof of Theorem 6.1 relies on the following lemma.

Lemma A.1. Let Q and Q′ be models of computation and let 〈αu, γu〉 be a Galois connec-
tions from Q to Q′ and 〈γl , αl〉 a Galois connection from Q′ to Q. Then the following two
statements are equivalent:

1. For all agents p′ ∈ Q′, γu(p′) � γl (p′).
2. For all agents p1 and p2 in Q, αu(p1) � αl (p2) ⇒ p1 � p2.

Proof: For the forward direction (1 ⇒ 2), let p1 and p2 be agents from Q, and assume
αu(p1) � αl (p2). Since 〈αu, γu〉 is a Galois connection, by Theorem 2.3, p1 � γu(αu(p1)).
The proof is then completed by the following series of implications.

p1 � γu(αu(p1))

since by hypothesis αu(p1) � αl (p2),

and since, by Theorem 2.3, γu is monotonic

⇒ p1 � γu(αl (p2))

since by hypothesis, γu � γl

⇒ p1 � γl (αl (p2))

since, by Theorem 2.3, γl (αl (p2)) � p2, and by transitivity

⇒ p1 � p2.

For the reverse direction (2 ⇒ 1), let p′ ∈ Q′ be an agent. By Theorem 2.3, αu(γu(p′)) �
p′ and p′ � αl (γl (p′)). Therefore, by transitivity, αu(γu(p′)) � αl (γl (p′)) and consequently,
by hypothesis, γu(p′) � γl (p′). �

Theorem 6.1 follows directly from the definition of conservative approximation and from
Lemma A.1.

A.2 Proof of Theorem 6.3

The proof of Theorem 6.3 relies on the following lemma.

Lemma A.2. Let Q and Q′ be models of computation and let 〈αu, γu〉 be a Galois con-
nections from Q to Q′ and 〈γl , αl〉 a Galois connection from Q′ to Q such that for all
agents p′ ∈ Q′, γu(p′) � γl (p′). Then for all agents p ∈ Q and p′ ∈ Q′ the following two
statements are equivalent:

1. αu(p) = αl (p) = p′

2. • γu(p′) = γl (p′) = p, and
• if p′

1 ∈ Q′ is an agent such that γu(p′
1) = γl (p′

1) = p, then p′
1 = p′.

Springer

Form Method Syst Des (2007) 31:1–33 31

Proof: For the forward direction (1 ⇒ 2), let p be an agent from Q, and assume αu(p) =
αl (p) = p′. Since 〈αu, γu〉 is a Galois connection, by Theorem 2.3, p � γu(αu(p)). Consider
the following series of implications.

p � γu(αu(p))

since by hypothesis αu(p) = αl (p)

⇒ p � γu(αu(p)) = γu(αl (p))

since by hypothesis, γu � γl

⇒ p � γu(αu(p)) = γu(αl (p)) � γl (αl (p))

by Theorem 2.3

⇒ p � γu(αu(p)) � γl (αl (p)) � p

since by hypothesis αu(p) = αl (p) = p′

⇒ p � γu(p′) � γl (p′) � p.

Therefore γu(p′) = γl (p′) = p. Let now p′
1 ∈ Q′ be such that γu(p′

1) = γl (p′
1) = p. Then,

since 〈αu, γu〉 and 〈αl , γl〉 are Galois connections, and since by hypothesis p � γu(p′
1) and

γl (p′
1) � p,

αu(p) � p′
1 � αl (p).

Since by hypothesis αu(p) = αl (p) = p′, p′ � p′
1 � p′. Therefore, p′

1 = p′.
For the reverse direction (2 ⇒ 1), let p′ ∈ Q′ be an agent such that γu(p′) = γl (p′) = p,

and assume that if p′
1 ∈ Q′ is such that γu(p′

1) = γl (p1) = p then p′
1 = p′. Note that because

p = γu(p′), it is also p � γu(p′), and therefore, since 〈αu, γu〉 is a Galois connection,
αu(p) � p′. Then, consider the following series of implications that start from the result of
Theorem 2.3:

p � γu(αu(p))

since by hypothesis, γu � γl

⇒ p � γu(αu(p)) � γl (αu(p))

since by the argument above αu(p) � p′

and since γl is monotonic (by Theorem 2.3)

⇒ p � γu(αu(p)) � γl (αu(p)) � γl (p′)

since by hypothesis γl (p′) = p

⇒ p � γu(αu(p)) � γl (αu(p)) � γl (p′) = p.

Therefore, γu(αu(p)) = γl (αu(p)) = p. Hence, by hypothesis, αu(p) = p′. The proof that
αl (p) = p′ is similar. �

Theorem 6.3 follows directly from the definition of inverse of a conservative approxima-
tion and from Lemma A.2.

Springer

32 Form Method Syst Des (2007) 31:1–33

A.3 Proof of Theorem 6.4

Theorem 6.4. Let Q and Q′ be models of computation and let � = (�l , �u) be a conser-
vative approximation from Q to Q′ such that

1. �u and �l are monotonic, and
2. �inv(p′) is defined for all p′ ∈ Q′.

Then

Ĺ 〈�u, �inv〉 is a Galois connection from Q to Q′, and
Ĺ 〈�inv, �l〉 is a Galois connection from Q′ to Q.

Proof: We show that 〈�u, �inv〉 is a Galois connection by proving that for all agents p ∈ Q
and p′ ∈ Q′,

�u(p) � p′ ⇔ p � �inv(p′).

We separately prove the forward and backward implications as follows.

�u(p) � p′

by definition of inverse of a conservative approximation

⇔ �u(p) � �l (�inv(p′))

and since (�l , �u) is a conservative approximation

⇒ p � �inv(p′).

Similarly,

p � �inv(p′)

since, by hypothesis, �u is monotonic

⇒ �u(p) � �u(�inv(p′))

by definition of inverse of a conservative approximation

⇔ �u(p) � p′.

The proof that 〈�inv, �l〉 is a Galois connection is similar. �

References

1. Alur R, Itai A, Kurshan R, Yannakakis M (1995) Timing verification by successive approximation. Inf
Comput 118(1):142–157

2. Balarin F, Lavagno L, Passerone C, Sangiovanni-Vincentelli A, Watanabe Y, Yang G (2002) Concurrent
execution semantics and sequential simulation algorithms for the metropolis meta-model. In: Proceedings
of the tenth international symposium on hardware/software codesign. Estes Park, CO, May 2002

3. Burch JR (1992) Trace algebra for automatic verification of real-time concurrent systems. PhD thesis,
School of Computer Science, Carnegie Mellon University

Springer

Form Method Syst Des (2007) 31:1–33 33

4. Burch JR, Passerone R, Sangiovanni-Vincentelli AL (2001) Overcoming heterophobia: modeling concur-
rency in heterogeneous systems. In: Koutny M, Yakovlev A (eds) Application of concurrency to system
design

5. Burch JR, Passerone R, Sangiovanni-Vincentelli AL (2001) Using multiple levels of abstractions in
embedded software design. In: Henzinger and Kirsch [14], pp 324–343

6. Burch JR, Passerone R, Sangiovanni-Vincentelli AL (2002) Modeling techniques in design-by-refinement
methodologies. In: Proceedings of the sixth biennial world conference on integrated design and process
technology

7. Clarke EM, Grumberg O, Peled D (1999) Model checking, 2nd edn. The MIT Press, Cambridge, MA
8. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In: Conference record of the fourth annual ACM SIGPLAN-
SIGACT symposium on principles of programming languages. Los Angeles, California. ACM Press, New
York, NY, pp 238–252

9. Cousot P, Cousot R (1992) Comparing the Galois connection and widening/narrowing approaches to
abstract interpretation, invited paper. In: Bruynooghe M, Wirsing M (eds) Proceedings of the international
workshop programming language implementation and logic programming, PLILP’92, Leuven, Belgium,
Lecture notes in computer science, volume 631. Springer-Verlag, Berlin, Germany, pp 269–295

10. Das S, Dill DL (2001) Successive approximation of abstract transition relations. In: Proceedings of the
sixteenth annual IEEE symposium on logic in computer science. Boston, MA

11. Dill DL (1989) Trace theory for automatic hierarchical verification of speed-independent circuits. ACM
Distinguished Dissertations. MIT Press

12. Erné M, Koslowski J, Melton A, Strecker GE (1993) A primer on galois connections. In: Papers on general
topology and applications, volume 704 of Ann. New Yosk Acad. Sci. Madison, WI, pp 103–125

13. Graf S, Saidi H (1997) Construction of abstract state graphs with PVS. In: Computer-aided verification,
proceedings of the 1997 workshop, volume 1254 of Lectures notes in computer science

14. Henzinger TA, Kirsch CM (eds) (2001) Embedded software, volume 2211 of Lecture notes in computer
science. Springer-Verlag

15. Kurshan RP, McMillan KL (1991) Analysis of digital circuits through symbolic reduction. IEEE Trans
Comput-Aided Design Integr Circuits 10(11):1356–1371

16. Kurshan RP (1995) Computer-aided verification of coordinating processes: the automata-theoretic ap-
proach. Princeton University Press

17. Lee EA, Sangiovanni-Vincentelli AL (1998) A framework for comparing models of computation. IEEE
Trans Comput-Aided Design Integr Circuits 17(12):1217–1229

18. Lee EA (2003) Overview of the Ptolemy project. Technical memorandum UCB/ERL M03/25. University
of California, Berkeley

19. Lee EA, Xiong Y (2001) System-level types for component-based design. In: Henzinger and Kirsch [14]
20. Loiseaux C, Graf S, Sifakis J, Bouajjani A, Bensalem S (1995) Property preserving abstractions for the

verification of concurrent systems. Formal Methods Syst Des 6:1–35
21. Moriconi M, Qian X, Riemenschneider RA (1995) Correct architecture refinement. IEEE Trans Softw

Eng 21(4):356–372
22. Negulescu R (1998) Process spaces and the formal verification of asynchronous circuits. PhD thesis,

University of Waterloo, Canada
23. Pasareanu C, Pelánek R, Visser W (2005) Concrete model checking with abstract matching and refinement.

In: Proceedings of the 17th international conference on computer-aided verification, volume 3576 of
Lecture notes in computer science. Springer-Verlag

24. Passerone R (2004) Semantic foundations for heterogeneous systems. PhD thesis, Department of EECS,
University of California at Berkeley, 2004

25. Sassone V, Nielsen M, Winskel G (1996) Models for concurrency: towards a classification. Theor Comput
Sci 170:297–348

26. Sutherland WA (1975) Introduction to metric and topological spaces. Oxford University Press, London,
UK

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

