
Conservative Approximations for Heterogeneous Design

Roberto Passerone
Cadence Design Systems, Inc.

Berkeley CA 94704

robp@cadence.com

Jerry R. Burch
Synopsys, Inc.

Hillsboro OR 97124

jrb@synopsys.com

Alberto L. Sangiovanni-
Vincentelli

Department of EECS
University of California

Berkeley CA 94720

alberto@eecs.berkeley.edu

ABSTRACT
Embedded systems are electronic devices that function in the con-
text of a real environment, by sensing and reacting to a set of stim-
uli. Because of their close interaction with the environment, and
to simplify their design, different parts of an embedded system are
best described using different notations and different techniques. In
this case, we say that the system is heterogeneous.

We informally refer to the notation and the rules that are used to
specify and verify the elements of heterogeneous system and their
collective behavior as a model of computation. In this paper, we
focus in particular on abstraction and refinement relationships in
the form of conservative approximations. We do so by construct-
ing a framework, called Agent Algebra, where the different models
reside and share a common algebraic structure. We compare our
techniques to the well established notion of abstract interpretation.
We show that, unlike abstract interpretations, conservative approxi-
mations preserve refinement verification results from an abstract to
a concrete model while avoiding false positives. In addition, we use
the inverse of a conservative approximation to identify components
that can be used indifferently in several models, thus enabling reuse
across domains of computation.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation—Relations between models; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Algebraic
approaches to semantics, Denotational semantics; I.6.4 [Simula-
tion and Modeling]: Model Validation and Analysis

General Terms
Design, Theory, Verification

Keywords
Approximation, Abstraction, Refinement, Verification, Model of
computation, Heterogeneous, Polymorphism

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

1. INTRODUCTION
Embedded systems are electronic devices that function in the

context of a real environment, by sensing and reacting to a set of
stimuli. Because of their close interaction with the environment,
and to simplify their design, different parts of an embedded sys-
tem are best described using different notations and different tech-
niques. In this case, we say that the system is heterogeneous. For
example, the model of the software application that runs on a dis-
tributed collection of nodes in a network is often concerned only
with the initial and final state of the behavior of a reaction. In con-
trast, the particular sequence of actions of the reaction could be rel-
evant to the design of one instance of a node. Likewise, the notation
employed in reasoning about a resource management subsystem is
often incompatible with the handling of real time deadlines, typical
of communication protocols. Consequently, the ability of the sys-
tem designer to specify, manage, and verify the functionality and
performance of concurrent behaviors, within and across heteroge-
neous boundaries, is essential.

Currently deployed design methodologies for heterogeneous em-
bedded systems are often based on ad hoctechniques that lack for-
mal foundations and hence are likely to provide little if any guaran-
tee of satisfying a given set of constraints and specifications with-
out resorting to extensive simulation or tests on prototypes. How-
ever, in the face of growing complexity, this approach will have to
yield to more rigorous methods. We informally refer to the nota-
tion and the rules that are used to specify and verify the elements
of a system and their collective behavior as a model of computa-
tion. The objective of this work is to provide a formal framework
to uniformly present and reason about the characteristics and the
properties of the different models of computation used in a design,
and about their relationships. We accomplish this by defining an
algebra that consists of the set of the denotations, called the agents,
of the elements of a model and of the main operations that can
be performed to compose agents and obtain a new agent. Differ-
ent models of computation are still constructed as distinct algebras
in our framework. However, we can take advantage of the com-
mon algebraic structure to derive results that apply to all models
in the framework, and to relate different models using structure-
preserving maps. In this paper, we focus in particular on abstrac-
tion and refinement relationships in the form of conservative ap-
proximations, and compare them to the well established notion of
abstract interpretation [2]. We show that, unlike abstract interpre-
tations, conservative approximations preserve refinement verifica-
tion results from an abstract to a concrete model while avoiding
false positives. In addition, we use the inverse of a conservative ap-
proximation to identify components that can be used indifferently
in several models, thus enabling reuse across domains of computa-
tion.

155

We first present an account of the related work. Then, in sec-
tion 2, we present the framework of Agent Algebra, followed in
section 3 by the notion of conservative approximation. Section 4
compares conservative approximations and abstract interpretations.
Finally, in section 5 we use conservative approximations to define
a notion of polymorphism between agent models. An example of
continuous and discrete time models is used throughout this work.
The proofs for the results stated in this paper can be found in [12].

1.1 Related Work
The concept of a conservative approximation in our framework is

derived from the one introduced by Burch [1]. In our work we gen-
eralize his approach and apply it to an algebra of arbitrary agents,
rather than of arbitrary executions. Here we decompose the defini-
tion of conservative approximation to highlight and discuss its com-
positionality properties, and study its relationship with traditional
notions of abstraction, such as Galois connections and abstract in-
terpretations. In addition we further characterize the inverse of a
conservative approximation, and use it to identify interactions be-
tween different models of computation.

Abstract interpretations are a widely used means of relating dif-
ferent domains of computation for the purpose of facilitating the
analysis of a system [2, 3]. An abstract interpretation between two
domains of computation consists of an abstraction function and of
a concretization function that form a Galois connection. The distin-
guishing feature of an abstract interpretation is that the concretiza-
tion of the evaluation of an expression using the operators of the
abstract domain of computation is guaranteed to be an upper bound
of the corresponding evaluation of the same expression using the
operators of the concrete domain. Hence, a conservative evaluation
can be carried out at the more abstract level, where it is presumably
computationally more efficient.

Our notion of conservative approximation is closely related to
that of an abstract interpretation, and a detailed account of the sim-
ilarities and differences is presented in section 4. In particular, the
upper bound of a conservative approximation and the inverse of the
conservative approximation form, in some cases, a Galois connec-
tion and/or an abstract interpretation. However, the lower bound of
a conservative approximation does not have an analogue in the the-
ory of abstract interpretations. Nonetheless, in section 4 we show
that the lower bound of a conservative approximation can be ex-
plained as the concretization map of another Galois connection, one
that goes from the abstract to the concrete model. A conservative
approximation is thus composed of two pairsof related functions,
instead of just one, and are used in combination to derive stronger
preservation results. In particular, by applying one pair to the im-
plementation and the other to the specification, we are able to not
only guarantee that certain properties are preserved from the ab-
stract to the concrete domain, but also that a refinement verification
result is preserved in the same direction. To our knowledge, for
abstract interpretations a positive refinement verification result in
the abstract domain implies a positive verification result in the con-
crete domain only if there is no loss of information when mapping
the specification from the concrete domain to the abstract domain.
Thus, conservative approximations allow non-trivial abstraction of
both the implementation and the specification, while abstract inter-
pretations only allow non-trivial abstraction of the implementation.

Process Spaces [11] is a very general class of concurrency mod-
els, and it compares quite closely to trace-based agent models [12].
Given a set of executions E , a Process Space SE consists of the set
of all the processes (X;Y), where X and Y are subsets of E such
that X [Y = E . The sets of executions X and Y of a process are
not necessarily disjoint, and they represent the assumptions (Y) and

the guarantees (X) of the process with respect to its environment.
As in trace-based agent models, executions are abstract objects.

Different sets of abstract executions E1 and E2 induce different
Process Spaces SE1 and SE2 . The notion of process abstraction
from SE1 to SE2 in Process Spaces is related to the notion of con-
servative approximation. In particular, process abstractions are de-
fined as the axialities of a relation and its inverse on the set of ab-
stract executions, and are therefore Galois connections between the
process spaces. A process abstraction is classified as optimistic
or pessimistic according to whether it preserves certain verifica-
tion results from the concrete to the abstract or from the abstract
to the concrete model. These two kinds of abstraction can be used
in combination to preserve verification results both ways. How-
ever, in that case, the two models are isomorphic since there is ef-
fectively no loss information. Optimistic and pessimistic process
abstractions roughly correspond to the upper and lower bound of
conservative approximations. However, our use of the upper and
lower bound is significantly different, since we apply them in com-
bination (the lower bound for the specification, the upper bound for
the implementation). Consequently, even when used in combina-
tion, our models need not be isomorphic, so that we obtain stronger
preservation results without sacrificing the abstraction.

Winskel et al. [13] propose a framework based on category the-
ory that is related to ours. In their formalism, each model of com-
putation is turned into a category where the objects are the agents,
and the morphisms represent a refinement relationship based on
simulationsbetween the agents. The authors study a variety of dif-
ferent models that are obtained by selecting arbitrary combinations
of three parameters: behavior vs. system (e.g., traces vs. state ma-
chines), interleaving vs. non-interleaving (e.g., state machines vs.
event structures) and linear vs. branching time. The common oper-
ations in a model are derived as universal constructions in the cat-
egory. Relationships can be constructed by relating the categories
corresponding to different models by means of functors, which are
homomorphisms of categories that preserve morphisms and their
compositions. When categories represent models of computation,
functors establish connections between the models in a way similar
to abstraction maps and semantic functions. In particular, when the
morphisms in the category are interpreted as refinement, functors
become essentially monotonic functions between the models, since
preserving morphisms is equivalent to preserving the refinement
relationship.

In [13], the authors thoroughly study the relationships between
the eight different models of concurrency above by relating the cor-
responding categories through functors. In addition, these functors
are shown to be components of reflectionsor co-reflections. These
are particular kinds of adjoints, which are pairs of functors that go
in opposite directions and enjoy properties that are similar to the
order preservation of the abstraction and concretization maps of
a Galois connection. When the morphisms are interpreted as re-
finement, reflections and co-reflections generalize the concept of
Galois connection to preorders. In fact, the relationships between
categories based on adjoints are similar in nature to the abstractions
and refinements obtained by abstract interpretations and conserva-
tive approximations. However, as described above for abstract in-
terpretations, conservative approximations use independent upper
and lower bounds for the implementation and the specification in
order to derive a stronger result in terms of preservation of the re-
finement relation, and avoidance of false positive verification re-
sults. Indeed, we require two Galois connections, instead of one,
to determine a single conservative approximation. In the work pre-
sented in [13], this translates in two adjoints per pair of categories.

The study of heterogeneous systems is the central theme of the

156

Ptolemy project [8]. One of the innovative concepts in the design
of the Ptolemy II infrastructure is the notion of domain polymor-
phism[9]. An actor (agent) is domain polymorphic if it can be used
indifferently in several models of computation. To check whether
an actor can be used in a particular model, the authors set up a
type system based on state machines, which is used to describe the
assumptions of each model and each actor relative to an abstract
semantics. We also introduce a similar notion. In our framework,
an agent can be used in different models of computation if it has an
exact representation in such models. The notion of abstraction in
the form of a conservative approximation and its inverse provides
us with the appropriate interpretation of an agent from one model
in another model. An agent is polymorphic precisely when this in-
terpretation is exact. This has the advantage of making the process
of abstraction and refinement of an agent explicit.

2. AGENT ALGEBRAS
Our notion of conservative approximation is based on the frame-

work of Agent Algebra [12]. Informally, an agent algebra Q is
composed of a domain D which contains the agents under study for
the algebra, and of certain operators that formalize the most com-
mon operations of the models of computation used in embedded
system design. Different models of computation are constructed
by providing different definitions for the domain of agents and the
operators. The algebra also includes a master alphabet A that is
used as the universe of “signals” that agents use to communicate
with other agents.

Definition 2.1 (Agent Algebra). An agent algebraQ has a do-
main Q:D of agents,a master alphabetQ:A, and three op-
erators: renaming, projectionand parallel composition, de-
noted by rename(r), proj (B) and k. Each agent p 2 Q:D is
associated with an alphabetA � Q:A.

The operators of the algebra are partial functions on the domain
D and have an intuitive correspondence with those of most mod-
els of concurrent systems. The operation of renaming, which takes
as argument a renaming function r on the alphabet, corresponds to
the instantiation of an agent in a system. The renaming function
is required to be a bijection, so that renaming is prevented from
altering the structure of the agent interface, by for example “con-
necting” two signals together. Projection corresponds to hiding a
set of signals, and takes the set B of signals to be retained as a pa-
rameter. Hence it corresponds to an operation of scoping. Finally,
parallel composition corresponds to the concurrent “execution” of
two agents. It is possible to define other operators. We prefer to
work with a limited set and add operators only when they cannot
be derived from existing ones. The operators presented here are
sufficient for the scope of this work.

The three operators must satisfy certain axioms that formalize
their intuitive behavior and provide some general properties that
we want to be true regardless of the model of computation. For ex-
ample, parallel composition must be associative and commutative,
and the alphabet of the result must be obtained as the union of the
original alphabets, thus ruling out the possibility of a simultaneous
projection. Similar requirements on the alphabets of projection and
renaming also make sure that these operators effectively performs
their respective function. The definition of the operators is other-
wise unspecified, and depends on the particular agent model being
considered.

To illustrate our framework, we build an example of an agent
algebra QC that can be used to model event-based systems in con-
tinuous time. In this model, a pair (a; �) is an event that denotes

the occurrence of an action a 2 A, at a time � 2 R. Each behavior
of an agent consists of a set of events, such as

x = f(a; 1:4); (b; 2:1); (c; 2:3); (b; 3:01); : : :g:

An agent p can thus be seen simply as a set P of behaviors. Note
that the order of events in a behavior is derived from the order on the
time stamps. In addition, an agent is characterized by two disjoint
sets I � A and O � A of input and output actions, which together
form its alphabet A. The behaviors P of an agent p = (I; O; P) are
restricted to events that perform actions in A. The construction of
an agent as a set of behaviors is quite general and can be employed
with other models of behavior. In addition, we may sometimes re-
strict the acceptable sets of behaviors for agents to model require-
ments such as receptiveness, or to avoid certain phenomena, such
as Zeno behaviors. Since the operators must be closed under these
restrictions, the resulting algebra forms a subalgebra of a more gen-
eral, unrestricted model. We will not, however, be concerned with
these aspects in this paper.

To complete the description of the model we must define the op-
erators of the algebra. Projection simply consists of removing from
the behaviors of an agent those events that correspond to actions
that must not be retained. For example, the projection of the be-
havior x above to the set of signals fa; cg, is simply

proj (fa; cg)(x) = f(a; 1:4); (c; 2:3); : : :g:

Renaming is defined similarly by extending to events and to the sets
I and O the application of the renaming function. For instance, if
a renaming function r maps signal a to in1, signal b to in2 and
signal c to out, then

rename(r)(x) = f(in1; 1:4); (in2; 2:1); (out; 2:3);

(in2; 3:01); : : :g

Parallel composition is more complex. Let p1 = (I1; O1; P1) and
p2 = (I2; O2; P2) be agents with alphabets A1 = I1 [O1 and
A2 = I2 [O2, respectively. The parallel composition p = p1 k p2
is defined only if the sets O1 and O2 are disjoint, to ensure that
only one agent drives each action. When defined, an action is an
output of the parallel composition if it is an output of either agent.
Conversely, it is an input if it is an input of either p1 or p2, and it is
not concurrently an output of the other agent. Thus

O = O1 [O2;

I = (I1 [I2)� (O1 [O2):

The alphabet of the composition is therefore A = A1 [A2. A
behavior y is part of the parallel composition if and only if the
projection of y to the alphabet of p1 is a behavior of p1, and the
projection to the alphabet of p2 is a behavior of p2. Formally,

P = fy 2 B(A) : proj (A1)(y) 2 P1 ^

proj (A2)(y) 2 P2g;

where B(A) denotes the set of behaviors that have events with ac-
tions in A. This definition ensures that the behaviors of the com-
position are consistent with the behaviors of each component. It
is easy to verify that the same result can be obtained by taking the
intersection of the sets of behaviors of the individual agents, after
an operation of inverse projection to the common alphabet. This is,
for example, the way parallel composition is defined in the Tagged-
Signal Model [7] (see below).

It is easy to construct a similar, but more abstract, agent algebra
QD to be used for event-based systems in discretetime. It is in fact
sufficient to restrict the use of the time stamp � to the set of integers
Z. The remaining definitions are unchanged.

157

The algebras QC and QD satisfy the requirements of our frame-
work. Models with different structure are also possible. For in-
stance, agents may be as simple as their alphabet (thus ignoring
any behavior), or might include complex performance parameters.
Similarly, the operators might be defined differently. For example,
parallel composition might involve a fixed-point computation. In
all cases, only the requirements of the algebra must be satisfied in
order for the model to fit in our framework.

Our continuous and discrete time models could also be expressed
in the Tagged-Signal Model (TSM) [7]. In TSM, a model of com-
putation is constructed in a fixed way by considering a set of values
V , and a set of tags T . The set of values represents the type of
data that can be exchanged by objects in the model. The set of tags,
on the other hand, carries an order relationship that is used in the
model to encode the particular notion of time, or, more properly, of
precedence. An eventis represented by the pair ht; vi, where t 2 T
tags the “time” of the event, and v 2 V provides the new value.
Processes are constructed by aggregating events into signals. In
our examples, the set of tags T corresponds to R for the continuous
time model, and to Z for the discrete time model. Here we present
them in the form of agent algebras because we are interested in
variations of these models that cannot be expressed in TSM. More
importantly, our focus is on building relationships between these
models. However, we are not aware of a general theory that ex-
plains the relation between different models encoded in TSM. The
specialization of conservative approximations to this case is part of
our future work.

The notion of refinement in each model of computation is rep-
resented by adding a preorder (or a partial order) on the agents,
denoted by the symbol �. The result is called an ordered agent al-
gebra. We require that the operators in an ordered agent algebra be
monotonic relative to the ordering. However, since these are partial
functions, this requires generalizing monotonicity to partial func-
tions. The following definition gives two different generalizations.
Later we discuss which of these best suits our needs.

Definition 2.2 (>-?-monotonic). Let D1 and D2 be preordered
sets and let f be a partial function from D1 to D2. Let

D>

2 = D2 [f>g;

D?

2 = D2 [f?g

where > and ? are new greatest and least elements, i.e.,

p2 � >^ > 6� p2

and

p2 6� ? ^ ? � p2;

respectively, for every p2 in D2. Let f> and f? be the total
functions from D1 to D>

2 and D?

2 , respectively, such that for
all p1 in D1

f>(p1) =

(
f(p1); if f(p1) is defined;

>; otherwise;
;

f?(p1) =

(
f(p1); if f(p1) is defined;
?; otherwise.

We say the function f is >-monotonicif f> is monotonic.
Analogously, the function f is ?-monotonicif f? is mono-
tonic.

In this work we always interpret the refinement relation p � p0 to
mean intuitively that p can be substituted for p0 in any context. Let

now f be a partial function and assume f(p) is undefined. Then
intuitively, f(p) cannot be substituted for any other agent in D2,
except for another undefined expression. This is always the case if
f is >-monotonic, since, in that case, f(p) = > together with
f(p) � f(p0) imply that f(p0) = >, i.e., f(p0) is also unde-
fined. Conversely, if f is?-monotonic and f(p) is undefined, then
f(p) can be substituted for any agent in the system. Therefore,
only >-monotonic functions are consistent with our interpretation
of the order. Hence, we require that the operators of projection,
renaming and parallel composition in an ordered agent algebra be
>-monotonic relative to the agent order.

It is easy to introduce an order for the algebras QC and QD that
makes the operators >-monotonic. If p1 and p2 are agents, we say
that p1 � p2 if and only if I1 = I2, O1 = O2 and P1 � P2. In
other words, we require that all the behaviors of the implementa-
tion are also behaviors of the specification. This order is similar to
the one used in traditional language-containment verification tech-
niques. The reader can easily verify that the operators of QC and
QD satisfy the definition of >-monotonicity. Other orders, that for
example relax the requirement that p1 and p2 have the same in-
puts and outputs, are also possible but are beyond the scope of this
paper [12].

The notion of >-monotonicity has profound implications on the
compositionality rules in our framework. A compositional verifica-
tion strategy consists of partitioning a particular verification prob-
lem into a number of smaller problems that are collectively eas-
ier to solve. For refinement verification, this can often be accom-
plished by breaking up a specification and an implementation in
terms of their components, and by considering refinement relation-
ships between the corresponding components. The original verifi-
cation problem can be solved in this way when the parallel operator
is monotonic. For a generic partial operator f , >-monotonicity is
related to the traditional notion of monotonicity by the following
result.

Theorem 2.3. Let f be a >-monotonic partial function. If p � p0

and f(p0) is defined, then f(p) is defined and f(p) � f(p0).

In particular, if the parallel composition operator k of an agent
algebra is >-monotonic relative to the refinement order, the above
result reduces to the following.

Corollary 2.4. If p1 � p01, p2 � p02 and p01 k p
0

2 is defined, then
p1 k p2 is defined and p1 k p2 � p01 k p

0

2.

Henzinger et al. [4] propose to distinguish between interfaceand
componentalgebras. The above result shows that because par-
allel composition is >-monotonic in an ordered agent algebra, it
supports an inference rule identical to the “compositional design”
rule for interface algebras. Conversely, component algebras have a
“compositional verification” rule that corresponds to ?-monotonic
functions. This suggests that the ordering of a component algebra
cannot be interpreted as indicating substitutability. Interface and
component algebras were introduce to distinguish between agents
that make assumptions relative to their environment (the interfaces),
and agents that do not (the components). These notions can be han-
dled in our framework by using appropriate models (for example,
including failure behaviors [5]), that always employ >-monotonic
operators. Thus, we distinguish between interfaces and compo-
nents in our framework based on their level of abstraction, rather
than on the inference rule they support.

3. CONSERVATIVE APPROXIMATIONS
As discussed in the introduction we relate different agent alge-

bras by means of conservative approximations. A conservative ap-

158

proximation from Q to Q0 is a pair 	 = (l;	u), where 	l and
	u are functions fromQ:D toQ0:D. The first mapping is an upper
bound of the agent relative to the order of the algebra: for instance,
the abstract agent represents all of the possible behaviors of the
agent in the more detailed domain, plus possibly some more. The
second is a lower bound: the abstract agent represents only possible
behaviors of the more detailed one, but possibly not all.

We define conservative approximations as abstractions that main-
tain a precise relationship between the orders in the two agent al-
gebras.

Definition 3.1 (Conservative Approximation). Let Q and Q0 be
ordered agent algebras, and let 	l and 	u be functions from
Q:D to Q0:D. We say that 	 = (l;	u) is a conservative
approximation fromQ to Q0 if and only if for all agents p
and q in Q:D,

	u(p) � 	l(q)) p � q:

Thus, when used in combination, the two mappings allow us to
relate refinement verification results in the abstract domain to re-
sults in the more detailed domain. Hence, the verification can be
done in Q0, where it is presumably more efficient than in Q. The
conservative approximation guarantees that this will not lead to a
false positive result, although false negatives are possible depend-
ing on how the approximation is chosen.

It is easy to show that if 	0 = (0

l;	
0
u) provides looser lower

and upper bounds than a conservative approximation 	 (i.e., if
	0

l(p) � 	l(p) and 	u(p) � 	0
u(p) for all p), then 	0 is also

a conservative approximation. Also, the functional composition of
two conservative approximations yields another conservative ap-
proximation. Usually a conservative approximation 	 = (l;	u)
has the additional property that 	l(p) � 	u(p) for all p, but this is
not required. Also, having 	l and 	u be monotonic (relative to the
ordering on agents) is common, but not required.

A simple example of a conservative approximation can be con-

structed as follows. Consider the agent algebra QR
6�

where each
agent is simply a real number (representing, for example, maxi-

mum power dissipation). We order QR
6�

by defining p � p0 if
and only if p is less than or equal to p0. Let QNbe the analogous
ordered agent algebra where each agent is a non-negative integer,
rather than a real number. Then, 	 = (l;	u) is a conservative

approximation from QR
6�

to QN, where

	l(p) = bpc

	u(p) = dpe

(i.e., the floor and the ceiling, respectively, of the real number p).
This example is typical: neither the floor function, nor the ceil-
ing function, when used alone, would satisfy the requirements of a
conservative approximation.

An example of a conservative approximation from our contin-
uous time model QC to the discrete time model QD can be built
by first considering a function h between the behaviors of QC and
QD . Specifically, h could be the function that truncates the time
stamp of each continuous time event to its nearest integer. For ex-
ample,

h(f(a; 1:4); (b; 2:1); (c; 2:3); (b; 3:01); : : :g) =

= f(a; 1); (b; 2); (c; 2); (b; 3); : : :g:

A conservative approximation on the agents is essentially a pair
of functions that operate on sets of behaviors. Given a function h
on behaviors, there are different ways one could derive a function
on sets of behaviors. Here we use the notion of an axiality [12],

which is similar to the pre and post images of a binary relation
proposed by Loiseaux et al. [10], and to the optimistic and pes-
simistic process abstractions of Negulescu [11]. This construction
can be applied to most behavior-based models, and greatly simpli-
fies the process of creating a conservative approximation between
two agent models [12]. For an agent p = (I; O; P), the conserva-
tive approximation is of the form

	C

u (p) = (I;O; h(P))

	C

l (p) = (I;O; h(P)� h(B(A)� P)):

Note that 	C

u is effectively an upper bound since, in that case, every
behavior of a continuous time agent is represented by an abstract
behavior of the discrete time agent. Conversely, the lower bound
of p includes an abstract behavior only if p contains all its possible
concretizations. For example, f(a; 1)g is in 	C

l (p) only if p con-
tains the behavior that has an event (a; �) for every � 2 [1; 2). Note
also that the approximation loses some of the ordering constraints.
For example, the continuous time events (a; 2:1) and (b; 2:2) cor-
respond to events (a; 2) and (b; 2) in the discrete time model. Thus
the relative ordering of actions a and b is lost.

Other functions can be used to relate our continuous time and
discrete time model. For example, we may consider rounding rather
than truncating the real time stamps. Different functions give rise to
different conservative approximations. These, in turn, can be used
to represent different implementation strategies in a design flow.
This discussion is, however, beyond the scope of this paper.

As we have discussed, if 	 = (l;	u) is a conservative ap-
proximation from Q to Q0, then p0 = 	u(p) represents a kind of
upper bound on p. It is instructive to investigate whether there is an
agent in Q:D that is represented exactly by p0 rather than just be-
ing bounded by p0. If no agent in Q:D can be represented exactly,
then 	 is abstracting away too much information to be of much
use for verification. If every agent in Q:D can be represented ex-
actly, then 	l and 	u are equal and are isomorphisms from Q to
Q0. These extreme cases illustrate that the amount of abstraction in
	 is related to what agents p are represented exactly by 	u(p) and
	l(p).

To formalize what it means to be represented exactly in this con-
text, we define the inverse 	inv of the conservative approximation
	. Normal notions of the inverse of a function are not adequate
for this purpose, since 	 is a pair of functions. We handle this by
only considering those agents p for which 	l(p) and 	u(p) have
the same value, call it p0. Intuitively, p0 represents p exactly in this
case, and we therefore define 	inv (p

0) = p. If 	l(p) 6= 	u(p),
then p is not represented exactly in Q0. In this case, p is not in the
image of 	inv .

Definition 3.2 (Inverse of a Conservative Approximation). Let
	 = (l;	u) be a conservative approximation from Q to
Q0. For p0 2 Q0:D, the inverse 	inv (p

0) is defined if and
only if there exists p 2 Q:D such that 	l(p) = 	u(p) = p0.
When defined,

	l(inv (p
0)) = 	u(inv (p

0)):

If the algebra Q is partially ordered (as opposed to preordered),
the inverse of the conservative approximation is uniquely deter-
mined and, when defined, the inverse 	inv (p

0) of p0 is equal to
the unique agent p such that 	l(p) = 	u(p) = p0. Otherwise, a
choice may be possible among order equivalent agents. In all cases,
however, because of the defining properties of a conservative ap-
proximation, 	inv is one-to-one, and, when restricted to the image
of 	inv , the functions 	l and 	u are equal and are the inverse of
	inv . In addition, when defined, 	inv is always monotonic and it

159

preserves the ordering of the agents in both directions if either 	l

or 	u is also monotonic. To simplify the presentation, in the rest of
this paper we will only be concerned with partially ordered agent
algebras.

The inverse of a conservative approximation can be used to for-
mally understand the roles of the upper and the lower bounds. As-
sume, in fact, that for an agent p, 	inv (l(p)) and 	inv (u(p)) are
both defined, It is easy to show that, in this case,

	inv (l(p)) � p � 	inv (u(p)):

This fact makes precise the intuition that 	l(p) and 	u(p) repre-
sent a lower and an upper bound of p, respectively.

Every agent p0 2 Q0:D determines two equivalence classes in
Q:D: the class of the agents p such that 	u(p) = p0, and the class
of the agents p such that 	l(p) = p0. The inverse 	inv (p

0) of p0 is
defined if and only the greatest element of the first class is equal to
the least element of the second class, i.e.,

	inv (p
0) = maxfp1 : 	u(p1) = p0g (1)

= minfp1 : 	l(p1) = p0g: (2)

This is an alternative characterization of the inverse of a conser-
vative approximation which is useful to explain the role of the ab-
straction functions.

It is easy to determine the inverse 	C

inv of the conservative ap-
proximation 	C = (C

l ;	
C

u) from QC to QD. In fact, let p0 2
QD:D be an arbitrary discrete time agent. For every event (a; � 0)
of p0, there exists a continuous time agent p 2 QC :D that non-
deterministically executes the same action a with time stamps �
such that � 0 � � � � 0 + 1. Thus the inverse is always defined.
Note however that, because of the resulting non-determinism, the
information on the exact location of the actions within a unit of
time in the corresponding continuous time agent is unknown.

3.1 Compositional Approximations
A refinement verification problem is often of the form E � q,

where q is the specification and E is an expression using the op-
erators of the algebra. Computing 	u(E) involves evaluating the
expression E in the concrete domain, a potentially expensive op-
eration. A compositional conservative approximation allows us to
avoid this computation by translating the expression into the ab-
stract domain. As an example, consider the verification problem

proj (A)(p1 k p2) � p;

where p1, p2 and p are agents in Q:D. This corresponds to check-
ing whether an implementation consisting of two components p1
and p2 (along with some internal signals that are removed by the
projection operation) satisfies the specification p. We say that a
conservative approximation 	 is a compositionalconservative ap-
proximation if showing

proj (A)(u(p1) k	u(p2)) � 	l(p)

is sufficient to show that the original implementation satisfies its
specification. The following definition makes this notion precise.

Definition 3.3 (Compositional Conservative Approx.). A con-
servative approximation 	 = (l;	u) from Q to Q0 is a
compositional conservative approximationif and only if for
all expressions E and for all agents p1 2 Q:D,

E[p=	u(p)] � 	l(p1)) E � p1;

where the notation E[p=	u(p)] indicates that every agent p
in E must be replaced by the corresponding agent 	u(p).

The following theorem provides sufficient conditions that the up-
per bound of a conservative approximation must satisfy in order to
also be compositional.

Theorem 3.4. Let 	 = (l;	u) be a conservative approximation
from Q to Q0. If the following propositions S1 through S3
are satisfied for all agents p, p1 and p2 in Q:D, then 	 is a
compositional conservative approximation.

S1. If 	u(p1) k	u(p2) is defined, then

	u(p1 k p2) � 	u(p1) k	u(p2):

S2. If proj(B)(u(p)) is defined, then

	u(proj (B)(p)) � proj (B)(u(p)):

S3. If rename(r)(u(p)) is defined, then

	u(rename(r)(p)) � rename(r)(u(p)):

The conservative approximation 	C from QC to QD is com-
positional. There is in fact a general result that guarantees, by
applying theorem 3.4, that the axialities of a homomorphism on
behaviors (such as our h above) produce a compositional conserva-
tive approximation [1, 12]. This is true regardless of the behavior
model, as long as it satisfies certain basic properties related to the
requirements of our agent algebras. In particular, and to illustrate
our argument, if we interpret the parallel composition operator as
intersection of sets of behaviors, and refinement as set containment,
proposition S1 above follows from the general property

h(P1 \ P2) � h(P1) \ h(P2);

for any function f .

4. ABSTRACT INTERPRETATIONS
In section 1.1 we have argued that there exists a close relation-

ship between conservative approximations and abstract interpreta-
tions. In this section we explore this relationship in details. We
begin by defining Galois connections [3], and by presenting some
basic results about them. Later we show how a pair of Galois con-
nections can be used to form a conservative approximation. We
then show how to use an abstract interpretation and an additional
Galois connection to form a compositionalconservative approxi-
mation.

Definition 4.1 (Galois Connection). Let D and D0 be partially
ordered sets of agents. A Galois connection h�;
i from D
to D0 consists of an abstraction map � : D 7! D0 and a
concretization map
 :D0 7! D such that for all p 2 D and
p0 2 D0,

�(p) � p0 () p �
(p0):

Galois connections enjoy several properties similar to the ones
discussed for conservative approximations. In particular, if h�;
i
is a Galois connection, then � and
 are monotonic and for all
p 2 D and p0 2 D0, p �
(�(p)) and �(
(p0)) � p0 ([10]). In
addition, the composition of Galois connections is again a Galois
connection.

The relationship between Galois connections and conservative
approximations can be understood by introducing a second Galois
connection in the reverse direction, i.e., from D0 to D. For our no-
tation, we will use symbols h�u;
ui for a Galois connection from
Q:D to Q0:D, and h
l; �li for a Galois connection from Q0:D to
Q:D. Note that in the case of the Galois connection from Q0:D to

160

Q:D we use the symbol
l for the abstraction map, and �l for the
concretization map. This choice is made clear by our results on the
correspondence between conservative approximations and abstract
interpretations.

Our first result exactly characterizes the conditions under which
a pair of Galois connections forms a conservative approximation.

Theorem 4.2. (�l; �u) is a conservative approximation from Q to
Q0 if and only if for all agents p0 2 Q0:D,
u(p0) �
l(p

0).

In that case, we say that (�l; �u) is the conservative approx-
imation induced by the pair of Galois connectionsh�u;
ui and
h
l; �li. Our second result characterizes the inverse of a conserva-
tive approximation 	 = (�l; �u) induced by a pair of Galois con-
nections. It shows that the inverse is defined at an agent p0 2 Q0:D
if and only if
u and
l are equal, and are “mutually” injective.

Theorem 4.3. For all agents p0 2 Q0:D, 	inv (p
0) is defined and is

equal to p if and only if

�
u(p
0) =
l(p

0) = p, and

� if p01 2 Q
0:D is an agent such that
u(p01) =
l(p

0
1) =

p, then p01 = p0.

Conversely, we can provide sufficient conditions for a conser-
vative approximation to form a pair of Galois connections. It is
sufficient that the upper and lower bound be monotonic (which is
a necessary condition for Galois connections), and that the inverse
of the conservative approximation be defined everywhere. When
that is the case, h	u;	inv i is a Galois connection from Q:D to
Q0:D, and h	inv ;	li is a Galois connection from Q0:D to Q:D.
Note that the condition that 	inv be defined everywhere is crucial.
In fact, there are monotonic conservative approximations such that
the abstraction functions are not abstraction maps of any Galois
connections. This occurs when the equivalence classes induced by
	u and 	l do not have the necessary greatest and lowest element,
as described in equation 1.

Galois connections can be used to build abstract interpretations.
Abstract interpretations were originally developed for static analy-
sis of sequential programs in optimizing compilers [2]. They have
also been used for abstracting and formally verifying models of
both sequential and reactive systems. Abstract interpretations be-
tween agent algebras can be defined as follows.

Definition 4.4 (Abstract Interpretation). Let Q and Q0 be par-
tially ordered agent algebras. Then Q0 is an abstract inter-
pretation of Q if and only if there exists a Galois connec-
tion h�;
i from Q:D to Q0:D such that for all p01 and p02 in
Q0:D,

1. if p01 k p
0
2 is defined, then

�(
(p01) k
(p
0

2)) � p01 k p
0

2;

2. if proj (B)(p01) is defined, then

�(proj (B)(
(p01))) � proj (B)(p01);

3. if rename(r)(p02) is defined, then

�(rename(r)(
(p02))) � rename(r)(p02):

The agent algebra QD is an abstract interpretation of the alge-
bra QC . In fact, the upper bound 	C

u and the inverse 	C
inv of the

conservative approximation from QC to QD form a Galois con-
nection (because they are derived as an axiality) which satisfies the
conditions of definition 4.4.

A fundamental result of our theory shows that the three condi-
tions of definition 4.4 are equivalent to the conditions S1 through
S3 of theorem 3.4. Therefore, abstract interpretations, when used
in conjunction with a second Galois connection fromQ0:D toQ:D
induce compositionalconservative approximations, as described in
theorem 4.2. This result relies on >-monotonicity of the operators
of the algebra.

Abstract interpretations are used in program analysis because
they preserve the application of the operators from the abstract
model to the concrete model. In fact, assume that Q0 is an ab-
stract interpretation ofQ by a Galois connection h�;
i, and that E
is an expression. It can be shown that if E[p=�(p)] is defined, then

E �
(E[p=�(p)]);

Hence, abstract interpretations can be used to approximate the eval-
uation of an expression at the concrete level by the concretization
of the evaluation of the corresponding expression at the abstract
level. The abstract interpretation guarantees that the result com-
puted at the concrete level conforms to (or refines) the one com-
puted at the abstract level. Abstract interpretations, however, are
unable to guarantee that a positive refinement verification result at
the abstract level implies a positive refinement verification result at
the concrete level. In other words, if �(p1) � �(p2), then p1 � p2
does not necessarily hold.

Conservative approximations, on the other hand, employ two
mappings to guarantee the above verification result. It is easy to
show the differences between conservative approximations and ab-
stract interpretations by using our continuous and discrete time
models. Consider, for example, the continuous time specification
that says that an action b must always be preceded by a correspond-
ing action a. This specification can obviously be expressed in QC

by an agent q that contains all and only the behaviors that have such
property. Ignoring the presence of actions other than a and b, one
such behavior is, for example,

x = f(a; 1:1); (b; 2:3); (a; 3:4); (b; 3:8); : : :g:

The abstract interpretation makes use of only the upper bound 	C
u

of the conservative approximation. The behavior x above, for ex-
ample, is represented in 	C

u (q) as

x0 = f(a; 1); (b; 2); (a; 3); (b; 3); : : :g:

Assume now p 2 QC :D is such that 	C
u (p) � 	C

u (q). Given
our definitions, x0 could be a behavior of 	C

u (p). Note however
that x0 in 	C

u (p) could be obtained as the abstraction of a different
behavior, such as

y = f(a; 1:1); (b; 2:3); (b; 3:8); (a; 3:9); : : :g;

which clearly violates our specification. In other words, p 6� q.
The above verification technique based on abstract interpreta-

tions is unsound because q, our specification, is not represented
exactly in QD . For example, x0 is not contained in 	C

l (q). If it
were, q would have to contain behaviors, such as y, where action b
precedesaction a in the time span from 3 to 4, which contradicts
the specification. Hence 	C

u (q) 6= 	C

l (q). Conservative approx-
imations avoid this problem by explicitly using the lower bound.
Note, in fact, that 	C

l (q) is not empty. It contains, for instance,
all those behaviors in which the action a and the corresponding ac-
tion b occur in two different time intervals [t; t+ 1), where t 2 Z,
and are ordered according to the specification. For such behaviors,

161

the concretization cannot possibly invert the order relationship be-
tween the actions. Hence, if 	C

u (p) � 	C

l (q) (note the use of
the lower bound for the specification), then necessarily p � q. In
other words, if the implementation p is “slow enough” compared
to the abstract model, verification at the abstract level is possible.
Unlike the abstract interpretation, the conservative approximation
automatically detects this condition.

Our continuous time specification could be represented exactly
at the abstract level if, for example, we were to use sequencesof
events as behaviors, as opposed to setsof events. This amounts to
decreasing the level of abstraction of the discrete time model. In
that case, in fact, the order of the actions can be preserved, and
the verification problem can be addressed using abstract interpreta-
tions. This technique, however, becomes again unsound if we were
to consider a different specification in continuous time, such as one
that requires a certain real-time deadline, or a certain response time,
to be met by the implementation. For this case, abstract interpreta-
tions may again lead to false positive verification results. The situ-
ation can be fixed by yet again lowering the level of abstraction of
the discrete time model. This dependency between the verification
methodology and the level of abstraction of the models employed
is, however, troublesome. In particular, it is contrary to the prin-
ciple of orthogonalization of concerns, whereby we would like to
choose our models, the specification and verification techniques in-
dependently, while ensuring correct results. In addition, the models
employed in a design are often fixed and determined by the partic-
ular tools used in the design flow.

Conservative approximations, on the other hand, do not suffer
from this problem. Specifically, a conservative approximation guar-
antees that if a verification problem can be positively solved at the
abstract level, then it holds at the concrete level, as well. This fact
allows the verification methodology to adapt to the specific models
being used, while guaranteeing correct results in the cases that can
be handled at the abstract level. We therefore view conservative
approximations and abstract interpretations as related, but comple-
mentary, concepts.

5. REFINEMENT AND POLYMORPHISM
In section 3 we have characterized an abstraction as a pair of

functions that form a conservative approximation. Similarly, a re-
finement can be established in the form of a conservative approx-
imation that goes in the opposite direction. Thus, our notion of
refinement does not correspond exactly to the inverse of the ab-
straction, since, as we have noted, the inverse may not be defined
for all agents. Nonetheless, our results show that if the inverse is
defined for some agent, then the upper and the lower bounds of the
refinement are the same and are equal to the inverse.

In the following we will restrict our attention to conservative
approximations induced by a pair of Galois connections. In fact,
because abstraction and refinement are symmetric, Galois connec-
tions are particularly well behaved and make it easy to derive the
tight relationship that exists between the abstraction and the refine-
ment functions. Observe, in fact, that in our previous results about
Galois connections, the hypothesis were symmetric relative to our
domains of agents: a Galois connection exists from Q to Q0, and a
second Galois connection exists from Q0 to Q. Thus, those results
are dually valid by simply replacing all occurrences of �u by
l,
and all occurrences of
u by �l, and by exchanging the domains of
agents. Therefore, the same pair of Galois connection may induce
two conservative approximations, one from Q to Q0 (the abstrac-
tion), and a second from Q0 to Q (the refinement).

Suppose now that Q and Q0 are agent algebras, and that 	 =
(�l; �u) is a conservative approximation from Q to Q0 induced by

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������Q

Q0

	inv

	0
inv

�u �l

u
l

Figure 1: Abstraction, Refinement and their inverses

a pair of Galois connections h�u;
ui and h
l; �li. Theorem 4.2
shows that in order for 	0 = (
u;
l) to be a conservative approx-
imation from Q0 to Q we need that �l(p) � �u(p) for all agents
p 2 Q:D. This condition is commonly satisfied by a conserva-
tive approximation 	, and simply formalizes the intuition that the
lower bound of an agent must be less than or equal to its upper
bound (although, as noted earlier, this is not a necessary condition
for a conservative approximation). Note also that the inverses 	inv

and 	0

inv of the conservative approximations are inverse of each
other, i.e., for all p 2 Q:D and p0 2 Q0:D, 	inv (p

0) = p if
and only if 	0

inv (p) = p0. The situation is therefore the one de-
picted in figure 1, where Galois connections are denoted by pairs
of dotted arcs and by a straight arrow that indicates the direction of
the connection. The shaded region in Q corresponds to the set of
agents that can be represented exactly inQ0. This region is isomor-
phic to the corresponding shaded region inQ0 which consists of the
agents in Q0 that can be represented exactly in Q. In other words,
a subset of the agents of the two semantic domains can be rep-
resented indifferently in either domain, while the remaining agents
can only be approximated by the other domain (i.e., their upper and
lower bound do not coincide). We say that an agent p that can be
represented exactly in two different models of computation Q and
Q0 is polymorphic relative toQ andQ0. Note that our notion of
polymorphism depends upon the particular choice of conservative
approximation between the agent models. This is because the ap-
proximationdetermines how each model interprets the agents that
belong to the other model. This is unlike other notions of polymor-
phism that rely upon a common underlying semantics, such as the
automata model in Ptolemy II [9].

IfQ0 is strictly more abstract than Q, in the sense that the agents
in Q0 contain strictly less information than those in Q, then 	inv

is total (assuming 	 is the tightest conservative approximation). In
that case, the conservative approximation from Q0 to Q is essen-
tially an embedding of Q0:D into Q:D, equipped with the respec-
tive orders, and the shaded region in Q0 extends to the entire do-
main. Hence, all agents of Q0 can be represented exactly in Q, and

162

it is therefore straightforward to consider the heterogeneous com-
position of agents in the context ofQ. This is the case, for example,
of our continuous and discrete time models QC and QD. There, as
already discussed, a continuous time agent is polymorphic when-
ever the actions that it executes occur non-deterministically in an
integer time interval.

The composition in the opposite direction is more problematic.
Assume in particular that p 2 Q:D is an agent such that 	u(p) 6=
	l(p). In that case, p is not represented exactly in Q0, or, to put
it another way, p is not polymorphic relative to the chosen do-
mains. There are different ways to get around this problem, and
they mainly consist of encapsulating p using a translator that does
make the combination polymorphic. This is, for example, the tech-
nique used in the Ptolemy II framework, where an intermediate
director compatible with the agent is used to mediate the commu-
nication between the agent that is not polymorphic, and the domain
in which the designer wishes to use it.

Translations in our framework take the form of closure or interior
systems. We have already seen that a conservative approximation
	 = (l;	u) determines for each agent the equivalence classes
of the agents that have the same upper bound and the same lower
bound, respectively. Equation 1 shows that if the inverse of a con-
servative approximation is defined for an agent p0, then 	inv (p

0)
is the greatest and least element, respectively, of these equivalence
classes. When the upper and lower bound are monotonic functions,
these elements constitute a closure and an interior for the elements
of their respective equivalence classes.

Theorem 5.1. Let Q and Q0 be partially ordered agent algebras
and let 	 = (l;	u) be a conservative approximation from
Q to Q0 such that 	l and 	u are monotonic and 	inv is de-
fined for all agents p0 in Q0. Let C; I : Q:D 7! Q:D be
operators of Q defined as

C(p) = 	inv (u(p));

I(p) = 	inv (l(p)):

Then C is a closure operator, and I is an interior operator.

The closure and the interior operator essentially “complete” an
agent in order to make it compatible with the requirements of the
abstract domain. The closure produces an abstraction within Q
by choosing the greatest element of the equivalence class induced
by 	u, thus potentially “adding” behaviors that are required by the
abstract domain. The interior, on the other hand, computes a refine-
ment in Q, by choosing the least element of the equivalence class
induced by 	l, and thus “removing” behaviors that are incompat-
ible with the abstract domain. Other forms of completion that for
example handle the case in which 	inv is not total are also possible.
We do not however explore them further here, and reserve them for
our future work. Our current interest is also directed towards un-
derstanding the relationships between the operational semantics of
simulators for different models of computation, and to derive syn-
chronization constraints that makes the simulation consistent with
the abstraction. Our approach consists of augmenting the models
with partial behaviors that denotationally represent the progress in
terms of simulation steps.

6. CONCLUSIONS
In this paper we have used the framework of Agent Algebra to

present and discuss abstraction and refinement operations in the
form of conservative approximations. We have compared conserva-
tive approximations to abstract interpretations and we have shown
that, unlike abstract interpretations, conservative approximations

always preserve refinement verification results from an abstract to a
concrete model, while avoiding false positives. Therefore, conser-
vative approximations are better suited for design methodologies
for heterogeneous systems that employ several models of compu-
tation. In addition, we have used the inverse of a conservative ap-
proximation to identify components that can be used indifferently
in several models, thus enabling reuse across domains of computa-
tion.

Our current work focuses on extending techniques that make
it easier to construct conservative approximations between agent
models. The axialities of homomorphisms on behaviors described
in this paper is one such example. However, homomorphisms are
usually defined to preserve the alphabet of behaviors, so that the
induced conservative approximations, too, must preserve the alpha-
bet of agents. More interesting conservative approximations can be
constructed by letting the homomorphism change the alphabet of
a behavior, for example by hiding certain signals, like clocks and
activation signals, that have no meaning in a more abstract model.
This is also appropriate for converting a detailed protocol specifi-
cation into a more abstract, transaction-based, specification. Arbi-
trary changes of the alphabet are also possible. In this case, how-
ever, the homomorphism must not only be applied to the behaviors,
but also to the operators of the algebra in order to correctly trans-
late expressions. Note that in this case the homomorphism becomes
similar to a functor between categories, where a category has be-
haviors as objects and the operators of the algebra as morphisms.

An agent algebra that uses behaviors as its underlying model
may impose restrictions on the kind of agents that can be con-
structed. For example, only receptive (or progressive, or input
enabled) agents might be allowed. The axialities of a homomor-
phism, in this case, may not necessarily be defined if the resulting
agent does not satisfy such conditions. A promising avenue of fu-
ture research consists therefore in identifying the agent that most
faithfully approximates the missing abstraction, while satisfying
the constraints imposed by the algebra, and while still functioning
as the bound of a conservative approximation. This would con-
stitute a generalization of the techinique proposed by Loiseaux et
al. [10] on property-preserving abstractions in the context of tran-
sition systems.

7. REFERENCES
[1] Jerry R. Burch. Trace Algebra for Automatic Verification of

Real-Time Concurrent Systems. PhD thesis, School of
Computer Science, Carnegie Mellon University, August
1992.

[2] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252, Los
Angeles, California, 1977. ACM Press, New York, NY.

[3] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract
interpretation, invited paper. In M. Bruynooghe and M.
Wirsing, editors, Proceedings of the International Workshop
Programming Language Implementation and Logic
Programming, PLILP ’92,, Leuven, Belgium, 13–17 August
1992, Lecture Notes in Computer Science 631, pages
269–295. Springer-Verlag, Berlin, Germany, 1992.

[4] Luca de Alfaro and Thomas A. Henzinger. Interface theories
for component-based design. In Henzinger and Kirsch [6],
pages 148–165.

163

[5] David L. Dill. Trace Theory for Automatic Hierarchical
Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1989.

[6] Thomas A. Henzinger and Christoph M. Kirsch, editors.
Embedded Software, volume 2211 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[7] E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework
for comparing models of computation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits,
17(12):1217–1229, December 1998.

[8] Edward A. Lee. Overview of the Ptolemy project. Technical
Memorandum UCB/ERL M03/25, University of California,
Berkeley, July 2003.

[9] Edward A. Lee and Yuhong Xiong. System-level types for
component-based design. In Henzinger and Kirsch [6].

[10] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed
Bouajjani, and Saddek Bensalem. Property preserving
abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6:1–35, 1995.

[11] Radu Negulescu. Process Spaces and the Formal Verification
of Asynchronous Circuits. PhD thesis, University of
Waterloo, Canada, 1998.

[12] Roberto Passerone. Semantic Foundations for Heterogeneous
Systems. PhD thesis, Department of EECS, University of
California at Berkeley, May 2004.

[13] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel.
Models for concurrency: Towards a classification.
Theoretical Computer Science, 170:297–348, 1996.

164

