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Abstract. Embedded systems are electronic devices that function in the context
of a physical environment, by sensing and reacting to a set of stimuli. To sim-
plify the design of embedded systems, different parts are best described using
different notations and analyze with different techniques, i.e., the system is said
to be heterogeneous. We informally refer to the notation and the rules that are
used to specify and verify the elements of heterogeneous systems and their col-
lective behavior as a model of computation. In this paper, the use of conservative
approximations (recently introduced by the authors) is reviewed to establish rela-
tionships between different models of computation in a design. After presenting
the basic definitions, we propose three different models at different levels of ab-
straction for describing a system and the progression towards its implementation.
Then, we derive associated conservative approximations starting from simple ho-
momorphisms between sets of behaviors of the different models.

1 Introduction

Embedded systems are electronic devices that function in the context of a physical en-
vironment, by sensing and reacting to a set of stimuli. To simplify the design of an
embedded system, its different parts are best described using different notations and
analyzed with different techniques. In this case, we say that the system is heteroge-
neous. For example, the model of the software application that runs on a distributed
collection of nodes in a sensor network is often concerned only with the initial and final
state of the behavior of a reaction. In contrast, the particular sequence of actions of the
reaction could be relevant to the design of one instance of a node. Likewise, the notation
used in reasoning about a resource management subsystem is often incompatible with
the handling of real time deadlines, typical of communication protocols. This form of
heterogeneity is also reflected in the structure of the design teams, which increasingly
consist of highly specialized groups that focus on the solution of a particular task, under
the direction of system architects.

Designers benefit from this separation. First, the system is naturally partitioned into
smaller and more manageable parts. Secondly, and more importantly, designers are free
to select for each subsystem the rules that are used to specify its behavior as a hierarchi-
cal collection of modules (composition), and to verify that such behavior conforms to
a specification (refinement verification). These rules vary widely across different mod-
eling domains, such as the ones outlined above. The restrictions and the intrinsic prop-
erties of these rules, which we collectively refer to as a model of computation, are the
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basis of domain specific techniques that can be used to guarantee the correctness of the
implementation in an easier way.

While specified separately, subsystems must eventually interact to form the system
behavior, and will in fact do so in the physical implementation. However, system de-
signers are typically interested in not waiting until the final stages of the implementa-
tion to validate the system functionality and performance metrics, because the cost of
fixing design and specification errors increases dramatically in the later phases of the
design flow as amply documented for electronic systems, software and integrated cir-
cuits. The costs associated with late discovery of errors and, in particular, of integration
errors, have risen to a point that they are no longer sustainable. To witness, consider
the recent recalls by Mercedes-Benz of 1.5 million cars for problems with the braking
subsystem. Consequently, the ability of the system designer to specify, manage, and
verify the functionality and performance of concurrent behaviors, within and across
heterogeneous boundaries, is essential. Most design methodologies that address these
problems are based on the processes of abstraction and refinement, that is, of the ap-
plication of maps that convert and relate different models of computation. However,
crossing the boundaries between abstraction levels by abstracting and refining a spec-
ification is often not trivial. The most common pitfalls include mishandling of corner
cases and inadvertently misinterpreting changes in the communication semantics.

These problems arise because of the poor understanding and the lack of a precise
definition of the abstraction and refinement maps used in the flow, which are therefore
likely to provide little, if any, guarantee of satisfying a given set of constraints and spec-
ifications, without resorting to extensive simulation or tests on prototypes. However, in
the face of growing complexity, this approach will have to yield to more rigorous meth-
ods. In addition, abstraction and refinement should be designed to preserve, whenever
possible, the properties of the design that have already been established. This is essen-
tial to increase the value of early, high level models and to guarantee a speedier path to
implementation.

In this paper we review abstraction and refinement relationships in the form of con-
servative approximations [3,17,18] introduced by the authors to approach the problem
of abstraction and refinement from a formal standpoint. Conservative approximations
are closely related to abstract interpretations, and, in addition, preserve refinement ver-
ification from an abstract to a concrete model while avoiding the occurrence of false
positive results. This property of an abstraction is useful because, presumably, refine-
ment verification is more efficient at the abstract level than it is at the concrete. In this
paper we show how to derive models of computation and the corresponding abstraction
and refinement maps starting from simple models of behavior. We focus in particular
on models that include both continuous and discrete behaviors, and are therefore appro-
priate for the design of hybrid systems [4].

The rest of the paper is structured as follows. Section 2 gives an overview of our
methodology and formal framework and introduces the basic terminology. A set of
different agent models for embedded systems are presented in Section 3. Then, we
construct relationships between these models and give a general recipe for deriving
conservative approximations in Section 4. Section 5 surveys related work and discusses
other forms of abstraction. In all cases, the specific abstraction is either an instance of
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an abstract interpretation (and is therefore unsound for refinement verification), or is a
particular case of conservative approximations. Finally, Section 6 provides directions
for our future research.

2 Methodology Overview

Before we can investigate the notion of an abstraction, we must provide a way to de-
scribe its domain and range, namely the models of computation. In general, an ab-
straction transforms a block of computation in one model into a block of computation
in another model. For example, it may transform a module written in a discrete event
language (such as Verilog or VHDL) into a transaction level module that ignores the
precise time at which events occur, such as a dataflow language. We therefore represent
models of computation at the granularity of the module, or block. In other words, a
model of computation is simply the set of blocks that can be expressed in the model.
For instance, we represent a model of computation based on finite state machines as the
set of finite state machines, or a dataflow model of computation as the set of dataflow
actors. However, the representation of the blocks need not be in the form of a pro-
gramming language. In fact, to simplify the task of defining abstraction functions, we
typically represent blocks as the set of behaviors, or traces that they can exhibit. The
nature of these traces obviously depends on the particular model of computation: for in-
stance, they may consist of sequences of values (as in the case of synchronous models),
functions of real variables (for more accurate continuous time models), or sets of values
representing certain performance metrics (power models, constraints). Because we use
traces, we will refer to blocks in any model of computation generically as agents, and
they will be denoted by the letters p and q. Traces often refer to the externally visi-
ble features of agents: their actions, signals, state variables, etc. We do not distinguish
among the different types, and we refer to them collectively as a set of signals W . Each
trace and each agent is then associated with an alphabet A ⊆ W of the signals it uses.

We make a distinction between two different kinds of traces: complete traces and
partial traces. A complete trace has no endpoint. A partial trace has an endpoint; it
can be a prefix of a complete trace or of another partial trace. Every complete trace
has partial traces that are prefixes of it; every partial trace is a prefix of some complete
trace. The distinction between a complete trace and a partial trace has only to do with the
length of the trace (that is, whether or not it has an endpoint), not with what is happening
during the trace. For example, a finite string can represent a complete behavior with a
finite number of actions, or it can represent a partial behavior.

In our framework, the first step in defining a model of computation is to construct
an algebra of traces C. The trace algebra contains the universe of partial traces and the
universe of complete traces for the model of computation. The algebra also includes
three operations on traces: projection, renaming and concatenation. Intuitively, these
operations correspond to encapsulation, instantiation and sequential composition, re-
spectively. Projection removes all references to a specified set of signals in a trace,
hiding them from an external observer, while renaming is used to change the names
of the signals, emulating the replacement of actual for formal parameters in function
instantiation. Concatenation, which joins two behaviors at their ends, can be used to
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define the notion of a prefix of a trace. We say that a trace x is a prefix of a trace z if
there exists a trace y such that z is equal to x concatenated with y.

Agents in a model of computation do not exist in isolation. For instance, agents can
be combined with the operation of parallel composition (denoted by the symbol ‖) to
yield a new agent in the same model of computation. An agent algebra Q is used to
define these operators, together with their set of agents. For trace-based agent models,
an agent algebra is constructed in a fixed way from the algebra of the corresponding
traces, where agents are simply sets of traces. For composition, the new agent combines
the behaviors of the original components in such a way that the new behaviors are
consistent with those of the components when projected onto their alphabets. Other
operations are derived by simply extending to sets of traces the operators of the trace
algebra. We will show examples of these derivations later in Section 3.

Different means can often be used to achieve the same goal. Likewise, agents with
different behavior may sometimes yield the same result when applied to a particular
context. In particular, if an agent p can always be replaced for an agent q in any context
without materially changing the outcome of the composition, then we say that p refines
q. In the rest of this paper we use the symbol � to denote this refinement relationship,
and we write p � q whenever p refines q. We also refer to q as a specification, and
to p as an implementation of q. For trace-based models, refinement can be reduced to
checking containment between the trace set of agents, and is therefore analogous to
verification methods based on language containment.

2.1 Refinement Preserving Abstractions

The choice of levels of abstraction, or models, in a heterogeneous design methodology
is obviously very important. Each model must in fact be capable of supporting the
desired techniques, and must be detailed enough to provide answers to the specific
questions under consideration for the particular subsystems it applies to. An equally
important choice has to do with the way the levels of abstraction are connected, or, in
other words, with the abstraction and refinement functions that are used to relate the
models. In general, many forms of abstraction and refinement are possible. In practice,
only those that preserve certain properties of interest are useful. In particular, we are
interested in abstractions that preserve the refinement relationship � when moving from
a more abstract model to a more concrete one. More formally, assume p and q are agents
in a model Q, and that p′ and q′ are the corresponding abstractions in a model Q′. Then
we say that the abstraction preserves the refinement relationship from the abstract to the
concrete model if p′ � q′ implies that also p � q.

This property is useful for several reasons. First, refinement verification can be used
to establish that an agent satisfies some requirement by comparing it to a specifica-
tion. It would therefore be at best inconvenient if the result of this verification were
lost during a refinement step of the methodology. In the worst case, it could lead to
incorrect designs. A second advantage has to do with the efficiency of refinement veri-
fication. The process is in fact potentially more efficient at the abstract level because of
the lesser amount of information included in the model. An abstraction that preserves
the refinement relationship can thus be used to translate a complex verification prob-
lem at the concrete level to a simpler problem at the abstract level. This translation is
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conservative: while the loss of information may make it impossible to establish a refine-
ment relationship between the abstracted agents, it ensures that when the relationship
is indeed established it also holds at the concrete level. In other words, false positive
results are ruled out.

Conservative approximations are constructed using two abstraction functions, in-
stead of just one. The first function, usually denoted Ψu, is applied to the implementa-
tion p, while the second function, denoted Ψl, is applied to the specification q. The pair
(Ψl, Ψu) forms a conservative approximation whenever Ψu(p) � Ψl(q) implies p � q.
Thus, by definition, a conservative approximation always preserves the refinement re-
lationship from the abstract to the concrete model. In the rest of this paper, we first in-
troduce a number of models of interest for the development of embedded systems, and
then show how to relate them using conservative approximations, and their inverses,
obtained from simple homomorphisms on traces.

The notion of a conservative approximation is independent of the use of traces as
an underlying agent model [18]. In particular, it could be used in other contexts, such
as branching-time logics, where refinement and equivalence are expressed in terms of
simulations. Our motivations for developing a trace-based model is the ease with which
conservative approximations can be derived starting from simple homomorphic func-
tions on behaviors.

3 Models of Embedded System Behavior

In this section we will present three models at progressively higher levels of abstraction,
by defining a trace algebra and a corresponding agent algebra. We develop our models
in the context of hybrid systems [4], a particular kind of heterogeneous systems that
combine behaviors expressed as a continuous evolution with the occurrence of instan-
taneous discrete events. These two aspects of a behavior are often called the flows and
the jumps of the system. Hybrid formalisms are particularly useful when designing em-
bedded control systems, which require modeling the physical behavior of environments
that undergo sudden mode changes. The hybrid model, in addition, is necessary for an
accurate evaluation of a control strategy based on discrete computations.

The first model that we present, called metric time, is intended to represent exactly
the evolutions (the flows and the jumps) of a system as a function of global real time.
With the second we abstract away the metric while maintaining the total order of oc-
currence of events. This model is used to define the untimed semantics of embedded
applications. Finally, the third trace algebra further abstracts away the information on
the event occurrences by only retaining initial and final states and removing the in-
termediate steps. This simpler model can be used to describe the semantics of some
programming language constructs. Later, we will use homomorphisms on trace sets to
derive conservative approximations.

3.1 Metric Time

A typical semantics for hybrid embedded systems includes continuous flows that rep-
resent the continuous dynamics of the system, and discrete jumps that represent in-
stantaneous changes of the operating conditions. The system is modeled by its state



726 R. Passerone and A.L. Sangiovanni-Vincentelli

variables. In our formalization, the evolution of the state variables takes the form of
a single piece-wise continuous function over real-valued time, where the continuous
segments represent the flows, while the discontinuities between the segments model
the jumps. In this paper we assume that the variables of the system take only real or
integer values. Real-valued variables are used, for instance, to model quantities such
as position and speeds, while integer variables are more appropriate for modalities and
other discrete quantities. The sets of real-valued and integer valued variables for a given
trace are called VR and VZ, respectively. Traces may also contain actions, which are dis-
crete events that can occur at any time. Actions do not carry data values. For a given
trace, the set of input actions is MI and the set of output actions is MO. Actions could
be, for example, the commands issued by a user, or signals generated by an embedded
controller.

Each trace has a signature γ which is a 4-tuple of the above sets of signals:

γ = (VR, VZ, MI , MO).

The sets of signals may be empty, but we assume they are disjoint. The alphabet of γ is

A = VR ∪ VZ ∪ MI ∪ MO.

The set of partial traces for a signature γ is BP (γ). Each element of BP (γ) is a triple
x = (γ, δ, f). The non-negative real number δ is the duration (in time) of the partial
trace. The function f has domain A. For v ∈ VR, f(v) is a function in [0, δ] → R,
where R is the set of real numbers and the closed interval [0, δ] is the set of real numbers
between 0 and δ, inclusive. This function must be piece-wise continuous and right-hand
limits must exist at all points. Analogously, for v ∈ VZ, f(v) is a piece-wise constant
function in [0, δ] → Z, where Z is the set of integers. For a ∈ MI ∪ MO, f(a) is a
function in [0, δ] → {0, 1}, where f(a)(t) = 1 iff action a occurs at time t in the trace.

The set of complete traces for a signature γ is BC(γ). Each element of BC(γ) is
a pair x = (γ, f). The function f is defined as for partial traces, except that each
occurrence of [0, δ] in the definition is replaced by R

�−, the set of non-negative real
numbers.

To complete the definition of this trace algebra, we must define the operations of
projection, renaming and concatenation on traces. The projection operation proj(B)(x)
is defined iff MI ⊆ B ⊆ A, where B is the set of signals that must be retained. The
trace that results is the same as x except that the domain of f is restricted to B. The
renaming operation x′ = rename(r)(x) is defined iff r is a one-to-one function from
A to some A′ ⊆ W . If x is a partial trace, then x′ = (γ′, δ, f ′) where γ′ results from
using r to rename the elements of γ and f ′ = r ◦ f .

The definition of the concatenation operator x3 = x1 · x2, where x1 is a partial trace
and x2 is either a partial or a complete trace, is more complicated. If x2 is a partial
trace, then x3 is defined iff γ1 = γ2 and for all a ∈ A,

f1(a)(δ1) = f2(a)(0),

(note that δ1, δ2, etc., are components of x1 and x2 in the obvious way). Concatenation
is defined only when the end points of the two traces match. By doing so, jumps must be
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modeled explicitly by a trace, and do not arise as a byproduct of concatenation. When
defined, x3 = (γ1, δ3, f3) is such that δ3 = δ1 + δ2 and for all a ∈ A,

f3(a)(δ) = f1(a)(δ) for 0 ≤ δ ≤ δ1,

f3(a)(δ) = f2(a)(δ − δ1) for δ1 ≤ δ ≤ δ3.

The concatenation of a partial trace with a complete trace yields a complete trace with
a similar definition. If x3 = x1 · x2, then x1 is a prefix of x3.

3.2 Non-metric Time

In the definition of this trace algebra we are concerned with the order in which events
occur in the system, but not in their absolute distance or position. This is useful if we
want to describe the semantics of a programming language for embedded systems that
abstracts from a particular real time implementation. Although we want to remove real
time, we want to retain the global ordering on events induced by time. In particular,
to simplify the abstraction from metric time to non-metric time described below, we
would like to support the case of an uncountable number of events1. Sequences are
clearly inadequate given our requirements. Instead we use a more general notion of a
partially ordered multiset to represent the trace. We quote the original definition given
by Pratt [19], and due to Gischer, which begins with the definition of a labeled partial
order. We then specialize this notion to our needs.

Definition 1 (Labeled partial order, Pratt [19]). A labeled partial order (lpo) is a 4-
tuple L = (V, Σ, ≤, μ) consisting of

1. a vertex set V , typically modeling events;
2. an alphabet Σ (for symbol set), typically modeling actions such as the arrival of

integer 3 at port Q, the transition of pin 13 of IC-7 to 4.5 volts, or the disappearance
of the 14.3 MHz component of a signal;

3. a partial order ≤ on V , with e ≤ f typically being interpreted as event e necessarily
preceding event f in time; and

4. a labeling function μ : V → Σ assigning symbols to vertices, each labeled event
representing an occurrence of the action labeling it, with the same action possibly
having multiple occurrence, that is, μ need not be injective.

A pomset (partially ordered multiset) is then the isomorphism class of an lpo, denoted
[V, Σ, ≤, μ]. By taking lpo’s up to isomorphism we confer on pomsets a degree of ab-
straction equivalent to that enjoyed by strings (regarded as finite linearly ordered labeled
sets up to isomorphism), ordinals (regarded as well-ordered sets up to isomorphism),
and cardinals (regarded as sets up to isomorphism).

This representation is suitable for the above mentioned infinite behaviors: the under-
lying vertex set may be based on an uncountable total order that suits our needs. For our
application, we do not need the full generality of pomsets. Instead, we restrict ourselves
to pomsets where the partial order is total, which we call tomsets.

1 In theory, such Zeno-like behavior is possible, for example, for an infinite loop whose
execution time halves with every iteration.
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Traces have the same form of signature as in metric time:

γ = (VR, VZ, MI , MO).

Both partial and complete traces are of the form x = (γ, L) where L is a tomset. When
describing the tomset L of a trace, we will in fact describe a particular lpo, with the
understanding that L is the isomorphism class of that lpo. An action σ ∈ Σ of the
lpo is a function with domain A such that for all v ∈ VR, σ(v) is a real number (the
value of variable v resulting from the action σ); for all v ∈ VZ, σ(v) is an integer; and
for all a ∈ MI ∪ MO, σ(v) is 0 or 1. The underlying vertex set V , together with its
total order, provides the notion of time, a space that need not contain a metric. For both
partial and complete traces, there must exist a unique minimal element min(V ). The
action μ(min(V )) that labels min(V ) should be thought of as giving the initial state
of the variables in VR and VZ. For each partial trace, there must exist a unique maximal
element max(V ) (which may be identical to min(V )). As defined above, the set of
partial traces and the set of complete traces are not disjoint. It is convenient, in fact,
to extend the definitions so that traces are labeled with a bit that distinguishes partial
traces from complete traces, although we omit the details.

By analogy with the metric time case, it is straightforward to define projection and
renaming on actions σ ∈ Σ. This definition can be easily extended to lpo’s and, thereby,
traces. The concatenation operation x3 = x1 · x2 is defined iff x1 is a partial trace,
γ1 = γ2 and μ1(max(V1)) = μ2(min(V2)). When defined, the vertex set V3 of x3 is a
disjoint union:

V3 = V1 
 (V2 − min(V 2)),

ordered such that the orders of V1 and V2 are preserved and such that all elements of V1
are less than all elements of V2. The labeling function is such that for all v ∈ V3

μ3(v) = μ1(v) for min(V1) ≤ v ≤ max(V1),
μ3(v) = μ2(v) for max(V1) ≤ v.

3.3 Pre-post Time

The third and last trace algebra is concerned with modeling non-interactive constructs
of a programming language. In this case we are interested only in an agents possible
final states given an initial state. This semantic domain could therefore be considered
as a denotational representation of an axiomatic semantics.

We cannot model communication actions at this level of abstraction, so signatures
are of the form γ = (VR, VZ) and the alphabet of γ is A = VR ∪ VZ. A non-degenerate
state s is a function with domain A such that for all v ∈ VR, s(v) is a real number (the
value of variable v in state s); and for all v ∈ VZ, s(v) is an integer. We also have a
degenerate, undefined state ⊥∗.

A partial trace BP (γ) is a triple (γ, si, sf ), where si and sf are the initial and fi-
nal states. A complete trace BC(γ) is of the form (γ, si, ⊥ω), where ⊥ω indicates
non-termination. This trace algebra is primarily intended for modeling terminating be-
haviors, which explains why so little information is included on the traces that model
non-terminating behaviors.
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The operations of projection and renaming are built up from the obvious definitions
of projection and renaming on states. The concatenation operation x3 = x1 · x2 is
defined iff x1 is a partial trace, γ1 = γ2 and the final state of x1 is identical to the initial
state of x2. As expected, when defined, x3 contains the initial state of x1 and the final
state of x2.

3.4 Construction of Agent Models

Our models of agent are constructed in a fixed way from models of traces by considering
the set of behaviors that an agent exhibits. An agent over a given trace algebra is a pair
(γ, P ), where γ is a signature and P is a subset of the traces for that signature. The set
P represents the set of possible behaviors of an agent.

An agent algebra has a set of agents over a given trace algebra as its domain. Oper-
ations of projection, renaming, parallel composition and serial composition on agents
are defined using the operations of the trace algebra, as follows.

Projection and renaming are the simplest operations to define. When they are de-
fined depends on the signature of the agent in the same way that definedness for the
corresponding trace algebra operations depends on the signature of the traces. The sig-
nature of the result is also analogous. Finally, the set of traces of the result is defined
by naturally extending the trace algebra operations to sets of traces. For instance, if
p = (γ, P ) is an agent, then proj(B)(p) = (γ′, proj(B)(P )), where γ′ is obtained by
γ by retaining only the elements of B. Sequential composition is defined in terms of
concatenation in an analogous way. The only difference from projection and renam-
ing is that sequential composition requires two agents as arguments, and concatenation
requires two traces as arguments.

Parallel composition of two agents is defined only when all the traces in the agents
are complete traces, and the set of output actions of the two agents are disjoint. Let the
agent p′′ be the parallel composition of p and p′. Then the components of p′′ are as
follows (MI and MO are omitted in pre-post traces):

V ′′
R

= VR ∪ V ′
R

V ′′
Z

= VZ ∪ V ′
Z

M ′′
O = MO ∪ M ′

O

M ′′
I = (MI ∪ M ′

I) − M ′′
O

P ′′ = {x ∈ BC(γ′′) : proj(A)(x) ∈ P ∧ proj(A′)(x) ∈ P ′}.

Here, the variables of the composite p′′ are the union of the variables of the compo-
nents p and p′. The actions of the composite are also the union of the actions of the
components. An action is regarded as an output of the composite if it is an output of
either component. However, an action is an input of the composite if it is an input of
one of the components, and it is not at the same time an output of the other compo-
nent, so that an input can only be connected to one output. The definition of P ′′ ensures
that the behaviors of the composite are all and only the behaviors consistent with the
components.
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4 Relations Between Models

The three trace algebras defined above cover a wide range of levels of abstraction. The
first step in formalizing the relationships between those levels is to define homomor-
phims between the trace algebras. Trace algebra homomorphisms induce corresponding
conservative approximations between the agent algebras, as we shall see.

4.1 Homomorphisms

From metric to non-metric time. A homomorphism from metric time to non-metric time
should abstract away detailed timing information. This requires characterizing events
in metric time and mapping those events into a non-metric time domain. Since metric
time trace algebra is, in part, value based, some additional definitions are required to
characterize events at that level of abstraction.

Let x be a metric trace with signature γ and alphabet A such that

γ = (VR, VZ, MI , MO),
A = VR ∪ VZ ∪ MI ∪ MO.

We define the homomorphism h by defining a non-metric time trace y = h(x). This
requires building a vertex set V and a labeling function μ to construct an lpo. The trace
y is the isomorphism class of this lpo. For the vertex set we take all reals such that an
event occurs in the trace x, where the notion of event is formalized in the next several
definitions.

Definition 2 (Stable function). Let f be a function over a real interval to R or Z. The
function is stable at t iff there exists an ε > 0 such that f is constant on the interval
(t − ε, t].

Definition 3 (Stable trace). A metric time trace x is stable at t iff for all v ∈ VR ∪ VZ

the function f(v) is stable at t; and for all a ∈ MI ∪ MO, f(a)(t) = 0.

In other words, a trace is stable at a time t if it is possible to find a left neighborhood of
t (i.e., an interval (t − ε, t] for ε > 0) where the trace is constant and no action occurs.
When a trace is not stable at t, then we say that the trace has an event at t.

Definition 4 (Event). A metric time trace x has an event at t > 0 if it is not stable at
t. Because a metric time trace doesn’t have a left neighborhood at t = 0, we always
assume the presence of an event at the beginning of the trace. If x has an event at t,
the action label σ for that event is a function with domain A such that for all v ∈ A,
σ(a) = f(a)(t), where f is a component of x as described in the definition of metric
time traces.

Now we construct the vertex set V and labeling function μ necessary to define y and,
thereby, the homomorphism h. The vertex set V is the set of reals t such that x has an
event at t. While it is convenient to make V a subset of the reals, remember that the
tomset that results is an isomorphism class. Hence the metric defined on the set of reals
is lost. The labeling function μ is such that for each element t ∈ V , μ(t) is the action
label for the event at t in x.
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Note that if we start from a partial trace in the metric trace we obtain a trace in the
non-metric trace that has an initial and final event. It has an initial event by definition.
It has a final event because the metric trace either has an event at δ (the function is not
constant), or the function is constant at δ, and then there must be an event that brought
the function to that constant value (which, in case of identically constant functions, is
the initial event itself).

To show that h does indeed abstract away information, consider the following situa-
tion. Let x1 be a metric time trace. Let x2 be same trace where time has been “stretched”
by a factor of two (i.e., for all v ∈ A1, x1(a)(t) = x2(a)(2t)). The vertex sets gener-
ated by the above process are isomorphic (the order of the events is preserved), therefore
h(x1) = h(x2).

From non-metric to pre-post time. The homomorphism h from the non-metric time
traces to pre-post traces requires that the signature of the agent be changed by removing
MI and MO. Let y = h(x). The initial state of y is formed by restricting μ(min(V ))
(the initial state of x) to VR∪VZ. If x is a complete trace, then the final state of y is ⊥ω. If
x is a partial trace, and there exists a ∈ MI ∪MO and time t such that f(a)(t) = 1, the
final state of y is ⊥∗. Otherwise, the final state of y is formed by restricting μ(max(V )).

4.2 Conservative Approximations

As discussed in the introduction, we are interested in relating different models that
describe systems at different levels of abstraction. We can accomplish this by deriving
a conservative approximation from a homomorphism between trace algebras. Consider
two trace algebras C and C′. Intuitively, if h(x) = x′, the trace x′ is an abstraction of
any trace y such that h(y) = x′. Thus, x′ can be thought of as representing the set of
all such y. For instance, a non-metric time trace x′ can be thought of the abstraction
of all possible stretched versions y in the metric time model. This is easily extended
to sets of traces, and therefore to agents. Hence, if Q and Q′ are agent algebras over
C and C′ respectively, we use the function Ψu that maps an agent p = (γ, P ) in Q
into the agent (γ, h(P )) in Q′ as the upper bound in a conservative approximation. A
sufficient condition for a corresponding lower bound is: if x 
∈ P , then h(x) is not in
the set of possible traces of Ψl(p). This leads to the definition of a function Ψl(p) that
maps P into the set h(P ) − h(B(γ) − P ), where B(γ) is the set of all traces with
alphabet γ. For instance, the lower bound of a metric time agent p into non-metric time
includes a trace x′ if and only if p contains all its possible concretizations (time stretched
versions). The conservative approximation Ψ = (Ψl, Ψu) is an example of a conservative
approximation induced by h. A slightly tighter lower bound is also possible (see [3]).

It is straightforward to take the general notion of a conservative approximation in-
duced by a homomorphism, and apply it to specific models. Simply construct trace
algebras C and C′, and a homomorphism h from C to C′. Recall that these trace al-
gebras act as models of individual behaviors. One can construct the agent algebras Q
over C and Q′ over C′, and a conservative approximation Ψ induced by h. Thus, one
need only construct two models of individual behaviors and a homomorphism between
them to obtain two agent models along with a conservative approximation between the
individual agents of the models.
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This same approach can be applied to the three trace algebras, and the two homo-
morphisms between them, that were defined in Section 3, giving conservative approxi-
mations between process models at three different levels of abstraction. The application
of the upper bound is straightforward, since it is a natural extension to sets of the homo-
morphism on behaviors. The lower bound, on the other hand, provides complementary
information. For instance, the lower bound of a metric-time agent contains all those
behaviors for which the agent has an analogous behavior for any possible “stretching”
of the time-axis. Thus, the lower bound identifies those behaviors in an agent that are in
a sense speed independent. Similarly, the conservative approximation from non-metric
time to pre-post traces identifies the subset of behaviors of an agent which depend ex-
clusively on the initial and final state of the computation.

4.3 Inverse Approximations

As we have discussed, if Ψ = (Ψl, Ψu) is a conservative approximation from Q to Q′,
then p′ = Ψu(p) represents a kind of upper bound on p. It is instructive to investigate
whether there is an agent in Q that is represented exactly by p′ rather than just being
bounded by p′. If no agent in Q can be represented exactly, then Ψ is abstracting away
too much information to be of much use for verification. If every agent in Q can be
represented exactly, then Ψl and Ψu are equal and are isomorphisms from Q to Q′.
These extreme cases illustrate that the amount of abstraction in Ψ is related to what
agents p are represented exactly by Ψu(p) and Ψl(p).

To formalize what it means to be represented exactly in the context of conservative
approximations, we define the inverse Ψinv of the conservative approximation Ψ . The
inverse of an approximation is a function from the abstract model Q′ to the concrete
model Q that, as we shall see in this section, completes the relationships between Q
and Q′ by establishing a refinement map across the models. Normal notions of the
inverse of a function are not adequate for constructing the inverse of a conservative
approximation Ψ , since Ψ is a pair of functions. Our notion of an inverse is thus based
on the following result.

Lemma 1. Let Q and Q′ be models of computation, and let (Ψl, Ψu) be a conservative
approximation from Q to Q′. For all p1 and p2 in Q, if Ψl(p1) = Ψu(p1) = p′ and
Ψl(p2) = Ψu(p2) = p′, then p1 = p2.

Lemma 1 shows that when the upper and the lower bound coincide for a particular
agent p, then, intuitively, the abstraction p′ is an exact representation of p. To put it
another way, p does not use any of the additional information provided by the concrete
level, since it can be determined uniquely from its abstraction p′. It is therefore natural
to define Ψinv (p′) = p, where p is the agent in Q such that Ψu(p) = Ψl(p) = p′. If
Ψl(p) 
= Ψu(p), then p is not represented exactly in Q′. In this case, p is not in the
image of Ψinv .

Definition 5 (Inverse of a Conservative Approximation). Let Ψ = (Ψl, Ψu) be a con-
servative approximation from Q to Q′. For p′ ∈ Q′, the inverse Ψinv (p′) is defined and
is equal to p if and only if Ψl(p) = Ψu(p) = p′.

It follows from the definition that, when Ψinv is defined, the following identity holds:

Ψl(Ψinv (p′)) = Ψu(Ψinv (p′)).
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The function Ψinv need not be defined for all p′. This may happen, for example, if the
model Q′ includes information that cannot be expressed exactly in Q. In that case, Ψinv

is a partial function and is only defined for the agents that have an exact representation
in both models. When an agent has an exact representation in Q and Q′, we say that it
can be used indifferently in the two models, or that it is polymorphic. This is because
the agent makes no assumption regarding its behavior based on information that can be
expressed exclusively in either model of computation. However, the representation of
the agent in Q and Q′ is, in general, different. Thus, this notion extends our ability to
reuse agents across models that employ different representations.

For our examples, the inverse of the approximation from metric to non-metric time
agent is always defined, and translates a non-metric time agent to a corresponding met-
ric time agent which non-deterministically chooses a given timing for any of its behav-
iors. This non-determinism is typical of our approach, and is useful to expose the de-
grees of freedom that are available in a design-by-refinement methodology. Similarly,
the inverse of the conservative approximation that goes from pre-post to non-metric
time agents builds a concretization where each pair of initial and final states is non-
deterministically computed by reordering actions along the time axis.

A conservative approximation thus induces its own inverse in the form of a (possibly
partial) refinement map. The inverse is uniquely determined, and, because of the defin-
ing properties of a conservative approximation, Ψinv is one-to-one, and, when restricted
to the image of Ψinv , the functions Ψl and Ψu are equal and are the inverse of Ψinv . In ad-
dition, when defined, Ψinv is always monotonic and, if either Ψl or Ψu is also monotonic,
it preserves the ordering of the agents in both directions. Hence, the inverse embeds the
abstract model of computation (or at least the part of it where it is defined) into the
more concrete model, in a way that is consistent with the chosen abstractions. Different
conservative approximations between the same models may therefore induce different
embeddings. This is again an indication of the importance of choosing the right abstrac-
tion for the problem at hand. The nature of the embedding, in fact, determines how one
model is interpreted in terms of the other, and quantifies the amount of information lost
during the abstraction.

4.4 Modeling Constructs in Embedded Software

Using Pre-Post Traces. One of the fundamental features of embedded software is that
it interacts with the physical world. Conventional axiomatic or denotational semantics
of sequential programming languages only model initial and final states of terminat-
ing programs. Thus, these semantics are inadequate to fully model embedded software.
However, much of the code in an embedded application does computation or internal
communication, rather than interacting with the physical world. Such code can be ade-
quately modeled using conventional semantics, as long as the model can be integrated
with the more detailed semantics necessary for modeling interaction. Pre-post agents
are quite similar to conventional semantics. As described earlier, we can also embed pre-
post agents into more detailed models. Thus, we can model the non-interactive parts of
an embedded application at a high level of abstraction that is simpler and more natural,
while also being able to integrate accurate models of interaction, real-time constraints
and continuous dynamics.
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As an example we consider the problem of developing software to control an engine
in the cutoff region [2]. Here, the behaviors of an automobile engine are divided into
regions of operation, each characterized by appropriate control actions to achieve a de-
sired result. The cutoff region is entered when the driver releases the accelerator pedal,
thereby requesting that no torque be generated by the engine. In order to minimize
power train oscillations that result from suddenly reducing torque, a closed loop con-
trol damps the oscillations using carefully timed injections of fuel. The control problem
is therefore hybrid, consisting of a discrete (the fuel injection) and a continuous (the
power train behavior) systems tightly linked.

01. void control algorithm( void ) {
02. // state definition
03. struct state { double x1; double x2; double omega c; } current state;
04. // Init the past three injections (assume injection before cutoff)
05. double u1, u2, u3 = 1.0;
06.
07. loop forever {
08. await( action request );
09. read current state( current state );
10. compute sigmas( sigma m, sigma 0, current state, u1, u2, u3 );
11. // update past injections
12. u1 = u2; u2 = u3;
14. // compute next injection signal
15. if ( sigma m < sigma 0 ) {
16. action injection( );
17. u3 = 1.0;
18. } else {
19. action no injection( );
20. u3 = 0.0;
21. }
22. }
23. }

Fig. 1. An embedded control algorithm

Figure 1 shows the top level routine of the control algorithm. Although we use a C-
like syntax, the semantics are simplified, as described later. The controller is activated
by a request for an injection decision (this happens every full engine cycle). The algo-
rithm first reads the current state of the system (as provided by the sensors on the power
train), predicts the effect of injecting or not injecting on the future behavior of the sys-
tem, and finally controls whether injection occurs. The prediction uses the value of the
past three decisions to estimate the position of the future state. The control algorithm
involves solving a differential equation, which is done in the call to compute sigmas
(see [2] for more details). A nearly optimal solution can be achieved without injecting
intermediate amounts of fuel (i.e., either inject no fuel or inject the maximum amount).
Thus, the only control inputs to the system are the actions action injection (max-
imum injection) and action no injection (zero injection).
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The semantics of each statement of the programming language is given by an agent.
To simplify the semantics, we assume that inter-process communication is done through
shared actions rather than shared variables. A pre-post agent has a signature γ of the
form (VR, VZ). For the semantics of a programming language statement, γ indicates the
variables accessible in the scope where the statement appears. For a block that declares
local variables, the agent for the statement in the block includes in its signature the local
variables. The agent for the block is formed by projecting away the local variables from
the agent of the statement.

The sequential composition of two statements is defined as the concatenation of the
corresponding agents: the definition of concatenation ensures that the two statements
agree on the intermediate state. The traces in the agent for an assignment to variable v
are of the form (γ, si, sf ), where si is an arbitrary initial state, and sf is identical to si

except that the value of v is equal to the value of the right-hand side of the assignment
statement evaluated in state si (we assume the evaluation is side-effect free).

The semantics of a procedure definition is given by an agent with an alphabet
{v1, . . . , vr} where vk is the k-th argument of the procedure (these signal names do
not necessarily correspond to the names of the formal variables). We omit the details of
how this agent is constructed from the text of the procedure definition. More relevant
for our control algorithm example, the semantics of a procedure call proc(a, b) is
the result of renaming v1 → a and v2 → b on the agent for the definition of proc. The
parameter passing semantics that results is value-result (i.e., no aliasing or references)
with the restriction that no parameter can be used for both a value and result. More
realistic (and more complicated) parameter passing semantics can also be modeled.

To define the semantics of if-then-else and while loops we define a function
init(x, c) to be true if and only if the predicate c is true in the initial state of trace x.
The formal definition depends on the particular trace algebra being used. In particular,
for pre-post traces, init(x, c) is false for all c if x has ⊥∗ as its initial state.

For the semantics of if-then-else, let c be the conditional expression and let
PT and PE be the sets of possible traces of the then and else clauses, respectively.
The set of possible traces of the if-then-else is

P = {x ∈ PT : init(x, c)} ∪ {x ∈ PE : ¬init(x, c)}

Notice that this definition can be used for any trace algebra where init(x, c) has been
defined, and that it ignores any effects of the evaluation of c not being atomic.

In the case of while loops we first define a set of traces E such that for all x ∈ E
and traces y, if x · y is defined then x · y = y. For pre-post traces, E is the set of all
traces with identical initial and final states. If c is the condition of the loop, and PB the
set of possible traces of the body, we define PT,k and PN,k to be the set of terminating
and non-terminating traces, respectively, for iteration k, as follows:

PT,0 = {x ∈ E : ¬init(x, c)}
PN,0 = {x ∈ E : init(x, c)}

PT,k+1 = PN,k · PB · PT,0

PN,k+1 = PN,k · PB · PN,0
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The concatenation of PT,0 and PN,0 at the end of the definition ensures that the fi-
nal state of a terminating trace does not satisfy the condition c, while that of a non-
terminating trace does. Clearly the semantics of the loop should include all the termi-
nating traces. For non-terminating traces, we need to introduce some additional nota-
tion. A sequence Z =< z0, . . . > is a non-terminating execution sequence of a loop
if, for all k, zk ∈ PN,k and zk+1 ∈ zk · PB . This sequence is a chain in the prefix
ordering. The initial state of Z is defined to be the initial state of z0. For pre-post traces,
we define PN,ω to be all traces of the form (γ, s, ⊥ω) where s is the initial state of some
non-terminating execution sequence Z of the loop. The set of possible traces of the loop
is therefore

P = (
⋃

k

PT,k) ∪ PN,ω.

Using Non-Metric Time Traces. Using an inverse conservative approximation, as de-
scribed earlier, the pre-post trace semantics outlined above can be embedded into the
non-metric time agent model. However, this is not adequate for two of the constructs
used in Figure 1: await and the non-terminating loop. These constructs must be de-
scribe directly at the lower level of abstraction provided by non-metric time traces.

As used used in Figure 1, the await(a) simply delays until the external action a
occurs. Thus, the possible partial traces of await are those where the values of the
state variables remain unchanged and the action a occurs exactly once, at the endpoint
of the trace. The possible complete traces are similar, except that the action a must
never occur.

To give a more detailed semantics for non-terminating loops, we define the set of
extensions of a non-terminating execution sequence Z to be the set ext(Z) = {x ∈
B(γ) : ∀k[zk ∈ pref(x)]}. For any non-terminating sequence Z , we require that ext(Z)
be non-empty, and have a unique maximal lower bound contained in ext(Z), which we
denote lim(Z). In the above definition of the possible traces of a loop, we modify the
definition of the set of non-terminating behaviors PN,ω to be the set of lim(Z) for all
non-terminating execution sequences Z .

Using Metric Time Traces. Analogous to the embedding discussed in the previous sub-
section, non-metric time agents can be embedded into the metric-time agent model.
Here continuous dynamics can be represented, as well as timing assumptions about
programming language statements. Also, timing constraints that a system must satisfy
can be represented, so that the system can be verified against those constraints.

5 Related Work

Abstract interpretations [6,7] are a widely used means of relating different domains of
computation for the purpose of facilitating the analysis of a system. An abstract inter-
pretation between two domains of computation consists of an abstraction function and
of a concretization function that form a Galois connection. The distinguishing feature
of an abstract interpretation is that the concretization of the evaluation of an expres-
sion using the operators of the abstract domain of computation is guaranteed to be an
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upper bound of the corresponding evaluation of the same expression using the oper-
ators of the concrete domain. Hence, a conservative evaluation can be carried out at
the more abstract level, where it is potentially computationally more efficient. Refine-
ment verification, however, is unsound: a positive refinement verification result at the
abstract level does not guarantee a corresponding refinement verification result at the
concrete level. Conservative approximations overcome this problem because they em-
ploy two separate abstraction functions, one for the implementation and one for the
specification. Our study shows that this is a necessary condition for the preservation of
refinement, and one that is not satisfied by a Galois connection [18]. Conservative ap-
proximations and abstract interpretations are however strongly related, in that a pair of
Galois connections can be used to construct a conservative approximation [18]. This re-
sult is important because it extends the rich field of abstract interpretations to refinement
verification.

The study of heterogeneous systems is also a central theme of both the Metropo-
lis [1] and the Ptolemy [11] projects. In Metropolis, a system is composed of processes
that communicate over media expressed in a meta-model of computation. Their combi-
nation, and their relationships, implicitly determine the interaction semantics. Because
of its generality, the underlying meta-model fabrics can be used to promote reuse of
diverse components. The communication media, however, must be carefully designed
to resolve possible incompatibilities. Our work can be thought of as the theory base for
the use of the meta-model to represent heterogeneous systems. In addition, conservative
approximations have been used to make the process of platform-based design advocated
in the Metropolis project precise, and their application in this area is part of our current
work [17].

Similarly, Ptolemy consists of several executable domains of computation that can
be mixed in a hierarchy controlled by a global scheduler. Ptolemy does not currently
provide a notion of abstraction between the different models in the system. However, an
important innovative concept in the design of the Ptolemy II infrastructure is the notion
of domain polymorphism [12]. An actor (agent) is domain polymorphic if it can be used
indifferently, i.e., without modification, in several domains of computation. To check
whether an actor can be used in a particular domain, the authors set up a type system
based on state machines, which is used to describe the assumptions of each model and
each actor relative to an abstract semantics.

Conservative approximations offer a formal way of defining a similar concept of
polymorphism, even though they do not rely upon a common underlying semantics,
as in the case of Ptolemy. A distinctive feature of conservative approximations is their
ability to determine which parts of the models are unaffected by the application of the
abstraction. This information is useful because it identifies the elements of the mod-
els that can be expressed indifferently under the interpretation of either model, without
changing their meaning. Our interpretation of this notion is, however, broader than that
introduced in Ptolemy II. In particular, an actor (agent) is polymorphic in our frame-
work when it makes no assumption regarding its behavior based on information that
cannot be expressed in the other model. When this is the case, reuse of subsystems can
be extended across the boundaries of heterogeneous models. This leads to the notion
of the inverse of a conservative approximation, which is a refinement map that is used
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to embed one model into another. The embedding provides us with an interpretation of
agents across different models which is consistent with the corresponding abstraction.
An agent is polymorphic precisely when this interpretation is exact. This has the advan-
tage of making the process of abstraction and refinement of an agent explicit. Elements
that do not fall in the range of the inverse can only be approximated by the other model.

Another example of approximation is the homomorphic reduction proposed by Kur-
shan [9,10]. This technique can be applied to models of behavior that consist of lan-
guages (sets of sequences) that are recognized by a class of ω automata called L-
automata, which are able to express both safety and fairness constraints. Here, each
automaton P constructed over a set of symbols L (an L-automaton) accepts a language
L(P ) ⊆ Lω, where Lω denotes the set of all infinite sequences of symbols from L.
Verification in this context is the process of determining whether the language L(P )
recognized by an implementation automaton P is contained in the language L(T ) ac-
cepted by the specification automaton T , i.e., that L(P ) ⊆ L(T ). This problem can be
reduced to a more abstract language L′ by verifying that L(P ′) ⊆ L(T ′), for appropri-
ate abstract L′-automata P ′ and T ′. The main result2 states that L(P ′) ⊆ L(T ′) implies
L(P ) ⊆ L(T ) provided there exists a language homomorphism Φ :Lω �→ L′ω such that
Φ(L(P )) ⊆ L(P ′) and Φ(L(T #)) ⊆ L(T ′#). In this case, Φ is said to be co-linear3

for (P, T ; P ′, T ′). In the co-linearity condition above, the notation T # denotes the dual
automaton4 of T , which is closely related to language complementation.

We have argued before that one function on languages is not sufficient to guarantee
the preservation of such verification result. The apparent contradiction with the use
of just one language homomorphism Φ can be reconciled by accounting for the use
of the dual automaton in the co-linearity condition. Effectively, if Φ is co-linear for
(P, T ; P ′, T ′), then it can be shown that not only is Φ(L(P )) ⊆ L(P ′), but also that

L(T ′) ⊆ Φ(L(T )), where the overline bar denotes language complementation. Hence,
the language of the specification T is transformed according to a different abstraction

functions, namely Θ(L(T )) = Φ(L(T )). Interestingly, Φ and Θ form the upper and
lower bound of a conservative approximation that is closely related (and under certain
conditions equal) to the conservative approximation induced by a homomorphism (see
Section 4). Co-linearity of Φ thus simply ensures that L(P ′) and L(T ′) provide looser
bounds, a condition that still guarantees soundness in the verification. Conservative
approximations generalize the technique of homomorphic reduction to arbitrary agent
models, and can therefore be applied to models that are not described by automata.

Model checking techniques based on abstraction/refinement is also a well studied
related field of application for abstraction mappings [5], and is a typical application of
the framework of abstract interpretations. The technique consists of first deriving an
over-approximation of a state-based model using, for instance, predicate abstraction.
The abstract model is constructed in a way that ensures that the property to be verified
can be represented exactly (by, for example, an appropriate choice of the predicates).
Therefore, if the property is verified in the abstract domain, it is also verified in the

2 Theorem 8.5.2 in [9].
3 Definition 8.5.1 in [9].
4 Definitions 6.2.19 and 6.2.26 in [9].



Approximating Behaviors in Embedded System Design 739

concrete domain. If not, a counter-example is generated and used to refine the abstract
domain until the satisfaction of the property is determined. The approach based on con-
servative approximations differs because, as explained, it allows non-trivial abstraction
of the specification, as well as of the implementation. Model checking techniques also
exist that use under-approximations, rather than over-approximations, to derive an ab-
stracted model [16]. This is similar to our use of the lower bound function. However,
unlike our use of the lower bound, the under-approximation is applied to the imple-
mentation, rather than to the specification. This corresponds again to using a Galois
connection, one that goes in the reverse direction. By doing this, if the abstract model
violates the property under verification, then it can be concluded that also the concrete
model violates the property. Instead, if the abstract model satisfies the property, the ver-
ification is inconclusive and the abstract model must be refined until the property is
proved incorrect, or the abstraction becomes exact. This approach may be useful when
the interest lies in finding true counter-examples and bug traces.

Another formalization of abstraction is based on theory interpretations [14]. Here,
an abstract architecture description and a concrete architecture description are both
translated to theories in a logical language (typically first-order logic). The concrete
architecture is correct relative to the abstract architecture if there is a theory interpre-
tation I from the abstract theory Θ to the concrete theory Θ′; that is, for every for-
mula F , F ∈ Θ ⇒ I(F ) ∈ Θ′. In addition, it may be required that I be faithful:
F /∈ Θ ⇒ I(F ) /∈ Θ′. Our approach does not interpret architectures, or other agents,
as logical theories. Instead, they are directly modeled as mathematical objects. This can
be thought of as a model based approach, as opposed to a theory based approach. In
a model based approach, within a given model of computation, the refinement relation
is just a binary relation on objects in the model. This notion of refinement is easier to
reason about than theory interpretations, but it is less flexible for comparing agents in
different models of computation. This can be addressed by introducing abstract inter-
pretations or conservative approximations.

Process Spaces [15] is a very general class of concurrency models, and it compares
quite closely to trace-based agent models [17]. Given a set of executions E , a Process
Space SE consists of the set of all the processes (X, Y ), where X and Y are subsets of
E such that X ∪Y = E . The sets of executions X and Y of a process are not necessarily
disjoint, and they represent the assumptions (Y ) and the guarantees (X) of the process
with respect to its environment. As in trace-based agent models, executions are abstract
objects. Different sets of abstract executions E1 and E2 induce different Process Spaces
SE1 and SE2 . The notion of process abstraction from SE1 to SE2 in Process Spaces is
related to the notion of conservative approximation. In particular, process abstractions
are defined as the Galois connections between process spaces that are derived from a
relation on the set of abstract executions. The connections are obtained as axialities [8].
A process abstraction is classified as optimistic or pessimistic according to whether
it preserves certain verification results from the concrete to the abstract or from the
abstract to the concrete model. These two kinds of abstraction can be used in combi-
nation to preserve verification results both ways. However, in that case, the two models
are isomorphic since there is effectively no loss information. Optimistic and pessimistic
process abstractions roughly correspond to the two abstraction functions of conservative
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approximations. However, our use of these functions is significantly different, since we
apply them in combination (one for the specification, the other for the implementation).
Consequently, our models need not be isomorphic, so that we obtain stronger preserva-
tion results without sacrificing the abstraction.

Winskel et al. [20] propose a framework based on category theory that is related to
ours. In their formalism, each model of computation is turned into a category where
the objects are the agents, and the morphisms represent a refinement relationship based
on simulations between the agents. The authors study a variety of different models
that are obtained by selecting arbitrary combinations of three parameters: behavior vs.
system (e.g., traces vs. state machines), interleaving vs. non-interleaving (e.g., state ma-
chines vs. event structures) and linear vs. branching time. The common operations in
a model are derived as universal constructions in the category. Relationships can be
constructed by relating the categories corresponding to different models by means of
functors, which are homomorphisms of categories that preserve morphisms and their
compositions. When categories represent models of computation, functors establish
connections between the models in a way similar to abstraction maps and semantic
functions. In particular, when the morphisms in the category are interpreted as refine-
ment, functors become essentially monotonic functions between the models, since pre-
serving morphisms is equivalent to preserving the refinement relationship.

In [20], the authors thoroughly study the relationships between the eight different
models of concurrency above by relating the corresponding categories through functors.
In addition, these functors are shown to be components of reflections or co-reflections.
These are particular kinds of adjoints, which are pairs of functors that go in opposite di-
rections and enjoy properties that are similar to the order preservation of the abstraction
and concretization maps of a Galois connection. When the morphisms are interpreted as
refinement, reflections and co-reflections generalize the concept of Galois connection
to preorders. In fact, the relationships between categories based on adjoints are similar
in nature to the abstractions and refinements obtained by abstract interpretations and
conservative approximations. However, as described above for abstract interpretations,
conservative approximations use independent abstractions for the implementation and
the specification in order to derive a stronger result in terms of preservation of the re-
finement relation, and avoidance of false positive verification results. Indeed, we require
two Galois connections, instead of one, to determine a single conservative approxima-
tion. In the work presented in [20], this translates in two adjoints per pair of categories.

6 Conclusions

We presented the use of abstraction and refinement functions between models of com-
putation for the verification and design of heterogeneous systems. We compared con-
servative approximations to abstract interpretations and we showed that, unlike abstract
interpretations, conservative approximations always preserve refinement verification re-
sults from an abstract to a concrete model, while avoiding false positives. Therefore,
conservative approximations are better suited for heterogeneous design methodologies,
i.e., methodologies that use several models of computation. In particular, because they
always guarantee correctness, conservative approximations provide more flexibility in



Approximating Behaviors in Embedded System Design 741

choosing the verification strategy and the hierarchy of models used in the design flow.
We then described how to construct models of computation suitable for the design of
embedded systems, and how conservative approximations can be derived for these mod-
els starting from simple functions (homomorphisms) over their set of behaviors. In ad-
dition, the inverse of a conservative approximation has been shown to identify com-
ponents that can be used indifferently in several models, thus enabling reuse across
domains of computation. The resulting theory can be used as the basis of frameworks
that support heterogeneous modeling.

Our current work focuses on extending techniques that make it easier to construct
conservative approximations between agent models. The axialities of homomorphisms
on behaviors described in this paper is one such example. However, homomorphisms
are usually defined to preserve the alphabet of behaviors, so that the induced conserv-
ative approximations, too, must preserve the alphabet of agents. More interesting con-
servative approximations can be constructed by letting the homomorphism change the
alphabet of a behavior, for example by hiding certain signals, like clocks and activa-
tion signals, that have no meaning in a more abstract model. This is also appropriate
for converting a detailed protocol specification into a more abstract, transaction-based,
specification. Arbitrary changes of the alphabet are also possible. In this case, however,
the homomorphism must not only be applied to the behaviors, but also to the operators,
in order to correctly translate expressions. In this case the homomorphism becomes
similar to a functor between categories, where a category has behaviors as objects and
the operators as morphisms.

A model that uses behaviors as its underlying structure may impose restrictions on
the kind of agents that can be constructed. For example, only receptive (or progres-
sive, or input enabled) agents might be allowed. The axialities of a homomorphism,
however, may not necessarily yield agents that satisfy such conditions. A promising
avenue of future research consists therefore in identifying the agent that most faithfully
approximates the missing abstraction, while satisfying the constraints imposed by the
model, and while still functioning as the bound of a conservative approximation. This
would constitute a generalization of the technique proposed by Loiseaux et al. [13] on
property-preserving abstractions in the context of transition systems.
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