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Abstract

Semantic Foundations for Heterogeneous Systems

by
Roberto Passerone

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

The ability to incorporate increasingly sophisticated functionality makes the design of electronic
embedded systems complex. Many factors, beside the traditional considerations of cost and perfor-
mance, contribute to making the design and the implementation of embedded systems a challenging
task. Theinevitableinteractions of an embedded system with the physical world require that its parts
be described by multiple formalisms of heterogeneous nature. Because these formalisms evolved in
isolation, system integration becomes particularly problematic. In addition, the computation, often
distributed across the infrastructure, is frequently controlled by intricate communication mecha
nisms. This, and other safety concerns, demand a higher degree of confidence in the correctness of
the design that imposes alimit on design productivity.

The key to addressing the complexity problem and to achieve substantial productivity
gainsisarigorous design methodology that is based on the effective use of decomposition and mul-
tiple levels of abstraction. Decomposition relies on models that describe the effect of hierarchically
composing different concurrent parts of the system. An abstraction is the relationship between two
representations of the same system that expose different levels of detail. To maximize their benefit,
these techniques require a semantic foundation that provides the ability to formally describe and re-
late awide range of concurrency models. This Dissertation proposes one such semantic foundation
in the form of an algebraic framework called Agent Algebra.

Agent Algebrais aformal framework that can be used to uniformly present and reason
about the characteristics and the properties of the different models of computation used in adesign,
and about their relationships. This is accomplished by defining an algebra that consists of a set of
denotations, called agents, for the elements of a model, and of the main operations that the model



provides to compose and to manipulate agents. Different models of computation are constructed as
distinct instances of the algebra. However, the framework takes advantage of the common algebraic
structure to derive results that apply to al models in the framework, and to relate different models
using structure-preserving maps.

Relationships between different models of computation are described in this Dissertation
as conservative approximations and their inverses. A conservative approximation consists of two ab-
stractions that provide different views of an agent in the form of an over- and a under-approximation.
When used in combination, the two mappings are capable of preserving refinement verification re-
sults from a more abstract to a more concrete model, with the guarantee of no false positives.
Conservative approximations and their inverses are also used as a generic tool to construct a cor-
respondence between two models. Because this correspondence makes the correlation between an
abstraction and the corresponding refinement precise, conservative approximations are useful tools
to study the interaction of agents that belong to heterogeneous models. A detailed comparison aso
reveals the necessary and sufficient conditions that must be satisfied for the well established notions
of abstract interpretations and Galois connections (in fact, for a pair thereof) to form a conservative
approximation. Conservative approximations are illustrated by several examples of formalization
of models of computation of interest in the design of embedded systems.

While the framework of Agent Algebra is general enough to encompass a variety of
models of computation, the common structure is sufficient to prove interesting results that ap-
ply to al models. In particular, this Dissertation focuses on the problem of characterizing the
specification of a component of a system given the global specification for the system and the
context surrounding the component. This technique, called Local Specification Synthesis, can be
applied to a solve synthesis and optimization problems in a number of different application ar-
eas. The results include sufficient conditions to be met by the definitions of system composition
and system refinement for constructing such characterizations. The local specification synthe-

sis technique is aso demonstrated through its application to the problem of protocol conversion.

Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

| ntroduction

Embedded systems are electronic devices that function in the context of area environ-
ment, by sensing and reacting to aset of stimuli. Embedded systems are pervasive and very diverse.
One extreme is microscopic devices [1, 77, 94] powered by ambient energy in their environment,
that are able to sense numerous fields, position, velocity, and acceleration, and to communicate
with appropriate and sometimes substantial bandwidth in the near area. One the other extreme are
larger, more powerful systems within an infrastructure driven by the continued improvements in
storage and memory density, processing capability, and system-wide interconnects. Applications
are aso diverse, ranging from control-dominated systems, such as those found in the automotive
and aerospace industry; to data-intensive systems, such as set-top boxes and entertainment de-
vices[3, 24, 35, 80]; to life-critical systems such as active prostheses and medical devices[97, 88].

Because of such diversity, currently deployed design methodologies for embedded sys-
tems are often based on ad hoc techniques that lack formal foundations and hence are likely to
provide little if any guarantee of satisfying a given set of constraints and specifications without re-
sorting to extensive simulation or tests on prototypes. However, in the face of growing complexity,
cost and safety constraints, this approach will have to yield to more rigorous methods [55]. These
methods will most likely include several common traits. In fact, despite their diversity, the chal-
lenges that designers of embedded systems in different application areas must face are often similar.
In all cases, concurrency, the simultaneous execution of several elements in a system, and design
constraints must be considered asfirst class citizens at all levels of abstraction and in both hardware
and software. In addition, complexity in the design not only arises from the size of the system, but it
also emerges from its heterogeneous nature, that is from the fact that in complex designs that inter-
act with the real world, different parts are more appropriately captured using different models and



different techniques. For example, the model of the software application that runs on a distributed
collection of nodes in a network is often concerned only with the initial and final state of the be-
havior of areaction. In contrast, the particular sequence of actions of the reaction could be relevant
to the design of one instance of a node. Likewise, the notation employed in reasoning about the
a resource management subsystem is often incompatible with the handling of real time deadlines,
typical of communication protocols. These subsystems are not, however, necessarily decoupled.
In fact, applications in such distributed embedded systems will likely not be centered within a sin-
gle device, but stretched over several, forming a path through the infrastructure. Consequently, the
ability of the system designer to specify, manage, and verify the functionality and performance of
concurrent behaviors, within and across heterogeneous boundaries, is essential.

We informally refer to the notation and the rules that are used to specify and verify the
elements of a system and their collective behavior as a model of computation [37, 38, 61]. The
objective of this work is to provide a formal framework to uniformly present and reason about
the characteristics and the properties of the different models of computation used in a design, and
about their relationships. We accomplish this by defining an algebra that consists of the set of the
denotations, called the agents, of the elements of a model and of the main operations that can be
performed to compose agents and obtain a new agent. Different models of computation are till
constructed as distinct algebras in our framework. However, we can take advantage of the common
algebraic structure to derive results that apply to all modelsin the framework, and to relate different
models using structure-preserving maps. Abstraction and refinement relationships between and
within the relevant models of computation in embedded systems design, and the techniques that
take advantage of these relationships, are the focus of this work.

Modern design methodologies are turning to abstraction techniques to reduce the com-
plexity of designing a system. In addition, design reuse in all its shapes and forms is of paramount
importance. Together, abstraction, refinement and design reuse are the basis of the concept of
platform-based design [43, 20, 82]. A platform consists of a set of library elements, or resources,
that can be assembled and interconnected according to predetermined rules to form a platform
instance. One step in a platform-based design flow involves mapping a specification onto dif-
ferent platform instances, and evaluating its performance. By employing existing components
and interconnection resources, reuse in a platform-based design flow shifts the functional verifi-
cation problem from the verification of the individual elements to the verification of their interac-
tion [79, 85, 81, 16]. In addition, by exporting an abstracted view of the parameters of the model,
the user of a platform is able to estimate the relevant performance metrics and verify that they sat-



isfy the design constraints. The mapping and estimation step is then repeated at increasingly lower
levels of abstraction in order to come to a complete implementation.

Platform-based design is a methodology that can be applied to various application do-
mains [25, 52]. The Metropolis project is a software infrastructure and a design methodology
for heterogeneous embedded systems that supports platform-based design by exploiting refinement
through different levels of abstraction that are tuned to each application area [7]. For this reason,
Metropolisis centered around ameta-model of computation [6] that isaset of primitives that can be
used to construct several different models of computation that can all be used in a particular design.
We develop our work in the context of the Metropolis project. The long term objective of the work
presented here is to lay the foundations for providing a denotational semantics for the meta-model.
To reach that objective we begin by studying severa of the models of computation of interest, and
by studying how relationships between these models can be established. Moreover, we propose a
formalization of the design methodology that makes precise the relationships between the elements
of the different platforms.

We begin thisintroduction by informally presenting our interpretation of certain concepts,
such as model of computation and levels of abstraction, that are at the basis of our approach. While
doing so, we aso delimit the scope of this dissertation, and discuss the principles that influenced
the development of our framework. We then motivate our efforts by presenting an example of a
heterogeneous embedded system that includes a simple formalization of the semantic domain and
the operators of a model of computation suitable for describing objects in continuous time. The
example is followed by an extensive discussion and comparison with related work in this area. We
conclude this chapter with a short summary of the main contributions of this dissertation and with

an annotated outline of the work.

1.1 Modesof Computation and Semantic Domains

In our terminology, a model of computation is a distinctive paradigm for computation,
communication, and synchronization of agents (we use “agent” as a generic term that includes soft-
ware processes, hardware circuits and physical components, and abstractions thereof). For example,
the Mealy machine model of computation [51] is a paradigm where data is communicated via sig-
nals and all agents operate in lockstep. The Kahn Process Network model [53, 54] is a paradigm
where data carrying tokens provide communication and agents operate asynchronously with each
other (but coordinate their computation by passing and receiving tokens). Different paradigms can



give quite different views of the nature of computation and communication. In alarge system, dif-
ferent subsystems can often be more naturally designed and understood using different models of
computation.

The notion of a model of computation is related to, but different from, the concept of a
semantic domain for modeling agents. A semantic domain is a set of mathematical objects used to
model agents. For a given model of computation, there is often a most natural semantic domain.
For example, Kahn processes are naturally represented by functions over streams of values. In
the Mealy machine model, agents are naturally represented by labeled graphs interpreted as state
machines.

However, for a given model of computation there is more than one semantic domain that
can be used to model agents. For example, a Kahn process can also be modeled by a state machine
that effectively simulates its behavior. Such a semantic domain is less natural for Kahn Process
Networks than stream functions, but it may have advantages for certain types of analyses, such
as finding relationships between the Kahn process model of computation and the Mealy machine
model of computation. Our interpretation of these terms highlights the distinction between a model
of computation and a semantic domain. We use the term model of computation more broadly to
include computation paradigms that may not fit within any of the semantic domains we consider.

We interpret the term “model of computation” dightly differently than others. There, the
meaning of the term is based on designating one or more unifying semantic domains. A unifying se-
mantic domain isa(possibly parameterized) semantic domain that can be used to represent a variety
of different computation paradigms. Examples of unifying semantic domains include the Tagged
Signal Model [62], the operational semantics underlying the SystemC language [44, 90] and the ab-
stract semantics underlying the Ptolemy Il simulator [28]. In this context, a model of computation
isaway of encoding a computation paradigm in one of the unifying semantic domains. With this
interpretation, it is common to distinguish different models of computations in terms of the traits of
the encoding: firing rules that control when different agents do computation, communication proto-
cols, etc. For example, in Ptolemy 11, models of computation (also known as computation domains)
are distinguished by differences in scheduling policies and communication protocols.

Thereisan important trade-off when constructing aunifying semantic domain. The unify-
ing semantic domain can be used more broadly if it unifiesalarge number of models of computation.
However, the more models of computation that are unified, the less natural the unifying semantic
domain is likely to be for any particular model of computation. We want the users of our frame-
work to be able to make their own trade-offs in this regard, rather than be required to conform to



a particular choice made by us. In fact, it is not our goal to construct a single unifying semantic
domain, or even a parameterized class of unifying semantic domains. Instead, we wish to construct
aformal framework that simplifies the construction and comparison of different semantic domains,
including semantic domains that can be used to unify specific, restricted classes of other semantic
domains. Our aim therefore differs from that of the Ptolemy Il project where the provision of a
simulator leads to a notion of composition between different models that is fixed in the definition
of the domain directors, resulting in a single specific unifying domain; there, a different notion of
interaction requires redefining the rules of execution. To do so, we have created a mathematical
framework in which to express semantic domainsin aform that is close to their natural formulation
(i.e., the form that is most convenient for a given domain), and yet structured enough to give us
results that apply regardless of the particular domain in question.

1.2 Levelsof Abstraction

An important factor in the design of heterogeneous systems is the ability to flexibly use
different levels of abstraction. Different abstractions provide a different trade-off in terms of expres-
sive power, accuracy and ability to support automated analysis, synthesis and verification. Different
abstractions are often employed for different parts of adesign (by way of different models of com-
putation, for instance). Even each individual piece of the design undergoes changes in the level of
abstraction during the design process, as the model is refined towards a representation that is closer
to the final implementation. Different levels of detail are aso used to perform different kinds of
analysis: for example, a high level functional verification versus a very detailed electromagnetic
interference analysis.

Abstraction may come in many forms. For example, most models include ways to talk
about the evolution of the behavior of a system in time. How the notion of timeis abstracted by the
model is one of the fundamental aspects that characterizes its expressive power. For instance, mod-
els of computation that are intended to closely reflect physical phenomena usually employ a notion
of time based on a continuous, totally ordered metric space. It is possible to use this notion of time
to describe more “idealized” systems, such as systems that transition only at specified intervals. The
continuous nature of the space however introduces irrelevant details that makes the representation
more cumbersome to use. A discrete space, in this case, is more appropriate. Likewise, a software
application is often not concerned with the “distance” between the occurrence of events. In that
case, the space need not employ a metric. In general a partially ordered, or even a preordered set



is used to represent the notion of time. We refer the reader to the Tagged Signal Model of Lee and
Sangiovanni-Vincentelli for an excellent treatment of this subject [62].

A related form of abstraction has to do with the concurrency model. In general, a model
is concurrent if agents are capable of simultaneously executing over time (hence, different notions
of time support different notions of concurrency). The way the agents synchronize during the ex-
ecution distinguishes the different concurrency models. The terminology used in the literature to
describe concurrency modelsis varied, and often used inconsistently across communities. In hard-
ware design, the most common synchronization schemes are the synchronous and the asynchronous
models. In asynchronous model, all agents in asystem execute in lockstep, by exchanging data and
simultaneously advancing their behavior [10]. This synchronization scheme is typical of systems
whose agents share the same globa notion of time. Conversely, in an interleaved asynchronous
model, the agents take turns in executing, and advance their behavior one at atime [34]. This model
is more appropriate for systems where the lockstep execution is not practical, or systems whose
agents have alocal, rather than global, notion of time. Most models of computation that are used in
practice employ some variation on these basic schemes.

Models of systems that include software components that execute on processors are usu-
aly based on an asynchronous scheme, to account for the unpredictability of their execution time.
For this reason, hardware/software co-design methodologies are often based on the combination
of the two models in what is known as Globally Asynchronous Locally Synchronous (GALS) sys-
tems [5]. Here, subsystems execute synchronously, while their global interaction occurs through
an asynchronous model. This model thus combines the analysis techniques that can be applied to
synchronous models with the flexibility afforded by the asynchronous model. A similar scheme can
also be employed in purely software-based systems [21]. Here, however, the distinction between
synchronous and asynchronous has to do with the communication paradigm, rather than with the
timing model. The communication is synchronous if the process that initiates it awaits the comple-
tion of the remote procedure call by transferring the flow of control. In contrast, the communication
is asynchronous if the process retains the flow of control and proceeds immediately without waiting
while the request is serviced by the remote agent [70].

The data exchanged during the interaction of agents may take different forms. The most
common means of interaction are either action-based or value-based. In an action-based scheme of
interaction changes in the environment are propagated through the system during its execution. This
usually indicates the occurrence of events that the system must react to, and is typical of control-
dominated applications. The event can be associated with a value. However, the occurrence, rather



than the value, is the most important piece of information carried by the event. In a value-base
scheme, on the other hand, the value of some quantity is continuously made available to the rest of
the system. Thisisthe case, for instance, in data-dominated applications that process a continuous
stream of data[63]. These models can aso be combined to take advantage of their strengths, at the
expense of additional complexity [32].

Another important abstraction technique consists of restricting the visibility of theinternal
operations of an agent. This is an operation that alters the scope of signals and values, and is
employed by virtually all design languages and models of computation of interest. By hiding the
internal structure, an agent is effectively encapsulated and “protected” from the influence of the
environment. This mechanism is therefore able to localize the effects of certain behaviors, thus
making the analysis of large systems easier. Because this abstraction technique is fundamenta to
the construction of well behaved models, we include scoping as one of the basic operators of the
modelsin our framework.

1.3 Refinement Verification and L ocal Specification Synthesis

Related to the concept of levels of abstraction is the ability in a model of computation to
verify the correctness of a design relative to a specification. Several methods for verifying concur-
rent systems are based on checking for language containment or related properties. In the simplest
form of language containment-based verification, each agent is modeled by aformal language of fi-
nite (or possibly infinite) sequences. If agent p is aspecification and 7 is an implementation, then p/
issaid to satisfy p if the language of ¢/ is asubset the language of p. Theideaisthat each sequence,
sometimes called a trace, represents a behavior; an implementation satisfies a specification if and
only if al the possible behaviors of the implementation are also possible behaviors of the specifi-
cation. Indeed this relationship between “implementation” and “ specification” is a manifestation of
ahierarchy between models, whereby “ specifications’ are at a higher level of abstraction than “im-
plementations’. The fact that a lower-level model is an “implementation” of another higher-level
model is verified by “behavior containment”. Thus we need a forma way of describing behavior
and containment to be able to establish this relationship. Also, we like to think of the relationships
“implementation-specification” as indeed the implementation being a “refinement” of the specifi-
cation. Hence we may qualify refinement as the relationships between a higher-level model and a
lower one, while specification and implementation may relate more properly to the model used to
“enter” the design process and implementation as the one with which we “exit” the design process.



Our work in the framework is indeed inspired by relationships between models of this
sort. Hence, our definitions and theorems will proceed from a definition of agents and structural
properties of models towards the notion of “approximations’ as a way of capturing the behavior
containment idea. Because of their properties, these relationships are called conservative approx-
imations. Once we have established this key relationship, it is possible to compare and combine
models by finding a common ground where behavior representations are consistent. Intuitively, we
may find different ways of approximating models and consequently compositions and comparisons
are dependent on the approximations. This has actually been observed in applications when het-
erogeneous models of computation are used for different parts of a design. The different parts of
the design have, of course, to interact and they eventually do so in the final implementation, but
the way in which we march towards implementation depends on our assumptions about the way the
two models communicate. These assumptions more often than not are implicit and may be imposed
by the tools designers use, leading to sub-optimal and even incorrect implementations. Therefore,
different models of computation are related in our framework by a set of approximations through a
common refinement, thus clearly establishing the assumptions regarding their interaction.

Operators of composition, scoping and instantiation in a model of computation together
make it possible to describe an implementation and its specification as a hierarchy of components.
Ideally, we would like to take advantage of the modularity afforded by the hierarchical representa-
tion to simplify the task of refinement verification, by decomposing a large problem into a set of
smaller problems that are collectively simpler to solve. Thisideais depicted in figure 1.1. There,
a specification p’ is decomposed as the composition of two agents ¢, and ¢,. Similarly, the imple-
mentation p is decomposed into two agents ¢; and ¢». If the model of computation supports com-
positional verification, then verifying that ¢ implements ¢} and that g2 implements ¢}, is sufficient
to conclude that p implements /. This technique can be applied when the operators are monotonic
relative to the refinement relationship. The issue of monotonicity, which we extend to the case of
partial operators, isfundamental in our work and is the basis of many of the general results that hold
in our framework. It isalso adistinguishing factor with respect to other approaches to agent model-
ing [30]. In particular, we insist on anotion of monotonicity, which we call T-monotonicity, that is
consistent with the interpretation of the refinement relationship as substitutability. These concepts
are fully developed in section 2.4.

A related problem is that of the synthesis of alocal specification, depicted in figure 1.2.
Here, we are given a global specification y/ and a partial implementation, called a context, that
consists of the composition of several agents, such as¢ and ¢». Theimplementation isonly partially



Figure 1.1: Compositional verification

specified, and is completed by inserting an additional agent ¢ to be composed with the rest of the
context. The problem consists of finding alocal specification ¢ for g, such that if ¢ implements ¢/,
then the full implementation p implements the global specification 7.

Global Specification

Local Specification

Figure 1.2: Local Specification Synthesis

The problem of local specification synthesis is very general and can be applied to a vari-
ety of situations. One area of application is for example that of supervisory control synthesis [4].
Here a plant is used as the context, and a control relation as the global specification. The problem
consists of deriving the appropriate control law to be applied in order for the plant to follow the
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specification. Engineering Changes is another area, where modifications must be applied to part of
asystem in order for the entire system to satisfy a new specification. This procedure is also known
asrectification. Note that the same rectification procedure could be used to optimize adesign. Here,
however, the global specification is unchanged, while the local specification represents all the pos-
sible admissible implementation of an individual component of the system, thus exposing its full
flexibility [13].

We address and solve the problem of local specification synthesis in our framework. Un-
like the similar problems described above, our solution is independent of the particular model of
computation, sinceit is based on the properties of the framework, instead of some particular feature
of a specific model. This gives us the additional advantage of exposing the conditions under which

this technique can be applied.

1.3.1 Compatibility and Protocol Conversion

We have argued above that complexity issues can be addressed using a methodology that
promotes the reuse of existing components, also known as Intellectual Property, or IPs! However,
the correct deployment of these blocks when the I Ps have been devel oped by different groupsinside
the same company, or by different companies, is notoriously difficult. Unforeseen interactions often
make the behavior of the resulting design unpredictable.

Design rules have been proposed that try to alleviate the problem by forcing the designers
to be precise about the behavior of the individual components and to verify this behavior under a
number of assumptions about the environment in which they have to operate. While thisis certainly
astep in theright direction, it is by no means sufficient to guarantee correctness. extensive smula-
tion and prototyping are still needed on the compositions. Several methods have been proposed for
hardware and software components that encapsulate the | Ps so that their behavior is protected from
the interaction with other components. Interfaces are then used to ensure the compatibility between
components. Roughly speaking, two interfaces are compatible if they “fit together” asthey are.

In this work we formally define compatibility as a consequence of arefinement order im-
posed on the agents. The order isinterpreted as arelation of substitutability, called a conformance
order, and is represented in terms of a set of agents, called a conformance set. The conformance
set also induces the notion of compatibility in the model. Since our framework encompasses many
different models of computation, we are able to represent many forms of interfaces. Simple in-

1The term “Intellectual Property” is used to highlight the intangible nature of virtual components which essentially
consist of a set of property rights, rather than of a physical entity.
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terfaces, typically specified in the type system of a system description language, may describe the
types of values that are exchanged between the components. More expressive interfaces, typically
specified informally in design documents, may describe the protocol for the component interaction
[34, 74, 87, 29, 30, 17]. All of these can be used in our framework, and will be presented by ways

of examples in this dissertation.

However, when components are taken from legacy systems or from third-party vendors,
interface protocols are unlikely to be compatible. This does not mean though that components
cannot be combined together: approaches have been proposed that construct a converter among
incompatible communication protocols. In [74], we proposed to define a protocol as a formal lan-
guage (a set of strings from an aphabet) and to use automata to finitely represent such languages.
The problem of converting one protocol into another was then addressed by considering their con-
junction as the product of the corresponding automata and by removing the states and transitions
that led to aviolation of one of the two protocols. While the algorithm was effective in the examples
that were tried, it lacked a more formal and mathematically sound interpretation. In particular this
made it difficult to understand and analyse its limitations and properties. The techniques devel oped

in this work provide the formal basis to resolve those issues.

Informally, two interfaces are adaptable if they can be made to fit together by communi-
cating through a third component, the adapter. If interfaces specify only value types, then adapters
are simply type converters. However, if interfaces specify interaction protocols, then adapters are
protocol converters. Here, we cast the problem of protocol conversion as an instance of a local
specification synthesis. In this case, the context is represented by two different protocols that we
wish to connect. The specification simply asserts the properties that we want to be true of the com-
munication mechanism, such as no loss of data, and in order delivery. The local specification then
corresponds to a converter between the two protocols. In this way we provide a genera formaliza-
tion and a uniform solution for the protocol conversion problem of [74].

The converter may need state to re-arrange the communication between the original in-
terfaces, in order to ensure compatibility?. A novel aspect of our approach is that the protocol
converter is synthesized from a specification that says which re-arrangements are appropriate in a
given communication context. For instance, it is possible to specify that the converter can change
the timing of messages, but not their order, using an n-bounded buffer, or that some messages may

2Hence the notion of protocol converter can be seen as a specia case of the notion of behavior adapter introduced by
Sgroi et a. [81] to characterize a modeling approach for communication-based design that is the basis of the Metropolis
framework [6].
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be duplicated.

1.4 Scope and Principles

The main objective of our work is to provide a mathematical framework that can be used
to reason about and relate many different models of computation and forms of abstractions. A typ-
ical model consists of several components. Some syntax is used to describe the structure and the
functionality of the design. The syntax includes operations that allows the designer to construct
the structure of the design from smaller pieces. A semantic function is used to map the elements
of the syntax to elements of the semantic domain, where an equivalent set of functions and rela
tions is defined to parallel the ones of the syntax. The semantic function is typically such that the
operations on the syntax are preserved across its application to the semantic domain. In our work,
we concentrate on the semantic domain and on the relations and functions that are defined on the
domain. In particular, we emphasize the relationships that can be constructed between different se-
mantic domains, and how these relationships affect the functions defined on the domain. Thiswork
is therefore independent of the specific syntaxes and semantic functions employed. Likewise, we
concentrate on aformulation that is convenient for reasoning about the properties of the domain. As
a result, we do not emphasize finite representations or executable models. This and other aspects
are deferred for future work.

Section 1.2 above outlined the importance of using different abstraction mechanismsin a
design. The key to flexibly using abstractions is a framework that does not force too much detail in
the models, but at the same time allows one to express the relevant details easily. There is therefore
a trade-off between two goals: making the framework general, and providing structure to simplify
constructing models and understanding their properties. While our notion of Agent Algebraisquite
general, we have formalized several assumptions that must be satisfied by our domains of agents.
These include assumptions about the monotonicity of certain operators. Inthe case of trace-based al-
gebras, we use specific constructions that build process models (and mappings between them) from
models of individual behaviors (and their mappings). These assumptions alow us to prove many
generic theorems that apply to all semantic domains in our framework. In our experience, having
these theorems greatly simplifies constructing new semantic domains that have the desired proper-
ties and relationships. Thus, while generality allows us to encompass a wide variety of different
models and abstraction techniques, including different models of time and models of concurrency,
structure allows us to prove results that apply to all the models constructed in the framework, and
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gives us mathematical “tools’ that help build new models from existing ones. One objective of our
work is therefore to provide a trade-off between generality and structure that works well in most
situations. Because of its structure, our framework is capable of more than just classifying existing
models of computation.

The ability to exploit structure to derive general results in the framework is an important
aspect of our work. The structure that we impose is in fact sufficient to study approximations be-
tween models (see section 2.6), and to derive necessary and sufficient conditions for applying such
techniques as refinement verification (section 3.3) and local specification synthesis (section 3.4). In
the latter case, we are also able to derive an algebraic formulation of the solution that isindependent
of the particular model of computation in question. Thisis a strong result that unifies the different
approaches to deriving implementation flexibility, as explained in section 1.3 and subsection 1.8.11.
It must be pointed out, however, that our solution is purely algebraic and makes no assumption with
regard to the implementation of the operators in general, and with the complexity of computing
the expression in particular. Nonetheless, our formulation guarantees the correctness of the solu-
tion whenever a finite representation of the model and of the operators is available. Having done
the theoretical work upfront thus allows the designer of the model to concentrate on improving the
efficiency of the implementation. This often requires tuning the model to account for particular sit-
uations where the computation may be easier by taking advantage of additional assumptions. In this
case, the conditions that we provide for the correctness of the solution can help the designer more
quickly identify the changes that must be applied to amodel in order to achieve higher efficiency.

For every semantic domain we require that certain functions be defined to formalize con-
cepts such as composition, scoping and instantiation. The specific definition of these functions
depends upon the particular model of computation being considered. Nevertheless, we do require
that certain assumptions, in the form of axioms that formalize the intuitive interpretation of the op-
erators, be satisfied. A model of computation fits in our framework if and only if it satisfies the
axioms. Thus, we employ an axiomatic approach, as opposed to a constructive one. In a construc-
tive approach, amodel possesses certain properties because of the way it is constructed. This could
be advantageous in certain situations, especialy because one need not verify that the properties or
assumptions are true when an aobject is constructed according to the rules. The axiomatic approach
however provides us more flexibility in constructing different models, and clearly highlights the
conditions under which the techniques presented in thiswork can be applied. The axiomatic and the
constructive approach may also be combined, as proposed in chapter 4.

The properties that we reguire of the basic operators of composition, scoping and instan-
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tiation of agents are inspired by the circuit algebra proposed by Dill [34]. Other properties and
operators are also possible. In particular, we do not present a complete treatment of the sequential
compoasition operator, and do not investigate in detail the distinction between partial and complete
behaviors [12]. Our choice of operators workswell for most of the models of computation in use for
embedded systems, and it simplifies the presentation of the theory. In particular, the axioms ensure
that each operators performs one, and only one function. This separation of concerns is enforced
throughout our work. For example, the parallel composition operator is limited to combining the
behaviors of two agents, without altering the visibility of their internal signals. If one wishes to
hide its internal structure, the composition operator must be explicitly followed by a scoping, or
projection operation. Thisis unlike other models, like CCS [67, 68], that combine the operation of
composition with that of hiding (in fact, removing) internal transitions.

Similarly, the communication in a paralel composition typically occurs by equating sig-
nals (or other distinguished features) that share the same name and that belong to different agents.
Thisis especialy true for our trace-based models (see chapter 4). Thisis unlike other frameworks
that use an explicit interconnection operator to specify the topology of the system [30]. The explicit
operator however essentially combines the instantiation of an agent with its interconnection, and we
therefore do not consider it fundamental. The choice of such a simple communication mechanism
is deliberate, and is a consequence of the communication-based design paradigm. In fact, if the
model requires a more complex interaction, additional agents can be used to model the presence
of a communication medium through which the interaction takes place. For example, an explicit
interconnection can easily be simulated by introducing an additional agent that works as an identity
while enforcing the required topology. Doing so allows us to use the full modeling power of agents
to describe interactions that could potentially involve complicated protocols. This paradigm is aso
consistent with the Metropolis project. Furthermore, we have found that by describing the models at
their natural level of abstraction, the simple form of composition is sufficient in most circumstances.

Our modelstypically include an order on the agentsto represent arelation of substitutabil-
ity or refinement. As discussed above, the operators of the algebra are required to be monotonic
relative to the order on the agents. This condition is, in fact, fundamental to the application of com-
positional methods. To apply these methods, we consider different alternative definitions that extend
the notion of monatonicity to functions which, like the operators of our algebras, are not total. We
then adopt a notion of monotonicity, called T-monotonicity, that is consistent with the interpreta
tion of the order as a relation of substitutability. The ramifications of this choice can be observed

throughout our work. In particular, we derive the compositionality principle that is consistent with
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our interpretation of the order.

The nation of substitutability is also formalized as arelation that involves evaluating the
effects of the agents under different contexts. We call this relation a conformance order. Under
certain conditions, and when the operators are monotonic, it is possible to restrict the number of
contexts that must be considered to determine the conformance relation. In particular, we are in-
terested in a characterization of the conformance order that relies on a smple parallel composition
of each agent with another agent, called its mirror. Intuitively, the mirror of an agent represents
its worst possible environment in relation to the conformance order. The existence of mirrorsin a
model of computation allows us to apply severa different techniques, from refinement verification
to local specification synthesis. It is for this reason that we study specific constructions, such as
trace-based agent algebras, that guarantee the existence of amirror function.

1.5 Major Results

The mgjor contributions of this work are listed below.

e Agent Algebras, which provide general and powerful tools to construct agent models.

e Particular examples of agent algebras for common models of computation used in the design
of embedded systems.

e A set of sufficient conditions for the normalization of expressions involving agents and the

operators of the algebra.

e An extended notion of monotonicity for partial operators (in particular, the notion of T-
monotonicity) and its consequences on compoasitional methods.

e A complete characterization of the relationships between the notion of a conservative approx-

imation and that of Galois connection and abstract interpretation.

e The use of conservative approximation to construct hierarchy of models and to formalize the
concept of platform-based design.

e Particular conservative approximations in the form of the axidities of a relation between

elements of amodel of computation.

e The formalization of the concept of mirror function and its item complete and general char-
acterization and construction in terms of conformance orders and compatibility.
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Particular definitions of mirror functions for trace-based models.

A characterization of the relationships between mirror functions between an algebra and its

subalgebras.

A general solution of the local specification synthesis problem.

An application of the local specification synthesis technique to solve a protocol conversion

problem.

1.6 Motivating Example

So far, we have discussed the considerations that influenced our framework for formally
modeling heterogeneous systems. Now we can give an informal overview of the framework before
describing it formally in the remaining chapters. We do so by presenting an example that motivates
the requirement for our framework to support multiple models of computation during the design
process. Our exposition in this introduction and in the rest of this dissertation will focus on the
definition of natural semantic domains, and their representation in our framework, for the set of
models of computation used in the example.

The example, shown in figure 1.3, is an abstracted version of the PicoRadio project [77],
developed at the Berkeley Wireless Research Center. A PicoRadio is anode in a network that ex-
changes information with its neighboring nodes. Depending on the application, a PicoRadio may
function as the intercom end of a communication system, or as a controller for a set of sensors and
actuators. Whatever its function is, the PicoRadio must include several subsystems, as shown in
figure 1.3. Since communication with neighboring nodes occurs on a wireless link, a Radio Fre-
guency (RF) subsystem is used to interface the design to the channel. Demodulation and decoding
is done at the baseband level, after conversion from the high transmission frequency. The data
streams obtained from the baseband is interpreted by a protocol stack, which feeds the application
that ultimately interfaces with the user.

The design of such systemsis complex, not so much in terms of their size, but because of
the very stringent constraints on power and because of the intrinsic interactive nature of the nodes.
Together, they call for a new design methodology and indeed, developing the new methodology
was the primary task during the design of the first version of the PicoRadio ([26]). Because power
concerns are best attacked at the algorithmic level, new protocols are being devised whose primary
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purpose is to maximize the up-time of the system. Consequently, the interaction between the differ-
ent subsystems becomes critical.

Each subsystem must be described in some model of computation in order to properly
verify its function through simulation and verification. ldeally, for each subsystem, we would like
to use the model that is best suited for the particular task. Hence, the design flow often includes
several different tools and models that offer characteristics appropriate to the specific subsystem
being considered. In practice, however, the segmentation of the design process that results makes
the interaction between different subsystems and the consequences of the design choices difficult to
analyze. Typically, the solution to the problem involves simplifying the interfaces between subsys-
tems by assuming certain timing behaviors. However, this not only may not be possible in certain
situations, but it also amounts to working at a lower level of abstraction where the benefits of an
application specific model could be diminished or lost.

The interaction between different models of computation can be understood when the
description of the models is embedded in the same unifying framework. Agent algebra is one such
framework. In this introduction we present the basic concepts and definitions by way of an example,
i.e., the formalization of a semantic domain suitable for the representation of behaviors in a model

of computation that supports continuous time. In particular, we will employ the techniques and
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notation introduced in chapter 4, which constitute a particular class of agent algebras. We first
present a formalization that can be considaratiral for the domain of application, and then show

how the same can be cast in terms of a general set of definitions.

1.7 An Example Agent Algebra

This section presents a simple formalization of a model of computation that relies on
equations to express the relationships between the quantities that occur in the model. This is only
one specific example of several possible models of computation that fit in our framework. In particu-
lar, to make our presentation more intuitive, we construct the model using the trace-based technique
described in chapter 4 instead of the fully general agent algebra introduced in chapter 2. Other
examples using both techniques will be presented in the rest of this work.

More specifically, we are interested in a model of computation where the quantities (vari-
ables) are functions over the set of reals. By convention, it is assumed that the set of reals represents
time, and we talk about functions over time. Consequently, the equations we are interested in are
relations on functions over time, and we denote the independent variable with thet.lefibis
model is therefore particularly indicated as a representation of the continuous time component of
the system shown in figure 1.3.

Consider the following equation:

x = 3t. (1.2)

This is an equation in the unknown Traditionally, the interpretation of the equation is done in
terms of the set of possible solutions. In our case, the set consists of functions that are associated
to the variabler. A functionz : R — R is a solution of the equation if, when substituted for the
unknown, the resulting relation is true. The notati®h denotes the set of non-negative reals (we
use non-negative reals because we assume there exists an initial point in time). In this particular

case there is only one solution
z(t) = 3t.

In our framework we want to make the interpretation in terms of the set of solutions more precise.
More specifically, we would like to define a collection of mathematical objects that represent the set
of solutions of an equation. A semantic function shall then be used to associate the correct solution

with an equation.
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In the first place, we must associate with each agent the alplabetd of the variables
it uses, whered represents the set of all possible variable names. An agent is also characterized
by a signature, which we denote with the symbel. The structure of the signature depends on
the particular model of computation, and it uses the symbols in the alphabet to model the visible
interface of the agent. For the equation in the example above, the alphabentsists of the names
of the variables that appear in the equatidn:= { z}. Note in particular that is not included in the
alphabet, because of its special role as an independent variable. Note also that the equation simply
describes a condition for a function to be a solution. Therefore, when constructing a model for an
agent represented by continuous time equations, we do not specify the direction of the signals (input
or output), but simply associate a set of signals to each agent. Hence, the signature for agents in the
continuous time model of computation simply consists of the set of symhoils= A.

Consider again equation 1.1. As mentioned, we interpret the equation (agent) as the set of
its possible solutions. In turn, we may interpret each solution as one pokdiiaor of the agent.

In the specific case of functions over time, an individual execution is a set of functions, one for each
unknown in the equation (a singleton in our example, since there is only one dependent variable).
An agent is a set of sets of functions.

We define behaviors in the framework of agent algebra for the continuous time model to
be a close formalization of the natural interpretation of a solution. However, we should make the re-
lationship between the solution and the variables precise. In what follows, and to be consistent with
the terminology that will be introduced in chapter 4, we will refer to a behaviortesca. Because
the definition of a trace must be independent of the particular agent, it must take the alphabet as a
parameter. In the case of the continuous time model of computation, we must assign a function over

the reals to each of the symbols in the alphabet. For our example, we could use traces of the form
A= (R" V)

where the seV is the range of the functions. In our case we h&ve= R. A trace thus contains

both the solution, and the association of each of the functions in the solution to the variables that
appear in the equation. A trace could therefore be expressed as a fupction— (R° — V).

Note that the domain of this function is the set of symbols in the alphabet. For each symbol, the
function f associates a function over the independent varialff®r the example above, the (only)

solution can be expressed as the function

(@) = Mt [31].
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Note that there might be several possible valid definitions of a trace. For example, the
reader may find it more convenient to define a trace as a function that associates to each moment in

time the values of the functions. The traces thus become functions of the form
R = (A= V).

The choice of alternative, isomorphic, definitions is often a matter of convenience in defining the
operations that we discuss below, or it might reflect the desire to highlight certain aspects of the
behavior.

In this particular example, the equation admits only one solution. More generally, equa-
tions may have several solutions. Consider for example the modified equation

z = 3t + xop.

In this case the solution varies according to the values of the parametie say that a function is a
solution to the equation if there exists a value of the parameter such that the equation is satisfied. The
solutions thus form a set. Since traces are individual solutions, agents must therefore be represented
using sets of traces. More formally we can write the denotation of the equation above as

P={f:A— R’ = V):3z[f(x) = M[3t + z0]}.

Hence, a model of an agent, which we callace structure, consists of the signaturgand of a set
P of traces. We usually denote the trace structure as thepaity, P).
Systems of equations do not present any additional problem. Consider for example the

system
z = 3t+ xo,
Yy = 4t + Yo-

In this case we define the alphabet as theset { z,y} and the signature as = A. However,
the definition of a trace and of a trace structure is unchanged. A trace is again a function from the
alphabet to the set of functions on time, and a trace structure is the signature together with a set of

traces. What changes is the set of traces for this particular agent, which is now expressed as the set
P={f:A— (R" = V):3no,yolf(z) = A3t + zo] A [f(y) = M[4L + yo]}.

Systems of equations can have two interpretations. On the one hand, they represent an
agent whose constraints on the variables are expressed by different equations. On the other hand,
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they may represent the interaction of different agents, each represented by disjoint subsets of the
equations in the system. The two views can be reconciled by interpreting the agent as a whole as the
result of the interaction of the individual agents. We discuss the details of this interpretation after
we introduce the relevant operations on traces.

Once we have established the notion of a trace and of a trace structure, the complexity
of the equation doesn't really matter. In fact, we are not interestedlying the equation, but in
providing a structured semantic domain foriitgerpretation. In particular, interpreting differential
equations is no more complex than interpreting the simple linear equations shown above. As an
example, consider the following differential equation

This is a homogeneous second order differential equation in the varialsled s. The solutions
of this equation describe an oscillatory behavior. In fact, this equation might be used to model an
oscillator that generates a signal (for example a voltage) that we denote by the symitmise
frequency is controlled by another signal, denoted by the symb8lolutions to this equation are
in the form of pairs of functions : R — V andg: R — V.

In general, solutions to differential equations depend on arbitrary parameters, whose value
can be fixed by providing appropriate initial conditions. For instance we might require that

s(0) = 1,
ds
%(0) = 0.

Given the initial condition, one possible solution to this equation is the following pair of functions:

s(t) = cos(10t),

g(t) = 10,

which represents a constant oscillation with frequeh@yadiants per second. An agent, the de-
notation of the differential equation, is a set of individual executions, i.e., the set of all possible
solutions. In our example, the trace structure has alphadbet{ s, g} and signaturey = A. The

trace structure = (v, P) is such thatP is the set of traces that satisfy the equation. Note that in
the definition above the trace structure doesn’t include an initial condition: this is intentional, as we
want the trace structure to model all possible solutions. Initial and boundary conditions, if any, arise
implicitly as a result of the interaction (parallel composition) of different trace structures.
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1.7.1 Operationson Behaviorsand Agents

To complete our overview we define the operations on individual behaviors and on agents.
These operations are defined to support common tasks used in design, like that of scoping, instanti-
ation and composition of agents.

The projection operation removes from a trace all information related to certain signals.
In our example of functions over time, this corresponds to retaining only the functions of interest
(for instances) in the solution, and dropping the othetsig our case). IfB C A is the set of signals
that we want to retain, we define the projection as a restriction on the domain of the functions that

characterize a trace Formally we write:
proj(B)(z) = M € R” Xa € Blz(t,a)],

where theX notation introduces a function of the named variable, as usual. Projection on trace
structures (agents) can be seen as the natural extension to sets of the corresponding operation of
projection on individual traces. When applied to agents, the operation of projection corresponds to
that of hiding internal variables in the equation. Note that the constraints imposed by the equation
on the variables are retained, but their effect is only visible from outside through the remaining
signals. In other words, the scope of the hidden variables is limited to the equation they belong to.
Therenaming operation changes the names of the visible elements of the agent af

renaming function, we define renaming on traces as the corresponding operation on the signals in

the signature. Formally:
renamér)(z) = M € R” \a € A.x(t,r(a)).

For functions over time, this corresponds to a substitution of variables. Substitution, however, must
be done carefully to avoid changing the underlying meaning of the equation. The restriction that
r be a bijection avoids conflicts of names that could potentially change the behavior of the agents.
As for projection, renaming of trace structures can be seen as the natural extension to sets of the
corresponding operation on individual traces. When applied to a trace structure, the effect is that of
a renaming of the variables in the corresponding differential equation. This process corresponds to
that ofinstantiation of a master agent into its instances.

Projection and renaming, seen as operators for scoping and instantiation, are common
operations that are meaningful to all models of computation. For trace structures, they are always
defined as the natural extension to sets of the corresponding operations on traces. The combination
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of the set of traces for all alphabets4, and of the operationgroj andrenamehas the structure of
an algebra. We call this algebrarace algebra, and we usually denote it with the symlidl

Similarly to trace algebra, the combination of all trace structgraad the operations of
projection and renaming on trace structures form an algebra, that wiazalistructure algebra.
In addition to the operation on traces, a trace structure algebra includes the operaiaval lef
composition of agents. A system of equations is an example of a parallel composition in our model
of computation based on continuous time. Here, each equation is interpreted as a single agent. The
system is also interpreted as an agent, the one that is obtained by composing the individual agents.

An example of a system of equations is the following:

s
w%—gs 0
d*m
W‘f—flzm = 0
g = m+1
L = 3
L = 2

In the natural semantic domain, the agent that corresponds to the system of equations is
made of collections of functions that are solutionglioequations. Intuitively, this corresponds to
having the agents associated to each equation run concurrently by sharing the common signals.

We can easily formalize this notion in the framework of trace algebraplLet (v, P;)
andps = (72, P») be two trace structures, and denote witk p, || p, their parallel composition.

Clearly, to model this composition, the signaturepahust include the signals of both andp,.

Hence:
A = A UA,,
v = MU

The set of trace® of p must be such that each trace belongs to lotindp,. However the traces

must first be converted from one alphabet to another. This can be achieved by first extending the set
of tracesP; and P, to Pf and Py, respectively, which are sets of traces over the alphabstch

that

Pf = {z:proj(A)(z) € P}
Py = {z:proj(4sz)(z) € Pp}.
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The traces in?’ clearly satisfy the system of equations fgr(the additional functions are simply
ignored), but do not necessarily satisfy that fer Likewise, the traces i’y satisfy the equation
for p but do not necessarily satisfy that far. The parallel composition is the set of those traces
that satisfy both,

P =PEN P

Given this definition, it is straightforward to show that parallel composition corresponds to the
usual operation of taking the intersection of the solutions of two different equations. Consider
again the system of differential equations in equation 1.2. This system can be represented as the
parallel composition of 5 trace structufesis shown in figure 1.4, where the rounds represent trace
structures, and the connections represent shared signals (functions over time). The signature of the

parallel composition is
A={IL,m,Is,4q,s}.

Each trace structure imposes its constraints to the overall solution. For exampig aiftrace with
alphabetA, then the trace structure fds requires thaproj({ I })(x) be the function identically
equal to3.

Figure 1.4: Parallel composition of agents

The definition of parallel composition of agents shown above for the continuous time
model of computation can be generalized in a straightforward way in our framework. Parallel
composition corresponds to the concurrent execution of two agents. As discussed above, the parallel
compositionp = p; || p2 is a set of traces in the unioA of the alphabets of andp, that is
“compatible” with the restrictions imposed by the agents being composed. We can formalize the
notion of compatibility by requiring that it is a trace ofp with alphabetA, then its projection

3parallel composition turns out to be associative and communative, therefore we can talk about the operation of
parallel composition of more than just 2 trace structures.
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proj(A;)(z) on the alphabet g, is in P, and the projectioproj(A;)(z) on the alphabet g, is

in P,. The set of traces ip must be maximal with respect to that property. It can be shown that
the previous definition of parallel composition for the continuous time model is equivalent to this
formulation.

The combination of the set of trace structures and the operations of projection, renaming
and parallel composition of trace structures forms an algebra that wieazlktructure algebra. In
chapter 4, we will show that a trace structure algebra is a particular case of the more general agent
algebra model introduced in chapter 2.

To summarize, the first step in defining a model of computation as a trace-based agent
algebra is to construct a trace algebra. The trace algebra contains the universe of behaviors for the
model of computation. The algebra also includes two operations on tiaropsction andrenaming.

These operations intuitively correspond to encapsulation and instantiation, respectively.

The second step is to construct a trace structure algebra. Here each element of the algebra
is a trace structure, which consists primarily of a set of traces from the trace algebra constructed in
the first step. A trace structure algebra also includes three operations on trace strymakd:
composition, projection andrenaming. Projection and renaming are simply the natural extension
to sets of the corresponding operations on traces, while parallel composition is derived from the
definition of projection on traces. Thus, constructing a trace algebra is the creative part of defining
a model of computation. Constructing the corresponding trace structure algebra is much easier.

Equations and systems of equations can be naturally ordered in terms of their solutions.
An equationE implies another equatior® if the solutions ofE are also solutions of/. This
relation translates directly into a relation between trace structures. A trace structurgy, P)
is contained in a trace structurg/ = (v, P') if P C P’. This containment relation, which is
sometimes calledefinement in the model, can be applied to all models described as trace structure
algebras.

The example of this section shows how to formalize the natural semantic domain of a
model of computation based on continuous time and differential equations. It is worth noting how
our representation of the agents is completely denotational. In addition, while our formalization is
close to the natural semantic domain of traditional differential equations, the algebraic infrastructure
introduces additional concepts such as hierarchy, instantiation and scoping in a natural way. For
instance, the trace structures that correspond to the oscillators could be viewed as instantiations of a
primitive component obtained by a renaming operation. Also, the frequency modulator that results
from the parallel composition outlined above could be used as a primitive component: to that end,
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it is enough to hide the internal signdlsn, &, g} through a projection operation. This fact, and the

fact that algebraic equations on functions of real time are a subset of differential equations, makes
it possible to construct the trace structure corresponding to a differential equation incrementally, by
composing its pieces. In particular, trace structures corresponding to integrators are used to model
the relationships between a variable and its derivative, while more conventional trace structures
model the application of algebraic operations, like addition, multiplication, exponentiation and so
on. This model is widely used to describe DSP applications, and is often referredi tmalsflow

model [86].

In the rest of this work we will make these notion precise, and we will present the for-
malization of several other examples of models of computation. In particular, while distinguishing
between agents and their individual behaviors is convenient for constructing new models, our main
results are based on a less structured agent model, called agent algebra. Trace structure algebra
will be shown to be a particular class of agent algebra. Relationships between different models
of computation can be obtained as functions that map concrete agents to abstract agents, and vice
versa. To be useful, these functions must preserve certain relationships between agents, including,
in particular, the containment relationship. In addition, we will show how to characterize the con-
tainment relationship in terms of the operators of the algebra, and how to take advantage of this
characterization to derive techniques in the area of refinement verification and synthesis.

1.8 Reated Work

1.8.1 Algebraic Approaches

Many are the approaches to modeling that use algebraic techniques. The most notable
are certainly process algebras CCS and CSP, originally proposed by Milner [67, 68, 69] and by
Hoare [50], respectively. There, atomic actions are combined with process variables to form expres-
sions that represent more complex processes. The algebra includes such operators as sequencing,
union (representing choice), parallel composition, projection and recursion. A process algebra ex-
pression can be interpreted in terms of a labeled transition system that consists of a set of states and
a set of transitions that are labeled by the actions that occur in the expression. The operators of the
algebra can be directly translated into operators that act upon the transition system. The expression,
in fact, is an implicit representation of the transition relation.

There is a fundamental difference between process algebras and the algebras used in our
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framework. A process algebra is essentially a “language” that can be used to describe specific
instances of agents. The definition of the operators also reflects this intent. In our framework,
instead, although we also combine agents using algebraic expression, the operators of the algebra
are in general uninterpreted. Our knowledge about them is limited to the requirements that we
impose to formalize their intuitive meaning. In particular, an expression in our framework does not
include a notion of an atomic action and thereforadsinterpreted as a labeled transition system.

By doing so, we are able to uniformly consider models that are not “naturally” expressed in terms
of the specific operators of a process algebra, such as those used for hybrid systems and dataflow.
The expression, in other words, merely represents the hierarchical structure of the system that is
constructed by composing different instances of agents, according to rules that depend upon the
particular model of computation that is being considered.

Similar remarks apply to the framework of Abstract State Machines (formerly known as
Evolving Algebras) proposed by Gurevich [45, 46]. Abstract State Machines build on the concept
of mathematical structure [36]. A mathematical structure is the combination of a carrier4et
together with the interpretation of a set of function and relation symbolsalled thesignature of
the structure. A structure with signatufecan be transformed into another structure by modifying
the interpretation of the function and relation symbols. These modifications are apilaids in
the terminology of Abstract State Machines. Given a signdfyrihe set of structures ovét forms
a space that is taken as the state space of a class of state machines.

The approach is abstract in the sense that the mathematical structures used as the state
space, and the corresponding update operations, can be arbitrarily complex, or arbitrarily simple,
thus making it possible to represent computations at different levels of abstraction. Nevertheless,
the semantics of the operations is fixed and corresponds to modifying the values of the functions that
interpret the symbols in the signature. To put it another way, Abstract State Machines is a parameter-
ized state machine model, where states (the parameters) are first order mathematical structures. This
makes Abstract State Machines extremely useful for documenting an algorithm at different levels
of granularity and precision. Our emphasis, on the other hand, is on studying the relationships that
can be established across these levels of abstraction. For this reason, our operators are only defined
axiomatically, rather than constructively. If nothing else, Abstract State Machines could be viewed
as one of the models that fits in our framework.

Mathematical structures are also at the basis of the algebraic specification of data struc-
tures proposed by Ehrig et al. [39, 40, 41]. The basic idea is to specify data types independently of
any specific representation or programming language. In their work, a data type specification SPEC
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is a tuple(S, OP, E)), whereS is a set of sorts representing the domain of the data struciurds

a set of constant and operation symbols that act on the data structutl,iamdset of equations or
axioms that provide the description of the operations in a constructive (for equations) or axiomatic
(for axioms) way. A SPEC-algebra is composed of a domain for each sortSrthat defines the
elements of the data structure, and of an interpretation of the operatidhB {ine., constants and
functions on the domains) that satisfies the equations and the axiathsAlgebraic specifications

can be parameterized by a second algebraic specification, and a mechanism of parameter passing
(based on pushouts in an appropriate category) is provided for its actualization. In addition, a wide
variety of operators can be defined to transform and combine algebraic specifications. These include
products and unions, extensions and restrictions and refinement and implementations.

Our use of the algebraic framework is similar. In our case, however, the algebra is fixed
and includes only one sort (the set of agents in a model of computation), and the operators of pro-
jection, renaming and parallel composition. The axioms are also fixed, and formalize the intuitive
meaning of the operators. The objectives, and the style of presentation, are therefore similar to those
of algebraic specifications: to define axiomatically the intended properties of some objects, instead
of defining them constructively, for example as a parameterized, but fixed, model (such as, for ex-
ample, Abstract State Machines, mentioned earlier, or the Tagged Signal Model mentioned below).
However, our work concentrates on one particular “data type”, that of the models of computation for
concurrent systems. Our focus is therefore on the relationships between the objects (instantiations)
of the data type, that is the relationships between different models of computation, instead of the
relationships between different kinds of data types.

One specific interpretation of an algebraic specification of a data structureiitiigd
semantics, defined as the quotient of the term generated structure relative to the congruence induced
by the axioms and the equations imposed by the algebra. This quotient represents the most abstract
interpretation of the data structure. We do not consider this problem in our work since it is not
consistent with our aims and scope. The problem is however addressed by Dill for the class of
circuit algebras [34]. There, he defines a particular interpretation of the circuit algebra, called a
circuit structure, which he shows isomorphic to the free circuit algebra (its initial semantics). Since
the framework of agent algebra is derived from that of circuit algebra, a similar result could be
expected to hold in our framework, as well.

On a different level, we can view algebraic specifications of data structures as part of
particular models that fit in our framework. In this case the agents themselves are composed of
algebraic specifications of data structures, which are used as a language to describe their internal
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structure. In other words, algebraic specifications of data structures may form the basis for the
description of agents. The framework of agent algebra, on the other hand, could be used as the basis
for their interaction. Indeed, algebraic specification of data structures must be used in conjunction
with a concurrency model in order to describe thehavior of a system, as exemplified by the
language LOTOS [41] which is based on a process calculus derived from CCS [68]. The relations
between the different data structures could be used as the basis for the construction of conservative
approximations between different models, that is of functions that preserve the refinement relation
in the models across the boundaries of the model of computation. We do not, however, address this

particular case in this work.

1.8.2 TraceTheory

Much of our inspiration comes from the work of Dill [34] and Burch [12]. In this com-
parison we highlight the extensions and the additional results and insights that were obtained by
generalizing their work.

Dill introduces a model where each execution is modeled by a sequence of actions, called
atrace [34]. Agents in the model, calleilace structures, consist of two sets of traces, representing
valid and invalid executions, respectively. The trace structures, together with their operations, form
a circuit algebra and satisfy certain basic properties that formalize their intuitive interpretation.
Later, Burch generalized the model by considering abstract executions rather than a specific trace
model [12]. The term “trace” is here retained to denote arbitrary objects that together with their
operations satisfy the axioms tface algebra. To simplify the presentation, trace structures are
obtained simply as sets of traces, rather than two sets of traces. The generalized trace structures are
again shown to form a circuit algebra, there caltedcurrency algebra.

In our work, we further generalize the approach of Burch, and consider directly an algebra
of arbitrary agents, instead of arbitrary executions. Our contribution consists in part in rephrasing
many of concepts introduced by Dill and Burch in a more general setting. Free of the constraints of a
specific model of computation, we expose and derive the conditions for applying certain techniques,
such as conformance and conservative approximations, and therefore provide insights into the way
they operate.

In particular, we generalize the notion adnformation ordering [34] and parameterize
the concept ofailure freedom. Additionally, we derive necessary and sufficient conditions for the
existence of a mirror function. These generalization allow us to state and solve the problem of local
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specification synthesis, in a form similar to that already suggested by Burch et al. [13]. Because of
the more general setting, however, our result is independent of the particular model.

The concept of a conservative approximation in our framework is derived from the one
introduced by Burch [12]. Here we decompose the definition to highlight and discuss its composi-
tionality properties, and study its relationship with traditional notions of abstraction, such as Galois
connections and abstract interpretations. In addition we further characterize the inverse of a con-
servative approximation, and use it to define interactions between different models of computation.
We also extend trace structures to two sets, and derive a mirror function for the appropriate notion
of conformance based on failure freedom. We use this derivation to study the problem of protocol
conversion.

Dill and Burch distinguish in their work between partial and complete traces. In partic-
ular, Burch provides a set of additional axioms that formalizes the intuitive interpretation of the
concatenation operator, which can be applied to partial traces. In our work we only informally con-
sider this distinction in the examples, and reserve a detailed treatment, including a revision of the

axioms, for our future work.

1.8.3 Tagged Signal Model

Several formal models have been proposed over the years (see e.g., [37]) to capture one or
more aspects of computation as needed in embedded system design. Many models of computation
can be encoded in the Tagged-Signal Model [62]. In the Tagged-Signal Model (TSM), a model of
computation is constructed in a fixed way by considering a set of valyemd a set of tag¥'.

The set of values represents the type of data that can be exchanged by objects in the model. The
set of tags, on the other hand, carries an order relationship that is used in the model to encode the
particular notion of time, or, more properly, of precedence.edant, that is the change of a value

in the system, is represented by the gajw), wheret € T tags the “time” of the event, ande V/

provides the new value. éignal is an arbitrary collection of events, i.e., a subsef'ot V. Since

an order on events can be derived from the corresponding order tretagmal can be seen as the
evolution in time of a set of values. Signals are organized in tuples, where each element of the tuple
corresponds to a particular “port” of an object. A tuple of signals is therefore the behavior that can
be collectively observed at a set of ports. Finally, a set of tuples of signals is cgitedess, and
represents the possible behaviors of an agent of the model.

4Strictly speaking the order induced on events is a preorder, since the condition of antisymmetry cannot be guaranteed.
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The operations of projection and renaming are defined on the tuples as expected, by re-
moving a component of the tuple or by exchanging their position. The operation of parallel compo-
sition is obtained by an initial inverse projection of the processes to the common “alphabet” (strictly
speaking the alphabet here is positional in the tuple), followed by an intersection of the signals.

The Tagged-Signal Model is similar to our trace-based agent algebras. In particular, the
operations on agents are defined in almost exactly the same terms (although we use names for signal,
instead of a positional notation). However, because we do not dictate the structure of a trace, but
only its properties relative to the operators, our approach seems to be more general. In addition,
the extra flexibility allows us to construct a representation that is closer to the “natural” semantic
domain of the model.

We are not aware to date of a general theory that explains the relation between different
models encoded in the Tagged-Signal Model. Nonetheless, the work of Benveniste et al. [11] can be
seen as an attempt in that direction. In this work the authors study Globally Asynchronous Locally
Synchronous systems by considering sets of tags with different ordering relationships. Morphisms
on the sets of tags are used to relate the different models. The results include conditions on a correct
deployment of synchronous systems over asynchronous communication channels.

Informally, we can see morphisms on tags as corresponding morphisms on sets of traces,
or on agents in an appropriate agent algebra. 1t would be interesting to derive abstraction and refine-
ment relationships between the tagged systems in a way similar to our conservative approximations.

This is part of our future work.

1.84 Ptolemy Il

The study of systems in which different parts are described using different models of
computation (heterogeneous systems) is the central theme of the Ptolemy project [27, 28]. Our
work shares the basic principles of providing flexible abstractions and an environment that supports
a structured approach to heterogeneity. The approach, however, is quite different. In Ptolemy I
each model of computation is described operationally in terms of a common executable interface.
For each model, a “director” determines the order of activation of the agents (a.k.a. actors; for
some models, the actors are always active and run in their own thread). Similarly, communication
is defined in terms of a common interface. A model of computatiomioowrin, in Ptolemy Il is a
pair composed of a director together with an implementation of the communication interface, called
a “receiver”. The domain defines the scheduling of the actors, the communication scheme and the
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possible interactions with other models of computation. On the other hand, we base our framework
on a denotational representation and de-emphasize executability. Instead, we are more concerned
with studying the process of abstraction and refinement in abstract terms. For example, it is easy
in our framework to model the non-deterministic behavior that emerges when an abstract model is
embedded into a more detailed model. Any executable framework would require an upfront choice
that would make the model deterministic, potentially hiding some aspects of the composition.

The approach to heterogeneity in Ptolemy Il is strictly hierarchical. This implies that each
node of the hierarchy contains exactly one domain, and that each actor interacts with the rest of the
system using the specific communication mechanism selected by the domain for the hierarchy node
it belongs to. Domains only interact at the boundary between two different levels of the hierarchy.

In contrast, our approach to heterogeneity is based on explicitly refining heterogeneous models into
a third model that is detailed enough to exactly represent the initial two. In addition, the framework
also supports agents that use several interaction mechanisms at the same time and at the same level
of hierarchy. The conjunction of these mechanisms can be seen as a new model of interaction. The
proliferation of models that results is intentional. For this reason our framework must provide tools
that make it easy to construct models of computation and to study their relationships. It is arguable
that hierarchical heterogeneity is a more structured approach. Such structure may be desirable in
a simulation context. However, we believe that in the context of formal models that support clean
mixing of models of computation, the clearest descriptions sometimes require more flexibility than
hierarchical heterogeneity. One example are the transducers of a hybrid model that translate from
the digital to the analog domain, and vice versa. Interestingly, these cases are also handled by
special transducers in the Ptolemy Il framework, which appear to relax the requirement for strict
hierarchical heterogeneity.

One of the innovative concepts in the design of the Ptolemy Il infrastructure is the notion
of domain polymorphism [64]. An actor is domain polymorphic if it can be used indifferently under
several directors, and therefore models of computation. To check whether an actor can be used
under a particular model, the authors set up a type system based on state machines, which is used to
describe the the assumptions of each director and each actor relative to the abstract semantics (i.e.,
it describes the subset of sequences of actions in the abstract semantics that are admissible for a
certain object).

We also introduce a similar notion. In our framework, an agent can be used in different
models of computation if it has an exact representation is such models. The notion of abstraction in
the form of a conservative approximation and its inverse provides us with the appropriate interpre-
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tation of an agent from one model in another model . An agent is polymorphic precisely when this
interpretation is exact. This has the advantage of making the process of abstraction and refinement
of an agent explicit.

1.85 Abstract Interpretations

Abstract interpretations are a widely used means of relating different domains of compu-
tation for the purpose of facilitating the analysis of a system [22, 23]. An abstract interpretation
between two domains of computation consists of an abstraction function and of a concretization
function that form a Galois connection. The distinguishing feature of an abstract interpretation is
that the concretization of the evaluation of an expression using the operators of the abstract domain
of computation is guaranteed to be an upper bound of the corresponding evaluation of the same
expression using the operators of the concrete domain.

Our notion of conservative approximation is closely related to that of an abstract interpre-
tation, and a detailed account of the similarities and differences is presented in subsection 2.7.1. In
particular, the upper bound of a conservative approximation and the inverse of the conservative ap-
proximation form, in some cases, a Galois connection and/or an abstract interpretation. Conversely,
the lower bound of a conservative approximation does not have an analogue in the theory of abstract
interpretations. Nonetheless, in subsection 2.7.1 we show that the lower bound of a conservative
approximation can be explained as the concretization map of another Galois connection, one that
goes from the abstract to the concrete model. A conservative approximation is thus composed of
two pairs of related functions, instead of just one, and are used in combination to derive stronger
preservation results. In particular, by applying one pair to the implementation and the other to the
specification, we are able to not only guarantee that certain properties are preserved from the ab-
stract to the concrete domain, but also that a refinement verification result is preserved in the same
direction. To our knowledge, for abstract interpretations a positive refinement verification result
in the abstract domain implies a positive verification result in the concrete domain only if there is
no loss of information when mapping the specification from the concrete domain to the abstract
domain. Thus, conservative approximations allow non-trivial abstraction of both the implementa-
tion and the specification, while abstract interpretations only allow non-trivial abstraction of the
implementation.

One example of how additional structure allows one to derive stronger results is the work

presented by Loiseaux et al. [65] on property-preserving abstractions. The authors consider a spe-
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cific model based on transition systems. In particular they show that the traditional notion of sim-
ulation based on a binary relation between the states of two transition systems (one concrete and
one abstract) can be rephrased in terms of a Galois connection between the powerset of the state
spaces. There is an isomorphism between the powerset of the set of states and the set of properties
of a transition system. Therefore, the Galois connection, and by transitivity the simulation relation,
can easily be seen as a property transformation. The detailed knowledge of the model allows the au-
thors to not only state results in terms of property preservation of the functions involved, but also to
determine the particular abstract transition system that exhibits the most properties of the concrete
transition system under study.

The techniques presented in [65] are applicable, to some extent, to trace-based agent al-
gebras. In fact, the correspondence between a simulation relation and a Galois connection is one
instance of amxiality, that is of the one-to-one correspondence that exists between a binary relation
over two sets and a Galois connection between their powersets [42]. As proposed already in [12]
(although not exactly in these terms), a conservative approximation is constructed as an axiality,
where a relation between the set of traces, i.e., the trace algebra homomorphism, is converted into
a Galois connection on the powersets of traces, i.e., the upper bound of the conservative approxi-
mation on trace structures with its inverse. The homomorphism is a particular kind of relation on
traces, one that is sufficient to guarantee the compositionality properties of the conservative approx-
imation. The lower bound of the conservative approximation is also derived as an axiality, this time
from the inverse relation on traces, i.e., the inverse homomorphism. It is easy to show that this
axiality is related to the forward relation by a double complementation of the sets involved, as the
formulation proposed in [12] already suggests.

The homomorphism, similarly to the relation on the sets of states, defines a notion of
“simulation relation” between sets of traces, or trace structures. Given a trace algebra homomor-
phism, it would be interesting to address the problem of finding the most faithful approximation of
a trace structure, as described in [65]. Our framework provides the additional flexibility of leaving
the definition of what is an admissible agent to the designer of the model of computation. The
problem to be solved is that the simple extension of the homomorphism to sets of traces may not
yield a trace structure in the abstract domain, since the trace structure algebra does not in general
include all trace structures (despite being closed under the operations). The tightest conservative
approximation proposed in [12] can be seen as one step in that direction, at least in terms of the
lower bound. However, we do not address the general problem here, and we reserve it for our future

work.
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Note further the significant difference between a relation on states and a trace algebra ho-
momorphism. In the first case, the axiality gives an abstraction that to an;agesbciates a more
abstract agent’, wherep andp’ are part of thesame model of computation. In contrast, a trace
algebra homomorphism, by relating two possibly different algebras, is able to change the level of
abstraction of the model. The proper notion of homomorphism in trace algebra that doesn’t change
the level of abstraction would therefore be that of an endomorphism. Indeed, the projection and re-
naming operators on traces are trace algebra endomorphisms. Their axialities are the corresponding
operations of projection and renaming on trace structures, together with the inverse projection and
inverse renaming which are the adjoints function of the Galois connection (note, also, that renaming
is typically an automorphism, i.e., an isomorphism of trace algebra that does not give rise to any
abstraction). The reason why we consider these as basic operations of the model, rather than as
abstractions, is that in this way we are able to construct expressions that describe the hierarchical
structure of a system of components in an intuitive, and almost graphical sense.

The authors of [65] go even further, and derive compositionality rules for abstractions
obtained using a different relation on states for each component. This translates into using different
homomorphisms of trace algebra for each agent. This is a potentially very interesting technique,
especially in the framework of trace-based agent algebras, where the different homomorphisms
could translate different agents into yet different models of computation. In this way, it would
be possible to “tune” the abstraction of each component of a system for a specific problem. The
definition of compositionality must however be adapted to a new situation, one where the different
agents being composed reside in different models. While far from solving the problem, we move in
that direction by considering the issue of co-composition.

Similar results could be explored in the more general setting of agent algebra (as opposed
to trace-based agent algebra). Since in this case we do not “look” inside the agents, our knowledge of
the model is limited to the axioms of the algebra, and the condition of monotonicity. Nonetheless,
we can represent properties of agents as the collection of agents that satisfies them, essentially
relying again on powersets as done in the case of states and in the case of traces. We do not however
attempt to formulate the problem here, and we reserve it for our future work.

As noted above, the axiality that corresponds to the inverse of a relation is useful to obtain
a lower bound of a conservative approximation. Although in agent algebra we do not work with
powersets (and with the corresponding notion of complementation) we can still use the mirror, when
it exists, as a complementation operator. In section 3.5 we explore this fact in more details, and we
derive the necessary and sufficient conditions that the concretization function of a Galois connection
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must satisfy in order for the upper and lower bound to form a conservative approximation.

1.8.6 Interface Theories

The agent algebra that we propose is similar in nature tdlibek algebra proposed by
De Alfaro and Henzinger [30]. In this section we discuss the differences and similarities with our
work.

Block algebras are mathematical structures that are used to model a system as a hierar-
chical interconnection of blocks. The algebra consists of a set of blocks and interconnections; a
composition operator that returns the parallel composition of two blocksgamnection operator
that composes blocks and interconnections to establish a relation between the ports of the blocks;
and a binary relation, callelderarchy, that holds when a block refines a more abstract blodk
The operators and the hierarchy relation must also satisfy certain properties that are consistent with
their intuitive meaning.

Block algebras resemble agent algebras in several respects. Both are concerned with
building a model hierarchically through the application of composition starting from some basic
blocks. However, the operators that are used to construct the hierarchy work in different ways.
In particular, connection are formed in our framework by identifying signals with the same name,
rather than through an explicit object (the interconnection) as in block algebras. This choice reflects
our focus on the semantic domain, rather than in the language used to specify agents: if an inter-
connection operator is needed (because, for example, it is convenient to specify a system), it can
easily be obtained by syntactic transformations, or, more generically, by using a separate agent as
described in section 1.4. Moreover, block algebras lack a notion of scoping, which is in our opinion
essential in hierarchical designs to hide the internal details of a composite. Observe also that in
agent algebrakierarchy andrefinement are two distinct concepts. Refinement is a relation between
agents that establishes when one agent can be substituted for another. We instead reserve the term
hierarchy to denote the containment relation between a composite and its parts. In the remainder of
this section we further discuss the differences between the notion of refinement in block algebras
and the notion of refinement in agent algebras.

As in agent algebras, blocks can be very general objects. In block algebras, however,
blocks are further classified into two classesmponents andinterfaces. Informally components
are descriptions of agents that say what an agent does. Conversely, interfaces are descriptions of
agents that say the expectations that the agent has about its environment. This distinction is based
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upon the observation that physical components do something in any possible environment, whether
they behave well or misbehave. In contrast, interfaces describe for each block the environments that
can correctly work with the block. On the other side, both components (through their behaviors)
and interfaces provide guarantees to the environment regarding their possible actions.

Assumptions and guarantees of components and interfaces are related to the refinement
relation in the algebra. If a block refines a block”, then F' may only make weaker assumptions
on its environment thai”. At the same time” should make stronger guarantees tli&n This
is consistent with the view of refinement as substitutability. If a more refined block is to replace
a more abstract one in any environment, then the more refined block shall not assume properties
about the environment that are not assumed by the abstract block. Because components make no
assumptions about their environment, abstraction simply weakens the guarantees, and refinement
strengthen them. Conversely, interfaces also exhibit a contravariant strengthening and weakening
of the environment assumptions.

The distinction between components and interfaces has, according to the authors, an im-
pact on the notion of compositionality (i.e., the relationships between the composition operators
and the refinement relation). Component algebras are block algebras that sugommositional
abstraction. This implies that iff andg are two compatible components (i.e., their composition is
defined), and iff refinesf’, then alsof’ andg are compatible. This is possible because “for com-
ponents, abstraction is weakening and compatibility is made more likely by weakening”. Interface
algebras, on the other hand, are block algebras that suppupbsitional refinement. In this case,
if interfaces f’ andg are compatible, and if refinesf’, then alsof andg are compatible. This
is because “for interfaces, refinement weakens input assumptions and thus can make compatibility
more likely”.

Agent algebras do not distinguish between components and interfaces. Likewise, the
“direction” of compositionality in agent algebras is independent of the nature of the agents, and
always agrees with the notion of compositional refinement. There are several reasons for this.

In the first place, as already discussed, the notion of refinement in agent algebras always
represents substitutability. Later, we argue that compositional refinement is the only notion that
is compatible with this interpretation. Second observe that, according to their informal definition,
components are just a special case of interfaces. They are interfaces that make no assumptions about
their environment. Hence, any general result that holds for interfaces must hold for components,
as well. In particular, given an interface algebra we can find a subset of the interfaces that are
components (the interfaces that make no assumptions). If this set if closed under composition and
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connection, it forms a subalgebra. However, the component subalgebra of an interface algebra
supports compositional refinement, and not compositional abstraction. This makes components a
subclass of interfaces, rather than a distinct class.

The argument that for components abstraction makes compatibility more likely is difficult
to explain. First, abstraction and refinement weaken and strengthen assumptions and guarantees in
the same way for both components and interfaces, and should therefore lead to the same compo-
sitionality result. In the case of components, however, assumptions are held constant (and empty)
and abstraction simply weakens the guarantees. However, it seems more intuitive that weaker guar-
antees should make compatibilitgss likely, because it is harder to prove the assumptions of the
other components. In addition, because components make no assumptions, the guarantees can play
no role in deciding compatibility, since any guarantee will satisfy the empty assumption. Weaker
assumptions do make compatibility more likely, but in the case of components these are always
empty. Other conditions must be verified in order for compositional abstraction to work.

In block algebras, components can be related to interfaces by a relationioadledhen-
tation. This relation can be seen as a form of refinement. It is, however, a refinement that occurs
across two different algebras. It is interesting to note that compositionality for the implementa-
tion relation follows the rule of compositional refinement. The implementation relation roughly
corresponds to our conservative approximation, or to a Galois connection. A relation, instead of
a function or pair of functions, may provide more flexibility. For example, a relation may express
the fact that a certain component implements interfaces that are unrelated. With conservative ap-
proximation this would translate in different upper and lower bounds. A relation could therefore
provide more information. We prefer to use functions because they provide additional results with
the problem of refinement verification.

The distinction between interfaces and components seems to ultimately arise from the fact
that components, by making no assumptions, are unable to constrain their environment. For this
reason, components are often callagut-enabled, or receptive. Receptiveness and environment
constraints are not, however, mutually exclusive. The two notions coexist, and are particularly well-
behaved, for example in the trace-based agent algebra model presented in section 5.2, derived from
the two-set trace structures proposed by Dill [34] (or, in Negulescu’s Process Spaces [71, 72]). In
this model traces are classified as eithscesses or failures. In order for a system to biailure-
free, the environment of each agent must not exercise the failure traces. Failure traces therefore
represent the assumptions that an agent makes relative to its environment. However, the combination

of failure and success traces makes the agents receptive. Note in addition that the operations of
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this algebra are monotonic and that they support compositional refinement (see the discussion in
section 2.4). Hence, two-set trace structures are “components” (because they are receptive), but
follow the compositionality principle of “interfaces”.

We believe that all of the interface models proposed in the framework of interface the-
ories [29, 18, 19, 31] can be explained in these terms. For example, interface automata [29] can
be explained almost exactly in terms of the prefix closed trace structures of Dill [34]. In partic-
ular, interface automata are always kept in canonical form, and their compaosition operator is an
implementation of Dill's autofailure manifestation and failure exclusion.

The distinction between interfaces and components seems therefore unnecessary. Or, to
be more precise, the distinction between a component and its interface in our framework has to do

with a difference in the level of abstraction, rather than with a difference in their nature.

1.8.7 Process Spaces

Process Spaces [71, 72] is a very general class of concurrency models, and it compares
quite closely to our trace-based agent models, described in chapter 4. Given a set of exégutions
a Process Spac$: consists of the set of all the proces4éS Y'), whereX andY are subsets of
€ suchthatX UY = £. The sets of execution¥ andY of a process are not necessarily disjoint,
and they represent the assumptiol’§ &nd the guarantees(( of the process with respect to its
environment. This interpretation of the execution sets is enforced by the refinement relation, which
is defined ag C p if and only if X, C X, andY, D Y}, (note that in [71, 72] the notation for the
order is reversed, so that the above case is writteng).

In trace-based agent algebras executions are called traces, and processes are called trace
structures. In particular, our two-set trace structures express conditions that are similar to the as-
sumptions and guarantees of processes by distinguishing beswesess andfailure traces. The
similarities between the two models are not coincidental, since both frameworks extend the trace
theory presented in [34]. The generalization to abstract executions that Process Spaces claim to
be their distinguishing aspect is in fact already present in trace structure algebra [12], the frame-
work that we take as our basis for generalization. Nevertheless, several differences distinguish trace
structures and processes. For example, in our generalization we do not require the elimination of
connectivity restrictions or of references to inputs and outputs, and instead deal with partial opera-
tors directly. Indeed, the notion of monotonicity for partial functions that we introduce in section 2.4
is used as the basis of our models throughout this work, and sheds light on the requirements that
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must be met by a model to exhibit the necessary properties to apply compositional methods.

Process Spaces introduce a notion of conformance (called “testing”) and mirror (called
“reflection”) which closely reflect the corresponding notions of [34] and [96]. Similarly to [34],
these notions are fixed and are derived from a concept of robustness of processes that amounts to
not making any assumptions (i.e., for procé&sY ), Y = £). Because of their construction, Pro-
cess Spaces always admit conformance orders and mirrors regardless of the set of executions. In
this work we introduce these notions in the framework of agent algebra. Agent algebra is a further
generalization of our trace-based models which are here presented as a special case. In particular,
agent algebras give up entirely the notion of an execution, and talk about agents in abstract terms.
Because of that, we use a parameterized notion of conformance that can be customized to the par-
ticular instance of agent algebra. Depending on the robustness criterion, which is embodied by a set
of agents7 (called a conformance set), mirrors may or may not exist for a particular model. With
agent algebra we derive an exact characterization of the existence of a mirror function in terms of
the conformance order and certain greatest elements in the sets of agents. We also derive a general
solution to the local specification synthesis problem, which is also solved, however limited to the
parallel composition operator, in process spaces (called the “design inequality”).

Process Spaces do not have such operators as projection and renaming (although they are
considered as process abstractions), which we instead take as fundamental operators of our algebra.
In addition Process Spaces enjoy a lattice structure which, because of the additional generality, is
not necessarily present in agent algebra. Therefore, Process Spaces are endowed with additional
meet and join operators. We introduce these operators only where they are necessary, i.e., when
characterizing mirror functions, and do not develop a general theory. Trace-based agent algebras
could be augmented with these operators. This extension is left as future work.

The notion of process abstraction in Process Spaces is related to the notion of conservative
approximation. Process abstractions are again defined as axialities of a relation and its inverse on
abstract executions, as discussed in subsection 1.8.5. In Process Spaces, a process abstraction is
classified as optimistic or pessimistic according to whether it preserves a robustness verification
(in our terminology, whether an agent is @ or not) from the concrete to the abstract or from
the abstract to the concrete model. These two kinds of abstractions can be used in combination to
preserve the verification result both ways. In that case, the two models are essentially isomorphic
since there is effectively no loss information.

Optimistic and pessimistic process abstractions roughly correspond to the upper and lower
bound of conservative approximations. However, our use of the two bounds is very different. In
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particular we only deal with refinement verification, since robustness verification would not make
sense with our parameterized notion. More importantly, our use of the upper and lower bound is
significantly different, since we apply them in combination (the lower bound for the specification,
the upper bound for the implementation) without sacrificing the abstraction.

Like our examples of trace-based agent algebras, Process Spaces can be seen as a special
case of agent algebra as well. In fact, all of our trace-based models could be constructed in general
by providing for each agent a classification of the set of executions (or traces) into a set of distin-
guished classes. For exampleZ could distinguish between the successes and the failures of our
two-set trace structures. Operations on agents could then be derived from corresponding operations
on the elements df. Both our trace structures models and Process Spaces could be seen as special

cases of this more general technique. We defer this generalization for our future work.

1.8.8 Category Theoretic Approaches

Category theory [66, 9, 75] is a particular form of algebraic approach in which elements
are partitioned int@bjects andmorphisms, i.e., into the objects under study and their relationships.
Similarly to our agent algebras, it is possible to construct different categories that correspond to
different models of computation.

The work that is more closely related to ours is due to Winskel et al. [83, 95, 84]. In
their formalism, each model of computation is turned into a category where the objects are the
agents, and the morphisms represent a refinement relationship basedutations between the
agents. The authors study a variety of different models that are obtained by selecting arbitrary
combinations of three parameters: behavior vs. system (e.g., traces vs. state machines), interleaving
vs. non-interleaving (e.g., state machines vs. event structures) and linear vs. branching time. The
common operations in a model are derived as universal constructions in the category. Given a set
of objects and morphisms in a category, a universal construction consists of a new set of objects
and morphisms that enjoy a particular universal property, that is a property that fertralé the
elements (usually morphisms) of a certain set, relative to the original objects and morphisms. In
particular, the authors describe how to derive projections and renamings by lifting corresponding
morphisms on the alphabets to the category of the model, and how to use products and coproducts
(sums) to model parallel composition and choice. These constructions are the same across the
different models. However, for each model they give rise to different operations in accordance
to the difference between the structure of the objects and the morphisms that relate them. The
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constructions are shown to “implement” the usual notions of operations on agents that are typical
of the models being considered.

A fundamental aspect addressed in this work, and which is also fundamental in our work,
is the development of relationships between models. This is accomplished by relating the categories
corresponding to different models of computation by means of functors, which are homomorphisms
of categories that preserve morphisms and their compositions. When categories represent models
of computation, functors establish connections between the models in a way similar to abstraction
maps and semantic functions. In particular, when the morphisms in the category are interpreted as
refinement, functors become essentially monotonic functions between the models, since preserving
morphisms is equivalent to preserving the refinement relationship.

In [84], the authors thoroughly study the relationships between the eight different models
of concurrency above by relating the corresponding categories through functors. In addition, these
functors are shown to be componentsrefections or co-reflections. These are particular kinds
of adjoints, which are pairs of functors that go in opposite directions and enjoy properties that are
similar to the order preservation of the abstraction and concretization maps of a Galois connection.
When the morphisms are interpreted as refinement, reflections and co-reflections generalize the con-
cept of Galois connection to preorders. In addition, reflections and co-reflections enjoy additional
preservation properties relative to the universal constructions in the category, and by transitivity to
the operators of the model. These properties are similar to those that are required of the abstrac-
tion function of an abstract interpretation, or those sufficient to make a conservative approximation
compositional.

There are certainly many similarities between our work and the category theoretic ap-
proach. In particular, the idea of generalizing the construction of the operators by extending corre-
sponding, but simpler operations on a different domain is at the basis of the relationship between
trace algebras and trace structure algebras [12], which we here revisit. The operators of the trace
structure algebra are in essence the “lifting” of the corresponding operators on the trace algebra, by
either a simple extension to sets or by a more complex definition as for parallel composition (which
involves, in fact, a sort of restricted product). It wouldn't be surprising if this technique could be
explained exactly in the terms presented in [95]. In our work, however, we are concerned with a
more restricted set of operators (for example, we do not include choice in our basic set).

Our approach with agent algebra differs, since the agents, the operators on the agents,
and the order relationship can all be defined independently, as long as they satisfy the required
properties, includingr -monotonicity. In other words, we take an axiomatic approach, instead of a
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constructive approach. This is simply a different point of view, one that allows us to use the axioms
as basic building blocks in our proofs.

The similarities also extend to how we establish relationships between different models, or
algebras. In fact, the relationships between categories based on adjoints are similar in nature to the
abstractions and refinements obtained by abstract interpretatidnsever, as described above for
abstract interpretations, we use independent upper and lower bounds for the implementation and the
specification in order to derive a stronger result in terms of preservation of the refinement relation,
and avoidance of false positive verification results. Indeed, we require two Galois connections,
instead of one, to determine a single conservative approximation. In the work presented in [84], this
translates in two adjoints per pair of categories.

We also believe that the aim of our work is different. In [84], the authors are mostly
concerned with the classification of different models of concurrency, and they certainly go to great
length to establish certain particular relationships between certain particular models (and, in doing
S0, they also propose a new, richer, model of concurrency). Our focus goes beyond the classification,
as we strive to find techniques that can be applied to most models that fit in our framework. The
refinement verification technique based on conservative approximations, and the local specification
synthesis based on mirrors are two examples of tools that apply to a variety of models. While these
guestions are not raised by Winskel et al., it is true that we could have addressed them in a categorical
setting. The choice of the “language” of presentation is one that is often made upfront, and is often
resolved in favor of the ones that the authors are most comfortable with. In this case, one should
ask whether category theory could shed more light, for example by exposing more properties, or
save some of the work, by means of ready to use results. We believe that this is not the case for
agent algebras and that a simpler language, based on sets and relations, is sufficient for our aims.
For example, the specialization of the results on adjoints in category theory to Galois connections is
all we need to talk about conservative approximations. We also believe that the specialization of the
language is ultimately more intuitive. It is true that the categorical approach would, for example,
provide the extension to preorders (that we do not present here) essentially for free. However, such
an extension is straightforward for anyone familiar with preorders, by taking the appropriate notions
up to equivalence. Aspects of category theory may however prove useful for other extensions. As a
form of generalized homomaorphism, functors could for example be used to provide a more powerful
notion of abstraction on agents executions, as discussed in section 6.2.

®1t would certainly be interesting to see the authors’ own account of the similarities and differences between using
adjoints and an approach based on abstract interpretations.
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1.89 Rosetta

The ability to define domains of agents for different models of computation is also a
central concept of the Rosetta language [56, 57, 58, 59]. In Rosetta, a model of computation is rep-
resented as a domain that is described declaratively as a set of assertions in a higher order logic. The
definition first declares the objects of the discourse, such as for example the variable that represents
time, or power, or a transition relation, thus representing the presence of state. The assertions then
axiomatically determine the interpretation of these quantities in the properties that they must satisfy.

Different domains can be obtained by extending a definition in a way similar to the sub-
typing relation of a type system. The extended domain inherits all the assertions (the terms) of
original domain, and adds additional constraints on top of them. Domains that are obtained this way
are automatically related by an abstraction/refinement relationship. Domains that are unrelated can
still be compared by constructing functions, called interactions, that (sometimes partially) express
the consequences of the properties and quantities of one domain onto another. This process is
particularly useful for expressing and keeping track of constraints during the refinement of the
design.

In contrast to Rosetta we are not concerned with the definition of a language. In fact,
we define a domain directly as a collection of elements of a set, not as the model of a theory. In
this sense, the approach taken by Rosetta seems more general. As already discussed, however, the
restrictions that we impose on our models allow us to prove additional results that help us create
and compare the models. In particular, the interactions between different domains in Rosetta are
essentially unconstrained. In our case we are interested in proving facts about these interactions,
and therefore require that our abstraction maps satisfy certain properties that have mostly to do with
preservation of refinement verification. In particular, while the interactions in Rosetta are exact, we

instead employ upper and lower approximations.

1.8.10 Hybrid Systems

In our framework we define a domain of agents that is suitable for describing the behavior
of systems that have both continuous and discrete components. The term hybrid is often used to
denote these systems. Many are the models that have been proposed to represent the behavior of
hybrid systems. Most of them share the same view of the behavior as composed of a sequence of
steps; each step is either a continuous evolution (a flow) or a discrete change (a jump). Different
models vary in the way they represent the sequence. One example is the Masaccio model proposed
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by Henzinger et al. [47, 49].

In Masaccio the representation is based on components that communicate with other com-
ponents through variables and locations. Variables are used to exchange data, while locations are
used to transfer the flow of control. During an execution the flow of control transitions from one
location to another according to a state diagram that is obtained by composing the components that
constitute the system. Each transition in the state diagram models a jump or a flow of the system and
constrains the input and output variables through a difference or differential equation. The underly-
ing semantic model is based on sequences. The behavior of each component is characterized by a
set of finite executions, each of them composed of an entry location and a sequence of steps that can
be either jumps or flows. An exit location is optional. The equations associated with the transitions
in the state diagram define the legal jumps and flows that can be taken during the sequence of steps.

The operation of composition in Masaccio comes in two flavors: parallel and serial. The
parallel composition is defined on the semantic domain as the conjunction of the behaviors: each
execution of the composition must also match an execution of the individual components. Roughly
speaking, a sequence of stegis an execution of the parallel compositid| B iff the projection of
s (obtained by restricting to the variables oA or B) is an execution oA and B. This operation
models the concurrent activities of two components. Conversely, serial composition is defined as
the disjunction of the behaviors: each execution of the composition need only match the execution
of one of the components. A sequence of stejgsan execution of the serial compositidnt B iff
the projection ofs (obtained by restricting to the variables ofd or B) is an execution ofd or B.

Despite its name, this operation doesn't serialize the behaviors of the two components; it is more
like a choice operator. A further operationlotation hiding is required to serialize executions.

To date we are not aware of a formal definition of parallel or serial composition for the
state transition representation.

In our work we take an approach that is based solely on the semantic domain. Note in
fact that the semantic model based on sequences and the representation based on a state transition
system are easily decoupled. In our framework we talk about hybrid models in terms of the semantic
domain only (which is based on functions of a real variable rather than sequences). This is a choice
of emphasis: in Masaccio the semantic domain is used to describe the behavior of a system which
is otherwise represented by a transition system. In our approach the semantic domain is the sole
player and we emphasize results that abstract from the particular representation that is used. It's
clear, on the other hand, that a concrete representation (like a state transition system) is extremely
important in developing applications and tools that can generate or analyze an implementation of a
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system.

In this work we present several models for semantic domains. Masaccio compares to our
more detailed model. In our approach we have decided to model the flows and the jumps using a
single function of a real variable: flows are the continuous segments of the functions, while jumps
are the points of discontinuity. This combined view of jumps and flows is possible in our framework
because we are not constrained by a representation based on differential equations, and hence we
do not require the function to be differentiable. Another difference is that different components
are allowed to concurrently execute a jump and a flow, as long as the conditions imposed by the

operation of parallel composition are satisfied.

Because in Masaccio the operations of composition are defined on the semantic domain
and not on the representation it is easy to do a comparison with our framework. Parallel composition
is virtually identical (both approaches use a projection operation). On the other hand we define serial
composition in quite different terms: we introduce a notion of concatenation that is difficult to map
to the sequence of steps that include serial composition and location hiding, which is contrary to our
principle of not mixing different operators. This could simply be an artifact of the representation
based on state transitions that requires the identification of the common points where the control

can be transferred.

The concept ofefinement in Masaccio is also based on the semantic domain. Masaccio
extends the traditional concept of trace containment to a prefix relation on trace sets. In particular, a
component4 refines a componen® either if the behavior oA (its set of executions) is contained
in the behavior ofB, or if the behaviors ofA are suffixes of behaviors dB. In other words,B

could be seen as the prefix of all legal behaviors.

In our framework we must distinguish between two notions of refinement. The first is

a notion of refinement within a semantic domain: in our framework this notion is based on pure

trace containment. We believe this notion of refinement is sufficient to model the case of sequential
systems as well: it is enough to require that the specification include all possible continuations of
a common prefix. The second notion of refinement that is present in our framework has to do with
changes in the semantic domain. This notion is embodied in the concept of conservative approxi-
mation that relates models at one level of abstraction to models at a different level of abstraction.
There is no counterpart of this notion in the Masaccio model.
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1.8.11 Local Specification Synthesis

We have already described the problem of local specification synthesis in section 1.3. The
literature on techniques to solve it is vast. Here we focus on two of the proposed techniques and
highlight in particular the differences in the scope and aim relative to our work.

Larsen et al. solve the problem of synthesizing the local specification for a system of
equations in a process algebra [60]. In order to represent the flexibility in the implementation,
the authors introduce the Disjunctive Modal Transition System (DMTS). Unlike traditional labeled
transition systems, the DMTS model includes two kinds of transitions: transitionsndya¢xist
and transitions thatust exist. The transitions that must exist are grouped into sets, of which only
one is required in the implementation. In other words, the DMTS is a transition system that admits
several possible implementation in terms of traditional transition systems.

The system is solved constructively. Given a context and a specification, the authors con-
struct a DMTS whose implementations include all and only the solution to the equation. To do
so, the context is first translated from its original equational form into an operational form where
a transition includes both the consumption of an event from the unknown component, and the pro-
duction of an event. The transitions of the context and of the specification are then considered in
pairs to deduce whether the implementation may or may not take certain actions. A transition is
possible, but not required, in the solution whenever the context does not activate such transition. In
that case, the behavior of the solution may be arbitrary afterwards. A transition is required whenever
the context activates the transition, and the transition is used to match a corresponding transition in
the specification. A transition is not allowed in the solution (thus it is neither possible, nor required)
whenever the context activates it, and the transition is contrary to the specification.

The solution proposed by Larsen et al. has the advantage that it provides a direct way
of computing the set of possible implementations. On the other hand it is specific to one model
of computation (transition systems). In particular, the solution does not provide any insight as to
why the technique works (despite the proof that it does work!). Conversely, our approach consists
of working at a sufficiently high level of abstraction (above the model of computation) so that the
conditions of applicability are exposed. Our solution is however not constructive, and is expressed
in an algebraic form that may or may not be computable. It does however ensure that if the result is
computable, then the solution is correct.

Yevtushenko et al. [98] present a formulation of the problem that is more closely related
to ours. The local specification is obtained by solving abstract equations over languages under
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various kinds of composition operators. By working directly with languages, the solution can then
be specialized to different kinds of representations, including automata and finite state machines.
In the formalism introduced by Yevtushenko et al., a language is a set of finite strings over
a fixed alphabet. The particular notion of refinement proposed in this work corresponds to language
containment: languag® refines a languag® if and only if P C Q. If we denote withP the
operation of complementation of the languagéi.e., P is the language that includes all the finite
strings over the alphabet that are notit), then the most general solution to the equation in the

variable X
A-XCC
is given by the formula

S=A-

Q

The languagé is called the most general solution because a langifage solution of the equation

if and only if P C S. In the formulas above, the operatocan be replaced by different flavors

of parallel composition, including synchronous and asynchronous composition. These operators

are both constructed as a series of an expansion of the alphabet of the languages, followed by a
restriction. For the synchronous composition, the expansion and the restriction do not alter the

length of the strings of the languages to which they are applied. Conversely, expansion in the

asynchronous composition inserts arbitrary substrings of additional symbols thus increasing the

length of the sequence, while the restriction discards the unwanted symbols while shrinking the

string.

The language equations are then specialized to various classes of automata, including fi-
nite automata and finite state machines. This provides an algorithmic way of solving the equation
for restricted classes of languages (i.e., those that can be represented by the automaton). The prob-
lem in this case consists of proving certain closure properties that ensure that the solution can be
expressed in the same finite representation as the elements of the equation. In particular, the authors
consider the problem of receptiveness (there callpdogression) and prefix closure.

The solution obtained in our work is similar to that proposed by Yevtushenko. Our ap-
proach is however more general. In particular, we work with abstract behaviors (in fact, our most
general formulation does not require behaviors at all) and do not require any particular form of
the composition operator, as long as it satisfies certain assumptions. In other words, we take an ax-
iomatic approach instead of a constructive one, as already noted in section 1.4. Therefore we need to
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prove our result only once, instead of once for every model that fits in our framework. In particular,
our result applies whether we consider the synchronous or the asynchronous parallel composition
operator.

In our work, we however only marginally consider the problem of finite representation,
and therefore of the algorithmic solution of the equation. Indeed, questions of closure must be
solved upfront in order for a model to fit in our framework. In the case of the asynchronous and of
the synchronous operators above, these questions are also addressed by Dill [34], Wolf [96]. The
problem of the synthesis of the local specification for the combinational case is also addressed by
Burch et al. [13]. Since we generalize their work, we expect to be able to take full advantage of their

characterizations.

1.9 Outline of the Dissertation

This dissertation is divided in four parts. The first two parts develop the basic theory
underlying our algebraic framework, with simple examples that complement the theoretical presen-
tation. The third part introduces trace-based agent algebras, and is mainly devoted to examples of
different models of computation and their relationship. Finally, the fourth part further develops the
theory of trace-based agent algebras, and presents an example of application of local specification

synthesis to the problem of protocol conversion.

Chapter 2

Chapter 2 presents the basic framework of Agent Algebra with the definition of an agent
algebra and of an ordered agent algebra. One of the main contributions of this chapter is a param-
eterized notion of monotonicity that applies to partial functions (definition 2.20). The codomain
of the partial function is extended with an additional elemé&rdnd a total extension of the partial
function is defined that maps tbthe elements over which the original function was undefined. The
position of the element in the order of the codomain is particularly important. Differdistcor-
respond to different notions of monotonicity, and give rise to different compositionality principles.
We show thafT -monotonicity, obtained by placing thkelement at the top of the codomain, is the
only notion of monotonicity that is consistent with the interpretation of the order relationship as
substitutability (theorem 2.24).

In this chapter we also introduce the notion of a conservative approximation, that we take
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from [12], to relate one domain of agents to another, more abstract, domain. A conservative approx-
imation has two functions. The first, called the lower bound, is used to abstract agents that represent
the specification of a design. The second, called the upper bound, is used to abstract agents that
represent possible implementations of the specification. A conservative approximation is defined so
that if the implementation satisfies the specification in the abstract domain, then the implementation
satisfies the specification in the more detailed domain, as well. Here we further develop the theory
related to the inverse of a conservative approximation, and find sufficient conditions to ensure that
it is an embedding (theorem 2.72).

Another contribution of this chapter is a detailed study of the relationship between conser-
vative approximations and the well established notions of Galois connections and abstract interpre-
tations. In particular we give the necessary and sufficient conditions for a pair of Galois connections
to form a conservative approximation (corollary 2.101). We also show that conservative approxi-
mations are in general more powerful than abstract interpretations. This study allows us to relate
two different models through a common refinement (or a common abstraction), and leads to the
definition of the notion of co-composition between agents that belong to different models. Our
contributions also include a formalization of the process of platform-based design that makes ex-
plicit the relationships between function and architecture by way of a common semantic platform
(subsection 2.8.5).

Chapter 3

Chapter 3 further develops the theory of agent algebras. Here we define what it means
for an agent tawonform to another agent in terms of all possible contexts. Given a set of agents
an agentp conforms to an agerd if substitutingp for p’ in any context keeps the evaluation of
the context withinG. The setG can therefore be seen as an initial partition for the conformance
order that is then refined by the evaluation of the contexts. We then develop techniques to reduce
the number of contexts that must be considered to check conformance, up to, in certain cases, a
single composition context that is called mirror. These are generalizations of the corresponding
definitions and results originally due to Dill [34]. In particular, the 6egeneralizes the notion
of failure freedom. However our contribution here is not limited to just the generalization of these
notions to abstract agents. By working above the level of a specific model, we are in fact able to
determine the precise conditions that must be met for the existence of mirrors. In particular, we
show that if the operators of the algebra arenonotonic, and if7 is downward closed relative to
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the agent ordering, then the relative notion of conformance (with fewer contexts) implies the full
notion of conformance (with all the contexts) (theorem 3.42). In addition, we introduce a notion
of compatibility and provide a complete and general characterization of the existence of mirror
functions and their construction in terms of conformance and compatibility (theorem 3.80). This is
a particularly strong result. Specifically, it helps us understand how a model should be extended in
case it is not already endowed with a mirror function. To that end, we also consider extensions of a

mirror function that include a predicate or that applies to partitions that form subalgebras.

In this chapter we also present a general formulation of the local specification synthesis
problem, that entails deriving a local specification for a component, given a global specification
and the context of the component. This solution requires that expressions be transformed into a
particular form that we call RCP normal form. We define the notion of expression equivalence and
show that if an algebra satisfies certain sufficient conditions, then every expression is equivalent
to an expression in RCP normal form (theorem 3.16). The concept of mirror, and the ability to
transform expressions in a suitable normal form are used to solve the problem in closed form, one

of the main contributions of this work (theorem 3.119).

Chapter 4

Chapter 4 introduces trace-based agent algebras, which are similar to the trace algebras
and trace structure algebras introduced by Burch [12]. The signature, which was fixed for trace
structure algebras, is here generalized using the more general notion of agent algebra and the con-
struction of direct products. Here we also develop more complex models of concurrent systems,
with particular attention to the models of computation used in todays heterogeneous embedded
systems, both control and data-dominated (section 4.3). In particular we develop models that are
useful for studying the behavior of hybrid systems. In addition we study relationships between these
models in terms of conservative approximations. Our main original contribution here, besides the
examples, is the derivation of conservative approximations between trace-based agent algebras in
terms of the axialities of relationships between the traces (corollary 4.20). This is a generalization
of the work of Burch [12], who proposes one specific form of conservative approximation induced
by homomorphisms.
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Chapter 5

In chapter 5 we prove the existence of a mirror function for trace-based agent algebras
under a specific choice for the conformance ordering. We also extend the notion of a single-set
trace structure to that of a two-set trace structure, again generalizing the work of Dill [34], in order
to model successes and failures, and we derive a mirror function. We compare our results to those of
Dill, and explain Dill's results and his canonical form in terms of a subalgebra of our more general
model. Besides the generalization of successes and failures to abstract behaviors, our contribution
includes necessary and sufficient conditions for the existence of canonical forms in a subalgebra
(theorem 5.28). We conclude the chapter by showing an example of application of the local speci-
fication synthesis technique using a trace-based synchronous model to solve a protocol conversion

problem.
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Chapter 2

Agent Algebras

This chapter describes some very general methods for constructing different models of
concurrent systems, and for proving relationships between these models. We introduce the notion of
anagent algebra to formalize the model of a concurrent system. Agent algebras are a broad class of
models of computation. They developed out of Burch’s and our wordonaurrency algebra, trace
algebra andtrace structure algebra [12, 14, 15], which builds on Dill’s work owgircuit algebra and
trace theory [33]. Through trace structure algebra we have studied concepts, suohsasvative
approximations, that help clarify the relationships between different models of computation. Agent
algebra provides a simpler formalism for describing and studying these concepts. The trade-off is
that agent algebra is more abstract and provides less support for constructing models of computation.

An agent algebra is a simple abstract algebra with three operations: parallel composition,
projection, and renaming. The three operations must satisfy certain axioms that formalize their
intuitive interpretation. The domain (or carrier) of an agent algebra is intended to represent a set of
processes, aagents. Any set can be the domain of an agent algebra if interpretations for parallel
composition, projection and renaming that satisfy the axioms can be defined over the set. In this
document, whenever we define an interpretation for these three operations, we always show that the
interpretation forms an agent algebra, which gives evidence that the interpretation makes intuitive
sense.

Agent algebras can be constructed from other agent algebras by the usual devices of direct
product and sum. We introduce these construction in this chapter, and show that they indeed yield
new agent algebras. Direct products will also be useful in the following chapters to construct hybrid
models and to provide a sort of “signature specification” to a set of agents.

In verification and design-by-refinement methodologies a specification is a model of the
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design that embodies all the possible implementation options. Each implementation of a specifi-
cation is said taefine the specification. In our framework, agent algebras may include a preorder
on the agents that represents this refinement relationship. Proving that an implementation refines a
specification is often a difficult task. Most techniques decompose the problem into smaller ones that
are simpler to handle and that produce the desired result when combined. To make this approach
feasible, the operations on the agents must be monotonic with respect to the refinement order. In
this chapter we extend the notion of monotonic function to the case of partial functions, and show
under what circumstances compositional verification techniques can be applied.

An even more convenient approach to the above verification consists of translating the
problem into a different, more abstract semantic domain, where checking for refinement of a spec-
ification is presumably more efficient. éonservative approximation is a mapping of agents from
one agent algebra to another, more abstract, algebra that serves that purpose. Thus, conservative
approximations are a bridge between different models of computation.

Informally, a model is a conservative approximation of a second model when the fol-
lowing condition is satisfied: if an implementation satisfies a specification in the first model, then
the implementation also satisfies the specification in the second model. Conservative approxima-
tions are useful when the second model is accurate but difficult to use in proofs or with automatic
verification tools, and the first model is an abstraction that simplifies verification.

Conservative approximations represent the process of abstracting a specification to a less
detailed semantic domain. Inverses of conservative approximations represent the opposite process
of refinement. In this chapter we introduce the notion of the inverse of a conservative approximation,
and relate our technique to the abstraction and concretization functions of Galois connections and

abstract interpretations.

2.1 Preiminaries

The algebras we develop in this document have many characteristics in common. This
section discusses several of those characteristics.

Each of the algebras has a doma&inwhich contains all of the objects under study for
the algebra. We borrow the term “domain” from the programming language semantics literature;
algebraists calD a “carrier”.

Associated with each element bf is a setA of signals, called analphabet. Signals are
used to model communication between element®ofTypically signals serve as actions and/or
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state variables that are shared between elemeni$, dut this need not be the case. Associated
with each algebra is master alphabet. The alphabet of each agent must be a subset of the master

alphabet. A master alphabet typically plays the roledah the following definition.
Definition 2.1 (Alphabet). If A is a set, thert is analphabet over A if and only if A C A.
We often make use of functions that aner some domain or master alphabet.

Definition 2.2. Let S be an arbitrary set. A functiofi of arity n is over S if and only if dom(f) C
S™andcodon(f) C S.

Agent algebras use three operators over the domain of agents. They are defined as follows.

Definition 2.3 (Renaming). Let .4 and D be sets. Arenaming operator over master alphabet .4
and over domain D (written renam@ is a total function such that

1. the domain ofenameis the set of bijections oved, and
2. the codomain ofenameis the set of partial functions from to D.

Definition 2.4 (Projection). Let .4 and D be sets. Aprojection operator over master alphabet A
and over domain D (written proj) is a total function such that

1. the domain oproj is the set of alphabets ovet, and
2. the codomain oproj is the set of partial functions frorf to D.

Definition 2.5 (Parallel Composition). Let D be a set. Aparallel composition operator over
domain D (written a binary infix operato}) is a partial function oveD such that

1. the domain of| is D x D, and
2. the codomain of is D.

Intuitively, the renaming operator takes a renaming function over the master alphabet, and
applies it to an element of the domain to obtain the corresponding renamed element according to
the renaming function. Here the renaming function defines the desired correspondence between the
signals in the alphabet (e.qg., sigrals mapped to signak, andb to 5). The renaming operator,
on the other hand, defines how the renaming function should be applied to agents. Similarly, the
projection operator takes the set of signals that musetaéned as a parameter. The operator must
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then define how the remaining signals should be removed from the agent to which it is applied.
Parallel composition, on the other hand, does not take any alphabet as a parameter, and is simply a
binary function over the domain of the algebra. Examples of the definition and use of these operators
are found throughout this work.

The codomain of the operators above are partial functions, and can therefore be undefined
for certain arguments. In the rest of this work, we often say that the operator itself is undefined,
with the understanding that it is the resulting partial function that really is undefined at a certain
argument. In formulas, we use the notatipito indicate that a function is defined at a particular

argument, and to indicate that it is undefined.

2.2 Agent Algebras

Informally, an agent algebr&@ is composed of a domai which contains the agents
under study for the algebra, and of the following operations on agents: parallel composition, projec-
tion and renaming. The algebra also includes a master alphglseid each agent is characterized
by an alphabetd over A. All of this is formalized in the following definitions. Throughout the
document, equations are interpreted to imply that the left hand side of the equation is defined if and
only if the right hand side is defined, unless stated otherwise.

Definition 2.6 (Agent Algebra). An agent algebra Q has a domair®. D of agents, amaster alpha-
bet O.A, and three operatorsenaming (definition 2.3),projection (definition 2.4)parallel
composition (definition 2.5), denoted byename proj and||. The functionQ.« associates
with each element oD an alphabetd over A. For anyp in Q.D, we say thaQ.a(p) is the
alphabet of p.

The operators of projection, rename and parallel composition must satisfy the ax-

ioms given below, wherg andy’ are elements ab, A = a(p), A’ = a(p'), B is an alphabet
andr is a renaming function.

Al. If proj(B)(p) is defined, then its alphabet i8N A.
A2. proj(A)(p) = p.

A3. If renamér)(p) is defined, themd C dom(r) anda(renamér)(p)) = r(A), wherer
is naturally extended to sets.

A4. renaméid 4)(p) = p.
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ASL. If p| p' is defined, then its alphabetisU A'.
A6. Parallel composition is associative.
A7. Parallel composition is commutative.

The operators have an intuitive correspondence with those of most models of concurrent
systems. The operation of renaming corresponds to the instantiation of an agent in a system. Note
that since the renaming function is required to be a bijection, renaming is prevented from altering
the structure of the agent interface, by for example “connecting” two signals together. Projection
corresponds to hiding a set of signals. In fact, the projection operator is here ustalrighe set
of signals that comes as an argument, and hide the remaining signals in the agent. In that sense it
corresponds to an operation of scoping. Finally, parallel composition corresponds to the concurrent
“execution” of two agents. It is possible to define other operators. We prefer to work with a limited
set and add operators only when they cannot be derived from existing ones. The three operators
presented here are sufficient for the scope of this work.

Al through A7 formalize the intuitive behavior of the operators and provide some general
properties that we want to be true regardless of the model of computation. These properties, together
with the ones required for normalization later in the following chapter, are at the basis of the results
of this work. Specifically, Al asserts thatoj is effectively hiding the signals not i from the
agent, while A2 says that if all the signals of an agent are retained, then the agent is unchanged.
A3 and A4 assert similar properties for the renaming operator, where the identity function on the
alphabet results in a no-operation. Finally, A5 through A7 formalize the intuition that parallel
composition must be associative and commutative, and requires that the alphabet of the result be
obtained as the union of the original alphabets, thus ruling out the possibility of a simultaneous
projection. It is important to keep a clear separation between compaosition and projection, or else
the laws of the algebra would become entangled and more difficult to verify.

As described in the above definition, an agent in an agent algebra contains information
about what its alphabet is. A simple example of an agent alg@hran be constructed by having

each agent be nothing more than its alphabet, as follows.

Example 2.7 (Alphabet Algebra). For this example, the master alphalgeid is an arbitrary set of
signal names. The domai®.D of the algebra is the set of all subsets@fA. The alphabet
of anyp in @.D is simply p itself. Thus, Q.« is the identity function. Ifr is a bijection
over A, thenrenamér)(p) is defined wheneves C dom(r), in which caserenamér)(p)
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is r(A) (wherer is naturally extended to sets). B is a subset of the master alphabét
thenproj(B)(p) is BNp. Finally,p || p' isp U p'. Itis easy to show that Al through A7 are

satisfied.

On the opposite extreme from the previous example is an agent algebra where all the
agents have an empty alphabet. Later, we will show how such an agent algebra can be useful by

constructing more complex agent algebras in terms of simpler ones.

Example 2.8. This agent algebra can be used to model some quantitative property of an agent, such
as maximum power dissipation. The master alph@het is an arbitrary set of signal names.
The domainQ.D of the algebra is the set of non-negative real numbers. FopamyQ.D,
the alphabet op is the empty set. If is a bijection over4, thenrenamér)(p) is p. Similarly,
if B is a subset 0f4, thenproj(B)(p) is p. Finally,p || ¢/ isp + p'. Again it is easy to show

that the axioms are satisfied.

The agent algebra in example 2.8 illustrates a class of agent algebras which nanecall
alphabetic, since the agents in the algebra have empty alphabetsemadneand proj are identity

functions. This class is formally defined as follows.

Definition 2.9. A nonalphabetic agent algebra Q is an agent algebra with the following properties
foranypin Q.D:

1. the alphabet of is the empty set,
2. if r is a bijection overQ..A, thenrenamér)(p) = p, and
3. if Bis a subset 0D.A, thenproj(B)(p) = p.

We can use agent algebras to describe the interface that agents expose to their environ-
ment, in terms of the input and output signals. The following definitions provide some examples.
For all of the examples, it is straightforward to show that the axioms of agent algebras are satisfied.
Also, for all algebras, the master alphalggtA is an arbitrary set of signal names. In chapter 4 we

will explore agent algebras that also include a notion of behavior.
Example 2.10 (10O Agent Algebra). Consider the IO agent algebédefined as follows:

e Agents are of the forpp = (I,0) wherel C Q. A4, 0 C Q. AandINO = (. The
alphabet op is a(p) = T U O.
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e renamér)(p) is defined whenevet(p) C dom(r). In that caserenamér)(p) =

(r(I),7(0)), wherer is naturally extended to sets.
e proj(B)(p) is defined whenevef C B. In that caseroj(B)(p) = (I,0 N B).

e p1 || p2 is defined wheneved; N O, = (. In that case, || p2 = ((I1 U Iz) — (01 U
02), O U 02)

For each agent in this algebra we distinguish between the set of the input signals and the set
of the output signals. Notice that parallel composition is defined only when the intersection
of the output signals of the agents being composed is empty. In other words, for this algebra
we require that each signal in the system be controlled by at most one agent. Notice also that
it is impossible to hide input signals. This is required to avoid the case where a signal is not
part of the interface of an agent, but it is also not controlled by any other agent (similarly to a
floating wire).
The following example is based on the asynchronous trace structure algebra introduced
by Dill [33]. Here, we extract from his definitions only the part that concerns the input and output
interface of a trace structure. What we obtain is a slightly different notion of input and output

algebra.

Example 2.11 (Dill’s 10 Agent Algebra). Consider the Dill's IO agent algebr@ defined as fol-

lows:

e Agents are of the forp = (I,0) wherel C Q.A, 0 C Q. AandINO = (. The
alphabet op is a(p) = T U O.

e renamér)(p) is defined whenevet(p) = dom(r). In that caserenamér)(p) =
(r(1),7(0)).

e proj(B)(p) is defined wheneveB C «a(p) andI C B. In that caseproj(B)(p) =
(I,0N B).

e p1 || p2 is defined wheneved; N O, = (. In that case, || p2 = ((I1 U Iz) — (01 U
02), O U 02)

The definitions are similar to those in example 2.10, except that the operators of renaming and
projection are less often defined. When defined, however, the operators coincide with those

in example 2.10.
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The above two examples are only concerned with the number and the names of the input
and output signals. This is appropriate for models that use signals as pure events. Sometimes
signals are associated to a set of values. Many models also include the ability to dgfiadaa
each signal, that restricts the set of possible values that the signal can take. The following example
is a formalization of a valued and typed interface that builds upon example 2.10.

Example 2.12 (Typed 1O Agent Algebra). In this example we extend the 10 agent algebra de-
scribed in example 2.10 to contain typing information. Iebe a set of values arif be its

powerset. The Typed IO agent algel@@ds defined as follows:

e Agents are of the forp = f: 9.4 — S where
S={cv}U{(cr,v):v CV}U{(co,v):vCV}

wherecy, ¢; andcp are constants that denote unused, input and output signals, re-
spectively. The set that is associated to an input or an output represents the range
of values (i.e., the type) that the signal can assume. The alphahetsof(p) =

{a € Q.A: f(a) # cy}. Itis also convenient to define the set of inputs, outputs and

unused signals as follows:

inputsp) = {a€ QA: f(a) € {cr} x2"}
outputp) = {a€ Q.A: f(a) € {co} x2"}
unusedp) = {a€ Q.A: f(a) =cr}

To simplify the notation we denote the individual components of the funcfidry
f(a).candf(a).v, respectively.

e renamér)(p) is defined whenevet(p) C dom(r). When definedrenamér)(p) = g

such that for alb € 9.4

g(a) =

f(r=Y(a)) if r~!(a) is defined and~'(a) € a(p)
cy otherwise

e proj(B)(p) is always defined androj(B)(p) = ¢ such that for alb € Q. A

) fla) fa€alp)nB
9(a)

cy otherwise
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e p| p' is defined if and only if
— outputsp) N outputgy’) = 0;
— f(a).v C f'(a).v wheneverf(a).c = co andf’'(a).c = cj.

— f'(a).v C f(a).v wheneverf'(a).c = co andf(a).c = c;.

When definedp || p’ = ¢ is such that for alk € Q.4

;

f(a) if f(a).c=co
f'(a) if f'(a).c =co
gla) =4 f(a) if f'(a).c=cy
f'(a) if f(a).c=cy
| (er, f(a)on f'(a).w) if f(a).c=crandf'(a).c=cy

The definitions are again similar to those in example 2.10. However, the parallel composition
operator is restricted to be defined only if the range of values of an output sigioatésned

in the range of values of the corresponding input signal. In addition, if a signal appears as an
input in both agents, the range of values for that input in the composition corresponds to the
intersection of the original ranges, so that only values consistent with both components can
be used when composing with other agents.

2.3 Construction of Algebras

Standard algebraic constructions, such as products and sums, apply to agent algebras.
These constructions are useful to build complex agent models out of simpler ones, which could be
easier to define and analyze. When defining these construction, however, we must make sure that
the axioms of the algebra are satisfied. In this section we define the most relevant constructions and
prove that they satisfy the desired properties.

Definition 2.13 (Product). Let Q; and Q> be agent algebras with the same master alphabet (i.e.,
Q1.A = Q5. A4). The (cross) product of; and Q», written Q; x Qs, is the agent algebr@
such that

1. QA=091.A=05.A4,

2. QD = QlD X QQ.D,
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3. a((p1,p2)) = a(p1) Ualp2),

4. renamér)({p1,p2)) is defined if and only ifrenamér)(p;) and renamér)(p,) are
both defined. In that case,

renamér)((p1, p2)) = (renamér)(p1), renamer)(pz))-

5. proj(B)({p1,p2)) is defined if and only iforoj(B)(p;) and proj(B)(p2) are both de-
fined. In that case,

proj(B)((p1,p2)) = (proj(B)(p1), Proj(B)(p2))-

6. (p1,p2) || (p},ph) is defined if and only ify, || p} andps || p}, are both defined. In that

case,
(p1,p2) || (D1, 05) = (p1 11 PY, P2 || P5)-

The domain of the product is formed by the set of all pairs of agents from the original
algebras. As expected, the operators are defined component-wise, and are defined whenever they
are defined on the individual components. It is easy to prove that the product of two agent algebras

is again an agent algebra.

Theorem 2.14. Let Q; and Q5 be agent algebras, and I8t= Q; x Q5 be their product. The®
is an agent algebra.

Proof: To prove the validity of the axioms simply apply the definitions and the basic commutative,

distributive and associative properties of the operations involved. O

Products of algebras are useful to combine in one single model the expressive power
contained in two different models. The following example illustrates this point.

Example 2.15. Recall the agent algebras in example 2.7 and example 2.8, which have domains
of 24 and the non-negative real numbers, respectively. The agents of their cross product
are of the form(A, w), where A is an alphabet over, andw is a non-negative real. The
cross product of these two agent algebras thus combines the information of the two individual
algebras.

A construction similar to the product is the disjoint sum of two algebras.
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Definition 2.16 (Disjoint Sum). Let ©; and Q, be agent algebras with master alphalfiet =
Q. Aand Ay = Q,.A, respectively. The disjoint sum @; and Q,, written Q; [+ Qo, is the
agent algebra& such that

1. QA == QIAH QZ-A!

2. Q.D = Q,.Dl4 Q,.D,

3. alp) =

Ql.a(p) ifpe Q1.D
Qg.a(p) if pE QQD

Q,.renamér)(p) ifpe Q1.D
Qy.renamér)(p) ifp € Qy.D

4. renamér)(p) = {

Q1.proj(B)(p) ifpe Q1.D

5. proj(B)(p) = { Q,.proj(B)(p) ifpe Qu.D

pllp’ ifbothp € Q;.Dandp’ € Q,.D
6. pllp’ =13 pllp ifbothp € Q,.Dandp’ € Qo.D
0 otherwise

In a disjoint sum, the algebras being composed are simply placed side by side to form a
new algebra. The agents of each algebra, however, have no interaction with the agents of the other
algebra. For this reason the rest of this work will concentrate on products of algebras. Nonetheless,

it is easy to show that the disjoint sum of agent algebras is again an agent algebra.

Theorem 2.17. Let Q; andQ; be agent algebras, and Bt= O, |4 Q2 be their disjoint sum. Then

@ is an agent algebra.

If @' is an agent algebra and C D' is a subset of the agents that is closedirunder

the application of the operators, théncan be used as the domain of a subalgedat J.

Definition 2.18 (Subalgebra). Let Q and Q' be agent algebras over the same master alphdbet
ThenQ is called asubalgebra of @', written @ C @', if and only if

1. 9.DCQ.D

2. The operators of projection, renaming and parallel compositighare the restrictions
to Q.D of the operators of.
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Clearly, the above definition implies th@. D is closed inQ.D under the application of
the operations of agent algebra. Conversely, every subggtofthat is closed under the applica-
tion of the operations is the domain of a subalge@ravhen the operators are the restriction to the
subset of the corresponding operatorgJn It is easy to show tha@ is indeed an agent algebra.
The result follows from the fact that the axioms are valid in the substructure, since Al to A7 are
true of all agents in the superalgebra, and therefore must be true of all agents in the subalgebra. The

following is an interesting example of this fact.

Theorem 2.19. Let Q; and Q, be agent algebras, and Iet = Q; x Q5 be their cross product.
Consider the subsét C Q'.D such that for all agent&,, p2) € S, a(p1) = a(p2). ThenS
is closed in@'. D under the operations of projection, renaming and parallel composition.

Proof: Letp = (p1,p2) andg = (¢1, g2) be elements of. The proof is composed of the following

cases.

e Assumep € S and assumeroj(B)(p) is defined inQ'. Then,

peES
by hypothesis
< alp) = a(p2)
by Al
= a(proj(B)(p1)) = a(proj(B)(p2))
= proj(B)(p) = (proj(B)(p1), proj(B)(p2)) € S

e Assumep € S and assumeenamér)(p) is defined inQ. Then,

peS
< alp) = a(p2)
by A3
= «(renamér)(p1)) = a(renamér)(pz2))

= renamér)(p) = (renamér)(p,), renamér)(p2)) € S
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e Assumep € S, q € S, and assume || ¢ is defined in@'. Then,

peESNqgeS

& a(p1) = a(p2) A alqr) = alge)
by A5

= a1l q1) = alp2 || ¢)

= ple=mlla,p2llq) €S

O

Since S is closed, the algebr@ that has the sef (the pairs of agents that have the
same alphabet) as the domain, and the restrictio &b the operators ofJ as the operators, is a
subalgebra 0®; x Q.

2.4 Ordered Agent Algebras

To study the concepts of refinement and conservative approximations, we can add a pre-
order or a partial order to an agent algebra. The result is callgéaadered agent algebra or a
partially ordered agent algebra, respectively.

We require that the functions in an ordered agent algebra be monotonic relative to the
ordering. However, since these are partial functions, this requires generalizing monotonicity to
partial functions. The following definition gives two different generalizations. Later we discuss
which of these best suits our needs.

Definition 2.20 (T-_L-monotonic). Let D; and D, be preordered sets. Lé¢tbe a partial function
from Dy to Ds. Let

Dj Dy U{T}

Dé_ DQU{-L}a

whereT and L are not elements ab,. The preorders oveb, and Dy are the extensions
of the preorder oveD, such that

P2 X TAT ZAp2
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and

p2 2 LA L= po,

respectively, for every, in Ds. Let f+ and f, be the total functions frond; to D, and
Dy, respectively, such that for aif in D,

f(p1), if f(p1)is defined;

T, otherwise;

fripy) =

f(p1), if f(p1)is defined;

1, otherwise.

filp) =

We say the functionf is T-monotonic if and only if f is monotonic. Analogously, the
function f is L-monotonic if and only if f, is monotonic.

In this work we always interpret the formufa < ¢/ to mean intuitively thaip can be
substituted fop' in any context. Lejf be a partial function and assunfiép) is undefined. Then in-
tuitively, f(p) cannot be substituted for any other agenbin except for another undefined expres-
sion. This is always the caseffis T-monotonic. In that case, in fact(p) = T andf(p) =< f(¥)
together imply thatf (p') = T, i.e., f(p') is also undefined. Ar-monotonic function is therefore
consistent with our interpretation of the order. Thus, an undefined expression should be treated as
a maximal element relative to the ordering. Therefore, we require that functions in ordered agent
algebras b& -monotonic.

Definition 2.21 (Ordered Agent Algebra). A preordered (partially ordered) agent algebra is an
agent algebra with a preorder (partial order®. < such that for all alphabet8 over ©.A
and all bijectionsr over Q..A, the partial functiong.renamér), Q.proj(B) and Q.|| are

T-monotonic. The preorder (partial ord&p) < is called theagent order of Q.

Our most general definition uses preorders, rather than partial orders, because a relation
of substitutability cannot in general be required to be antisymmetric. As usual, however, preorders
induce a natural equivalence relation on the underlying set and a natural partial order on the equiv-

alence classes.

Definition 2.22 (Order Equivalence). Let Q be a preordered agent algebra. We define the relation

“~" to be the equivalence relation induced by the preord¢t. ‘That is

PRSP IgANg=2p.
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If p = g we say thap andg are order equivalent. Order equivalence and equality are the
same if the agent algebra is partially ordered.

Corollary 2.23. If Q be a patrtially ordered agent algebra, then

pRqgESp=4q.

The parallel composition operator is the basis of compaositional methods for both design
and verification. Monotonicity is required for these methods to work correctly. Henzinger et al.
[30] propose to distinguish betweénterface andcomponent algebras. Corollary 2.25 below shows
that because parallel compositionTismonotonic in an ordered agent algebra, it supports an infer-
ence rule identical to the “compositional design” rule for interface algebras. Similarly, component
algebras have a “compositional verification” rule that corresponds-meonotonic functions. This
suggests that the ordering of a component algebra cannot be interpreted as indicating substitutabil-
ity.

Theorem 2.24. Let f be aT-monotonic partial function. Ip < ¢/ and f(p') is defined, thery (p)
is defined and (p) < f(p').

Proof: Let ft be as described in definition 2.20. Assume& ¢ and f (p) is defined. To show by
contradiction thaf (p) is defined, start by assuming otherwise. Thgtfp) is equal toT and
fr(p") is not. This leads to a contradiction sinees ¢ and f1 is monotonic. Also, sincég(p)

andf(p') are defined, it follows easily from the monotonicity gfthat f (p) < f(p'). O

Corollary 2.25. Let || be the composition function of a preordered agent algebray ¥ p/,

po = phy andp || p) is defined, them; || po is defined angh; || p2 < p} || 5.

Proof: Since|| is T-monotonic by the definition of a preordered agent algebra (definition 2.21),

this is simply specializing theorem 2.24 to a binary function. O

The rest of this section is devoted to examples. For each example we derive necessary
conditions that the order must satisfy in order for the operators {o-benotonic. We then choose

a particular order, and show that the operators are infactonotonic relative to the order.

Example 2.26 (Alphabet Algebra). Consider the alphabet agent algel@adescribed in exam-
ple 2.7. The condition of -monotonicity imposes restrictions on the kind of orders that can

be employed in the algebra. In this particular case, the order must be suph<haonly if

pCp.
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Theorem 2.27. Let < be an order forQ (example 2.7) such thakname proj and || are
T-monotonic. Them < p' only if p C p'.

Proof: Letp < p’ and letr be a renaming function such thet= dom(r). Then clearly
renamér)(p’) is defined. Sinceenames T-monotonic, alsodenamér)(p) is defined.
Thereforep C dom(r) = p'. O

The above result only provides a necessary condition on the order so that the op-
erators arer-monotonic. Any particular choice of order must still be shown to make the
operatorsT-monotonic. Consider, for instance, the ordethat corresponds exactly o,
thatisp < p’ ifand only ifp C ¢/. Then

Theorem 2.28. The operatorsename proj and|| are T-monotonic with respect ta.
Proof: Letp Cp'.

e Assumerenamér)(p') is defined. Then' C dom(r). Thus, sincer C 7/, also
p C dom(r), so thatrenamér)(p) is defined. In addition sinceis a bijection
andp C p/

renamér)(p) = r(p) C r(p') = renamér)(p')

e Let B be a subset ofl. Thenproj(B)(p') andproj(B)(p) are both defined. In
addition, sincep C p/,

proj(B)(p) = pN B C p' N B = proj(B)(p').
e Letq be an agent. Thept | ¢ andp || g are both defined. In addition sinpeC ¢
plla=pUqCp' Uqg=7p"|q.

O

Example 2.29 (10 Agent Algebra). Consider the 10 agent algeb@ defined in example 2.10.
The requirement that the functions Bemonotonic places a corresponding requirement on
the order that can be defined in the algebra.

Theorem 2.30. Let < be an order forQ (example 2.10) such tha&name proj and|| are
T-monotonic. Them < p' only if I C I’ andO = O'.
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Proof: Letp < p'.

e We first prove thatl C I'. Sincel’ C I', thenproj(I')(p’) is defined. Since
proj is T-monotonic, then alsproj(I') (p) must be defined. Therefore it must
ber C .

¢ We now prove tha C (. Assume, by contradiction, that there exists O
such thab ¢ O'. Considerg = (O',I' U {0}). Thenp' || ¢ is defined because
O' N (I'U{o}) = 0 since by hypothesi® N I' = () ando ¢ O'. Since|| is T-
monotonic then alsp||¢ must be defined. But then it must e (I'U{ o}) = 0,
which implieso € O, a contradiction. Hence® C O'.

e Finally we prove that) C O. Consider the agent = (O',I'). Since by
definitionO' N I' = (), thenp' || ¢ is defined and

Pllg=(I'v0)—(0'UT),0'uTI)=(0,0'UT).
Since|| is T-monotonic, then alsp || ¢ is defined and
pllg=((IU0O)—(OUI'),oUlr).

Since|| is T-monotonic it must be || ¢ < ¢/ || ¢. Sinceproj is T-monotonic, it
must be

(Tuo)y—(Our)yco

(Tuo)y—(Our)y=90

(Tuo)yc(our)
Sincel C I’

o' cour)
SinceO'NI' =0

o' Co.

O

The converse is not true. Thatis, it is not the case thatisfan order forQ such that

p =< p onlyif I C I'andO = O, then the operatoreename proj and|| are T-monotonic.
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For example, assumenamér)(p') is defined. Then we can show thenamér)(p) is
defined. However, since we don’t have sufficient conditions for the ordering, the hypothesis
are insufficient to show thaenamér) (p) < renamér)(¢/). Similarly for the other functions
in the algebra.

For the purpose of this example we choose the ordso thatp < f if and only if
ICTI'andO = 0"

Theorem 2.31. The functionsrename proj and|| are T-monotonic with respect te&.
Proof: Letp < p'.

e Assumerenamér)(p') is defined. Themd’ C dom(r). By hypothesisA C A’,
so thatA C dom(r). Thereforerenamér)(p) is defined. Since is a bijection

Icr = rI)cr)
O0=0" = r0)=r0)
Hencerenamér)(p) < renamér)(p’).

e Assumeproj(B)(p') is defined. Thed’ C B. By hypothesis/ C I’, so that
I C B. Thereforeproj(B)(p) is defined. In addition

ICI = ICT

O0=0 = 0ONnB=0nNB.

Henceproj(B)(p) = proj(B)(p').

e Assumey’ || g is defined, wherg = (I, O,). ThenO'N O, = (. By hypothesis,
O = O' so thatO N O, = (. Thereforep || ¢ is defined. In addition

PlHq = ((I,UIQ)—(OIUOq)aOIUOq)
pllg = ((IUIQ)_(OUOQ)aOUOQ)

Clearly sinceD = O’

OuUO0,=0"U0,.



71

Therefore, sincd C I’
(IUl)—(0'UO0,) C(I'UI,) — (O'UOy,).

Hencep || ¢ <p' || g.

0

Example 2.32 (Dill's 1O Agent Algebra). Consider now the Dill style 10 agents described in
example 2.11. Because thenameoperator has a further restriction that the domain of the
renaming functionr be equal to the alphabet of the agent being renamed, the order that results
in T-monotonic function is completely determined. The following theorem proves this fact.

Theorem 2.33. Let < be an order forQ (example 2.11). Thenename proj and|| are T-

monotonic with respect te if and only if for all agentg andg, p < p’ if and only if

p=p.

Proof: For the forward direction, assume thdtis an order such that the functions are
monotonic. Lep = (I,0) andyp’ = (I’, O') be two agents. We must show tha& o/
if and only if p = p/. Clearly, ifp = p, thenp < p/, since= is reflexive. Conversely,
assumep < p’. We must show thap = p'. To do so, we first show thal = A'.
In fact, dom(id /) = A’ = «(p’) and thereforerenaméid 4+ )(p') is defined. Since
renameis T-monotonic, and sincg < g/, by theorem 2.24, alstenaméid 4/)(p) is
defined. ThusA = a(p) = dom(id 4/) = A'.

We then show that C I'. Infact,I’ C A’ andI’ C I' imply thatproj(I')(p')
is defined. Sinceoroj is T-monotonic, alsqroj(I')(p) is defined. Thud’ C A and
ICr.

Finally we show thatl = I’ andO = O'. In fact, by definition of agent
O'NnI' = () and therefore' || (O',I') is defined. Thus, sincgis T-monotonic, also
p || (O',I') is defined. Thereforé® N I' = (. But since, by the above arguments,
OUI =0'uTl,alsol’ C I, and thugl = I'. Therefore it must also b@ = O'.

The reverse direction is trivial, since any functiorifismonotonic relative to
the equality. O

Thus for this example we must choose the order suchgthdt ¢ if and only if
I=IandO =0'.
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Example 2.34 (Typed 10 Agent Algebra). Consider the Typed 10 agent algebgadefined in
example 2.12. As for IO agent$-monotonicity restricts the set of orders that can be applied

to the algebra.

Theorem 2.35. Let < be an order folQ (example 2.12) such thaéname proj and|| areT-
monotonic. Them < p’ only if inputs(p) C inputs(y) andoutputsp) = outputsy'),
and for alla € Q. A, if f(a).c = ¢; thenf(a).v D f'(a).v, and if f(a).c = co then
f(a).w C f'(a).v.

Proof: Itis easy to adapt the proof of theorem 2.30 to show ghaty only if

inputs(p) C inputs(p’)
outputdp) = outputsp)

To prove the rest of the theorem, Jet< ¢/ and letg = f, be the agent such
that for alla € Q. A

(co,v) if f'(a) = (c1,v)
fala) = ¢ (cr,v) i f'(a) = (co,v)

cu otherwise

so thatinputs(q) = outputsy/) and outputdq) = inputs(p/). Then clearlyp’ || ¢ is
defined. Sincd is T-monotonic,p|| ¢ must also be defined. In fact, sincetputgp) =
outputsp’) we already know thabutputgp) N output{q) = (). Assume now that
a € Q.Aandf(a).c = ¢;. Then alsof’(a).c = ¢, and fy(a).c = co. Hence, since
p || ¢ is defined,f,(a).v C f(a).v. But fy(a).v = f'(a).v, thusf(a).v 2 f'(a).v.
Similarly, assume that € Q.4 and f(a).c = co. Then alsof’(a).c = co,
and fy(a).c = ¢;. Hence, since || ¢ is defined,f(a).v C f,(a).v. But fy(a).v =
f'(a).v, thusf(a).v C f'(a).v.

O

Given this result, we choose to order the Typed 10 agents s@tkat if and only
if inputs(p) C inputs(p’) andoutputsp) = outputsy/), and for alle € Q. A, if a € inputs(p)
thenf(a).v O f'(a).v, and ifa € outputsp) thenf(a).v C f'(a).v.

Theorem 2.36. The operations ofename proj and|| are T-monotonic with respect te.

Proof: The proof of this theorem is similar to the proof of theorem 2.31 and is left as an

exercise. O
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2.4.1 Construction of Algebras

In section 2.3 we have introduced several constructions used to create new algebras from
existing ones. In this section we extend those constructions to include the agent order.

The order in the product is the usual point-wise extension.

Definition 2.37 (Product - Order). Let ©Q; andQ, be ordered agent algebras with the same master
alphabet. The product @@ = Q; x Q, is the ordered agent algebra defined as in defini-
tion 2.13 with the order such that

(p1,p2) < (P}, ph) & p1 <P} Ap2 < ph.

Theorem 2.38. Let Q; and @, be ordered agent algebras, anddet Q) x Q- be their product.
Then @ is an ordered agent algebra.

Proof: We must show that the operators aranonotonic. Here we only show the case for projec-
tion, since the other cases are similar.

Let (p1,p2) = (P, ph), and assumeroj(B)((p|,p,)) is defined. Then, by defi-
nition of product, bothproj(B)(p,) and proj(B)(p,) are defined. By definition 2.37, since
(p1,p2) = (p},phy), alsop; < p} andpe < ph. Thus, sinceproj is T-monotonic inQ; and
Qo, proj(B)(p1) andproj(B)(p2) are defined, and

proj(B)(p1) = proj(B)(p}) A proj(B)(pz) = proj(B)(py)-

Therefore, by definition 2.37, algwoj(B)({p, p2)) is defined and
proj(B)({p1,pz2)) = proj(B)((py,pa))-
Henceproj is T-monotonic inQ. O

The order in the disjoint sum corresponds to the orders in the components, and agents that
do not belong to the same algebra are otherwise unrelated.

Definition 2.39 (Digoint Sum - Order). Let ©@; and Q> be ordered agent algebras. The disjoint
sum of @ = Q; |4 Q, is defined as in definition 2.16 with the order such that 7 if and

only if either
peQ.DAp € Q1.DAp =g, 7,
or

pEQy.DAP € Qy.DAp =g, 7.
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The fact that the disjoint sum is an ordered agent algebra follows easily from the defini-
tions, as stated in the next theorem.

Theorem 2.40. Let Q; and Q, be ordered agent algebras, anddet= Q ) Qs be their product.
Then@ is an ordered agent algebra.

Agents in a subalgebra are ordered exactly as in the superalgebra. Since the domain of
the subalgebra is also closed under the application of the operators, it is not surprising that the
subalgebra is again an ordered agent algebra.

Definition 2.41 (Subalgebra - Order). Let Q' be an ordered agent algebra. The agent alg€bra
is a subalgebra of) if and only if

e Qis asubalgebra off (definition 2.18), and
e forallp,p' € Q.D,p <o p'ifand only ifp <o p'.

Theorem 2.42. Let Q' be an ordered agent algebra anddet_ Q. ThenQ is an ordered agent
algebra.

2.5 Agent Expressions

As is customary in the study of algebraic systems, we can define expressions in terms of
the operators that are defined in an agent algebra. In this section we define agent expressions and
define their semantics.

Definition 2.43 (Agent Expressions). Let V' be a set of variables, and |} be an agent algebra.

The set of agent expressions o¥gis the least sef satisfying the following conditions:
Constant If p € Q.D, thenp € £.

Variable If v € V, thenv € €.

Projection If E € £ andB is an alphabet, theproj(B)(E) € £.

Renaming If £ € £ andr is a renaming function, therenamér)(E) € £.

Parallel Composition If E; € £ andEs € £, thenE; || B> € £.
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We denote bysub( E) the set of all subexpressions Bf including E.
Agent expressions have no binding constructs (e.g., quantifiers). Therefore every variable
in an agent expression is free. The set of free variables of an agent expressions can be defined by

induction on the structure of expressions as follows.

Definition 2.44 (Free variables). Let E be an agent expression ov@r The setFV(E) of free

variables ofF is
e If E =pforsomep € Q.D, thenFV(E) = ().

e If E =vforsomev € V thenFV(E) = {v}.

If £ = proj(B)(E,) for some agent expressidyy thenFV(E) = FV(E,).

If E = renamér)(E,) for some agent expressidyy thenFV(E) = FV(Ey).

If E = E, | B2 for some agent expressios and E; then FV(E) = FV(E;) U
FV(Es).

We call an expression that has no free variablelosed expression.
Intuitively, an agent expression represents a particular agent in the underlying agent alge-
bra once the variables have been given a value. Hence, to define the semantics of agent expressions

we must first describe an assignment to the variables.

Definition 2.45 (Assignment). Let Q be an agent algebra and [t be a set of variables. An

assignment o/ on Q is a functionos : V — Q.D.

The denotation '] of an expressionk is a function that takes an assignmenand
produces a particular agent in the agent algebra. Note however that since the operators in the agent
algebra are partial functions, the denotation of an expression is also a partial function. The semantic
function, the one that to each expressiBnassociates the denotatiorE]] is, of course, a total

function.

Definition 2.46 (Expression Evaluation). Let X be the set of all assignments. The denotation of
agent expressions is given by the function ]| : £ — X — Q.D defined for each assignment

o € ¥ by the following semantic equations:

e If F=pforsomep € Q.D,then[FE]o = p.
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e If E =vforsomev € Vthen[E]o = o(v).

e If E = proj(B)(E,) for some expressios; then [E]o = proj(B)([ E1]o) if
[ E1 1o is defined angroj(B)([ E1]o) is defined. Otherwise F ] is undefined.

e If E = renamér)(E,) for some expressiof; then [E]o = renamér)([ Ei]o) if
[ E1]o is defined andenamér)([ E;]o) is defined. Otherwise F ] is undefined.

e If E = E, | E> for some expressionB; and E; then [E]o = [ E1]o || [ E2]o if
both [ E; ]Jo and [E; ]o are defined and E; 1o ||[ E2]o is defined. Otherwise 1o
is undefined.

The following equivalent definition of expression evaluation highlights the fact that the se-

mantic equations are syntax directed.

[plo = »p
[vle = o(v)
. | proi(B)([ Elo) if[ Elolandproj(B)([ Elo)l
Lproj(B)(E)]o = {T otherwise

[ renamér)(E)]o — {fenamér)([E]o) if [ E]1o) andrenamér)([ E]0).

T otherwise

[E | E2lo = {[EIIU[EZ]U TLE ol [ B2 loland [Fy]o || [ B2 ]l

T otherwise

Since the semantic equations are syntax directed, the solution exists and is unique [78].

We extend the semantic function to sets of expressions and sets of assignments as follows.

Definition 2.47. Let £ be a set of expressions ahla set of assignments. We denote the possible

evaluations of the expressionsdrunder the assignments ¥has
[£1X ={[E]o:E€cando € ¥}

Clearly, the value of an agent expression depends only on the value assigned by the as-
signmento to the free variables.

Lemma 2.48 (CoincidenceLemma). Let E' be an expression, and lgtando, be two assignments
such that for alb € FV(E), o1(v) = o2(v). Then

[Elor =[E]oo.
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Since an agent expression involves only a finite number of free variables, we use the
notation Efvy, . ..,v,] to denote thatZ has free variables,...,v,. In that case, we use the
notation E[pi,...,py,] for [ E]o whereo(v;) = p; for 1 < i < n. Note also that if an agent
expression has no free variables its value does not depend on the assignment

When an expression contains variables it is possible to substitute another expression for

the variablel

Definition 2.49 (Expression Substitution). Let Q be an agent algebra and Btand ' be a agent
expressions. The agent expressich= E[v/E'] obtained by substituting” for v in E is
defined by induction on the structure of expressions as follows:

e If £ =pforsomep € Q.D,thenE" = p.

o If E=wforsomew € V,w # v thenE" = w.

o If E=vthenE" = E'.

e If E = proj(B)(FE,) for some expressiol; thenE" = proj(B)(E:[v/E')).

e If E = renamér)(E,) for some expressiof; thenE" = renamér)(E1[v/E']).
e If E = E || E, for some expressionk; andE» thenE" = Ey[v/E'] || Ex[v/E'].

Expression substitution differs from expression evaluation in that substitution is a syntac-
tic operation that returns a new expression, while evaluation is a semantic operation that returns a

value. The two are related by the following result.

Lemma 2.50 (Substitution Lemma). Let E;[v] and E»[v] be two expressions in the variable

Then for all agentgp

En[v/Ex[v]][p] = E1[Ex[p]]
Proof: The result follows by induction on the structure of expressions. O

Expressions are defined over an agent algébizecause agents fro@ appear as con-
stants in the expression. Sometimes it is necessary to translate one expression from one agent
algebraQ to another agent algebi@. Expressions can be so translated if there exists a function

that maps each agent gfto an agent of?.

lwhile it is possible to define the simultaneous substitution of several expression for several variables, we limit the
exposition to the single variable case to keep the notation simpler.
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Definition 2.51 (Expression Trandlation). Let Q and @ be agent algebras and |Btbe a closed
expression ove@. Let H be a function fromQ.D to @.D. The expressiol’ = E[p/H (p)]
is the expression ove® formed from E by replacing every instance of each agenh E

with H(p). Formally £ is defined by induction on the structure of expressions as follows:

plp/H(p)] = H(p)
proj(B)(En)[p/H(p)] = proj(B)(Ei[p/H (p)])
renamér)(En)[p/H(p)] = renamér)(E:[p/H (p)])
Ey || Ex[p/H(p)] = Ei[p/H(p)] || E2[p/H (p)].

Note that in the notation above the symbpailloes not represent a particular agent in the
algebra, but is implicitly universally quantified as if it were a bound variable. Note also that expres-
sion translation differs from expression substitution (definition 2.49) in that expression translation
replaces constants (agents) in one agent algebra with constants in another agent algebra, while leav-
ing the structure of the expression unchanged. Therefore, \ithidean expression oved, F is an
expression ovef’. Notice also that we are only considering closed expressions.

2.6 Relationships between Agent Algebras

As discussed in the introduction, agent algebras do not exist in isolation. It is often con-
venient to use different models for different parts of the design. It is ofteessary to use different
models for different phases of the design. Conservative approximations represent the process of ab-
stracting a specification in a less detailed semantic domain. Inverses of conservative approximations
represent the opposite process of refinement.

As an example, consider an agent alge@rthat distinguishes between two eventgnd
b. The algebra has four agents that encode all the possible combinations of the occurkeand of
b as follows: ab says that botln andb have occurredgb says thatz has occurred anél has not
occurred, occurredib says thab has occurred and has not occurred, angb says that neithes
nor b have occurred. We order the agents so tibatits at the topeab at the bottom, andb andab
are in the middle and mutually incomparable.

A more abstract agent algebe does not distinguish betweenandb, and can only
represent the occurrence of one evertiiere we order ande so thate < ¢. We build an abstraction
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¥, (the notation employed here will become clear later on) fi@m to J.D as follows:

U, (ab) = U, (ab) = T, (ab) = v«
U, (ab) = e

In other words, the abstraction is telling us that eveimtthe abstract domain represents the occur-
rence of either, or b or both, and that the absence of botlhandb. The interpretation of through

the abstractionl,, denoted by, andg,, is therefore the following:

¢y, = aVbVab=aVh,

u = ab.

We wish to now construct an inverse, refinement nilgp. Given the above meaning efainde, we

should clearly assign
Uy (€) = @b,

However, we are given a choice as to what to assigh,tdc). In fact,c determines an equivalence
class inQ, that is the set of the agentssuch that¥,(p) = ¢. In other words, if we are given
U, (p) = ¢, we are unable to identify uniquely.

Note however thatl, is not the only possible abstraction. The functignuses the
abstract event as an upper bound, by choositg represent the possibility that a concrete event
has occurred. Likewise, we may construct a lower boukdthat is an abstraction that takes the
abstract event to represent the possibility that a concrete basmbt occurred. The definition of
v, is as follows:

Yy(ab) = ¢
Uy (ab) = Uy(@b) = ¥,(a@b) =

ol

The interpretation of the abstract event is now different. In particular we have:

cq = ab

G = aVvbVvab=aVhb.
Hence, fory, the inverse is uniquely determined only fgrand is such that

Uiny () = ab.
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If, for an agenip, ¥;(p) = ¥, (p), then there is no ambiguity: eith&;(p) = ¥, (p) = ¢,
and thereforep = ab (or, in other words¥;,, (¢) = ab), or ¥;(p) = ¥,(p) = ¢, and therefore
p = ab (i.e., ¥;, (¢) = ab). The inverse, or refinement function, is therefore completely determined
by the pair of functionsl, and ;.
In the case tha¥;(p) # ¥, (p) we however still have a choice. ¥, (p) = c and¥,(p) =
¢, then the interpretations of the abstractions give us

cu NG = (aVb)A(@vh),

i.e., eithera or b occurs, but not both. This is consistent with bathand withab, and hence we
cannot determing uniquely. This is to be expected, since we must have some loss of information
by mapping a concrete into an abstract model.

Note the sense in whictl, is an upper bound and; is a lower bound. For all agents

we have

P =2 Winy (Yu(p)),
\I/im; (‘I’l(P)) j b

When¥, (p) = ¥,(p) thenp is bounded from above and below by the same quantity, and is therefore
determined exactly.

The above properties could be taken as the definition of a conservative approximation.
However, unlike the simple example presented above, the inverse of an abstraction function is not
necessarily always defined. This occurs, for example, when each of the models that we are relating
are able to express information that is ignored by the other model. In that case, it is impossible to
define the upper and the lower bound of a conservative approximation in terms of its inverse, since
the inverse is not defined everywhere. We will therefore follow a different path. We first introduce
conservative approximations by stating a preservation condition relative to the refinement order,
without reference to the inverse function. We then later prove that when an inverse is defined, the
above properties hold. Conversely, we show that if the properties hold and the abstractions are also

monotonic, then we have a conservative approximation.

2.6.1 Conservative Approximations

A conservative approximation fro to @ is an ordered pai# = (¥;, ¥,), where¥,
and ¥, are functions fromQ.D to @ .D. The first mapping is an upper bound of the agent relative
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to the order of the algebra: for instance, the abstract agent represents all of the possible behaviors
of the agent in the more detailed domain, plus possibly some more. The second is a lower bound:
the abstract agent represents only possible behaviors of the more detailed one, but possibly not all.

We define conservative approximations as abstractions that maintain a precise relationship
between the orders in the two agent algebras.

Definition 2.52 (Conservative Approximation). Let Q@ and Q' be ordered agent algebras, and let
¥, and ¥, be functions fromQ.D to @'.D. We say thatl = (¥;,,) is a conservative
approximation from Q to €' if and only if for all agent® andq in Q.D,

Uu(p) 2 Wi(q) = p =g

Thus, when used in combination, the two mappings allow us to relate refinement verifi-
cation results in the abstract domain to results in the more detailed domain. Hence, the verification
can be done i, where it is presumably more efficient thangh The conservative approxima-
tion guarantees that this will not lead to a false positive result, although false negatives are possible
depending on how the approximation is chosen.

Usually a conservative approximatioh = (J;, ¥, ) has the additional property that
U (p) = U,(p) for all p, but this is not required. Also, having; and ¥, be monotonic (rela-
tive to the ordering on agents) is common, but not required.

Example 2.53. Recall example 2.8, which described an agent algegbnathere each agent was
simply a non-negative real number (representing, for example, maximum power dissipation).
We extendQ to be an ordered agent algebra by definng ¢ if and only if p is less than or
equal top’. Let @' be the analogous ordered agent algebra where each agent is a non-negative

integer, rather than a real number. Thén= (¥}, ¥,) is a conservative approximation from

Qto @, where
Ty(p) = |pl
Tu(p) = [p]

(i.e., the floor and the ceiling, respectively, of the real number

Example 2.53 above is typical: neither the floor function, nor the ceiling function, when

used alone, would satisfy the requirements of a conservative approximation.
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2.6.2 Inversesof Conservative Approximations

Let U = (¥, ,) be a conservative approximation fro@to Q. Letp € Q.D and
p' € Q'.D be such thap’ = ¥, (p). As we have discussegd, represents a kind of upper bound on
p. Itis natural to ask whether there is an agen@irD that is represented exactly Byrather than
just being bounded by. If no agent inQ.D can be represented exactly, therns abstracting away
too much information to be of much use. If every agentirD can be represented exactly, then
¥, and ¥, are equal and are isomorphisms fr@nto Q. These extreme cases illustrate that the
amount of abstraction i%¥ is related to what agenisare represented exactly Hy(p) and¥,;(p).

To formalize what it means to be represented exactly in this context, we define the inverse
of the conservative approximatioh. Normal notions of the inverse of a function are not adequate
for this purpose, sinc& is a pair of functions. We handle this by only considering those agents
p € Q.D for which ¥;(p) and ¥, (p) have the same value, callzt. Intuitively, p’ represent®
exactly in this case; the key property of the inverselotwritten &,,) is that ¥;,,,(p') = p. If
U,(p) # ¥,(p), thenp is not represented exactly @. In this casep is not in the image off;,,.
Characterizing whew;,,, (p') is defined (and what its value is) helps to show what agené. in
can be represented exactly (not just conservatively) by agergdsiin

Before formalizing the idea of the inverse of a conservative approximation, we prove a
lemma needed to show that it is uniquely defined. The result applies only if the algebras are partially
ordered (i.e., the order is antisymmetric). Once the inverse of a conservative approximation is

defined, we show that it is one-to-one and that it is monotonic.

Lemma 2.54. Let Q and Q' be partially ordered agent algebras, andllet (¥, ¥, ) be a conser-
vative approximation fron@ to &'. For everypy’ € Q'.D, there is at most ong € Q.D such
thatW;(p) = p’ and ¥, (p) = 9.

Proof: The proof is by contradiction. Assume there exist two distinct agem@isdp, in ©.D such
that U (p1), Uy (p1), ¥;(p2) and ¥, (p2) are all equal tg/. This implies¥,(p1) =< ¥;(p2)
and ¥, (p2) =< Uy(p1). Thus, by the definition of a conservative approximation (def. 2.52),
p1 = p2 andps < py. Thereforep; = py, which is a contradiction. O

Definition 2.55 (Inverse of Conservative Approximation). Let @ and & be partially ordered
agent algebras, and &t = (¥;, ¥,) be a conservative approximation froghto Q. Let
Q;.D be the set op € Q.D such that¥;(p) = ¥,(p). Let Q|.D be the image o©;.D
under¥,;. Theinverse of ¥ is the partial function¥;,, with domainQ’.D and codomairQ.D
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that is defined for alpf € Q.D so that¥;,, (p') = p, wherep is the unique (by lemma 2.54
and the definition 0@ .D) agent such tha¥;(p) = p’ and ¥, (p) = p'.

Corollary 2.56. ¥;,, is one-to-one. Furthermore, when restricted to the imagé,of the func-
tions ¥; and ¥, are equal and are the inversef, .

Proof: For an arbitraryy’ in Q.D, letp = ¥;,,(p"). By the definition of¥;,,, p' = ¥;(p) and
p' = ¥;(p). Thus, when restricted to the image &f,,, the functions¥; and ¥, are equal

and are the inverse df,,,. Therefore, since an inverse §f,, exists,¥;,, is one-to-one. [J

We now show that ift = (¥, ) is a conservative approximation, thépand ¥, are
indeed lower and upper bounds.

Theorem 2.57. Let Q and Q' be partially ordered agent algebras, andlfet (¥, ¥,,) be a con-
servative approximation fro@ to Q. Letp € Q.D be an agent such that boil,, (¥;(p))
and;,, (¥, (p)) are defined. Then

Winy (‘I/l(p)) =p= \Ijmv(qju(p))
Proof: Clearly, by definition 2.55,

U (Uiny (Uu(p))) = Wulp)
U (Wino (Vi(p))) = Wilp).

Therefore,

0, (p) \Ijl(\pinv (‘I/u(p)))
\Iju(qjinv (\Ijl (p))) = Y (p) :

Hence, sincal is a conservative approximation, by definition 2.52,

A

p Winy (Pu(p))
\I/im; (\Ijl (P)) j D.

IA

O

As expected, the inverse of a conservative approximation, when defined, is monotonic.
This is true whether or not the upper and lower bound of the abstraction are monotonic. If they are,
however, then the inverse of a conservative approximation preserve the ordering of agents in both
directions. The following theorem proves these facts.
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Theorem 2.58. Let Q and @' be partially ordered agent algebras, anddet= (¥, ¥,) be a

conservative approximation fro@ to Q. Assumep| andp/, are agents irQ'.D such that
Uiny (P}) @and ¥, (ph) are both defined. Then

o if pll = plzy theny;,, (pll) = Uiny (pIQ)
e if either U, or ¥; is monotonic, thenp)| =< p}, if and only if Ui, (p]) = Winy (p2).
Proof: The first part of the proof is composed of the following series of implications.
Py = ph
by corollary 2.56
= \IJU(‘IImv(le)) :pll = p/2 = ‘Ijl(\yinv(plz))
sinceV is a conservative approximation, by definition 2.52
= \Ijinv (pll) j \Ijinv(pIZ)-
For the second part, assunligis monotonic. Then,
\Ijinv (pll) j \Ijinv (pl2)
sincey, is monotonic
= \IJU(‘IImv(le)) = ‘IIU(\I/mv(pIZ))
by corollary 2.56%, (¥in, (p})) = p}y and¥, (T, (ph)) = ph, therefore
& p) 2 ph

The proof is similar if; is monotonic. O

Every agenp’ € Q'.D determines two equivalence classe®iD: the class of the agents
p such that¥, (p) = p’, and the class of the agentsuch that¥;(p) = p’. The inverse is defined

onyp’ if and only if it is the greatest element of the first class and the lowest element of the second
class.

Theorem 2.59. Let Q and @' be partially ordered agent algebras, anddet= (¥, ¥,) be a

conservative approximation fro@ to @. Letp’ € Q'.D andp € Q.D be agents. Then
Uinw (p') = p if and only if

p = max{p: W(p:) =0},

p = min{p; : Uy(p) =p'}.
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Proof: For the forward direction, assumg,,,(p') = p. Let p; be such thaty,(p;) = p'.
Then, by definition 2.55%,(p;) = ¥;(p). Therefore, sincel;,, is a conservative ap-
proximation, by definition 2.52p; < p. Therefore,p = max{p; : ¥,(p1) = p'}. Simi-
larly, if p; is such that¥;(p;) = p’, then¥,(p) = ¥;(p1), and therefore < p;. Hence,
p=min{p: : ¥;(p1) =p'}.

For the reverse direction, clearly, singe= max{p : U,(p1) = p'}, ¥ (p) = p'.
Similarly, ¥;(p) = p'. Therefore ¥;,,,(p') is defined andy;,,, (p') = p. O

2.6.3 Compositional Conservative Approximations

In this section we discuss compositionality issues for both the upper and lower bound
of a conservative approximation, and for the inverse. At the end of this section we give sufficient
conditions for the inverse of a conservative approximation to be an isomorphism between two par-
tially ordered agent subalgebras. We will later use the properties of the inverse of a conservative
approximation to “embed” one partially ordered agent algebra into another.

A refinement verification problem is often of the fornE]] < ¢, whereq is the speci-
fication andE is an expression over the agent algebra. Compuiifif £]) involves evaluating
the expressiorE in the concrete domain, a potentially expensive operation. A compositional con-
servative approximation allows us to avoid this computation by translating the expression into the
abstract domain.

As an example, consider the verification problem

proj(A)(p1 || p2) = p,

wherep, p2 andp are agents ir@.D. This corresponds to checking whether an implementation
consisting of two componenijs andps (along with some internal signals that are removed by the
projection operation) satisfies the specificationVe say that a conservative approximatigns a

compositional conservative approximation if showing

proj(A)(Wu(p1) | Wu(p2)) = Wi(p)

is sufficient to show that the original implementation satisfies its specification. The following defi-
nition makes this notion precise.

Definition 2.60 (Compositional Conservative Approx.). Let @ andQ be preordered agent alge-
bras, and letr; and ¥, be functions fromQ.D to &'.D. We say¥ = (¥,, ¥, ) is acompo-
sitional conservative approximation from Q to @ if and only if for all closed expressions



86

over @, and for all agentg, € Q.D,

[ Elp/Tu(p)]] X Ti(p1) = [E] 2 p1.

Obviously, a compositional conservative approximation is also a conservative approxi-
mation. Note that the implication in the definition must be interpreted in the following sense: if
[ E[p/¥,(p)]] is defined and [E[p/W¥,(p)]] =X ¥i(p1), then [ E] is defined and [E] =< p.

This form of the implication is a consequence of interpreting undefinedness asdlleenent of an
extended set, as explained in section 2.4.

The remainder of this section proves theorems that provide sufficient conditions for show-
ing that somel is a compositional conservative approximation. First we show thét (¥, U, )
provides looser lower and upper bounds than a compositional conservative approxiibdtien
Ui (p) = Uy(p) and ¥, (p) = I, (p) for all p), thenT’ is also a compositional conservative approxi-
mation. Also, the functional composition of two compositional conservative approximations yields
another compositional conservative approximation. Although the theorems are stated in terms of

compositional conservative approximations, they apply to conservative approximations, as well.

Theorem 2.61. Let Q and Q' be preordered agent algebras, andliet (¥, ¥, ) be a composi-
tional conservative approximation fro@to Q. If ¥' = (¥}, ¥, ) is such thatlj(p) < ¥;(p)
and¥,(p) < ¥/ (p) forall p € Q.D, thenV' is a compositional conservative approximation.

Proof: Let E be a closed expression ow@r We first show that iff;,(p) < ¥ (p) for all agentp €
Q.D, thenif [E[p/¥, (p)]]is defined, then [E[p/ ¥, (p)]]is defined and [E[p/ ¥, (p)]] =

[ E[p/ Y. (p)]]1. The proof is by induction on the structure of expressions. Here we prove the

base case, and the case for projection. The other cases are similar.

e Let £ = pfor some agenp € Q.D. Clearly, by definition 2.51 and by hypothesis,

[ Elp/P.(p)]]1 = Wu(p) < Uy (p) = [ E[p/ T, (p)]].

e Let E = proj(B)(E;) be an expression and assume that# [p/ ¥, (p)] ] is defined,
then [E1[p/ W, (p)] ] is defined and [E: [p/Tu(p)]] = [ E1lp/¥,(p)]]. Assume also
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that [ E[p/ ¥, (p)]]is defined. Then

[ Elp/ @, (p)] 1

By definition 2.51,

= [E[p/%,(p)]1 = [ proj(B)(E[p/T,(p)])]
By definition 2.46,

= [ Elp/T,(p)]] = proj(B)([ £i[p/ ¥, (p)]1)
Sinceproj is T-monotonic,
and since by induction hypothesi€][p/ ¥, (p)]1 <X [ Ei[p/ Y. (p)]],
proj(B)([ Ei[p/ ¥, (p)]]) is defined and

= proj(B)([ Exrlp/Tu(p)]1) = proj(B)([ Erlp/ T, (p)]1) = [ Elp/ ¥, (p)]]
By definition 2.46 and by definition 2.51,

= [ Elp/%p)]]1 = proj(B)([ Erlp/%u(p)]1) X [ Elp/ %, (p)]]-

Therefore, by induction, if E[p/¥ (p)]] is defined, then [E[p/¥,(p)]] is defined and

[ Elp/%.(p)]]1 = [ Elp/%,(p)]].

To show thatl’ is a compositional conservative approximation,ziebe an agent
in Q.D, and assume E[p/ ¥, (p)]] is defined and [E[p/ ¥, (p)]] < ¥}(p1). We must show
that [ E'] < p1. The proof is composed of the following series of implications.

[ Elp/ %, (p)]] = ¥i(p1)

by our earlier result, E[p/%,(p)]] is also defined and
= [Ep/%®]] 21 Elp/%,(p)]]

by transitivity, since [E[p/ ¥, (p)]]1 < ¥(p1),
= [Elp/%(p)]] = ¥(p1)

by transitivity, sincelj(p;) < ¥;(p1)
= [Elp/%u(p)]] = Wi(p1)

sinceW is a compositional conservative approximation, by definition 2.60,
= [E]=2p1.

Therefore, by definition 2.60}' = (¥}, ¥!) is a compositional conservative approximation

" *u

from Q to Q'. O
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Theorem 2.62. Let Q, Q' and Q" be preordered agent algebras andllet (¥, ¥,) and ¥’ =
(¥}, ¥,) be compositional conservative approximations frghto @ and fromQ’ to Q",
respectively. The”” = (¥}, ¥,") is a compositional conservative approximation frghto

Q" where

(p) = Yi(Li(p))
() = T(Tu(p)).

Proof: Let E be a closed expression ovg. To show thatl¥’ is a compositional conservative
approximation, lep; be an agent iQ.D, and assume E[p/ ¥/ (p)]]1 < ¥/ (p1). We must
show that [E'] < p1. The proof is composed of the following series of implications.

[ Elp/ T/ (p)]] = ¥ (p1)
by definition 2.51,
= [ Elp/%(0)]p/%@)]] = ¥/ (1)
by hypothesis, sinc&)/(p) = ¥;(¥(p))
= [Elp/%®)p/¥ @)1 = Ui (Ti(p1))
since¥’ is a compositional conservative approximation, by definition 2.60,
= [E[p/Tu(p)]] 2 Vi(p1)
sinceW is a compositional conservative approximation, by definition 2.60,

= [E] =2p1.

Therefore, by definition 2.60F" = (¥}, ¥,/) is a compositional conservative approximation
from Q to Q". O

The next result gives sufficient conditions for a conservative approximation to be also
compositional. The conditions are restrictions on the upper bound of the conservative approxima-
tion. The theorem can be understood by recalling the example verification problem described above,



89

and by considering the following chain of implications:

proj(A)(Wu(p1) | u(p2)) = ¥i(p)

assumingl, (p1 || p2) = Wu(p1) || Yu(p2)

= proj(A)(Yu(p1 [ p2)) = ¥i(p)
assumingl, (proj(A)(p')) = proj(A)(Wy(p'))

= Wy (proj(A)(p:1 [ p2)) = Wi(p)
assuming?, (p') < ¥,(p) impliesp’ < p

= proj(A)(p1 [ p2) < p

The theorem formalizes the above assumptions (along with an assumption for the renaming opera-

tion) and proves that they are sufficient to show tlids a compositional conservative approxima-

tion.

Theorem 2.63. Let Q andQ' be preordered agent algebras, andilet (¥, ¥,) be a conservative
approximation fromQ to Q'. If the following propositions S1 through S3 are satisfied for all

agent, p1 andps in Q.D, thenW is a compositional conservative approximation.
SL. If Wy (p1) || Wu(p2) is defined, thenl, (p: || p2) = Wu(p1) [| Yu(p2)-
S2. If proj(B)(Wu(p)) is defined, thenb, (proj(B)(p)) = proj(B)(¥u(p))-
S3. If renamér) (¥, (p)) is defined, thenl, (renamér)(p)) < renamér) (¥, (p)).

Proof: Let E be a closed expression ov@r We first show that if [E[p/%,(p)]] is defined, then
[ E]is defined andy, ([ E]1) < [ E[p/¥.(p)]]. The proof is by induction on the structure
of expressions. Here we prove the base case, and the case for projection. The other cases are

similar.
e Let £ = pfor some agenp € Q.D. Clearly
([ E]) = Wulp)
and, by definition 2.51,
[ Elp/Wu(p)]] = Yu(p).

Therefore, since by reflexivity, (p) < U, (p), ¥, ([ E1) <[ Elp/ W (p)]]-
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e Let £ = proj(B)(E,) and assume that if £1[p/V,(p)]] is defined, then [E; ] is
defined andl, ([ E11) 2 [ E1[p/%u(p)]]. Assume [E[p/ ¥, (p)]] is defined. Then

[ Elp/Tu(p)] 14

By definition 2.51,

= [Ep/Y(p)]] = [ proj(B)(Ei[p/Yu(p)])]
By definition 2.46,

= [ E[p/Yu(p)]] = proj(B)([ Ei[p/Tu(p)]])
Sinceproj is T-monotonic,
and since by hypothesig, ([ £11) < [ E1[p/%.(p)]],
proj(B)(¥,([ E1]) is defined and

= proj(B)(Wu([ £1]) = proj(B)([ Ei[p/Yu(p)]]) = [ Elp/¥u(p)]]
By S2,9,(proj(B)([ E1])) is defined and

= W (proj(B)([ £11)) = proj(B)(Wu([ E1 1) = [ Elp/Yu(p)]]
By definition 2.46,

= W([E]) = Wl proj(B)(£1)] = proj(B) (Yu(l £11) =2 [ Elp/Yu(p)]]-

Hence, sincex is transitive,¥, ([ E]1) < [ E[p/%.(p)] 1.

Therefore, by induction, if E[p/,(p)]] is defined, then [E'] is defined andy, ([ E]) <
[ Elp/T(p)]]-

To show that¥ is a compositional conservative approximation,glebe an agent
in @.D, and assume E[p/ %, (p)]] = ¥;(p1). We must show that ] < p;. By tran-
sitivity of the refinement ordering, sincg ([ E1) < [ Elp/ W (p)]], W([ E]1) = ¥i(p1).
Therefore, sincel is a conservative approximation, by definition 2.5 T < n. Hence,
by definition 2.60,¥ = (¥, ¥,) is a compositional conservative approximation fr@rto
Q. O

When the upper bound of a conservative approximation satisfies S1 through S3 then we

can prove similar properties for the inverse of the conservative approximation.

Theorem 2.64. Let Q and @' be partially ordered agent algebras, anddet= (¥, ¥,) be a
compositional conservative approximation frahto @ satisfying S1 through S3. Lef
andp), be agents irQ’.D such that¥;,, (p}) and¥;,,, (p,) are both defined. Then
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1. 1f Wiy (p) || ph) is defined, theli,, (p)) || Winy (9h) = Winy (0] || PY)-
2. If Uy, (proj(B)(p))) is defined, themroj(B)(Viny (p})) = Winy (pProj(B)(p})).
3. If U, (renamér)(p))) is defined, themenamér) (Ui, (p})) = Winy (renamér)(p})).

Proof: We prove the parallel composition case. The other cases are similar.
Let p| andpl, be agents i?’.D such that¥;,,(p) and ¥;,,(p}) are defined, and
assume thal;,, (p} || pS) is also defined.
SinceY;,,, (p}) and¥;,, (p),) are both defined, then

Py 1 P = W (Tino (P1)) 1| Pu(Tino (P5))-
Then, sincel, satisfies S1W, (Viny (P}) || Yine (ph)) is defined and
W (Yino (P1) 1| i (P5)) = U (Wi (1)) (| W (Wi () = P || P
Likewise,
Py 1| P = i(Tino (P} || P2))-
Therefore,
oy (Tino (p1) || Wino (P5)) = W1(Tinor (P} || P2))-
Hence, sincel is a conservative approximation,
Wino (P)) | Winw (P2) = Winy (1 || P)-
]

In general we are mostly interested in compositionality for the upper bound side, or
implementation side, of the refinement inequality, as definition 2.60 shows. But we may con-
sider compositionality rules for the lower bound, or specification side, as well. The rulgs for
monotonicity require that we state this result in a dual way, by considering a sort of conservative

“counter-approximation”.

Definition 2.65 (Spec-Compositional Conservative Approx.). Let Q@ andQ be preordered agent
algebras, and let; and ¥, be functions fromQ.D to @'.D. We say¥ = (¥;,,) is a
spec-compositional conservative approximation from Q to @ if and only if for all closed
expressionds over Q, and for all agentp € Q.D,

pZLE] = Y(p) Z[ Elp1/Yi(p1)]].



92

The implication must again be interpreted in the sense thati] [s defined andp A

[ £], then [E[p/¥,(p1)]]is defined andl, (p) £ [ E[p1/¥i(p1)]]-
Results similar to theorem 2.63 and theorem 2.64 apply to compositionality for the lower

bound. We prove them below.

Theorem 2.66. Let Q andQ' be preordered agent algebras, andilet (¥, ¥,) be a conservative
approximation fromQ to Q'. If the following propositions S4 through S6 are satisfied for all

agent, p; andps, in Q.D, thenW is a spec-compositional conservative approximation.
SA. If Wy(p1 || p2) is defined, thenl(p1) || ¥i(p2) =< Wy(p1 [ p2).
S5. If Wy(proj(B)(p)) is defined proj(B)(¥:(p)) = W:(proj(B)(p))-
S6. If ¥;(renamér)(p)) is defined, themenamér)(V,(p)) < ¥,;(renamér)(p)).

Proof: Let E be a closed expression over agent algaBrale first show that if [E'] is defined,
then [E[p/¥,(p)]]is defined, and [E[p/¥;(p)]]1 = ¥;([ £]). The proof is by induction on
the structure of expressions. Here we prove the base case, and the case for projection. The

other cases are similar.

e Let £ = pfor some agenp € Q.D. Clearly

([ E]) = Wi(p)

and, by definition 2.51,

[ Elp/Wi(p)]] = Wi(p).
Therefore, since by reflexivity;(p) < ¥;(p), [ Elp/V:i(p)]] <X V([ E]).

e Let £ = proj(B)(E,) and assume that if f; ] is defined, then [Ei[p/¥,;(p)]] is
defined and [E1[p/¥;(p)]] = ¥;([ E1]1). Assume [E'] is defined. Then,

[E1L
by definition 2.51,
= [E£] =1[proj(B)(E))]
by definition 2.46,
= [E] = proj(B)([ E1])
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thereforeW,;(proj(B)([ E11))!, and by S5
= proj(B)(Yy([ E1])) = Wi(proj(B)([ E1]))
since, by induction hypothesisH [p/¥;(p)]] < ([ E11)
and sinceproj is T-monotonic
= proj(B)([ Erlp/Wi(p)]]) = proj(B)(¥i([ E11)) = ¥i(proj(B)([ £11))
by definition 2.46,
= proj(B)([ Exlp/P:(p)]]) = Wi(proj(B)([ E1])) = ([ E])
by definition 2.46 and definition 2.51,

= [ Elp/Wi(p)]] = proj(B)([ Er[p/W:i(p)]]) = V([ E])

Thus, by induction, if [E'] is defined, then [E[p/;(p)]] is defined, and [E[p/¥;(p)]] =
([ ED).

Since we know the expressions are defined, we will now show the contrapositive of
definition 2.65, that is

u(p) 2 [E[pr/Wi(p)]] = p <[ E].

Let p be an agent iR.D, and assumé&,(p) < [ E[p1/¥Y;(p1)]]. By transitivity of the
refinement relation, since f[p:/¥;(p1)]1 = V([ E1), Wu(p) 2 ([ E]). Therefore,
sinceV is a conservative approximatiop,< [ F']. Hence, by definition 2.65) = (I, ¥,,)

is a spec-compositional conservative approximation f@no J. O

Theorem 2.67. Let Q and Q' be partially ordered agent algebras, andllet (¥}, ¥,) be a spec-

compositional conservative approximation fr@rto @ satisfying S4 through S6. Le} and
ph be agents irQ’.D such that¥;,,, (p}) and¥;,, (ph) are both defined. Then

1. If Uiy (P) || Winy (ph) is defined andl;y,, (p) || p)) is defined, then
Wino (P11 P5) = Win (91 || Wi (1)

2. If proj(B)(%iny (p})) is defined, then ifl;,,, (proj(B)(p})) is defined then
Winy (Proj(B)(p)) = proj(B)(¥iny (p1))-

3. If renamér) (Y, (p})) is defined, then if;,,, (renamér)(p))) is defined then

Uiny (renamér) (py)) < renamér)(Tiny (p}))-
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Proof: We prove the projection case. The other cases are similarg Us¢ an agent irQ'.D
such that¥;,, (p}) is defined, and assume thatoj(B)(Ui,,(p})) is also defined. Then,
since ¥, is total, ¥;(proj(B) (¥, (p}))) is defined. Therefore, sincé satisfies S5, also
proj(B) (Y (P, (p)))) is defined and

proj(B) (¥y(Tiny (p1))) = proj(B)(p}) = ¥ i(proj(B)(Liny (p})))-

Assume now that;,, (proj(B)(p))) is defined. Then, since by corollary 2.8§ is inverse
of Winy, Wy (Winy (Proj(B)(p}))) = proj(B)(p}). Therefore

B, (ino (Proj(B) (p}))) = ¥y(proj(B)(Yiny (p1)))-

Finally, since¥ is a conservative approximation,

Yiny (Proj(B)(p1)) = proj(B)(Liny (p1))-
O

We might be interested in applying compositionality to the implementation and to the
specification side of the inequality at the same time. In this case we talk ahdlyt @@mpositional
conservative approximation. ConsiderationsTefmonotonicity require that we state a property that
is stronger than those for compaositional and spec-compositional conservative approximations when

they are taken together.

Definition 2.68 (Fully Compositional Conservative Approx.). Let Q andQ be preordered agent
algebras, and le¥; and ¥, be functions fromQ.D to @.D. We say¥ = (¥,,,) is a
fully compositional conservative approximation from Q to ¢ if and only if for all closed
expressiongs; and E» over Q, if [ Ey[p/¥,(p)]] is defined then [E; ] is defined and if
[ E»]is defined, then [Ex[p/¥,(p)]] is defined, and

[ Eilp/Yu(p)]] 2 [ E2lp/Vi(p)]] = [ E1] X[ E2].

Although a compositional and spec-compositional conservative approximation is not nec-
essarily fully compositional, the combined properties S1 through S3 and S4 through S6 are sufficient
to imply full compositionality.

Theorem 2.69. Let Q andQ' be preordered agent algebras, andilet (¥, ¥,) be a conservative
approximation fromQ to @' satisfying propositions S1 through S3 and S4 through S6. Then

¥ is a fully compositional conservative approximation.



95

Proof: Let E; and E» be expressions ovep and assume f;[p/¥,(p)]] and [ E;] are both
defined. The combined proofs of theorem 2.63 and theorem 2.66 give usZihhtahd
[ E2[p/¥:(p)]] are both defined and

U,([Ei]l) =2 [Eip/%u(p)]]
[ E2[p/Ti(p)]] = Uy([ E2]).

Assume now that i [p/,(p)]] =X [ E2[p/¥:(p)]]. Then, by transitivity, U, ([ E1]) =
U, ([ E21). Therefore, sinc& is a conservative approximationF[] < [ E2]. Hence, by

definition 2.68,¥ is a fully compositional conservative approximation. O

Since the inversel;,, of a conservative approximation is one-to-one (cor. 2.56), it is
natural to ask whether it is also an embedding. The next result shows that this is the case when the
assumptions of theorem 2.63 and theorem 2.66 are combined. Before we prove this result, we first

specialize the notion of homomorphism and of an embedding to the agent algebra case.

Definition 2.70 (Agent Algebra Homomorphism). Let Q andQ’ be partially ordered agent alge-
bras. LetH be a function fromQ.D to @.D. The functionH is ahomomor phism from Q to

Q' if and only if
H(pillp2) = H(p)l H(p2),
H(renamégr)(p)) = renamér)(H (p)),

H(proj(B)(p)) = proj(B)(H(p)).
Definition 2.71 (Agent Algebra Embedding). Let Q@ and Q' be partially ordered agent algebras
and letH be a homomorphism from® to @. ThenH is anembedding from Q to @' if and

only if H is one-to-one.

Theorem 2.72. Let Q and @' be partially ordered agent algebras, andllet (¥, ¥, ) be a fully
compositional conservative approximation franto @ satisfying propositions S1 through
S3 and S4 through S6. Further assume that for all ageat®.D, U;(p) = U, (p). If Yy

is defined anywhere, then it is an embedding from a subalgebghtofQ.

Proof: Let Q).D be the set of agents for which,,, is defined. We must show thatd,.D is non-
empty, then it forms a subalgebra ¢f, and¥;,, is an isomorphism from that subalgebra
to a subalgebra of. In particular, we must show th&, .D is closed under the operations
of projection, renaming and parallel composition. The following lemma proves the case for
parallel composition. The other cases are similar.
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Lemma 2.73. Letp) andp), be agents irQ,.D. If p} || p), is defined, thenl;,, (] || p}) is
defined (i.e. Q) .D is closed under parallel compositiordy,, (p} ) || Yiny (p5) is defined

and

Yiny (pll H pIQ) = Winy (pll) H Yiny (pIZ)

Proof: Letp| andp), be agents irQ|.D, and letp; = U;,,,(p") andps = U;p,, (p5). Clearly,
by definition 2.55%, (p1) = ¥;(p1) = p| and ¥, (p2) = ¥;(p2) = pj.
Assume now thap) || pf, is defined. We show thab,, (p}) || Yins (}) iS
defined. In fact, sinc@,(p1) = p} and ¥, (p2) = ph, Wu(p1) || Yu(p2) is also defined
and®, (p1) || ¥, (p2) = p! || ph- Therefore, by S1¥,,(p1 || p2) is defined, which implies

1|l p2 = Yiny (p}) || Wino (p5) is defined.
In addition, by S1, (p1 [|p2) < Wy (p1) || Ty (p2). To show thaty,, (p! ||p5)
is defined, consider the following series of inequalities:

Uulp1 [l p2) = Wu(pr) || Cu(p2) =P} || ph

since¥;(p1) = p| and ¥, (p2) = p)

= Wilpr) | Wulp2)
by S4,9,(p; || p2) is defined and

= Yi(p1 | p2)
since, by hypothesisl; (p: || p2) < Yu(p1 || p2)

= Uu(p1 || p2)

Therefore all the quantities are equal, and, in particular,
Dy (p1 || p2) = Wi(p1 || p2) = pi || P

Hence, by definition 2.55V;,, (p} || p5) is defined, and
Tin (D1 || p2) = p1 || D2-

Finally, sinceWin, (p}) || Winw (p5) = p1 || P2,

Yiny (pll H plz) = Winy (pll) H Yiny (p,2)
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2.7 Conservative Approximations Induced by Galois Connections

In subsection 1.8.5 we have argued that there exists a close relationship between conser-
vative approximations and abstract interpretations that use Galois connections. In this section we
explore this relationship in details.

We begin by defining Galois connections [23], and proving some basic results about them,
including several necessary conditions for functions that form a Galois connection. These results
are common knowledge in the literature, with the exception of theorem 2.91, which slightly extends
the standard results to give sufficient conditions for a function to be the abstraction function of
some Galois connection. Later we show how a pair of Galois connections can be used to form a
conservative approximation.

Subsection 2.7.3 is devoted to abstract interpretations [23]. We define abstract interpre-
tations and characterize them in terms of the abstraction function of a Galois connection. We then
show how to use an abstract interpretation and an additional Galois connection to form a compo-
sitional conservative approximation. We conclude the section with a discussion of the similarities
and significant differences between abstract interpretations and conservative approximations.

2.7.1 Preliminaries

This section can be skipped by readers familiar with Galois connections. The following
definition of a Galois connection is adopted from one given by Cousot and Cousot [23], where
a Galois connections relates two posets. In order to highlight the relationship with conservative
approximations, we restrict the definition here to posets that are the domain of agent algebras.

Definition 2.74 (Galois Connection). Let D and D’ be partially ordered sets of agents. A Galois
connection(a,«) from D to D' consists of an abstraction map D — D' and a concretiza-

tion mapy : D' — D such that for alp € D andy’ € D’,
ap) =p" = p2y0).
If the functionsa and~y form a Galois connection, then they are monotonic.

Theorem 2.75. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-

tion from D to D'. Then the functions and~ are monotonic.
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Proof: We begin by showing that is monotonic. Lep; andp, be agents irD. Then

PL=p2 & p12paAa(p) 2 alp)

by the definition of a Galois connection (def. 2.74)
& p1 2 p2Ap2 2 y(a(pe))

since= is transitive
= p1 2 7(a(p2))

by the definition of a Galois connection (def. 2.74)
< a(p) 2 alp2).

The proof thaty is monotonic is analogous: jf andp, are agents i)', then
Py 2y & py 2 py Ay(ph) = ()

by the definition of a Galois connection (def. 2.74)
& pi 2Py Aaly(p)) 2P

since= is transitive
= a(y(py)) 2

by the definition of a Galois connection (def. 2.74)
& () ().

O

While the abstraction and concretization maps of a Galois connection are not inverse of

each other, a weaker relation can be established.

Theorem 2.76. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-
tion from D to D'. For allp € D andp’ € D’,

=
A

v(a(p))

/

a(y(p)) = 9.

Proof: Letp € D be an agent. By reflexivityx(p) < «a(p). Since(a,) is a Galois connection,
by definition 2.74p < v(a(p)).
Similarly, if p’ € D’ is an agent, then(p’) < v(p'). Therefore, sincéa,~) is a
Galois connection, by definition 2.74(y (7)) < p'. O
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Coroallary 2.77. Let D and D' be partially ordered sets of agents, and(lety) be a Galois con-
nection fromD to D'. AssumeD andD’ have least elements, and_L’ respectively. Then,

a(l) = 1"

Proof: The proof consists of the following series of implications, which start from the result of
theorem 2.76 applied ta’.

a(y(Lh)) =L
Since L =< (y(L")), and since, by theorem 2.75,is monotonic,
= a(l) Za(y(L)) 2L
since L’ < a(l),

= a(l)=1"

O

The following result shows that a looser abstraction map implies a looser concretization

map, and vice versa.

Theorem 2.78. Let D and D’ be partially ordered sets of agents, and{lat v,) and{as,y.) be

Galois connections fron to 1. Then the following two statement are equivalent.
1. Forall agentp € Q.D, ay(p) = aa(p).
2. Forallagent®’ € Q'.D, vy (p") <X y1(p').

Proof: For the forward direction, lef € Q'.D be an agent. Sincgy, v-) is a Galois connection,

by theorem 2.76q2(y2(p")) < p’. The result is then derived as follows.

ar(n2(p') 29/
since by hypothesis; (y2(p')) < aa(72(p'))
= a(r@)) 270

since(ay, 1) is a Galois connection

& 1) ).
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Similarly, for the reverse direction, lgt € Q.D be an agent. Sincéx,2) is a
Galois connection, by theorem 2.76X (a2 (p)). Then,

p X 72(a2(p))
since by hypothesis; (a2(p)) = 71(a2(p))
= p =2 7l(ez(p))
since(ay, 1) is a Galois connection

& ai(p) X aap).

The composition of Galois connections is again a Galois connection.

Theorem 2.79. Let D, D' and D" be partially ordered sets of agents, and(lety) be a Galois
connection fromD to D', and(¢/,~') a Galois connection frond’ to D”. Then the pair of

functions(c/ o o,y 0 7') is a Galois connection from to D'.

Proof: Letp € D andp” € D" be agents. We show that(a(p)) < p” if and only if p =<

v(¥'(p")). The result follows from the following series of double implications.

o (a(p)) = p"
since(c’,~') is a Galois connection, by definition 2.74
& alp) 2 (")

since(a, ) is a Galois connection, by definition 2.74
& p2y( (")

O

In the following we characterize Galois connections in terms of least upper bounds and
greatest lower bounds of sets of agents. Here we specialize definitions and results on upper bounds
and least upper bounds to the case of sets of agents. The specializations for lower bounds and

greatest lower bounds are dual.

Definition 2.80 (Upper Bound). Let D be a partially ordered set of agents andligtC D. An
agentp € D is anupper bound of Dy if for all agentspy € Dy, pg < p.
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Definition 2.81 (Least Upper Bound). Let D be a partially ordered set of agents andilgtC D.
An agentp € D is aleast upper bound of Dy, writtenp = | | Dy, if p is an upper bound of
Dy and for all upper boundgof D, p < g.

Lemma 2.82. Let D be a partially ordered set of agents andiletC D. The least upper bound of

Dy, if it exists, is unique.
Lemma 2.83. Let D be a partially ordered set of agents andllgtC D. If | | D, exists, then for
all agentg € D,| | Dy < pif and only if p is an upper bound ab, i.e.,
Vpe D [|_|D0 =p < Vpo € Do [po jp]]-
Corollary 2.84. If | | Dy exists, then for all agents € Dy, po < || Do.

Lemma 2.85. Let D be a partially ordered set of agents andllgtC D. If there existsyy € D
such that for alpy € Dy, py = qo, then

qo = |_|D0-

The next series of results derive necessary and sufficient conditions for a fundtidme
the abstraction map of a Galois connection. We first show how to characterize the concretization
map -y in terms of the abstraction map as the upper bound of a sort of inverse function on the
powersets. This function is then used to show certain properties of the abstraction map, which will

then be proved sufficient for its characterization as a Galois connection.

Definition 2.86. Let D and D’ be partially ordered sets of agents, anddédie a function fromD
to D'. Definel',, to be the function fronD’ to 2” such that for all agentg € D',

Lo(p) ={peD:alp) 2p'}.

Theorem 2.87. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-
tion from D to D'. For allp’ € D',

v(p") € La(p). (2.1)

v(p') =] |Tal@) (2.2)
Proof: By definition 2.86 and definition 2.74,

Lo(p) ={peD:p =~} (2.3)

By reflexivity, v(p') < ~(p'), thereforey(p') € Tn(p’). In addition, by equation 2.3, if
p € To(p'), thenp < ~(p'). Therefore, by lemma 2.85(p') = | |Tu(p). O
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Corollary 2.88. Let D and D' be partially ordered sets of agents, and(lety) and (¢/,+') be
Galois connections from to I'. If a = o' theny = «/.

In other words, ifa is the abstraction map of a Galois connection, the corresponding
concretization map is uniquely determined.

The following theorem strengthen the results of theorem 2.76 in gas®ps certain
agents to unique agents.

Theorem 2.89. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-
tion from D to D'. Letp € D be an agent such that for all ageptse D, if a(p) = a(p1)
thenp = p;. Theny(a(p)) = p.

Proof: To prove the theorem we show that= | |T'y(a(p)). The result then follows from theo-
rem 2.87.

By definition 2.86,

Lola(p) ={p1 € D:a(p1) 2 ap)}.

Then, clearly, since(p) < a(p), p € To(a(p)). Let nowp; € T'y(a(p)) be such thap <
p1. Sincep; € Iy (a(p)), a(p1) X a(p). Inaddition, since, by theorem 2.75js monotonic,
and sincep =< p1, a(p) < «a(p1). Thus, by antisymmetryx(p) = «(p1). Therefore, by
hypothesisp = p;. Consequently, since by theorem 2.87T",(a(p)) € T'a(a(p)), and
since by definition 2.8Q < | |'»(a(p)), by the above resul = | |T's(c(p)). O

The following properties hold of the abstraction function of a Galois connection.

Theorem 2.90. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-
tion from D to D'. If Dy is a subset oD such that | D, is defined, then

o[ Do) =] Ja(Do),
wherea is naturally extended to sets.

Proof: By theorem 2.75¢ is monotonic. Thus, for ally € Dy, sincepy < | | Dy, thena(py) =
a(|| Do). Thereforex(| | Dy) is an upper bound af (D).
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Consider now the following chain of implications that begins with the definition of
| | Dy and lemma 2.83:

Vpe D [(I_'D()) = p <= Vpo € Do [po = p

by specialization of the universally quantified variapl® ~(§)

= vp'eD [<|_| Do) =<(p") & ¥po € Dy [po < v(p')]]

by the definition of a Galois connection (def. 2.74)

& VYo' eD {a(l_l D0> =< p & Vpy € Dy [a(py) = p']].

Assume now' is an upper bound af(Dy). Then, for allpy € Dy, a(py) =< p’. Thus, by the
above resulta<|_| DO) =< p'. Therefore, sincex(|_| DO) is an upper bound ak(Dy), it is
also the least, i.e.,

a(l_l D[)) = |_| a(Dy).

O

Theorem 2.91. Let D and D’ be partially ordered sets of agents. A functiefrom D to I is the

abstraction map of some Galois connection if and only if fopah D',
1. «is monotonic,

2. T'w(p') contains a uniqgue maximal element, which implies th&t, (p’) is defined and
is an element of,(p’), and

3. a(|_| Fa(p')> = |_| a(To(p")), wherea is naturally extended to sets.

Proof: The forward implication follows from theorem 2.75, theorem 2.87 and theorem 2.90. To
prove the reverse implication, we show that if item 1 through item 3 (above) hold{dheh
satisfies definition 2.74, i.e.,

Vp € D,Vp' € D' [a(p) < p" & p < y(p)].
where~ is given by equation 2.2,

v(p') =] |Talp).
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It follows from item 2 that the necessary least upper bound exists sq ¢hpis defined. We
separately prove the forward and backward implications of definition 2.74 as follows. For the

forward direction,
alp) = p'
as noted above in formula 2.4

< pel, (p,)
by the definition of least upper bound (def. 2.81)

= p= |_| Fa(p,)
by the definition ofy(p'), above

& p=2y0).

For the reverse direction, letbe an agent inD. It follows from the definition ofT, (p')
(def. 2.86) that

/

pETL(p) & alp) =7

Therefore, by definition 2.8/ is an upper bound af(T', (p')). Hence, by definition 2.81,

| |a(Tale’) 20", (2.4)
The proof is then completed by the following series of implications.

p =)
sincea in monotonic, by item 1

= a(p) 2 a(v(p")
by the definition ofy(p'), above

& ap) < a(l_l Fa(p'))
by item 3
& alp) 2| |eTalp))
by transitivity and by formula 2.4

= afp) <.
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These results give necessary and sufficient conditions for a funetiobe the abstraction
map of a Galois connection (thm. 2.91), and characterize the uniquely determined concretization
map (cor. 2.88). Similarly, it is possible to characterize the abstraction map of a Galois connection
in terms of the concretization function. We here give the definitions and state the results without

proof.

Definition 2.92. Let D and D’ be partially ordered sets of agents, andhlédte a function fromDJ
to D. DefineA,, to be the function fronD to 2°" such that for all agents € D,

Ay(p)={p' €D :p=~(p)}

Theorem 2.93. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-
tion from D to D'. For allp’ € D',

a(p) € Ay(p). (2.5)

a(p) =[ 124, (2.6)

Corollary 2.94. Let D and D' be partially ordered sets of agents, and(lety) and (¢/,~') be
Galois connections from to D'. If y = 4/ thena = /.

In other words, ify is the concretization map of a Galois connection, the corresponding

abstraction map is uniquely determined.

Theorem 2.95. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-
tion from D to D'. Letp’ € D' be an agent such that for all ageptse D', if v(p') = v(p})
thenp’ = p}. Thena(y(p')) =p'.

Theorem 2.96. Let D andD' be partially ordered sets of agents, and{ety) be a Galois connec-
tion from D to D'. If Dy is a subset oD’ such thaf | Dy is defined, then

([126) =105,
wherer is naturally extended to sets.

Theorem 2.97. Let D and D' be partially ordered sets of agents. A functipfrom D to D is the

concretization map of some Galois connection if and only if fopat D,

1. v is monotonic,
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2. A, (p) contains a unique minimal element, which implies fHak, (p) is defined and
is an element of\, (p), and

3. 7(|—| Av(p)) =[|7(A,(p)), wherey is naturally extended to sets.

In a Galois connection, if is an agent inD, thenp < v(«a(p)) (see thm. 2.76). In other
words, going toD’ througha and then back through always results in an agent that is greater
than or equal to the one that we started from. Alternatively, a pair of functions may be such that the
resulting agent is always less than or equal to the original agent. This is the case, for example, if we
invert the direction of the refinement relationship in the definition of a Galois connection. We refer
to this kind of connection as a co-Galois connection [92].

Definition 2.98 (Co-Galois Connection). Let D and D’ be partially ordered sets of agents. A co-
Galois connection(«,y) from D to D' consists of an abstraction map: D — D' and a
concretization map : D' — D such that for alp € D andy’ € D',

P 2alp) = (') 2p.

The choice of name is intentional. In fact, a co-Galois connections is simply a Galois
connection that goes in the reverse direction, as shown by the following result.

Lemma2.99. Let D andD' be partially ordered sets of agents. THeny) is a Galois connection
from D to D' if and only if (y, ) is a co-Galois connection fro¥ to D.

Proof: The result is immediate from the definitions. O

It follows that the abstraction and concretization maps of a co-Galois connection can be
characterized in terms of the corresponding map, as shown above for Galois connections.

2.7.2 Conservative Approximations and Galois Connections

In the rest of this section we will use Galois and co-Galois connections in combination.
To simplify the presentation we will systematically take advantage of the result of lemma 2.99 and
always refer to a Galois connection fra@hto Q in place of a co-Galois connection fro@to Q.
For our notation, we will use symbolgy,, v,,) for a Galois connection fron® to &', and (v, o)
for a Galois connection fron® to Q. This choice will be made clear later by our results on the
correspondence between conservative approximations and abstract interpretations.

The first result shows that a pair of Galois connectiéng v,) and (y;, o) forms a
conservative approximation if and only~f < ;.
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Theorem 2.100. Let Q and Q' be partially ordered agent algebras and(tet, v,,) be a Galois
connections fromQ.D to @'.D and(y;, o) a Galois connection fron.D to Q.D. Then
the following two statements are equivalent:

1. Forall agentp’ € Q'.D, v,(p") < vi(p).
2. For all agentg; andps in Q.D, ay,(p1) = ay(p2) = p1 = po.

Proof: For the forward directionl(= 2), letp; andp, be agents fron®@.D, and assume,, (p;) <
ay(p2). Since{aw, v, is a Galois connection, by theorem 2.96,< v, (aw(p1)). The proof
is then completed by the following series of implications.

p1 = Yulow(pr1))
since by hypothesie, (p1) = cu(p2),
and since, by theorem 2.74, is monotonic
= p1 =2 Yulau(p2))
since by hypothesisy, < v,
= p1 2 v(u(p2))
since, by theorem 2.76;(a;(p2)) < p2, and by transitivity

= p1 2 pa.

For the reverse directior2 (= 1), letyy € Q'.D be an agent. By theorem 2.76,

au(yu(p')) 2 p"andp’ < ai(yi(p')). Therefore, by transitivityew, (. (p')) < cu(v(p)) and
consequently, by hypothesig,(p’) < v,(p'). O

Corollary 2.101. Let Q and @ be partially ordered agent algebras and(tet,v,) be a Galois
connections fromQ.D to @'.D and(y;, o) a Galois connection fron.D to Q.D. Then
(oq, ) is @ conservative approximation if and only if for all agegts Q'.D, v, (p') =

Y (p").
Corollary 2.101 justifies the following definition.
Definition 2.102 (Conservative Approx. induced by a pair of Galois connections). Let Q and

Q' be partially ordered agent algebras and({et -y,,) be a Galois connections fro®.D to
Q'.D and(;, o) a Galois connection fron@.D to Q.D such that for all agentg € Q'.D,

Yu(P') 2 (')
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By corollary 2.101 (above), o) is @ conservative approximation frod to
@', which we call aconservative approximation induced by the pair of Galois connections

<aua 7u> and<7la al>'
The second result characterizes the inverse of the conservative approximation induced by

a pair of Galois connection. It shows that the inverse is defined if and onjyaiid~, are equal,

and are “mutually” injective.

Theorem 2.103. Let Q and Q' be partially ordered agent algebras and(tet, v,,) be a Galois
connections from@.D to @'.D and(v;, «;) a Galois connection fror@.D to Q.D such that
for all agenty’ € Q'.D, v,(p') <X v(p'). Then for all agentp € Q.D andyp’ € Q'.D the
following two statements are equivalent:

/

1. au(p) = aulp) =p
2. o w@®)=70)=pand
e if p| € Q'.Dis an agent such that,(p}) = v,(p|) = p, thenp| = p'.

Proof: For the forward direction1( = 2), let p be an agent fromQ.D, and assumey,(p) =
ay(p) = p'. Since(ay, v, ) is a Galois connection, by theorem 2.565 ~, («y(p)). Consider
the following series of implications.

P = Yulau(p))
since by hypothesis,, (p) = o(p)

= P = Yulow(p)) = yulau(p))
since by hypothesigy, < v,
= p =2 Yulow(p) = yuleu(p)) = vileu(p))
by theorem 2.76
= P 2 ul(owlp) 2lalp) 2p
since by hypothesis, (p) = o;(p) = p'
= p 2 7)) @) 2p.
Thereforey, (p') = vi(p') = p. Letnowp] € Q'.D be such that, (p}) = v(p}) = p. Then,
since(ay,v,) and{«y, ;) are Galois connections, and since by hypothgsis ~,(p}) and

Y(p}) =2 p,

ay(p) 2 py = y(p).
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Since by hypothesie, (p) = a;(p) = p', p’ X p| <X p'. Thereforep| = p'.

For the reverse directior2 (= 1), lety € Q'.D be an agent such thay(p') =
1(p') = p, and assume that if, € Q'.D is such thaty,(p|) = v(p1) = p thenp] = p'.
Note that because = ~,(p’), it is alsop < ~,(p'), and therefore, sinc@y,, v, ) is a Galois
connection,(p) < p’. Then, consider the following series of implications that start from

the result of theorem 2.76:

P = Yulau(p))
since by hypothesisy, < v,

= p = Yulowu(p) 2 vilau(p))

since by the argument abowg(p) < p’ and sincey, is monotonic (by thm. 2.75)
= p = yulau(p) 2 lau(p) 2’

since by hypothesis; (p') = p
= p = ulou(p) 2 nlaw@) 2 nl) =p.

Therefore;y, (., (p)) = v(aw(p)) = p. Hence, by hypothesisy, (p) = p’. The proof that
a;(p) = p' is similar. O

Corollary 2.104. Let Q and @ be partially ordered agent algebras and(tet,v,) be a Galois
connections from@.D to @'.D and(v;, «;) a Galois connection fror@.D to Q.D. Assume
U = (o, ) iS @ conservative approximation fro@to @. Then for all agentg’ € Q'.D,

Uiy (p') is defined andl;,, (p') = p if and only if
* 7u(p) = n(p') = p, and
o if p{ € Q'.Dis an agent such that,(p}) = v(p}) = p, thenp] = p'.

Given Galois connectionéw,,y,) and (v, «y), the closery, is to ~,, the tighter the

resulting conservative approximation, as shown by the next result.

Corollary 2.105. Let Q and @ be partially ordered agent algebras and(tet, v,) be a Galois
connections fromQ.D to @.D and (v, ;) a Galois connection fron®'.D to Q.D. Let
(7], ;) be a Galois connection betweéh D and Q.D such that for all agentg € Q'.D,

Yu(P") =) 20"
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Then¥ = (o, o) and ¥’ = (o}, a,) are conservative approximations such that for all
agentyp € Q.D,

aj(p) = ai(p).
Proof: The result follows from corollary 2.101 and theorem 2.78. O

Given a Galois connectiofry,,v,) betweenQ.D and @'.D, the tightest conservative
approximation induced by a pair of Galois connections is obtained by a Galois connggctigh
from Q'.D to Q.D such thaty, = ;. Note thaty, is a concretization function and thatis an
abstraction function of their respective Galois connections. Therefore, in ordegrtéobe equal to
1, ¥4 Must necessarily satisfy all the conditions of both theorem 2.97 and theorem 2.91. However,
while -, clearly satisfies the conditions of theorem 2.97 (since it is the concretization function of a
Galois connection), it does not necessarily satisfy the condition of theorem 2.91. In otherqyords,
is not in general the abstraction function of any Galois connection ffomto Q.D. In that case,
several “maximal” approximations may exist, but no tightest approximation.

Our last result gives sufficient conditions for a conservative approximation to form a pair
of Galois connections. It is sufficient that the upper and lower bound be monotonic (which is a
necessary condition for Galois connections), and that the inverse of the conservative approximation

be defined everywhere.

Theorem 2.106. Let Q and Q' be agent algebras and t= (¥, ¥, ) be a conservative approxi-

mation from@ to Q@ such that
1. ¥, and¥; are monotonic, and
2. Wiy (p') is defined for alp’ € Q'.D.
Then
e (U,,;,,) is a Galois connection from@.D to &'.D, and
e (U;y, ¥;) is a Galois connection fror@.D to Q.D.

Proof: We show tha{¥,, ¥;,,,) is a Galois connection by proving that for all agepts Q.D and
p' e Q'.D,

\Iju(p) = p, S p = \Ijinv(p,)-
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We separately prove the forward and backward implications as follows.

Uy, (p) = p,

by definition 2.55

& U(p) 2 (Ui (p))

by definition 2.52, sincé¥;, ¥, ) is a conservative approximation
= p =2 Wiy (p).

Similarly,

p= Winy (pl)

since, by hypothesisl, is monotonic

= \Iju(p) j \I/u(\Iva(p,))
by definition 2.55

g \IJU(ZD) = Pl-

The proof that ¥;,,,,, ¥;) is a Galois connection is similar. O

In the previous result, the condition thdt,, be defined everywhere is crucial. In fact,
there are monotonic conservative approximations such that the abstraction functions are not abstrac-
tion maps of any Galois connections. This occurs when the equivalence classes indugeadhy

¥, do not have the necessary greatest and lowest element (see thm. 2.59).

2.7.3 Abstract Interpretations

Abstract interpretations were originally developed for static analysis of sequential pro-
grams in optimizing compilers [22]. They have also been used for abstracting and formally verify-
ing models of both sequential and reactive systems. This section discusses the relationship between
abstract interpretations and conservative approximations.

In the theory of abstract interpretations, a poset is used to model, for example, the data
values that can be manipulated by a computer program. Functions over the poset represent the
primitive operations available to the program. An abstract interpretation provides a formalization of
what it means for one poset (and it's associated functions) to be an abstraction of another.

As we did for Galois connections, we restrict the definition here to posets that are sets
of agents. The standard definition of an abstract interpretation [23] also designates a least element
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1 that is used as the starting point for least fixed point computations. We have no need for such
computations, so we have remové&drom the definition.

Definition 2.107 (Abstract Interpretation). Let Q and @ be partially ordered agent algebras.
Then Q' is an abstract interpretation @ if and only if there exists a Galois connection
(a,y) from Q.D to Q'.D such that for alp} andp}, in Q'".D,

1. if i || pj is defined, them(vy(py) || v(p3)) = P} || P,
2. if proj(B)(p}) is defined, them(proj(B) (v(p}))) < proj(B)(p}), and
3. if renamér)(p)) is defined, them(renamér)(y(p,))) < renamér)(p,).

The three conditions of definition 2.107 are equivalent to the conditions S1 through S3 of
theorem 2.63, as shown in the next theorem.

Theorem 2.108. Let Q and Q' be partially ordered agent algebras. Thgris an abstract interpre-
tation of Q if and only if there exists a functioa from Q.D to .D that is the abstraction
function of some Galois connection and such that fopadindp, in ©.D,

1. if apy) || a(p2) is defined, them(p; || p2) < a(p1) || a(p2),
2. if proj(B)(a(p1)) is defined, them(proj(B)(p1)) =< proj(B)(a(p1)), and
3. if renamér)(a(p2)) is defined, them(renamér)(p2)) < renamér)(a(p2)).

Proof: We only give the proof for the composition operator case. The projection operator case and
the rename operator case are analogous (but notationally simpler, since they involve a unary
operator rather than a binary operator).

To prove the forward implication, assume ti@tis an abstract interpretation @F.
This implies by definition 2.107 that there is a Galois connectieny) from Q.D to 9.D
and for allp| andpl, in Q'.D, if p! || p, is defined,

a(y(ph) | v(ph)) = Pl || o

Letp,; andps be in Q.D and assume thait(p;) || a(p2) is defined. The desired result can be
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derived as follows:
a(p1) || a(p2)!
by definition 2.107

= a(y(alp1)) [[v(a2))) =2 alpr) || alp2)
since by theorem 2.76¢; < vy(a(p1)) andps < y(a(p2))

and since parallel composition is-monotonic
= a(p1 [ p2) 2 alp1) || alps).

To prove the reverse implication, assume there is a Galois connéetion from
D to D' and that for allp; andp, in D, if a(p1) || a(p2) is defined, then

a(p1 || p2) = alpr) || a(p2)-

Let p} andp), be agents i)’ such thap) || p), is defined. The desired result can be derived
as follows:
Pl pod
since by theorem 2.76(y(p})) =< p1 anda(y(py)) < p2

and since parallel composition is-monotonic

= a(y(p))) I a(v(p2) = pi || P
by hypothesis

= a(y(p)) 17(Ph)) = P || P

Abstract interpretations indu@@mpositional conservative approximations.

Corollary 2.109. Let Q andQ be partially ordered agent algebras, anddebe an abstract inter-
pretation ofQ by a Galois connectiorioy,, v, ). Let (v, ;) be Galois connection between
Q'.D andQ.D. Then the following two statements are equivalent:

e Forallp’ € 9'.D,v,(p") 2 v(p).
e (o, o) is a compositional conservative approximation frghto Q.

Proof: The result follows from theorem 2.108, corollary 2.101 and theorem 2.63. O
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The inverse of the conservative approximation is again characterized as already discussed

in corollary 2.104 and corollary 2.105.
Abstract interpretations are used in program analysis because they preserve the applica-
tion of the operators from the abstract model to the concrete model. This well known result of the

theory of abstract interpretations is proved below.

Theorem 2.110. Let Q and Q' be partially ordered agent algebras, anddebe an abstract inter-
pretation ofQ by a Galois connectiofxy,, v, ). Then for all agentg,; andps in Q.D,

1. if a(py) || a(p2) is defined, them || p2 < y(a(p1) || a(p2)),
2. i proj(B)(a(p:)) is defined, theroj(B)(p1) < (proj(B)(a(p1))), and
3. if renamér)(a(p2)) is defined, themenamér)(p2) =< y(renamér)(a(p2))).

Proof: We only give the proof for the composition operator case.zg-@ndp, be agents irQ.D
such that(p) || a(p2) is defined. The desired results can be derived as follows:

a(p1) || a(p2)d
by theorem 2.108

= a(p1 || p2) 2 alpr) || a(p2)

since, by theorem 2.75,is monotonic

= y(a(p1 [ p2)) 2 v(alp1) || a(p2))
by theorem 2.76

= p1llp2 2 v(alp1 || p2) 2 v(a(pr) || alp2))
]

Corollary 2.111. Let Q and @ be partially ordered agent algebras, anddebe an abstract in-
terpretation of@ by a Galois connectioky,, vy, ). Let E be a closed expression over If
[ E[p/a(p)]]is defined, then

[E] 2~ ([ Elp/a(p)]]).
Proof: By induction on the structure of expressions, by theorem 2.110. O

Corollary 2.109 shows that abstract interpretations and compositional conservative ap-

proximations are very closely related. The two, however, serve very different purposes. Abstract
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interpretations employ a single Galois connection, and can be used to approximate the evaluation
of an expression at the concrete level by the concretization of the evaluation of the corresponding
expression at the abstract level, as shown by corollary 2.111. The abstract interpretation guarantees
that the result computed at the concrete level conforms to the one computed at the abstract level,
where, presumably, the computation is more efficient. If a propersypreserved by the refinement
relationship, then if the evaluation at the abstract level has the propgeatgo the evaluation at the
concrete level has the propergy Abstract interpretations, however, are unable to guarantee that a
positive refinement verification result at the abstract level implies a positive refinement verification
result at the concrete level. In other wordse{fp;) < a(p2), thenp; < p, is not necessarily true.
Conservative approximations, on the other hand, employ two mappings to guarantee the
above verification result. Similarly, abstract interpretations must use a second Galois connection,
that connects the abstract to the concrete domain. Corollary 2.109 gives necessary and sufficient
conditions for the pair of Galois connections to form a compositional conservative approximation,
while corollary 2.104 characterizes the inverse of the conservative approximation. Conservative ap-
proximation are however more general, since, unlike Galois connections, the mappings of a conser-
vative approximation are not required to be monotonic. Even if the mappings are monotonic, there
are conservative approximations that cannot be expressed in terms of Galois connections, since the
necessary least upper bounds and greatest lower bounds do not necessarily exist (cfr. thm. 2.97 and
thm. 2.91). We therefore view conservative approximations and abstract interpretations as related,

but complementary, concepts.

2.8 Modeling Heter ogeneous Systems

In this section we study a model of interaction for agents that belong to two different
agent algebra®; and Q,. If p; € Q; andpy € Oy, there obviously isn’'t a composition operator
defined on the paip; andp,. One may try, however, to compose the agents according to the
parallel composition of either model. This is possible, for example, if there exists a conservative
approximation from one algebra to the other, such that the inverse is defined at the agents that are
being considered. In that case, in fact, the agent can be represented exactly in both models, and we
can choose the representation that best fits our needs.

In the more general case where the inverse is not defined, we must, instead, define the
composition in terms of the operators of a third agent alg€bmhich is related taQ and Q, by
appropriate conservative approximations. We refetas a “common refinement” @ and Q..
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The algebra@ must be chosen carefully, since we must require that the inverse of the conservative
approximations be defined for the agents that we wish to compose. Note that we do not require that
the inverses also be embeddings of agent algebras, since this condition could be too strong in many
practical cases. Instead, when the inverses are not embeddings, we show that the composition that
is obtained in the more concrete model is a refinement of the composition had the inverses been

embeddings. In other words, we are simply losing some of the flexibility in the implementation.

2.8.1 Abstraction and Refinement

We have argued in section 2.6 that a single functipris not sufficient to characterize
an abstraction, and that a second function, which we caljedvas needed to identify both the
upper and lower bound of the abstraction. By doing so, we were able to determine which agents
could be representegkactly at the abstract level, which led us to the notion of the inverse of the
abstraction. Refinement, that is the notion of a correspondence that goes from the more abstract to
the more concrete agent model, is no different in our framework, and is symmetrically represented
as a pair of functions that form a conservative approximation. Thus, our notion of refinement does
not correspond exactly to the inverse of the abstraction, since, as we have noted, the inverse may
not be defined for all agents. Nonetheless, we require that if the iniedefined for some agent,
then the refinement maps are equal to the inverse. In addition, we will consider an agentdnodel
to be at ahigher level of abstraction than an agent mode&D whenever every agent i@ can be
represented exactly by an agentdn

In the following we will restrict our attention to conservative approximations induced
by a pair of Galois connections. In fact, because abstraction and refinement are symmetric, Galois
connections are particularly well behaved and make it easy to derive the tight relationship that exists
between the abstraction and the refinement functions. In particular, in the previous sections we have
considered agent algebrgsand @ related by a Galois connectigay,, v, ) from Q.D to Q'.D,
and by a Galois connectiofy;, ;) from Q'.D to Q.D. We have shown thafwy, ) forms a
conservative approximation if and only if for all € Q'.D, v, (p’) < 7 (p’) (theorem 2.100). In
addition, ifo, satisfies certain properties, then the conservative approximation is also compositional
(see corollary 2.109). It is easy to change our point of view and consider constructing a conservative
approximation from@ to Q. Observe that our hypothesis are symmetric relativ€@tand J.
Thus our previous results can be restated by simply replacing all occurrenag®yfy;, and all
occurrences ofy, by oy, and by exchanging the domains of agents. In particular, we here restate
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theorem 2.100, corollary 2.101, corollary 2.104 and corollary 2.109.

Theorem 2.112. Let Q and Q' be partially ordered agent algebras and(lef, v,,) be a Galois
connections fromQ.D to @'.D and(y;, o) a Galois connection frong.D to Q.D. Then
the following two statements are equivalent:

1. Forallagentp € Q.D, ay(p) = ay(p).
2. For all agentg; andp), in Q'.D, y,(p}) < 7u(py) = P} < ph.

Corollary 2.113. Let Q and @ be partially ordered agent algebras and(tet,v,) be a Galois
connections fromQ.D to @'.D and(y;, «y) a Galois connection fron.D to Q.D. Then
(vu, 1) is @ conservative approximation if and only if for all agepts Q.D, q(p) < ay(p)-

Corollary 2.114. Let Q and @ be partially ordered agent algebras and(tgt,v,) be a Galois
connections fromQ.D to @.D and(v,, «;) a Galois connection fror®.D to Q.D. Assume
U’ = (y,,7;) is a conservative approximation fro@ to Q. Then for all agentp € Q.D,
! . (p) is defined andl;,, (p) = p’ if and only if

mnv
o oi(p) = a(p) = p', and
e if py € Q.D is an agent such thai(p;) = ay,(p1) = p', thenp; = p.

Corollary 2.115. Let Q and @ be partially ordered agent algebras, anddebe an abstract in-
terpretation ofQ by a Galois connectiorty;, «;) from Q' to Q. Let («,,y,) be a Galois

connection betwee®.D and @.D. Then the following two statements are equivalent:

e Forallp € Q.D, o;(p) < aw(p).
e (v4,7) is a compositional conservative approximation frghto Q.

Suppose now tha® and Q' are agent algebras, and thiat= («, «,,) is a conservative
approximation from@ to @ induced by a pair of Galois connectiofts,, y,) and(vy;, ;). Corol-
lary 2.113 shows that in order faf = (v,,;) to be a conservative approximation fraghto Q
we need thaty(p) < «,(p) for all agentsp € Q.D. This condition is commonly satisfied by a
conservative approximatiofi, and simply formalizes the intuition that the lower bound of an agent
must be less than or equal to its upper bound (although, as noted earlier, this is not a necessary
condition for a conservative approximation).

Note that the inverse¥;,, and ¥’

muv

of the conservative approximations are inverse of
each other, as shown by the next result.
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Theorem 2.116. Let Q and Q' be partially ordered agent algebras and(tet, v,,) be a Galois
connections from@.D to @'.D and(;, «;) a Galois connection fror@.D to Q.D. Assume
U = (ay,q) is a conservative approximation fro® to @, and that¥d’ = (v,,v;) is a
conservative approximation fro@ to Q. Then, for allp € ©.D andp’ € Q'.D,

Uiy (p') =p & Y, (p) =p'.

Proof: The two implications are symmetric, so we will only prove the forward direction. Assume
Uinw (p') = p. Then, by definition of inverse of conservative approximatigiip) = «;(p) =
p'. In addition, by lemma 2.54, if; is such thato,(p1) = o(p1) = o', thenp; = p.
Therefore, by corollary 2.1145 (p) = p'. O

The situation is therefore the one depicted in figure 2.1, where Galois connections are
denoted by pairs of dotted arcs and by a straight arrow that indicates the direction of the connection.
The shaded region i@ corresponds to the set of agents that can be represented exa@thif ins
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Figure 2.1: Abstraction, Refinement and their inverses

region is isomorphic to the corresponding shaded regio@ wvhich consists of the agents @
that can be represented exactlydh In other words, a subset of the agents of the two semantic
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domains can be represented indifferently in either domain, while the remaining agents can only be
approximated by the other domain (i.e., their upper and lower bound do not coincide).

If @ is strictly more abstract tha@, in the sense that the agentsghcontain strictly
less information than those @, theny;,, is total (assumingl is the tightest conservative approx-
imation), and therefore, by theorem 2.58, it preserves the refinement relationship in both directions
(since Galois connections are always monotonic). In that case, the conservative approximation from
Q' to Q is essentially an embedding ¢f.D into Q.D, equipped with the respective orders, and
the shaded region i@ would extend to the whole domain.

If Q' is an abstract interpretation @, then if & = (¢, «,,) iS @ conservative approxi-
mation fromQ to Q' then¥ is also compositional. In this case, whilé = (v,, ;) may still be a
conservative approximation frod to Q, it is more difficult to have it also be compositional. This
occurs whenQ is an abstract interpretation @. However, by theorem 2.108) is an abstract

interpretation of@’ by the Galois connectiofy, ;) if and only if

n@) st = @) [195) 2wy | nps),
proj(B)(m(p1))d = m(proj(B)(p})) < proj(B)(m(p})), (2.7)
renamér)(vi(py))d = w(renamér)(p,)) < renamér)(y(py)).
In addition, by corollary 2.104, for agents € Q'.D such thaty,(p') = v(p') (and if v, and
, are jointly injective ony/), -, corresponds to the inverse conservative approximafign of

U = (oq, ). Therefore, since, by theorem 2.108, satisfies the hypothesis of theorem 2.64, for

the agent®’ such thaty, (p') = v(p'), v, also satisfies

NP )b = n®D) nps) = [ ph),
(proj(B)(p)L = proj(B)(m(p})) = n(proj(B)(p')) (2.8)
~vi(renamér)(p'))l = renamér)(y(py)) < vi(renamér)(p’)).
The conditions in equation 2.7 and equation 2.8, taken together, imply that the inverse conservative

approximation%;,, of ¥ is an embedding of agent algebras. In other wordgj,if is defined

everywhere, thel®’ must essentially be a subalgebragf

2.8.2 Interaction of Heterogeneous Models

When agentg andp’ belong to different agent algebras, we define their composition in
terms of the composition rules of either model. To do so, we require that the algebras be related
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by a pair of conservative approximations, and that the inverse of the conservative approximation be
defined.

Definition 2.117 (Co-composition). Let @ and @ be agent algebras related by conservative ap-
proximations¥ from andQ to @ and¥’ from Q' to Q induced by a pair of Galois connec-
tions. Let alsogp € Q.D andp’ € Q'.D be agents such that,, (p’) is defined. Then the
co-composition of p and p/ in the context of Q, writtenp || p’, is given by

p ng/ =p| ‘I’inv(p,)-

Note that the co-composition of agents that belong to different models is always defined
in terms of one of the two models. This is possible when an agent can be represented exactly in the
other model, i.e., when the inverse of the conservative approximation is defined. Notice that while
the abstraction ensures that the interpretatiog ahd ¥;,,, (p') is the same in the two models, the
rules for composition may be very different. In particular, the result of the co-composition computed
in @ may or may not be represented exactlydn

When the inverse of a conservative approximatigy (p') is defined at agent, thenp’
can be considerepolymorphic, in the sense that the agent can be used under different notions of
composition. This is similar to the notion of domain polymorphism introduced in the Ptolemy II
project [64]. Note how our notion of polymorphism is derived from the particular abstraction being
used. The abstraction, in other words, formalizes the interpretation that one model of computation
has of the other model. A polymorphic agent under one abstraction may no longer be polymorphic
under a different abstraction.

It is possible that both;,, (p') and ¥;,, (p) are defined. In that case the co-composition
may be carried either in the context @for in the context ofd. If the conservative approximation
is compositional, then it is possible to relate the result of these composition, as shown next.

Theorem 2.118. Let Q and Q' be agent algebras related by conservative approximatiofiem
and Q to @ and ¥’ from Q’ to Q induced by a pair of Galois connections. Assufnés a
compositional conservative approximation satisfying S1 through S3. Lepads@.D and
p' € Q'.D be agents such that,,(p') and ¥/  (p) are defined. Then, W;,,(p |lo p') is
defined,

p ng/ = Winy (p HQ’ p,)-



121

Proof: By definition 2.117,

Yin (P @ ') = Pino (Y, () || P)-

Hence, by theorem 2.64,

Yiny (Yiny (P)) | Yino (P") =X Fino (P [lor P')-

Therefore, by theorem 2.116,

Pl ino(@) =p llap" = Tino(p llor ).

O

The assumptions of theorem 2.118 imply tBats an abstract interpretation ¢f. Hence,
when the composition is carried out in the more concrete model of computation, then the result is an
implementation of the corresponding result in the more abstract model. The equality holds in case
U, IS @an embedding (see theorem 2.72).

In practice, if two semantic domaing, and Q, corresponds to two different models of
computation, it is not always clear how to construct Galois connections between them, especially if
neither one is strictly more abstract than the other. In that case, itis possible to derive the appropriate
connections if a third common refinemedtof Q; and Q- is available. For the next result, refer to

figure 2.2.

Theorem 2.119. Let Q;, Q, and Q be partially ordered agent algebras. La}, ) be a Galois
connections fronQ.D to Q;.D and (v}, ;) a Galois connection fron®;.D to Q.D and
assume thata] , o) and(v.,~!) are conservative approximations. Similarly, {ef,~2)
be a Galois connections fro@.D to Q,.D and(v?, ) a Galois connection fron®,.D to

Q.D and assume thdt, o2) and(v2,~7) are conservative approximations. Let

@ = ayonf,

Y = ajon,,

o = a oy,

’)’l = O[?LO’)’ZI.
Then

1. (o, v4) is a Galois connection from@,.D to Q;.D and(v;, ;) is a Galois connection
from Q;.D to Q,.D.
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,//‘al

Figure 2.2: Determination of relations through common refinement

2. (aq, ) Is @ conservative approximation fro@ to Q; and(,,y;) is a conservative

approximation fromQ; to Qs.

Proof: Item 1 follows easily from theorem 2.79. For item 2,pete ©,.D be an agent. Then,

and sincex? is monotonic, by corollary 2.101,
< ag(v (p)
= (p1).
Therefore, by corollary 2.101¢y, o) is a conservative approximation fro@ to Q;. The

proof that(vy,, ;) is a conservative approximation fro@ to Q- is similar. O

The relationship between the agent&nand the agents i@, is embodied by the derived
conservative approximations between the two models. Notice that, in particular, this relationship



123

depends on the conservative approximations that are used to etz O, in their common
refinement. If we choose a different refinement, or if we choose a different conservative approxi-
mation into the same refinement, the relation betw@emnd Q- will likely change. This is not
surprising, as the interaction between agents that belong to different models ultimately depends on
the implementation strategy, as already discussed in section 1.3.

The above construction is also useful in case the inverse is not defined on the agents
of interest when considering conservative approximations that directly relate the two models of
computation@; and Q,, but it is defined relative to the common refineméht In this case, the
parallel composition can only then be understood in the conteg.oft is possible, however, to
relate the result back to the initial domains.

As an example, consider the problem of composing the two agerst<; andp, € Qs
depicted in figure 2.3. Here we assui@e Q; and Q, are related by conservative approximations
! from Q to Q; and¥? from Q to Q,, and such thap;, = ¥l (p}) andp, = 2, (p}) are both

mo mo

defined. Becausg, andp, belong to the same semantic domain, we can obtain their composition

p = p1 || pe.
Ql Q2 p/
o Pl o2
[ ] qll L4 qé
\I/zlnv(pll)
‘I/&((h)
w2, (ph) 3 (g2)
P _eD2
b1 '
- e
a q2

Figure 2.3: Heterogeneous composition in common refinement

We now want to reflect the effect of this composition back to the higher levels of ab-
straction. To do so, we consider the miningal< p; andg¢, =< po such that the composition of
¢q1 andgs is p (minimality is intended with respect to the agent ordering). These objects represent
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the behaviors op; andp, that are mutually compatible and concur in creating a behavior of the
compound objecp. In other wordsg andgs represent the behaviors of andp, as constrained

by the composition. These agents exist in many practical cases, and in particular they exist for the
trace-based agent algebra models described later in chapter 4. In thag casproj(«(p:1))(p)

andgs = proj(a(p2))(p). The abstractiong, = ¥, (¢q;) andg, = ¥2(q) represent at the higher

level of abstraction the constrained behaviors that are due to the effect of the composition. This
technique is therefore interesting when one agent modelgs#&s/a model of behaviors, while the

other agent model, sads, is a performance model. The net effect is therefore that of the constraint
propagation from one model to the other.

The result of applying this procedure is not to obtain a new compound object, as such an
object might not be defined in eith&; or Q5. Instead, we obtain in each domain the restricted
behavior that is caused by the existence of an interaction. The particular effect of the interaction can
only be understood at a lower level of abstraction that can talk about both models at the same time.
Hence the composition is not only dependent upon the definition of compaosition at the lower level,
but also on the particular process of refinement employed to derive the new model.

An alternative technique consists of considering the maximal agent ©Q such that
q1 || p2 = p1 || p2. The solution forg is an instance of the local specification synthesis problem, to
be described in section 3.4. Intuitively,in this case represents the flexibility for implementing
In other words, more behaviors, which are incompatible withnd therefore are not observed in
the composition, may be added, without altering the result. At the abstractigyel) represents
the flexibility for p!, or its “behavioral don'’t cares”. By doing so, it is possible to find alternative
implementation for the agents in the system that may prove more optimal relative to a cost function.

2.8.3 A Hierarchy of Models

Theorem 2.119 gives us a way to compute a conservative approximation between two
models starting from their relation to a third common domain. Note however that the assumptions
of theorem 2.119 do not imply that the common semantic dor@are necessarily a “refinement”
of the other two, as figure 2.2 implies. That is, a common “abstraction” could also be employed to
compute a set of derived Galois connections, and therefore a pair of conservative approximations,
between two semantic domains. This provides us a way of organizing different models into a hier-
archy, and of checking the consistency of the relations that exist between the various models in the
hierarchy, by transitively applying the construction described in theorem 2.119.
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More specifically, each application area must be equipped with the set of models of com-
putation that best support the design methodology and the formal technigues that are most appropri-
ate for the design and verification process. Several of these models can then be directly connected
by relations of abstraction and refinement, as depicted by the solid lines shown in figure 2.4. That is,
we assume that these direct connections are conservative approximations whose inverse is always
defined, thus clearly establishing a containment relation in terms of the information embodied by
each model. These relations also establish an order on the set of models, which becomes a lattice
structure whenever a greatest (more abstract) and a least (more concrete) model exist for the specific

application area.

_—7

- B
C . /
\ D

Figure 2.4: A lattice of models

The levels of abstraction of models of computation thatatelirectly related are incom-
parable, in the sense that each model is able to express information that the other ignores, and vice
versa. Nonetheless, these models can be related by conservative approximations, whether they are
established a priori by the designer, or whether they are derived from existing connections. Note
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also that these relations can be derived using different abstractions and refinement paths. For exam-
ple, the relation between the semantic domdsandC in figure 2.4 denoted by the dashed line

can be obtained by way of either the common abstractiasr the common refinemer®. Since

the common refinemer? is able to express more information than the common abstradtjdine
approximationd' p, derived fromD will necessarily bestronger than the approximatiod, derived

from A. However, the two approximations cannot be arbitrarily different. If the existing approx-
imations do not contradict each other, thén must be a looser approximation tham,, in the

sense of theorem 2.61. In fact, we say that a hierarchy of modetméstent if the conservative
approximations between any pair of two models (whether the approximations are derived or not)
are related by a looser or tighter relationship. A consistent hierarchy of models essentially ensures
that the relations between the models interpret abstraction and refinement of the agents in the same
way.

Note also that hierarchies of models are not immutable or fixed. Different application
areas require different models, and therefore different hierarchies. Even when they employ the same
models, there might be differences in the implementation strategies. That means that abstraction and
refinement may be interpreted differently in different application areas, and therefore give rise to

different hierarchies.

2.8.4 Modd Trandations

Consider the configuration of agent algebras depicted in figure 2.1 sucl@tigfn
abstraction of@ by a conservative approximatioh induced by a pair of Galois connections, and
such thaty;,, is defined for all agents i@'. Since, in this case, all agents @f can be represented
exactly inQ, it is straightforward to consider the heterogeneous composition in the contéxt of

The co-composition in the opposite direction is more problematic. Assume in particular
thatp € Q.D is an agent such that,(p) # ¥;(p). In that casep is not represented exactly @,
or, to put it another wayp is not polymorphic relative to the chosen domains. There are different
ways to get around this problem, and they mainly consist of encapsujatising a translator that
does make the combination polymorphic. This is, for example, the technique used in the Ptolemy Il
framework, where an intermediate director compatible with the agent is used to mediate the com-
munication between the agent that is not polymorphic, and the domain in which the designer wishes
to use it.

Translations in our framework take the form of closure or interior systems. We have
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already seen that a conservative approximafios (¥, ¥, ) determines for each agent the equiva-

lence classes of the agents that have the same upper bound and the same lower bound, respectively.
Theorem 2.59 shows that if the inverse of a conservative approximation is defined for ag,agent
then;,, (p') is at the greatest and least element, respectively, of these equivalence classes. Itis easy
to show when the upper and lower bound are monotonic functions, then these elements constitute a

closure and an interior for the elements of their respective equivalence classes.

Theorem 2.120. Let Q and Q' be partially ordered agent algebras anddet= (¥, ¥,) be a
conservative approximation fro@ to @ such that¥; and ¥, are monotonic andy;,, is
defined for all agentg’ in Q. LetC,I: Q.D — Q.D be operators of defined as

C(p) = \Ijinv(\pu(p))a
I(p) = iy (Ti(p))-

ThenC is a closure operator, arfdis an interior operator.

Proof: To prove that” is a closure operator we must show that for all agengs, p, € Q.D,

Monotonic  p; <X py = C(p1) < C(p2).
Increasing  p < Ui, (Wy(p)).
Idempotent C(C(p)) = C(p).

It is easy to show tha€’ is monotonic, sincel, is monotonic by hypothesis, an#,,, is
monotonic by theorem 2.58. In additio@) is increasing by theorem 2.57. Finally, for all
agentsp, sincey, is inverse of¥;,,,, ¥, (Vin, (Vy(p))) = Wu(p). ThereforeC is also idem-
potent.

The proof thatl is an interior operator is similar, and it implies showing tfhas

decreasing. O

The hypothesis of theorem 2.120 also imply, by theorem 2.106{tha¥;,,,, ) is a Galois
connection fromQ to @ and that(¥;,,,, ¥;) is a Galois connection fro@ to Q.

The closure and the interior operator essentially “complete” an agent in order to make
it compatible with the requirements of the abstract domain. The closure produces an abstraction
within @ by choosing the greatest element of the equivalence class induc&dthys potentially
“adding” behaviors that are required by the abstract domain. The interior, on the other hand, com-

putes a refinement i@, by choosing the least element of the equivalence class inducégd ayd
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thus “removing” behaviors that are incompatible with the abstract domain. Other forms of comple-
tion are also possible. We do not however explore them further here, and reserve them for our future

work.

2.8.5 Platform-Based Design

The framework that we have presented is useful to formally describe the process of suc-
cessive refinement in a platform-based design methodology. There, refinement is interpreted as the
concretization of a function in terms of the elements of an architecture. The process of design con-
sists of evaluating the performance of different kinds of architectures by mapping the functionality
onto its different elements. The implementation is then chosen on the basis of some cost function.

Both the functionality and the architecture can be represented at different levels of ab-
straction. For example, an architecture may employ a generic communication structure that includes
point-to-point connections for all elements, and unlimited bandwidth. On a more accurate level, the
communication structure may be described as a bus with a particular arbitration policy and limited
bandwidth. Similarly, the functionality could be described as the interconnection of agents that
communicate through either unbounded (more abstract) or bounded (more concrete) queues.

In order to characterize the process of mapping and performance evaluation, we use three
distinct semantic domains. Two domains, called ahehitecture platform and thefunction plat-
form, are devoted to describing the architecture and the function, respectively. The third, called the
semantic platform, is an intermediate domain that is used to map the function onto an architecture.

An architecture platform, depicted in figure 2.5 on the right, is composed of a set of
elements, called tHebrary elements, and ofcomposition rulesthat define the admissible topologies.

In order to obtain an appropriate domain of agents to model an architecture platform we start from
the set of library elements. We then construct the free algebra generated by the library elements
by taking the closure under the operation of composition. In other words, we construct all the
topologies that are admissible by the composition rules, and add them to the set of agents in the
algebra. Thus, each agent in the architecture platform algebra, cajatferm instance, is a
particular topology that is consistent with the rules of the platform. This construction is similar to

a term algebra, subject to the constraints of the composition rules. For most architecture platforms
the composition must be constrained, since the number of available resources is bounded. For
example an architecture platform may provide only one instance of a particular processor. In that
case, topologies that employ two ore more instances are ruled out.
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Figure 2.5: Architecture and Function Platforms

Similarly to the architecture platform, the function platform, depicted in figure 2.5 on the
left, is represented as an agent algebra. Here the desired function is represented denotationally,
as the collective behavior of a composition of agents. However, unlike the architecture platform
which is used to select one particular instance among several, the function is fixed and is used as the
specification for the refinement process.

The specification and the implementation come together in an intermediate algebra, called
the semantic platform. The semantic platform plays the role of the common refinendgeof fig-
ure 2.2, and is used to combine the properties of both the architecture and the function platform.
In fact, the function platform may be too abstract to talk about the performance indices that are
characteristic of the more concrete architecture, while at the same time the architecture platform is a
mere composition of components, without a notion of behavior. In particular, we assume that there
exists a conservative approximation between the semantic platform and the function platform, and
that the inverse of the conservative approximation is defined at the function that we wish to evaluate.
The function therefore is mapped onto the semantic platform as shown in figure 2.6. This mapping
also includes all the refinements of the function that are consistent with the performance constraints,
which can be interpreted in the semantic platform.

The correspondence between the architecture and the semantic platform is more complex.

A platform instance, i.e., an agent in the architecture platform, usually includes programmable
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Figure 2.6: Mapping of function and architecture

elements (microprocessors, programmable logic) that may be customized for the particular function
required. Therefore, each platform instance may be used to implement a variety of functions, or
behaviors. Each of these functions is in turn represented as one agent in the semantic platform. A
platform instance is therefore projected onto the semantic platform by considering the collection of
the agents that can be implemented by the particular instance. These, too, can be organized as a
refinement hierarchy, since the same function could be implemented using different algorithms and
employing different resources even within a particular platform instance. Note that the projection
of the platform instance onto the semantic platform, represented by the rays that originate from the
architecture platform in figure 2.6, may or may not have a greatest element. If it does, the greatest
element represents the non-deterministic choice of any of the functions that are implementable by
the architecture.

An architecture and a function platform may be related using different semantic plat-
forms, and under different notions of refinement. The choice of semantic platform is particularly
important. The agents in the semantic platform must in fact be detailed enough to represent the per-
formance values of interest in choosing a particular platform instance, and a particular realization
(via programmability) of the instance. However, if the semantic platform is too detailed, the corre-
spondence between the platform instance and its realizations may be impractical to compute. This
correspondence is therefore usually obtained by estimation techniques, rather than by analytical
methods.

The semantic platform is partitioned into four different areas. We are interested in the
area that corresponds to the intersection of the refinements of the function and of the functions
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that are implementable by the platform instance. This area is marked “Admissible Refinements” in
figure 2.6. In fact, the agents that refine the function, but do not refine the architecture, are possible
implementations that are not supported by the platform instance. The agents that refine the platform
instance, but not the function, are possible behaviors of the architecture that are either inconsistent
with the function (they do something else), or they do not meet the performance constraints. The
rest of the agents that are not in the image of any of the maps correspond to behaviors that are
inconsistent with the function and are not implementable by the chosen platform instance.

Among all the possible implementations, one must be chosen as the function to be used
for the next refinement step. Each of the admissible refinements encodes a particular mapping of
the components of the function onto the services offered by the selected platform instance. Of all
those agents, we are usually interested in the ones that are closer to the greatest element, as those
implementations more likely offer the most flexibility when the same refinement process is iterated
to descend to an even more concrete level of abstraction. In addition, several different platform
instances may be considered to search among the different topologies and available resources and
services.

Once a suitable implementation has been chosen, the process continues with the next
refinement step. The new function platform is obtained as the combination of the semantic platform
that provides information on the desired behavior, and the architecture platform, which provides
information on the topology and the structure of the mapped implementation. The new function
is then mapped to a new architecture, employing the same device of a semantic platform as an

intermediate domain.



132

Chapter 3

Conformance, Mirrorsand L ocal
Specification Synthesis

This chapter is devote to studying the problem of refinement verification in general, and
the problem of local specification synthesis in particular. The techniques that we present here are a
generalization to agent algebras of the corresponding concepts introduced by Dill for asynchronous
trace structures [34]. By abstracting the notion of an agent, our definitions are based on more
fundamental properties of models of computation. Our results therefore provide more insights on the

interplay between the ordering on the agents, the notion of compatibility and its maximal elements.

In this chapter we show that the order of an agent algebra can often be characterized in
terms of substitutability as eonformance relation. We introduce the definition of a conformance
order by considering the effect of substituting an agent for another agent in every possible con-
text. We parameterize the notion of substitutability using a set of agents, caltedficamance set.
Conformance can be used to verify the order relationship between agents. In this chapter we also
introduce the notion of thairror of an agent, which, together with a conformance order, reduces
the task of refinement verification to computing a parallel composition and checking membership
with the conformance set. The relationship between mirrors and conservative approximations is

also illustrated here.

The conformance order and the mirror function are used in agent algebras to formulate
and to solve the problem of synthesizing a local specification subject to a context. This construction,
which is independent of the particular agent algebra considered, is useful in developing synthesis
techniques, as already discussed in section 1.3. The solution to the problem requires that the context
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expression be presented in a particular normal form. We show that under certain conditions every
expression can be transformed into an equivalent expression in this form. The normal form is

useful to deal with systems specified as complex interaction of hierarchies, as it allows flattening

the system to a single parallel composition. The normal form is also important for obtaining closed

form solutions to equations involving expressions on agents.

3.1 Expression Equivalence and Normal Forms

In this section we define what it means for two agent expressions to be equivalent and
prove that every expression can be transformed into an equivalent expression in a specific (normal)
form.

We say that two expressions are equivalent if they have the same value for all possible
assignments.

Definition 3.1 (Expression Equivalence). Let Q be an agent algebra. Two expressidiisand
E5 over Q are equivalent, writte®; = F5, if and only if for all assignments, [ F; o =
[E2]o.

In particular the above definition implies that if two expressions are equivalent then they
are defined or undefined for exactly the same assignments. Notice also that because equivalence
depends on the evaluation of the expression, two expressions may be equivalent relative to one agent
algebra and not equivalent relative to another agent algebra. In other words, expression equivalence
depends on the particular choice of underlying agent algebra.

Sometimes it is convenient to consider only a subset of the possible assignments. In that
case we talk about equivalence modulo a set of assignmknts

Definition 3.2 (Expression Equivalence modulo ¥'). Let 3’ be a set of assignments. Two ex-
pressionsE; and E, are equivalent modul®&’, written E; =y Es, if and only if for all
assignments € X, [ E1]o = [ Ez]o.

We state the following results for expression equivalence only, but they extend to expres-
sion equivalence modul®y in a straightforward way.

Lemma 3.3. Expression equivalence is an equivalence relation.

Because the semantics of expressions is syntax directed, the value of an expression de-
pends only on the value of its subexpressions. Hence
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Theorem 3.4. Expression equivalence is a congruence with respect to the operators of the agent
algebra.

Proof: We show that ifE; and E, are two agent expressions such tliat = E,, then for all
alphabetsB, proj(B)(E1) = proj(B)(E,). The cases forenameand || are similar. The
proof consists of the following series of implications:

FEi=FEy
by definition 3.1
< forall assignments, [ By ]Jo =[ Ez]o
= for all assignments, proj(B)([ E110) = proj(B)([ E2]0)
by definition 2.46
< for all assignments, [ proj(B)(E1)]o = [ proj(B)(Ez) o
by definition 3.1
& proj(B)(E1) = proj(B)(Ez)
U

Lemma 3.5. Let E be an agent expression andf&be a subexpression . If £ = E’ for some
E' thenE = E', whereE! is obtained from¥ by replacingF with £,

Proof: The proof is by induction on the structure bf O

Equivalence is useful when we need to transform an expression into a form that is con-
venient for certain applications. In that case, we want to make sure that the transformations do not
change the meaning (the semantics) of the expression. In this work we are particularly interested in
a form where rename operator is applied first, then followed by the parallel composition operator,
and finally by the projection operator. We call this the RCP normal form.

Definition 3.6 (RCP Normal Form). Let Q be an agent algebra and tbe the set of expressions:
Eo={p:pecQD}U{v:veV}

An agent expressioR is said to be in RCP (i.e., rename, compose, project) normal form if it
is of the form

E = proj(A)(renamér)(E.) || - - - [| renaméry)(En))
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whereA is an alphabet;, ..., r, are renaming functions anfd, . . . , £, are expressions in
&o.

The RCP normal form is similar to the normal form Dill defined for circuit algebra expres-
sions [33]. In our case, however, we have extended the definition to expressions involving variables.
This normal form corresponds to flattening the hierarchy: all agents are first instantiated using the
rename operator, and are subsequently composed in parallel to form the entire system. The final
projection is used to hide the internal signals.

Other normal forms are also possible. In the rest of this section we will however con-
centrate on the RCP normal form, since we will need it to solve inequalities for variables in the
application shown in section 3.4. In particular, we are interested in sufficient conditions that an
algebra must satisfy in order for all expressions to have an equivalent RCP normal form. We will
approach this problem in steps of increasing complexity. First we will consider expressions that
do not involve variables, i.e., closed expressions. In that case, the expression is either defined or
undefined, a condition that greatly simplifies the search for the normal form. As a second step, we
will consider expressions where variables can only be assigned agents with a specific alphabet and
that always make the expression defined or not defined. This is a case that is interesting in practice,
and that does not require the stronger conditions of the general result. Finally we will explore a set
of restrictions that are needed to obtain an equivalent normal form in the general case. We will see
that alphabets again play a major role, and that they must be restricted in order for the appropri-
ate renaming functions and projection operators to exist. All of this is formalized in the following

definitions and results.

Definition 3.7 (Closed-Normalizable Agent Algebra). Let @ be an agent algebra. We say that
Q is aclosed-normalizable agent algebra if the renaming, projection parallel composition
operators satisfy the axioms given below, wherandy/ are elements oD and A = «a(p)
andA' = a(p').

A8. If renamér)(p) is defined, then itis equal t@namér |,_,, ) (p)-

A9. renamér')(renamér)(p)) = renamér’ o r)(p), if the left hand side of the equation

is defined.
A10. If proj(B)(p) is defined, then it is equal foroj(B N A)(p).

A11. proj(B)(proj(B')(p)) = proj(B N B')(p), if the left hand side of the equation is
defined.
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A12. If renamér)(proj(B)(p)) is defined, then there exists a functidrsuch that

renamér)(proj(B)(p)) = proj(r'(B))(renamér’) (p)).

A13. If proj(B)(p) is defined, then there exists a functiosuch that:(A) N A C B and

proj(B)(p) = proj(B)(renamér)(p))-

Al4. renamér)(p | p') = renamér |,_,. 4))(p) || renamér |, 1) (p'), if the left hand
side of the equation is defined.

A15. proj(B)(p || p') = proj(B N A)(p) || proj(B N A')(p'), if (AN A') C B.

The axioms formalize certain assumptions regarding the semantic domain. In particular
they formalize the intuition that the renaming operator should only depend on the value of the
renaming function for the signals actually used by the argument, and that consecutive applications of
the renaming operator are equivalent to a single application with the appropriate renaming function.
Similar consideration apply for projection. Al12 states that rename and projection commute when
the retained set and the renaming function are changed appropriately. Also, Al14 states that rename
commutes with parallel composition, and A15 states a similar property for projection. Note that
projection commutes with parallel compaosition only if the common signals between the agents being
composed are retained after the composition. This is necessary, or else the expression on the right
hand side of the equation would lack the necessary information to compute the full synchronization
between the agents. Finally, A13 asserts that it is possible to arbitrarily rename the signals of an
agent that are not retained in a projection. This is essential to avoid conflicts of names when applying
A15 from right to left, in order to make the “local” signals of each of the agents unique.

The axioms can be used to algebraically transform an expression into an equivalent RCP
normal form, as the next result shows. Technically, since we are considering only sufficient and not
necessary conditions, the temrmalizable should apply to all agent algebras whose expression
can be put in RCP normal form, whether or not they satisfy the axioms. In practice, we restrict
our attention to only algebras that do satisfy the axioms for the purpose of normalization, and we
therefore use the term to distinguish them from those that do not. We will continue to use this
convention for the rest of this document, including the more general cases of normalizable agent

algebras.

Theorem 3.8 (Normal Form - Closed Expressions). Let Q be a closed-normalizable agent alge-
bra, and letF be a closed expression ov@r ThenkFE is equivalent to an expression in RCP

normal form.
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Proof: Let E be a closed expression. H is undefined, therE is equivalent to any undefined
closed expression in RCP normal form. Af is defined, then we construct an equivalent

closed expression in RCP normal form by induction on the structure of expressions.

e AssumeFE = p for some agenp € Q.D. ThenE = proj(A)(renaméid4)(p)) by A4
and A2.

e AssumeE = proj(B)(E1). Then, by induction,E; is equivalent to an expression

= proj(B')(renaméry)(p1) || - - - || renaméry,)(p,)) in RCP normal form. Then
E = proj(B)(proj(B')(renaméry)(p:) | - - || renaméry)(pn)))
By A1l
= proj(B N B')(renaméry)(p1) || --- || renaméry)(pn))

which is in RCP normal form.

e AssumeE = renamér)(E;). Then, by inductionE; is equivalent to an expression

= proj(B)(renaméry)(p1) || - - - || renaméry,)(p,)) in RCP normal form. Then

E = renamér)(proj(B)(renaméry)(p1) || --- || renamér,)(p.)))

By A12 there exists a renaming functi@nsuch that
= proj(r'(B))(renamér’)(renaméry)(p1) | - - || renaméry) (pn)))
By A6, A14 and A3
= proj(r'(B))(renamér’ |, 4,y (r,(a,)) (rENAMETL)(p1)) | - -~
| renamér’ |, a.) rrira (4n) (rENAMET,) (pr))
By A9
= proj(r'(B))(renamér’|,. 4, v, (a1 © 1) (1) | -+

| renamfér | )= (7 (An)) © ™n)(Pn))
which is in RCP normal form.

e AssumeFE = E; | E». Then, by inductionf; is equivalent to an RCP normal form
E{ = proj(By)(renaméry1)(p11) || - - - || renaméry1)(pn1)) and Es is equivalent to
an RCP normal fornk!, = proj(Bs)(renamériz)(pi12) || - - - || renamér,2) (pn2)). Let
A, be the alphabet of expressid@ such thatE] = proj(B;)(E{). We can assume,
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without loss of generality, tha®;, C A; andBy C A,. By Al3 there exists a function
r1 such thatr (Al) N A, C By and

proj(B1)(EY) = proj(B:)(renaméry)(EY)).
Similarly, there exists a function, such that(As) N (4; Uri(A;)) € By and
proj(Bs)(E3) = proj(Bs)(renamérz)(E3)).

By A10

proj(B1)(EY) = proj(Bi Nri(Ay))(renamér,)(EY))
proj(B;)(Ey) = proj(By Nra(Ay))(renaméry)(E5))

Note that since (A4;) N A C By, and sinceBy C Ay, alsory(A;) N By C By. Thus
alsor; (Al) NBy C BN 7‘1(141). Hence

(B1 U Bg) N 7‘1(141) = (Bl N 7“1(A1)) U (B2 N 7“1(A1)) =B N ’r'l(Al).

Likewise, sincers(As) N (A1 Ur1(Ay)) C By, alsore(As) N Ay C By and therefore
’)”2(14.2) N B; C Bs. ThLIS’I“Q(AQ) NBy C BN ’)”2(14.2). Hence

(Bl U Bg) N ’)”2(142) = (B1 N ’I“Q(Ag)) U (B2 N ’I“Q(AQ)) = Bg N ’)”2(14.2).

Thus we have

proj(B1)(EY) = proj((By U B2) Nr1(A1))(renaméry)(EY))
proj(Bs2)(EYy) = proj((By U B) Nra(Asz)) (renamérs)(EY))

Moreover, sinces(As) N (A1 Uri(Ay)) C Be, we also have,(As) Ny (A1) C Be,
SO thatTg(AQ) N 7‘1(141) C By U By. Hence by Al5

proj(B1)(EY) || proj(Bz)(Ey) =
= proj((B1 U By) Nri(Ay))(renamér)(EY)) |
proj((By U By) Nry(Az))(renamérs) (EY))
= proj(B; U By)(renamér,)(EY) | renaméry)(EY))
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By A9 and A6
renamér,)(E}) = renaméry o r11)(p11) || - - - || renaméry o r,1 (pn1)
renamér,)(EY}) = renamérs o r12)(p12) || - - - || renamérs o rp2(pn2)

which proves the result.
U

If we consider an expression that involves variables, the axioms of agent algebras and the
axioms of definition 3.7 may not be sufficient to ensure the existence of an equivalent normal form.

Consider, for example, the expression
E=w.

We must find a renaming functionand an alphabeB such that
E = proj(B)(renamér)(v)).

The axioms are insufficient for two reasons. In the first place, A4 and A2 ensure the existence of an
appropriate renaming functianand alphabeB for each agent. However, the algebra must be such
thatthe same renaming functiorr and alphabeB can be used to construct an equivalent expression

for all agents (or, at least, for the subset of agents that are assigng¢d The same is true of all

the axioms that for all agents dictate the existence of a certain renaming function or alphabet. To
make the algebra normalizable, the order of the quantifiers of these axioms must be exchanged, thus
strengthening the requirements.

Secondly, we have dealt with the problem of definedness in theorem 3.8 by deriving a
different normal form, according to whether the original closed expression is defined or not. How-
ever, unlike a closed expression, an expression may be defined or not defined depending on the
assignment to its variables. To ensure equivalence, we must find an expression in normal form that
is defined and not defined for exactly the same assignments. In the particular case above, since the
expression = v is defined for all possible assignmentsustove must find a renaming functiaon
and an alphabe® such thaproj(B)(renamér)(v)) is also always defined. Consequently, we must
strengthen the axioms in two ways: by first requiring that the equalities that occur in the axioms are
valid whether or not the left hand side is defined; and by introducing additional assumptions on the
definedness of the operators to ensure the existence of the normal form.
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However, one case that requires minimal strengthening of the axioms, and that is of great
practical interest, is when variables are always assigned agents with the same alphabet, and such

that the expression is always defined or always not defined. This is, for instance, the case in [33].

Definition 3.9 (Alpha-Normalizable Agent Algebra). Let Q be a normalizable agent algebra.
We say thatQ is alpha-normalizable if the renaming, projection and parallel composition

operators satisfy the following axioms:

A16. For all alphabetsi there exists a renaming functiehsuch that for all agents such
thata(p) = A, if renamér)(proj(B)(p)) is defined, then

renamér)(proj(B)(p)) = proj(r'(B))(renamér’) (p)).

Al7. For all alphabetsA there exists a renaming functiensuch that for all agents such
thata(p) = A, if proj(B)(p) is defined, them(A4) N A’ C B and

proj(B)(p) = proj(B)(renamér)(p))-

Note that, as in definition 3.7, the axioms are stated directly in terms of the operators and
the agents of the algebra. However, by theorem 3.4, they can be used with expressions whenever
every evaluation (possibly restricted to a set of assignmeptd the expressions involved satisfies
the requirements of the axiom. In that case, the equality must be replaced by equivalence (possibly
moduloX’). This remark applies especially to the proofs of theorem 3.10 and theorem 3.16 below.

Theorem 3.10 (Normal Form - Same Alphabet). Let Q be an alpha-normalizable agent algebra.
Let E be an expression ov&} and letY) be a set of assignments such that fooall, € Y/,
[ E]loil if and only if [ E]o2| and for all variables), a(o1(v)) = a(o2(v)). ThenE is
equivalent moduld@’ to an expressio®’ in RCP normal form.

Proof: The proofis similar to the proof of theorem 3.8. In fact, the transformations in the induction
are the same and equally valid for every assignment (subject to the restrictions set forth in the
statement of the theorem) and therefore preserve the evaluation of the expression no matter

what agents replaces the variables. O

In general, an equivalent RCP normal form for an expression that involves unrestricted

variables and quantities does not exist. To see why, consider the following expréssion

E = proj(B)(p) || v-



141

To normalize this expression we must rengwred that the signals that are in its alphabet and that
are not inB do not conflict with the signals in. The alphabet of however depends on its assigned
value. Thus, if we assume that for each signal in the master alpléabkthere is an agent that
has that signal in its alphabet, then there exists no renaming function with the above property. One
could avoid conflicts by renamingby folding the master alphabet into a subset of itself (this can be
done only if the master alphabet is infinite), thus making the extra signals availapleHowever,
in general this changes the meaning of the expression (sinocg appears renamed without being
guarded by a projection), thus making it difficult to obtain an equivalent expression.

One could of course require that projection and parallel composition always commute.
That, however, would not only unduly restrict the kinds of models of computation that can be
studied as agent algebras, but, more importantly, would be contrary to the intuitive interpretation
of the operations. Therefore, in the absence of conditions specific to particular agent algebras, we
must restrict the extent of the alphabets that are used in the expression and in the assignments to the
variables.

In the rest of this section we present sufficient conditions for the existence of an equivalent
RCP normal form for expressions involving variables. In particular, we are looking for restrictions
on the alphabet of agents while still maintaining full generality. This can be achieved by restricting
the use of the master alphabet to only a subset of the available signals, as long as the subset has
the same cardinality as the whole and still leaves enough signals available for the operations of
renaming. As a consequence, the equivalence will be modulo some set of assighhtaats
satisfies the restrictions.

In what follows we will make use of the following lemmas and definitions.

Lemma3.11. Let Q be an agent algebra. L&; and E be two expression ovap and. a set of
assignments such th&} =y Es. Thena([ E1 1Y) = o[ E21Y).

Proof: Leta € o[ E1]1¥'). Then there exists an assignment ¥ such that [F; ]o = p and
a € a(p). But sinceE; =5y Fs, then also [F> ]o = p. Thereforea € o[ E2]%'). The
reverse direction is similar. O

Definition 3.12 (Small Subset). Let W be a set and leB be a subset of. We say thatB is a
small subset o7/, written B € W, if:

e W is infinite.
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e The cardinality of the complemefY — B is greater than or equal to the cardinality of
B.

Lemma3.13. Let X andZ be sets such thaf € Z. Then there exists a sEtsuchthatY € Y &
Z.

Proof: LetY; andY; be two subsets af — X of the same size such thdat— X = Y] U Y5, and
letY = X UY;. SinceZ — X isinfinite,|Y1| = |Y2| = |Z — X|. Since|Z — X| > | X|, also

|Y1| > | X|. ThereforeX € Y.
SinceX €Y, |X| < |Y;|. Therefore, sinc& = X UY, |Y| = |Y;|. Therefore
also|Yz| = |Y|. HenceY € Y U Y, = Z. O

We now have the vocabulary to state and prove the main result of this section.

Definition 3.14 (Normalizable Agent Algebra). Let Q be an agent algebra. We say thatis
anormalizable agent algebra if the renaming, projection and parallel composition operators

satisfy the following axioms:

A18. For all alphabetsA there exists an alphabé& such thatd C B and for all agent®
such thatu(p) C A

p = renaméidg)(p).

A19. For all alphabets3 and agentg and for all alphabetst such thatv(p) N A’ = 0
proj(B)(p) = proj(B U A')(p).

A20. For all alphabetd$3 andB’, and for all agentg
proj(B)(proj(B')(p)) = proj(B N B')(p).

A21. For all renaming functions; andry and for all agentg
renamér,)(renamérs)(p)) = renaméry o r2)(p)

where for all signals:,

(r1 0 r2)(a) { rura{a)) T rirala))y

T otherwise.
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A22. For all renaming functions and for all alphabet® there exist renaming function's
andr” such that for all agents

renamér)(proj(B)(p)) = proj(r'(B))(renamér”)(p)).

A23. For all alphabets3, for all alphabetsA and for all alphabets! such that/(Q..A —
A") — B| > |A — B| there exists a renaming functiersuch that:(4) N 4 C B and
for all agentg such thaix(p) C A

proj(B)(p) = proj(B)(renamér)(p)).

A24. For all renaming functions and for all agentg, andps
renamér)(p; || p2) = renamér)(p,) || renamér)(p2).

A25. For all alphabetd3 and for all agentg; andp, such thaix(p;) N «a(p2) C B
proj(B)(p1 || p2) = proj(B)(p1) || proj(B)(p2).

The axioms of normalizable agent algebras are essentially equivalent to those of defi-
nition 3.7 for closed-normalizable algebras. They differ in the way alphabets and variables are
handled.

It is easy to show that A19 is equivalent to a similar form that involves restricting the
retained alphabet, rather than extending it.

Lemma3.15. Let Q be a normalizable agent algebra. Then the following two statements are equiv-

alent.

1. Q satisfies A19, i.e., for all alphabei® and agentg and for all alphabetsf such that
a(p) NA" =10

proj(B)(p) = proj(B U A')(p).
2. for all alphabets3 and agentg and for all alphabets! such thaix(p) C A’

proj(B)(p) = proj(B N A')(p).
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Proof: For the forward implication, assume item 1 is true. Bebe an alphabep an agent and!
an alphabet such that(p) C A'. LetK = BN A"andJ' = B — A’. Then

a(p) C A’
sinceJ’ NA =0
s ap)nJ =0
by item 1
= proj(K)(p) = proj(K U J')(p)
& proj(BnA')(p) = proj(Bn A') U (B — A"))(p)
< proj(Bn A')(p) = proj(B)(p)

For the reverse implication, assume item 2 is true. Rdte an alphabet; an agent and{
an alphabet such that(p) N A’ = (). Let K = BU A" andJ' = a(p) U B. Then

a(p) € J'
by item 2
= proj(K)(p) = proj(K n.J')(p)
< proj(BU A')(p) = proj((BU A') N (a(p) U B))(p)
& proj(BU A)(p) = proj((BNa(p)) U(BNB)U (A Nnalp)) U (AN B))(p)
sinceBNa(p) C B, A Na(p) =0andA’'NB C B
& proj(BU A')(p) = proj(B)(p)

O

The following theorem shows that in a normalizable agent algebra any expression can be
turned into an equivalent expression in RCP normal form when enough signals are available. The
notation is simpler if we assume that the expression does not contain constants. This assumption is
without loss of generality, since the case when an expression contains constants can be obtained by
representing the constants with unique variables and by considering only assignments that assign

the corresponding constant to the variables.

Theorem 3.16 (Normal Form). Let @ be an agent algebra such th@tA is infinite, and letE
be an expression ové? that does not involve constants. Létbe a set of assignments and
W C Q.A be an alphabet such thaf[ sub(E)]Y') € W. ThenFE is equivalent moduld”
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to an expressioZ’ in RCP normal form such thai([ sub(E')]¥’) C W. In addition, if a
variablev appears: times inE, then it appears times inE.

Proof: The proof uses the following result.

Lemma 3.17. Let E = renaméry)(v1) || - - - || renamér,,)(v,) be an expression such that
a([ E1¥') = A. Then

renamér)(E) =sy renamér o ry)(vy) || - - | renamér o r,,)(vy,)

and botha([ renamér)(E)]Y') = r(A) and for alli, ([ renamér o r;)(v;)]1%') C
r(A).

Proof: By A6 and A24

renamér)(E) =sy renamér)(renaméry)(v1))||- - - || renamér)(renamér,)(vy,)),
and by A21
renamér)(E) =s renamér ori)(vy) || --- || renamér o ry,)(vy,).

Sincea([ E]1Y') = A, and by A5, for alli, ([ renamér;)(v;)]1%') C A. Therefore
by A3, o([ renamér)(E)1Y') = r(A) and for alli, «([ renamér o r;)(v;)1%') C
r(A). O

The proof is by induction on the structure of expressions.

e Let E =v. LetA = o[ E]Y'). By Al18 there exists an alphabBtsuch thatd C B
and for allp such thatu(p) C A

p = renaméid ) (p).
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Let nowo € X' be an assignment. Then by definition 2.46

Sincea(o(v)) C A

= renaméidg)(c(v))

by A2, sincea(o(v)) = a(renaméidg)(o(v)))
= proj(a(o(v)))(renaméid) (o (v)))

by A19, sincex(o(v)) N A C a(o(v))

= proj(A)(renaméidg)(c(v)))
by definition 2.46

= [ proj(A)(renaméidp)(v))]o.
Thus by definition 3.2
v =y proj(A)(renameidg)(v)) = E'

which is in RCP normal form.

By inspection
SUB(E') = { v, renaméid 5)(v), proj(A)(renameidz)(v))}-
By hypothesis,
a[v]E)=ACW.
Sincev =5y renaméidp)(v), by lemma 3.11
a([ renamgidp)(v)]1X) = AC W.
Sincev =y proj(A)(renaméidg)(v)), by lemma 3.11
a([ proj(A)(renaméid ) (v))1%) = A C W.

Therefore([ sub(E')]1%) C W.

By inspection, if a variabler appears: times in E, it appearst times in the normal

form.
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e Let E = proj(B)(E:). By hypothesisq([ sub(E)]Y') € W. Then, sincesub(E;) C
Sub(E), alsoa([ sub(E,)]1%') € W. Then, by induction hypothesig; is equivalent
to an expressioZ; in RCP normal form

E} = proj(B')(renaméry)(v1) | - - || renaméry)(vy))
anda([ sub(E})]1%') C W. Then by theorem 3.4

E =y proj(B)(proj(B')(renaméry)(v1) | - - - | renamér,)(v,))).

By A20, E is equivalent modul@.' to an expressiol’
E =sx E' = proj(B n B')(renaméry)(v1) || - - - || renaméry,) (vy,))

which is in RCP normal form.

Let
E! = renaméry)(v1) || - - - || renaméry,) (v,,).
Then
Sub(E') = { E'} U sub(EY).
Since by hypothesia([ E]1Y') C W, and sincell =y» E’, by lemma 3.11

o[ E']S) CW.
Sincesub(EY) C sub(E}), and sincex([ E;1¥') C W,
a([ sub(EY)]X') € W.

Thereforea([ sub(E')]1%') C W.

In addition, if a variable) appears: times inE, it appears: times inE;, and therefore,
by induction, it appears times inE| and in the final normal form.

e Let E = renamér)(E,). By hypothesisn([ sub(E)]%') € W. Then, since clearly
Sub(E,) C sub(E), also«([ sub(E;)]%’) € W. Then by inductiong; is equivalent

to an expressiod; in RCP normal form

E| = proj(B')(renaméry)(v1) || - - - || renaméry ) (vn))
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anda([ sub(E})]1xX) C W.
Let E{ = renamér)(vy) || - - - || renaméry,)(v,,). Then, by theorem 3.4
E =y renamér) (proj(B')(EY)).
By A22 there exist renaming functiahandr” such that
E =y proj(r'(B"))(renamér")(EY)).

LetnowA = «([ renamér")(E{)]1%’) andB = r/(B’) N A. Sincea([ E]1Y') € W,
by Al and lemma 3.11 alsB € W. By lemma 3.15

E =y proj(B)(renamér”)(EY)).

LetnowA’ = Q. A—W. Then(Q.A— A') — B = W — B. Note that" is a bijection,
and for any assignment € X, if [ renamér")(E]')]o is defined then also £ o
is defined. Thus, since([ E/1%') C W, |A] = |a([ renamér")(E)]1Y')| <
la([ EY1%)| < |W]. Hence, sinceB C W andB C A, |W — B| > |A — B|.
Therefore, by A23 there exists a renaming functiirsuch that”’(A) N A’ C B and

E =y proj(B)(renamér"")(renamér” ) (EY))).
By A21

E =x proj(B)(renamér o r")(EY)).

By lemma 3.17
E =y E' = proj(r'(B))(renamér" or" ory)(v1) || - - - || renamér" or" or,,) (v,))
which is in RCP normal form.
By inspection
sub(E') = {wvi,...,v,}U
= U{renamér" or" ory)(vy),...,renamér’"” or" or,)(v,)} U
= U{renamér" or" ory)(vy) | - || renamér" o r" or,)(v,)} U

= U{E"}
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Since for alli, v; € sub(E"), and sincex([ sub(E})]%) C W,

a([{vla"'avn}]zl) - w.

Note thatr"’(A) N A’ C B impliesr”’(A) C W. Therefore, by lemma 3.17,

a([ { renamér™ o r" o ry)(v1), ..., renamér” or" o ry)(v,)}1%") C "' (A)
c w,
and
a([ renamér” o r" o r)(vy) || - - - || renamér” o r" o r,)(v,) 1Y) C r"(A)
c Ww.

Since by hypothesia([ £]1¥') C W, and sinceFl =5y E’, by lemma 3.11,

o([E']Y) CW.

Therefore([ sub(E')]1%) C W.

In addition, if a variable) appears: times inE, it appears: times inE;, and therefore,
by induction, it appears times in £} and in the final normal form.

LetE = E; || Es.

LetA =a([ E]1Y).

Since by hypothesist € W, by lemma 3.13, there exists an alphabétsuch that
Ae XandX e .

Then, sincesub(E,) C sub(E) andsub(E,) C sub(E), also«a([ E1]Y') € X and
o[ E2]1Y') € X. Then, by inductionF; andE; are equivalent to expressiofi$ and
E!, in RCP normal form

By = proj(By)(renaméry 1) (via) | --- || renaméry ) (v1,n))

By = proj(Bs)(renamérs,)(vz,1) || -+ - || renaméra m)(va,m))

anda([ sub(E})1%') C X anda([ sub(E}) 1Y) C X.
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Let

E{ = renamér)(vi,) |l || renaméry ) (vi,)

A = Al )

B = BinAf
Ey = renaméry)(vay) || - || renaméra m)(vem)

45 = (B

By = BjNAj
Then by theorem 3.4 and lemma 3.15

E\ =s proj(B:1)(EY)
Ey = proj(Bs)(Ej)

Since X € W, by lemma 3.13 there exists an alphabetsuch thatX € Y and
YeWw.

LetA] = QA—- (W —-Y)and4, = Q.A— (Y — X). Clearly sinceX ¢ Y ¢ W
andA! C X, |W —Y| > |Y] > |X]| > |A]|. Therefore, since3; C Y, |(Q.A —
AY) = Bi[=|W =Y) = Bi| = W - Y| > |[A] — Bi|.

Similarly |Y — X| > |X| > |AY|. Therefore, sincé3; C X, [(Q.A — A}) — By| =
(Y = X) = Bo| = |[Y = X| > |A5 — By.

Therefore, by A23 there exist renaming functiehsaindr’, such thatj (AY) N A} C
By, ’)"é(Ag) N AIQ C By and

Ei =y proj(B:)(renaméry)(EY))
Ey =sy proj(By)(renaméry)(Ey))

By definition, B, C X C A} and«([ renamér|)(E{)]1%) = r|(AY), therefore
sincer] (AY) N A} C By, alsor](«a([ renamér})(E])]1%")) N By C B;. Similarly,
rh(a([ renamér)(E{)]1X')) N By C Bs. Therefore by A19, denoting = B; U By

E} =y proj(B)(renamér})(EY))
Ey =y proj(B)(renamér;)(Ey))
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By the previous definitions,

a([ renamér)(EY) 1Y) € BiU(W -Y),
a([ renamérl)(EY)1Y) € ByU (Y — X).

In addition, sincW —Y)N (Y —X) =0,(BiU(W -Y))Nn(B2U (Y — X)) =
By N By C B. Hence«([ renamér))(EY)1%X") N o[ renamérh)(EY)1%X') C B.
Therefore, by A25

E =y, proj(B)(renamér})(EY) || renamér’)(E3)).

By lemma 3.17
renamér})(EY) =s. renaméri ory)(viy) | - || renaméri ory ) (v )
renaméry)(EY) =sv  renaméry ory)(vay) | -+ || renamérh o ra ) (vam).

Therefore by theorem 3.4

E =y E = proj(B)(renaméri o ry1)(via) || - || renaméry o ryn)(vin) ||

| renamér’, o ro 1) (va,1) || -+ - || renamér, o ro 1) (v2,m))

which is in RCP normal form.

By inspection

SUb(E') = {vi1,...,v15} U
= U{wvg1,...,v2m} U
= U{renamér| ori1)(vi1),...,renamérs ors ,)(vem)} U
= U{renaméri ory1)(vi1) | - || renaméry o ry ) (vam)} U
= U{E}

Since for alli, v1; € sub(E"), and sincex([ sub(E})]%') C W,
a([ {v11, . 01} 1) CW.
Similarly

o[ {voa,. .., v2m}]E") CW.
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Note thatr|(AY) N A} C B, impliesr{(A]) C W, sinceQ. A - W C A} and
B, C A C W. Therefore by lemma 3.17

o([ { renaméry o r11)(v1,1),...,renamér| oryy)(v1,)}15") Cri(A]) CW

o[ renaméri ory1)(vi1) || - || renaméri ory,)(v1,)1%") C ri(AY) CW
Similarly

a([ { renamér}, o r21)(v2,1),- -, renamér!, o rz,m)(vz,m)}]Z') Cry(A)) C W

a([ renaméry o ry1)(v2,1) || -+ || renaméry o ry ) (va,m) 1) C ry(A3) CW

Since by hypothesie([ £]1%') C W, and sinceF =5 E’, by lemma 3.11

o[ E']Z) CW.

Therefore([ sub(E')]1%) C W.

In addition, assume a variable appearsimes inE. Then it appears times in£ and
k times inE, such thatn = j + k. By induction, it appearg times inE| andk times
in EY, and therefore it appeays+ & times in the final normal form.

O

The rest of this section is devoted to proving the validity of some of the axioms for a few

examples.

Example 3.18 (Alphabet Algebra). The alphabet agent algeb€adescribed in example 2.26 is a
normalizable agent algebra. Here we show that A23 is satisfied.

Lemma3.19. Q satisfies A23.

Proof: Let B, A and A’ be alphabets ove® such that(Q.A — A') — B| > |A — B]|. Let
r':(A—B)w~ (Q.A— A") — B be any injection fromA — Bto Q.A — A' — B. The
injection exists because of the assumption on the cardinality of the sets. Then define an

injectionr : A — Q.A as follows:

T(a){r’(a) ifae A—B

ida(a) otherwise
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Then ifp is an agent such that(p) C A, and restricting the codomain ofto r(A),
proj(B)(p) = BnNalp)
= Bnr(a(p)
= proj(B)(renamér)(p))-

Therefore A23 is satisfied. O

Example 3.20 (10 Agent Algebra). The 10 agent algebr&@ described in example 2.29 is normal-
izable. Here we show that A25 is satisfied.

Lemma3.21. Q satisfies A25.

Proof: Let B be an alphabet and It andp, be two agents such thaip;) N «a(p2) C B.

Assumeproj(B)(p1 || p2) is defined. Then by definitiot; U I3) — (01 U O2) C B.
We now show thaf; C B. Let: € I be a signal. Then by definitionZ O;. Assume
i & O9. Theni € (I; U Iy) — (01 U O2) and therefore € B. On the other hand,
assume € O,. Theni € a(p1) N a(p2). Thereforei € B. Hencel; C B. Similarly,
I, C B. Thereforeproj(B)(p1) || proj(B)(p2) is defined. In addition

proj(B)(p1 || p2) = ((I1 U Iz) — (01 U O02), (01 UO2) N B)

proj(B)(p1) || proj(B)(p2) = ((I1 U I2) — ((O1 U O2) N B), (01 U O2) N B)

Clearly
(LU L) = (01U0) C (I UI2) — ((O1UO) N B).

Letnowi € (I;Ul2)—((O1UO2)NB). Then eithei € I ori € I, (or both). Ifi € I
theni ¢ O, andi € Oy N B. If i € Oy, theni € a(p1) N a(p2) and therefore € B.
But then: € O, N B, a contradiction. Hence¢ O,. Theni € (I; U Iy) — (O U Oy).
Similarly if 7 € I,. Therefore

(Il U IQ) — ((01 U 02) N B) = (Il U IQ) — (01 U 02)
and
proj(B)(p1 || p2) = proj(B)(p1) || proj(B)(p2).

Assume nowproj(B)(p: || p2) is not defined. Then there existss (I; U
I,) — (01 U O9) such that ¢ B. But then eithei € I, ori € Iy, and therefore either
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I & Borly,  B. Hence eitheproj(B)(py) or proj(B)(pz2) (or both) is undefined.
Thereforeproj(B)(p1) || proj(B)(p2) is undefined. O

Example 3.22 (Dill’'s 10 Agent Algebra). The Dill's style 10 agent algebr@ described in exam-
ple 2.32 is not normalizable. In fact, it does not satisfy A18. The IO agent algebra described
in example 3.20 is a generalization @fthat is normalizable.

However, Dill’'s style 1O agent algebra is closed-normalizable. This doesn’t appear
to be a limitation in Dill's work, since the notion of refinement requires that two agents have
the same sets of inputs and outputs signals. Dill shows that, if assignments to variables are
restricted to assign only certain input and output signals, then the expressions are normaliz-
able [33]. While this is sufficient to prove the results on refinement verification using mirrors,

it is a special case that we need to generalize in our framework.

3.1.1 Construction of Algebras

Itis natural to ask whether the constructions introduced in section 2.3 and subsection 2.4.1
preserve the properties of normalization of the expressions. In other wo@saifd Q, are nor-
malizable agent algebras, is their prod@tx Q, and their disjoint sun®; [+ Qs also normaliz-
able?

Clearly, this is the case for disjoint sum, since the resulting agent algebra is simply the

juxtaposition of two agent algebras, that are otherwise unrelated.

Theorem 3.23. Let Q; and Q2 be normalizable agent algebras. Then their disjoint €} Qo
is a normalizable agent algebra.

The same is not necessarily true for products. The problem lies in A22 and A23, both of
which demand the existence of renaming functions that make certain equations true.

Take for example A22. Sinc@; is normalizable, for all renaming functionsand all
alphabets3, there exist renaming functions andr! such that for all agents, € 9;.D,

renamér)(proj(B)(p1)) = proj(ry(B))(renaméry)(p1)).

Similarly, sinceQ, is normalizable, there exist renaming functiehandr! such that for all agents
p2 € Q2.D,

renamér)(proj(B)(p2)) = proj(ry(B))(renaméry)(p2)).
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In order for the produc; x Qs to be normalizable, there must be renaming functidradr”

such that for all agents = (p1,p2) € Q1.D x Qs.D,

renamér)(proj(B)(p)) = proj(r'(B))(renamér”)(p)).

But the result follows from the hypothesis onlyif= r}, andr{ = %, which is not necessarily the
case.

In most practical cases, however, the product of nhormalizable agent algebras is in fact
normalizable. This is because in practice the renaming operator is defined similarly for different
algebras, given its strong intuitive interpretation. In addition, all other axioms are indeed preserved
by the product, so that only the validity of A22 and A23 must be established.

3.2 Conformance

Letp andp’ be two agents in an ordered agent algebra. Intuitively, if we interpret the order
as refinement, ip < p’ thenp can be substituted fof in every context in which/ occurs. If this is
the case we say thatconformsto 7/. In this section we make this notion of substitutability precise.

In our formalization, conformance is parameterized by a set of agentalled a conformance set,

and we only require that fogp to conform tog/, p can be substituted fgr for all contexts that
evaluate inGG. Intuitively, the setG forms an initial partition of the agents. This partition is then
refined by considering the contexts whose evaluation falls in the conformance set. The remaining
contexts, which are of no interest for substitutability, are therefore ignored.

Conformance can be made more general by explicitly considering only a subset of the
possible contexts. We call this notioelative conformance. In this section we will study these
generalizations, and show the conditions under which relative conformance corresponds to confor-
mance. We are patrticularly interested in composition contexts, also eallgdnments, which are
limited to the parallel composition with a single agent. Composition contexts will be the basis for
studying mirror functions in the next section.

The concept of the context of an agent in a system plays a central role in the definition of

conformance. It can be formalized using agent expressions.

Definition 3.24 (Expression Context). Let Q be an agent algebra. An expression cont&kf]

over @ is an expression ove® with one free variable.

An expression context may or may not be defined depending on the agent that replaces
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the free variable. However, the property 6fmonotonicity of the operators of an ordered agent

algebra transfers to expression contexts, as well.

Theorem 3.25. Let Q be an ordered agent algebra and Q.D andy € Q.D be two agents such
thatp < p'. For all expression contexf[s], if E[f/] is defined therE[p] is also defined and
Elp] < Ep'].

Proof: The proof is by induction on the structure of the expression context.
e If E[g] = qor E[f] = (3 then the result follows directly from the hypothesis.

e Let E[3] = renamér)(E'[(]) and assum&[p'] is defined. Then als&'[p] is defined.
By induction hypothesid? [p] is defined andt’[p] < E’[p']. Sincerenamér)(E'[p'])
is defined andenameis T-monotonic, themenamér)(F [p]) is defined and

renamér)(E'[p]) < renamér)(E'[p']).

e Let E[S] = proj(B)(E'[5]) and assumé[p'] is defined. Then als@'[p'] is defined.
By induction hypothesid”? [p] is defined and¥'[p] < E'[p']. Sinceproj(B)(E'[p']) is
defined angbroj is T-monotonic, therproj(B)(F'[p]) is defined and

proj(B)(E'[p]) < proj(B)(E'[p']).

e Let E[8] = E1[B]|| E=[B] and assumé&[p'] is defined. Then alsé; [p'] and E»[p'] are
defined. By induction hypothesis, [p] is defined and?; [p] < E1[p']. Similarly, E;[p]
is defined andt[p] < Esq[p]. SinceE; [p'] || E:[p'] is defined and| is T-monotonic,
thenE1[p] || E2[p'] is also defined and; [p] || E2[p'] < Er[p] || Eo[p']. Similarly we
concludeE [p] || Ez[p] < Er[p] || E-[p'] and therefore since is transitive

Er[p] || B2lp] = Er[p] || B2lp']-
O

An ordered agent algebi@ has a conformance order parameterized by a set of agents

when the order corresponds to substitutability in the following sense.

Definition 3.26 (Conformance Order). Let Q be an ordered agent algebra anddebe a set of
agents of@. We sayQ has aG-conformance order if and only if for all agentsp and,
p < p’ if and only if for all expression contexi®, if E[ff] € G thenE[p] € G.
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The implication in this definition is strong in the sense tha ] € G, then E[p] must

be defined (and be a member@j.

Each set of agent& induces a particular order, whether or not the algebra hés a
conformance order.

Definition 3.27. Let Q be an agent algebra and Etbe a set of agents @. We defineQ.conf(G)
to be the agent algebra that is identicalQexcept that it has &-conformance order.

We denote the order af.conf(G) with the symbol=<; and we say that7 induces the
order <. In the rest of this section we will study some of the propertieQafonf(G). In par-
ticular we are interested in characterizing wh@rconf(G) is an ordered agent algebra (i.e., the
operators of projection, renaming and parallel compositionTaraonotonic) and wher@ has a

G-conformance order,

Lemma 3.28. Let Q be an ordered agent algebra andddbe a subset of.D. Consider the agent
algebrasQ.conf(G) and Q.conf(D). Then Q.conf(G) is an ordered agent algebra if and
only if for all agentsp andy/,

p=cp =p=2pp.

Proof: To show thatQ.conf(G) is an ordered agent algebra, we need only show that its renaming,
projection and parallel composition operators @renonotonic relative to its agent ordering.
We prove the projection case (the others are similar).

Let p andp’ be two agents such that= p’. We must show that iproj(B)(p') is
defined, therproj(B)(p) is defined, angroj(B)(p) =g proj(B)(p).

Sincep =g p', by hypothesisp <p p’. Therefore, by definition 3.26, for all
expression context®, if E[p/| € D thenE[p] € D. That s, if E[p'] is defined, therE[p] is
defined. Hence, itZ = proj(B)(B), if proj(B)(¢') is defined therproj(B)(p) is defined.

Let now E[3] be an expression context. We want to show tha[proj(B) (/)] €
G, thenE[proj(B)(p)] € G. By lemma 2.50

Elproj(B)(p')] = E[proj(B)(8")[p'] = E[B/proj(B)(B)][F']-
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Let nowE' = E[B/proj(B)(f)]. Then
Elproj(B)(r')] € G
= FE'peqG
= E'lpleqG
= Elproj(B)(p)l € G

Therefore, by definition 3.26

proj(B)(p) =a proj(B)(p').

Hence, the projection operatorismonotonic relative to<;.

Conversely, assume the operators areonotonic relative tos; and letp andp’
be two agents such that<; p’. Then, by theorem 3.25, for all expression conte{sf
Ep'] is defined, therE[p] is defined. Hence, i£[y] € D, thenE[p] € D. Therefore, by
definition 3.26p <p p'. O

Corollary 3.29. Let Q be an ordered agent algebra. Therconf(D) is an ordered agent algebra.

Although G can be any arbitrary set of agents,must be downward closed relative to
Q. <in order forQ to have a&-conformance order.

Theorem 3.30. Let Q be an agent algebra and (gtbe a set of agents. Thé&nis downward closed
relative to=<g.

Proof: Letp’ € G and letp <4 p'. Consider the expression contekt = /3. Then clearly
E[p'] € G. But then, by definition 3.26, singe < p’, alsoE[p] = p € G. ThereforeG is
downward closed. O

Corollary 3.31. Let Q be an ordered agent algebra. @fhas aG-conformance order, thefi is
downward closed relative t@. <.

If an expression context evaluatesGrfor a certain agent, then it evaluates it for all
agentyp < p'.

Corollary 3.32. Let Q be an ordered agent algebra gn& Q.D andpg € Q.D be two agents
such thap < p'. For all expression contexiS[J], if E[f] € G thenE[p] is also defined and
Elpl € G.
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Proof: The result follows from theorem 3.25 and corollary 3.31. O
In this work we will be particularly interested in the following special case.

Corollary 3.33. Let Q be an ordered agent algebra witlizaconformance order. Let || ¢ € G
and letp < p'. Thenp || ¢ is defined ang || ¢ € G.

In the following we will explore the relationships between the orde@and the orders

induced by various conformance sets.

Theorem 3.34. Let Q be an ordered agent algebra anddebe a downward closed set of agents.
Then

P=q=p=¢gq.

Proof: Sincep < ¢ and the operators aré-monotonic, then by theorem 3.25 for all expression
contextsE, if E[q] is defined therE[p] is defined. In additionE[p] < E[q]. Assume now
that E[¢q] € G. Then, since7 is downward closed, alsB[p] € G. Thereforep = ¢. O

Notice that ifG is downward closed, then the forward implication in definition 3.26 fol-
lows from theorem 3.34. 1© has aGG-conformance order then the order is weak enough to ensure

that the reverse implication also holds.

Corollary 3.35. If Q has aG-conformance order, the@ and Q.conf(G) are identical agent alge-
bras.

The set of all agent® plays a special role, since it is always downward closed, no matter
what order the agent algebra may have, and the order it induces always makes the operators
monotonic. The following theorem shows that given an agent algébthe ordered agent algebra
Q.conf(D) has the weakest order that makes the operatensonotonic.

Corollary 3.36. Let Q be an ordered agent algebra. Then
P=2q=p=Dg.
Proof: The result follows from theorem 3.34, singkis always downward closed. O

Since the discrete order (i.e., the order such phaty if and only if p = p') also makes
the operatofT-monotonic, any order of an ordered agent algebra is bounded by the discrete order
and by=<p.
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The following two results show that © has the weakest conformance order (i@.=

Q.conf(D)), then any downward closed set of agents characterizes the order.

Corollary 3.37. Let Q be an ordered agent algebra anddebe a downward closed set of agents
such that® = Q.conf(G). Then

P=2¢q9=p=DQq

Proof: SinceQ is an ordered agent algebra, a@d= Q.conf(G), also Q.conf(G) is an ordered

agent algebra. Then the result follows from corollary 3.36. O

Corollary 3.38. Let Q be an ordered agent algebra such t@at= Q.conf(D), and letG be a
downward closed set of agents such t@atonf(G) is an ordered agent algebra. Th@n=
Q.conf(@G).

Proof: Letp andq be two agents. We must show thats ¢ if and only if p <5 ¢. The forward
direction follows directly from theorem 3.34.
The following series of implications proves the reverse direction.

P3¢ q
by corollary 3.37
= p=Dgq
sinceQ = Q.conf(D)
= p=2q

O

These results show that, in general, an ordered agent algkbeam be characterized by
several conformance sets. The particular choia@ wifluences the complexity of verifying the con-
formance relation, as we will see in the next few sections when we introduce relative conformance
and mirror functions.

Note also thaQ.conf(G) is not necessarily an agent algebra, in the sense that the opera-
tors may not ber-monotonic relative to the agent ordering, even if they armonotonic relative
to the original ordering (see lemma 3.28). This is in practice not a problem, since we typically start
from an ordered agent algebra, and then characterize its order in terms of a conformance set. In that

case, sinc& = Q.conf(G), alsoQ.conf(G) is an ordered agent algebra.
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3.2.1 Redative Conformance

In definition 3.26, conformance is defined in terms of all expression contexts. More gen-
erally, we can define conformance relative to a set of contexts.

Definition 3.39 (Relative Conformance). Let Q be an agent algebra and [@tbe a set of agents
of Q. We sayQ has aG-conformance order relative to a set of contexts & if and only if for
all agenty andy/, p < p' if and only if for all expression context& € &, if E[p'] € G then
Elp] € G.

A particularly interesting subset of contexts is the set of environments that consist of a

parallel composition with an arbitrary agent.

Definition 3.40 (Composition Conformance). Let Q be an agent algebra and I8tbe a set of
agents of@. We sayQ has aG-conformance order relative to composition if and only if for
all agentgp andy/, p < p' if and only if for all agentsy, if ¢/ || ¢ € G thenp || ¢ € G.

As with conformance, we defin@.conf(G, £') to be the agent algebra that is identical to
Q except that it has &-conformance order relative ®. We denote the order a.conf(G, &)
with the symboljg. In particular,Q.conf(G, ||) and jﬂ; denoteG-conformance relative to com-
position.

Unlike conformanceQ.conf(G, £') is not necessarily an ordered agent algebra even if
P jg p=p 5%’ p', since the operators of the algebra may nofbmonotonic (see lemma 3.28).
In addition, if @ has aG-conformance order relative 18, thenG is not necessarily downward
closed (see corollary 3.31).

Conformance implies relative conformance in the following sense.

Lemma3.41. Let Q be an agent algebra and Btbe a set of contexts. Then for all ageptandy/
p=ap =p=Lp.
Proof: Definition 3.39 is verified since the condition is by hypothesis true of all contexts. O

In particular, ifp < p', thenp jﬁ; p.

Despite the above result, @ is an ordered agent algebra aflidis a set of contexts,
Q = Q.conf(G) does not necessarily impl@ = Q.conf(G,&). This is because the reverse
implication above does not hold. Howeverdfhas aGG-conformance order relative to some set of
contextsg’ and@ is downward closed, then it also hagfaconformance order.
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Theorem 3.42. Let Q be an ordered agent algebfabe a set of contexts and létbe a downward
closed set of agents. Assume for all agenédy,

pap =p=yp.
ThenQ = Q.conf(G,E&') = Q.conf(G).

Proof: We must show that for all agengsandy/, p < p' if and only if p < p’ if and only if

P jg p'. The result follows from the following circle of implications:

p=p
by theorem 3.34, sinc€' is downward closed
= p=cp
by lemma 3.41
= p=5p
by hypothesis

= p=yp.
O

Corollary 3.43. Let Q be an ordered agent algebi@,be a set of contexts an@ a downward
closed set of agents such tlat= Q.conf(G, £'). ThenQ = Q.conf(G).

Proof: The result follows from theorem 3.42, since by hypoth@sﬁ p=p=2cp. O

In particular, if @ has aG-conformance order relative to composition ards downward
closed, then it has &-conformance order. In the examples that follow we will try to show, when
possible, that conformance relative to composition corresponds exactly to conformance. When that
is the case, it may be possible to find efficient ways to check the conformance relation, as we shall
see in section 3.3.

Example 3.44 (Alphabet Algebra). Consider the agent algebéadescribed in example 2.26, with
the order such thai < ¢/ if and only if p C p'. This order is the weakest order that makes
the operatorsT-monotonic, henc&® = Q.conf(D). However, D does not characterize
the order in terms of conformance relative to composition. Instead, conformance relative to

composition induces the order such that every agent refines any other agent.
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Theorem 3.45. For all agent® andy/, p j!, p.

Proof: The result follows from the fact that the conformance set in this case is the set of all
agentsD, and|| is always defined. Therefore the condition in definition 3.40 is always
satisfied. O

In order to characterize the order in terms of conformance relative to composition
we must consider the sét = 24 — A, i.e., the set of all subsets gf exceptA itself. Then

Theorem 3.46. Letp andp’ be two agents. Then the following statements are equivalent:

Proof: We already know that = 2 (by theorem 3.34, sino@ is downward closed) and that
2 = 3 (by lemma 3.41). The remaining implication is proved below.

Lemma3.47. (3 = 1): Letp andp’ be agents such that for all agentsf ¢/ || ¢ € G
thenp || ¢ € G. Thenp C p'.

Proof: Letp andp’ be agents such that for all agentsf ¢/ || g € G thenp||q € G. By
the definition ofG, for all agentsy, if ¢/ ||¢ # A (i.e.,p'||q € G), thenp|| ¢ # A.
Assume now, by contradiction, thatc p anda ¢ /. Considery = A —p. Then

plla=p'Ug=p U(A-p).

Sincea ¢ p' anda ¢ A — p (because: € p), thena ¢ p/ || q. Thusp' || ¢ # A.
Thus, by hypothesis, algo|| ¢ # A. However

plla=pUg=pU(A—p) =4,
a contradiction. Thup C 7. O
O

This is the onlyG that characterizes the order in terms of conformance relative to
composition. In fact it is easy to show that for alE A, the setd — { a} must be inG. Then,
to characterize the orde® must be downward closed. Thas= 24 — A.
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Example 3.48 (10 Agent Algebra). Consider the 10 agent algebgxdefined in example 2.10 with
the order defined in example 2.29. We now characterize the order in terms of conformance.
LetG ={(I,0) : I =0}, i.e., the set of all agents that have no inputs. Then

Theorem 3.49. Letp andp’ be 10 agents. Then the following three statements are equivalent:
1.p=p (.e,I CI'andO = 0.
2.p=avp.
3. p=Ly.

Proof: First we show thatz is downward closed, then thﬁtjﬁ; p’ impliesp < p'. The
result then follows from theorem 3.42.

Lemma 3.50. G is downward closed with respect t&

Proof: Letp’ € G. Thenp' is of the form(), 0’) for some alphabe?’. Letp = (I, O)
be an agent such that< p/. Then, by the definition of the ordef, C (), and
thereforel = (). Hencep € G. ThereforeG is downward closed. O

Lemma3.51. (3 = 1): Letp andp’ be 10 agents such that for all agentsf /||q € G
thenp || ¢ € G. ThenI C I' andO = O'.

Proof: We prove the result in steps.

(O C O") Assume, by contradiction, that there existe& O such thato ¢ O.
Considerg = (O',I' U {0}). Thenyp' || ¢ is defined becaus®’ N (I' U
{0}) = 0 since by hypothesi®Y N I' = () ando ¢ O'. In addition
p' || ¢ € G. Butthen by hypothesig|| ¢ is defined ang || ¢ € G. However
{o} CON(I'U{o}), henceO N (I' U{ o}) # 0, a contradiction.

(O" C O) Assume, by contradiction, that there existe O such thato ¢ O.
Considerg = (O', I'). By hypothesis) ¢ I'. Clearlyp’ || ¢ is defined and
?' || ¢ € G, so by hypothesis alsp|| ¢ € G is defined ang || ¢ € G.
However

pllg=(Iu0)—(OUr),0ur)

However, since € (IUO')ando & (OUTI'), pll q ¢ G, a contradiction.
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(I C I') Assume, by contradiction, that there exists I such that ¢ I'. By
hypothesis we also haveg O. Considerg = (O, I'). Clearlyp' || g is
defined and/’ || ¢ € G, so by hypothesis alsp || ¢ € G is defined and
p|l ¢ € G. However

plla=(TU0)—(OUTI),0UT
However, sinceé € (IUO')andi ¢ (OUTI'),p| ¢ ¢ G, a contradiction.
U
U

Let us now consider the set of agents= Q.D that consists of all agents. Then an
expression evaluates @if and only if the expression is defined. The following two theorems
show thatD still characterizes the order in terms of conformance, but it does not characterize
the order in terms of conformance relative to composition.

Theorem 3.52. Letp andp’ be IO agents. Thep < ¢/ if and only if p <p p'.

Proof: The forward implication follows from theorem 3.34 sinbPeis downward closed.
For the reverse implication, let = (I,0) andy/ = (I’,0') be 10 agents
such thap <p p’. Then for all expression contexts, if E[f] is defined, ther®[p] is
defined.

(I C I') Consider the context = proj(I')(5). ThenE[p'] = proj(I')(p’) is defined
sincel’ C I'. Then alsoE[p] = proj(I’)(p) must be defined. TherefodfeC I'.

(O C O") Assume by contradiction that there exists O such thab ¢ 0. Consider
the agenyy = (0, { o}) and the context® = j3 || g. Then, since) N {o} = 0,
E[p'] = p'|| q is defined. Therefore alsB[p] = p || ¢ must be defined. But then
O N {o} =0, a contradiction. Hence® C O'.

(O" C O) Assume by contradiction that there exists O such thab ¢ O. Consider
the agent = ({ o}, #) and the context = proj(I')(5|lq). Then, sincd’NO’ =
fpando € O, p'|l¢ = (I'U{0})—-0",0") = (I',0"). Therefore, sincé’ C I,
E[p'] = proj(I')(p' || q) is defined. Therefore alsb[p] = proj(I')(p || ¢) must
be defined. However, sindenO = B ando ¢ O,p|l g = ((IU{0}) —0,0) =
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(I U{o0},0). In addition,I U{o} Z I', sinceo € O’ implieso ¢ I', since
I'nO" = 0. Henceproj(I')(p || ¢) is not defined, a contradiction. Therefore
O' Co.

O

Theorem 3.53. Letp = (I,0) andp’ = (I’,0') be 10 agents. Then j!) p’ if and only if
O CO.

Proof: For the forward direction, assunpej!, p'. Then for all agentsg, if p' || ¢ is defined,
then alsop || ¢ is defined. Assume by contradiction that there exists O such that
o ¢ O'. Consider the agent = (0,{o0}). Then, sinceD’ N {o} = 0,p' || qis
defined. Therefore, by definition of conformance, aldpg must be defined. But then
O n{o} = 0, a contradiction. Henc® C O'.

For the reverse direction, assueC (7, and letg = (I, O,) be such that

P’ || ¢ is defined. The’ N O, = 0. SinceO C O', alsoO N O, = 0. Thereforep || ¢
is defined. O

As expected, the order induced Iy relative to composition does not make the
operatorsT-monotonic. The above results also confirm tRat the weakest order such that

the operators ar&-monotonic.

Example 3.54 (Dill’s 10 Agent Algebra). Consider Dill's IO agent algebr@ defined in exam-
ple 2.11 and example 2.32. The algebra is an ordered agent algebra if and pn¥ if
corresponds t@ = p/. Hence the only possible order is also the weakest possible order.
ThereforeQ = Q.conf(D).

It is difficult however to characterize the order with conformance relative to compo-
sition. The following theorems characterize the conformance orders relative to composition
induced by several conformance sets, and show that they do not correspond to the algebra’s
order.

Theorem 3.55. LetG = {(I,0) : I = (} and letp = (I,0) andp’ = (I',0’) be agents.
Thenp jg; p'ifand only ifI C I’ andO = O'.

Proof: The proof is the same as lemma 3.51. O

Theorem 3.56. Let G = D and letp = (I, 0) andp’ = (I', 0') be agents. Then ju) pif
and only ifO C O'.
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Proof: The proof is the same as theorem 3.53. O

Theorem 3.57. LetG = {(0,Q.A)} and letp = (I,0) andy’ = (I',0’) be agents. Then
p =L pifandonlyifO = 0.

Proof: For the forward direction, assurmzejg p'. Consider the agent = (O, A — O").
Thenyp' || ¢ = (0, A) € G. Hence als® || ¢ must be defined, and therefafen (A —
O') = 0. ButthenO C O'. In additionp || ¢ € G, and therefor&® U (A — O0') = A.
But thenO D O'. HenceO = O'.

For the reverse direction, assule= O'. Letq = (I,,0,) be an agent. If
p'|| ¢ is defined, ther®’ N O, = (. But then alsd) N O, = (), and therefore alsp|| ¢
is defined. In addition, if/ | ¢ € G then it must bed' N O, = 0 (for the composition
to be defined) and’ U O, = A, and therefor&), = A — O'. Hence als@ || ¢ € G.
Thereforep jg p'. O

Example 3.58 (Typed 10 Agent Algebra). Consider the Typed 10 agent algebghadefined in
example 2.12 with the order defined in example 2.34. We would now like to characterize the
order in terms of a conformance set. This can be done if we ch@dede the set of agents

p such thatinputs(p) = 0.

Theorem 3.59. Let p andp’ be Typed 10 agents. Then the following three statements are

equivalent:

Proof: We already know that = 2 (by theorem 3.34, sino@ is downward closed) and that
2 = 3 (by lemma 3.41). The remaining implication is proved below.

Lemma 3.60. (3 = 1): Letp andp’ be agents such that for all agentsf ¢/ || ¢ € G
thenp || ¢ € G. Thenp < p'.

Proof: It is easy to adapt the proof of lemma 3.51 to show thptits(p) C inputs(y)
and thatoutputgp) = outputgyp'). To prove the rest of the theorem, let= f,
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be the agent such that for allce 9.A

(co,v) if f'(a) = (c1,v)
fala) = ¢ (er,0) i f'(a) = (co,v)

cy otherwise

so thatinputs(q) = outputsy') and outputsq) = inputs(p/). Then clearlyy’ ||
q is defined, and by definition df, ¢/ || ¢ € G. Thus, by hypothesis, also
pllg € G. Letnowa € Q.A. If a € inputsp), thena € inputs(yp’) and
a € outputdq). Sincep||q is defined, therf,(a).v C f(a).v, and thusf’(a).v C
f(a).v. Similarly, if « € outputsp), thena € outputsy’) anda € inputs(q).
Sincep || ¢ is defined, thery (a).v C f,(a).v, and thusf(a).v C f'(a).v. Thus
p=p. O

O

3.3 Mirrors

In this section we address the problem of checking in an ordered agent algebra whether
two agents are related by the order. If the algebra h@sc@nformance order, then the problem
reduces to verifying the condition for conformance. This problem however is rather expensive,
since it requires considering all possible contexts. When conformance corresponds to conformance
relative to composition then we need only check contexts that consist of parallel compositions with
other agents. We define anvironment of an agent to be a composition context. In this section
we show how, in certain cases, it is possible to construct for each agent a single environment that

determines the order. We call this environmentrtiigor of an agent.

Definition 3.61 (Mirror Function). Let Q be an ordered agent algebra anddebe a downward

closed set of agents @. Then,Q hasa mirror function relative to GG if and only if

1. Q.mirror (which we may simply write asrhirror” when there is no ambiguity about

what agent algebra is being considered) is a partial function fotm D,
2. mirror(p) is defined if and only if there existssuch thap || ¢ € G,

3. p <X p'ifand only if eithermirror(y/) is undefined op || mirror(p') € G.
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When an ordered agent algebgahas a mirror function relative to some set of agents
G, then we can verify thap < p/ by simply looking at the compositiop || mirror(¢/). Often,
computing the mirror and the composition, and verifying the membershi ia computationally
less expensive than checking thak ¢/ directly.

In the rest of this section we will explore the consequences of having a mirror function.
Later, we will explore necessary and sufficient conditions for an ordered agent algebra to have a

mirror function.

Lemma3.62. Let Q be an ordered agent algebra with a mirror function relativg.t&or all agents
p, if mirror(p) is defined, them || mirror(p) € G.

Proof: Since= is reflexive,p < p. By definition 3.61, this impliesnirror(p) is undefined or
p || mirror(p) € G. O

Theorem 3.63. Let @ be an ordered agent algebra with a mirror function relativértoFor all

agentsp, if mirror(p) is defined, themirror? (p) is also defined.

Proof: Assumemirror(p) is defined. By lemma 3.6%, | mirror(p) € G. This implies that there
exists ap’ (namelyp) such thaty’ || mirror(p) € G. By definition 3.61, this implies that
mirror?(p) is defined. O

Corollary 3.64. Let Q be an ordered agent algebra with a mirror function relativé/toFor all

agents, if mirror(p) is defined, themirror* (p) is also defined, for any positive integer
Proof: By induction onn. O

Lemma 3.65. Let Q be an ordered agent algebra with a mirror function relative td.et p andg
be agents such thatirror(p) andmirror(q) are both defined. Then,

mirror(p) < q < mirror(q) =< p.

Proof: The proof is composed of the following series of double implications:

mirror(p) < q
by definition 3.61, sincenirror(q) is defined
< mirror(p) || mirror(q) € G

since|| is commutative by A7
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< mirror(q) || mirror(p) € G
by definition 3.61

< mirror(q) < p
U

The mirror is a reflection of an agent with respect to the order and the conformance set.

As expected, two such reflections will bring us back to the original starting point.

Theorem 3.66. Let Q be an ordered agent algebra with a mirror function relativ@ tbetp be an

agent and assummirror(p) is defined. Themirror (p) is defined and
p ~ mirror’(p).

Proof: It follows from corollary 3.64 thatmirror (p) is defined andmirror®(p) is defined. By
definition 2.22, it is sufficient to show thatirror (p) < p andp < mirror*(p).

Lemma 3.67. mirror*(p) =< p.

Proof: mirror(p) < mirror(p), since= is reflexive. Thus, by lemma 3.6%irror (p) <
p. ]

Lemma 3.68. p < mirror*(p).

Proof: p < p, since< is reflexive. We complete the proof with the following chain of
implications.
PP

by definition 3.61, sincenirror(p) is defined

< p || mirror(p) € G
by lemma 3.67 and corollary 3.33

= p| mirror*(p) € G
by definition 3.61

& p =< mirror*(p).
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A mirror function inverts the order relationships that exists between its arguments.

Theorem 3.69. Let Q be an ordered agent algebra with a mirror function relativé .thetp andqg

be agents such thatirror(p) andmirror(q) are defined. Then,
p = q < mirror(q) =< mirror(p).

Proof: By corollary 3.64 we know thanirror(q) is defined. By applying lemma 3.65 toand

mirror(p), we get
mirror(p) < q. < mirror(q) < mirror(p)
By theorem 3.66, we know that~ mirror*(¢). Thus
mirror’(p) < q & p < q.
Together, these two facts imply the desired result. O

The next result shows that order equivalence is preserved by the application of the mirror
function, and, at the same time, that the mirror function is one-to-one on the equivalence classes

induced by the preorder.

Corollary 3.70. Let Q be an ordered agent algebra with a mirror function relativg td.et p and

q be agents such thatirror(p) andmirror(q) are defined. Then,
p & q < mirror(q) = mirror(p).

If the agent algebra is partially ordered, then the mirror function is one-to-one on the
agents themselves.

Corollary 3.71. Let Q be a partially ordered agent algebra with a mirror function relativé.tbet
p andq be agents such thatirror(p) andmirror(q) are defined. Then,

p =gq < mirror(p) = mirror(q).

Since mirrors reduce the problem of verifying conformance to a single composition envi-
ronment, it is not surprising that their existence is related4oonformance relative to composition.
In fact, the mirror of an agent has an exact characterization in terms @f-t@nformance order
relative to composition and the greatest element of a certain set of agents.

Let G be a conformance set and feaandq be agents. 1p || ¢ € G then we say thaj is
compatible (orG-compatible if we want to emphasize the conformance set) witlve call the set
of agents that are compatible wittthe compatibility set of p.
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Definition 3.72 (Compatibility Set). Let Q be an ordered agent algebra arné downward closed
set of agents. Thé&'-compatibility set of an agenp, written cmp(p), is defined as follows:

cmp(p) = {q:pllq€G}

If two agents are order equivalent, then their compatibility set is the same.

Lemma 3.73. Let Q be an ordered agent algebra ard downward closed set of agents. ket

andp, be agents such that = p,. Thencmp(p1) = cmp(p2).

Proof: We show that the compatibility sets are contained into each other. To showantipgl ) C

cmp(p2), letq € cmp(p1) be an agent compatible wigh. Then,

q € cmp(p1)
by definition 3.72,

& pllged

sincep; = po, by corollary 3.33,
= mll¢eqG

by definition 3.72,

& g € cmp(py).

Consequentlycmp(p;) C cmp(p2). The proof thatmp(ps:) C cmp(p;) is analogous. O

The compatibility set gets larger as the agents are more refined according to the order of

the algebra, as shown in the next theorem.

Lemma3.74. Let Q be an ordered agent algebra an@ downward closed set of agents. petnd
p' be agents such that< p/. Then

cmp(p’) C cmp(p).

Proof: We show that ify € cmp(p'), theng € cmp(p). The proof consists of the following series
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of implications.
q € cmp(p')
by definition 3.72
< plaeG
since|| is T-monotonic ang < p/

= pll¢=2pl4q

sinced is downward closed
= pll¢edG
by definition 3.72

& qeomp(p).

O

When an agent algebra hagzaconformance order relative to composition, the order is
determined by the compatibility set of each agent.

Lemma 3.75. Let Q be an ordered agent algebra witlifeconformance order relative to composi-
tion. Then for all agents andy/,

p=p' e plempp) CG,
where|| has been naturally extended to sets.
Proof: The result follows directly from definition 3.40. O

Since the operators of an ordered agent algebr& amonotonic, the maximal elements
of the compatibility set are sufficient to completely determine the order.

Lemma 3.76. Let Q be an ordered agent algebra witliifeconformance order relative to composi-
tion. Then for all agents andy/,

p = p' & for all g such thayy is maximal incmp(p),p || ¢ € G.

Proof: The forward implication is simply a special case of lemma 3.75.
For the reverse implication, lgt € cmp(y/) be an agent. Then there exigtse
cmp(p’) such thaty is maximal andg < ¢. By hypothesisp || ¢ € G. Note thatG is
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downward closed, sinc@ has aGG-conformance order relative to composition. Hence, since
|| is T-monotonic and> is downward closed, alsp|| ¢ € G. Thereforep || cmp(g) C G.
The desired result then follows from lemma 3.75. O

We often denote the set of maximal elementsmoif(p) asmaxcmpp).

Lemma 3.76 suggests that the mirror of an agent should be found among the maximal
elements of the compatibility set. In fact, since the mirror alone is sufficient to determine the order,
it suggests that the mirror should be the greatest element of the compatibility set. In the following
we will make the relationship between the mirror and the compatibility set more precise.

Theorem 3.77. Let Q be an ordered agent algebra with a mirror function relativ@.ttf p|| ¢ € G,

theng < mirror(p).
Proof: The proof is composed of the following implications:

rlleed
by definition 3.61
< mirror(p) is defined
by lemma 3.67
= mirror’*(p) < p
by corollary 3.33
= mirror*(p) || q € G
by definition 2.6 (commutativity)
& q || mirror*(p) € G
by definition 3.61

& g <X mirror(p)

O

When an agent algebra has a mirror function relative to a conforman€g, #&n it has
a G-conformance order relative to composition and-@onformance order, as shown by the next

results.

Theorem 3.78. Let Q be an ordered agent algebra andddbe a downward closed set of agents. If
@ has a mirror function relative t&, then @ has aG-conformance order relative to compo-

sition.
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Proof: We must show that for all agengsandy/, p < p' if and onlyp jg p.
The forward implication follows from theorem 3.34 and lemma 3.41 sificis
downward closed.
For the reverse implication we consider two cases. Assamneor(y) is not de-
fined. Then, by definition 3.6, < p'.
Assumemirror(p') is defined. Then, by lemma 3.62,|| mirror(p') € G. Then,

sincep jg p', alsop || mirror(p') € G. Therefore, by definition 3.6, < p'. O

Corollary 3.79. Let Q be an ordered agent algebra anddebe a downward closed set of agents.

If @ has a mirror function relative t6', Q has aG-conformance order.
Proof: The result follows from theorem 3.78 and theorem 3.42. O

To put it another way, when an algebgahas a mirror function relative t6/, both G-
conformance and/-conformance relative to composition characterize the order.
We can now completely characterize the mirror function in terms of conformance and the

compatibility sets.

Theorem 3.80 (Mirror Characterization). Let Q be an ordered agent algebra and debe a

downward closed set of agents. Then the following two statement are equivalent:
1. @ has a mirror function relative @'

2. Q has aG-conformance order relative to composition, and for all aggntsnp(p’) is

either empty or if it is not empty it has a greatest element.

Proof: Assume@ has a mirror function relative to the sét Then, by theorem 3.78 has a
G-conformance order relative to composition. In addition,Jdie an agent. Imirror(p')
is undefined, then, by definition 3.6&mp(¢) is empty. Otherwise, ifnirror(p’) is defined,
then, by definition 3.61¢mp(p/) is not empty, and, by theorem 3.7jrror(y/) is its greatest
element.
Conversely, assum@ has a(G-conformance order relative to composition, and for
all agentsy, cmp(p') is either empty or if it is not empty it has a greatest element. We show

that the function

max(cmp(p’)) if cmp(p’) #

N 0
mirror(p’) =
undefined ifcmp(p’) = 0
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is a mirror function relative t@-.

Clearly mirror is a partial function, andnirror(¢/) is defined if and only if there
exists an agenj such thay/ || ¢ € G. It remains to be shown that for all agemtandy,
p < p' if and only if mirror(p') is undefined op || mirror(p') € G.

Assumep = p'. If mirror(p’) is undefined we are done. Assum®rror(y) is
defined. Sincenirror(p') € cmp(p'), p" || mirror(p’) € G. But Q has aG-conformance order
relative to composition, henge < ¢/ if and only if for all ¢, if 9 || ¢ € G thenp || q € G.
Thereforep || mirror(p’) € G, since by hypothesis < p/.

Conversely assummirror(p') is undefined op || mirror(p') € G. If mirror(p') is
undefined, theemp(p’) = 0, and therefore for all agents if ¢/ || ¢ € G thenp || q € G
vacuously. Hence jg; p', and sinceQ has aG-conformance order relative to composition,
alsop < p'.

On the other hand, assurmeirror(¢/) is defined and || mirror(p’) € G. Letq
be an agent such that || ¢ € G. Then, by our definition omirror(¢/), ¢ < mirror(p’),
sincemirror(p') is the greatest compatible agent. Thelhg € G, sincep || mirror(y) € G,
g =< mirror(p'), || is T-monotonic and~ is downward closed. Henqejﬂ; p/, and sinceQ
has aG-conformance order relative to composition, gisg g. O

These results show that the mirror of an agent corresponds to the greatest element of the
compatibility set. For general preordered agent algebra, the compatibility set may have several
different greatest elements. In that case there is some flexibility in the choice of the mirror function.

Corollary 3.81. Let @ be an ordered agent algebra, andhétror, andmirror, be partial functions
from Q.D to Q.D such that for all agents € Q.D,

mirrory(p) = mirrory(p)

(in particular,mirror, (p) is defined if and only ifmirror,(p) is defined). Thenmirror; is a
mirror function for @ relative to some conformance g@tif and only if mirroe is a mirror

function for Q relative toG.

Proof: The result follows directly from the definition of mirror function (def. 3.61) and corol-
lary 3.33. O

If the algebra is partially ordered (i.e., the order is antisymmetric), the greatest element is

unique. Hence, if a mirror function exists, it is uniquely determined.
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Theorem 3.82. Let Q be a partially ordered agent algebra@tas a mirror function relative @,

then the mirror function is uniquely determined.

Proof: Assume@ has two mirrors function®.mirror, and Q.mirror,. Let p be an agent. By
definition 3.61,mirror; (p) andmirror,(p) are either both defined or both undefined. If they
are both defined, then

p || mirror,(p) € G A p || mirrorz(p) € G
By theorem 3.77
= mirror,(p) < mirrorz(p) A mirrorz(p) < mirror, (p)
by corollary 2.23

= mirrory(p) = mirrors(p)

Sincep was arbitrary, ther®.mirror; = Q. mirrors. O

Perfectly reasonable agent algebras may fail to have a mirror function. The characteriza-

tion of theorem 3.80 tells us that this may occur for the following two reasons:

e the parallel composition operator is unable to characterize the order of the algebra, i.e., the

algebra does not have a conformance order relative to composition, or
e the compatibility set fails to have a greatest element.

In both cases the lack of a mirror function is due to insufficient information in the agent model. The
following examples show that by extending the model it is possible to recover a mirror function and

a conformance order.

Example 3.83 (Alphabet Algebra). Consider the agent algebgxdescribed in example 3.44, and
let G = 24 — A. Recall thatQ has aG-conformance order relative to composition. We now
show that@ has no mirror function relative t&¢'. To do so, we consider the compatibility set
of each agent, and then apply theorem 3.80.

Letp be an agent. Itis easy to see that the set of agents compatible isith

cmp(p) ={q: Jala ¢ gNa & pl}.

The maximal elements of the compatibility set are therefore

maxcmp) = { A—{a}:a &€ p}.
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Observe thatnaxcmpp) is a set of incomparable agents. Therap(p) does not have a
greatest element, and therefore, by theorem 3B@pes not have a mirror function relative
to G. Because is the only set of agents that characterizes the order relative to composition,

@ has no mirror function relative to arty.

Example 3.84 (Locked Alphabet Algebra). In this example we present an extension of exam-
ple 3.83 and we show that by adding extra information to the model it is possible to charac-
terize the order with a mirror function.

The locked alphabet algebgis defined as follows:

Agents are of the fornp = (A, L) where A and L are disjoint subsets af..A. The
alphabet op is a(p) = AU L.

renamér)(p) is defined whenevet(p) C dom(r). In that caserenamér)(p) =

(r(A), (L)), wherer is naturally extended to sets.

proj(B)(p) = (AN B,LN B).

p1 || p2 is defined whenevek, N Ly = (), Ay N Ly = ) and Ay N Ly = (. In that case

Y4t H P2 = (A1 UAQ,Ll U Lz).

The additional set of signals is used by an agentto indicate that no agemtcan compose

with p if ¢ uses signals itd..

Theorem 3.85. Let < be an order folQ such thatrename proj and|| are T-monotonic. Let
p = (A, L) andp’ = (A’, L") be two agents. Thep < p' only if A C A" U L' and
LClL.

Proof: Consider the agent= (A', A— (A’UL")). Clearly,p’ || ¢ is defined, sincd/ N.A —
(AAUL') =pandA’ N L' = ). Therefore, sincé is T-monotonic ang < ¢/, also
p || ¢ is defined. Hence:

LNA—(AUL)Y=0ALNA=0ANANA—-(AUL)=10
= LCAUL ANLNA=0ANACA UL
= ACAuL ANLCL.

The requirements aenameand proj are subsumed by those |pf O
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We will consider the order such that< ¢/ ifand only if A C AU L' andL C L'.
The proof that the operators afemonotonic is left to the reader.

Note that the subset of agerts= { (A, L) : L = (} is closed under the operations
and thus constitutes a subalgeliaof Q. It is easy to show thaP is isomorphic to the
Alphabet Algebra of example 3.83. By extension, we consider the Locked Alphabet Algebra
a superalgebra of the Alphabet Algebra.

The order can be characterized a§-&onformance order relative to composition
whereG = D includes all the agents of the algebra. Clea¥lys downward closed relative
to <.

Let nowp’ = (A’, L") be an agent, and consider the set of agents (A, L) that
are compatible withy'. SinceG is the set of all agents, an agens compatible with/ if and
only if ¢ || p’ is defined, that is

LNL =0 ANANL =0 AANL=0(
which translates to
cmp(p’) = {(A, L) : ANL=0ANACA-L'ANLCA— (A UL}

Note that if A C A — L'andL C A— (A UL'), thenA C AU (A - (A UL")) and
L CA— (A UL'). Therefore, the agemt= (A', A — (A’ U L') is the greatest element of
cmp(p’).
Theorem 3.86. Letp = (A, L) andp’ = (A', L') be two agents. Then < 7' if and only if
p| (A, A—(A"UL"))is defined.
Thereforemirror(p') = (A, A — (A" U L)) is a mirror function relative tdr, and

Q has aG-conformance order relative to composition.

Example 3.87 (10 Agent Algebra). Consider the 10 agent algebe described in example 3.48
and letGG be the set of agents that have no inputs. T@dmas a&-conformance order relative
to composition. We now show th&@ has no mirror function relative t6'. Lety = (I',0')

be an agent. The set of agents compatible with
cmp(p') ={q=(1;,04) : [, CO'ANI' CO, C A-O'}.
The maximal elements of the compatibility set are therefore

maxcmpp’) = {q= (I;,04) : I, =0'AI'CO, C A—O'}.
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Since the agents imaxcmgp') are incomparablesmp(p') does not have a greatest element,
and therefore, by theorem 3.89,does not have a mirror function relative @

Notice how every maximal element imposes a particular constraint for an agent to
refine another. Lep = (7,0) andp’ = (I’,0’) be two agents. Then the maximal element

q1 = (O', I') characterizes an order (which is nbtmonotonic) such that
ppeICI'ANODO0' AONT =0.

On the other hand, the maximal element= (O’, A — O') characterizes the different order
(again notT-monotonic) such that

p=p & ICA-O0'NODO' ANOCO.

In other wordsg; provides the constraint on the inputs, whijeconstrains the outputs. Note
that in this case these two maximal elements are sufficient to characterize the order, which is
equal to the intersection of the two orders described.

Example 3.88 (Locked 1O Agent Algebra). In this example we present an extension of exam-
ple 3.87 and we show that by adding extra information to the model it is possible to charac-
terize the order with a mirror function.

The locked 10 Agent algebr@ is defined as follows:

Agents are of the formp = (I, 0, L) wherel, O and L are disjoint subsets a..A.
The alphabet op is a(p) = TUO U L.

renamér)(p) is defined whenevet(p) C dom(r). In that caserenamér)(p) =

(r(I),r(0),r(L)), wherer is naturally extended to sets.

proj(B)(p) is defined whenevef C B. In that caseproj(B)(p) = (I,ON B, LN B).

p1 || p2 is defined whenevelO; ULy )N (O2 U Ly) =0, [;N Ly =0 andly N Ly = 0.
In that case

p1|lp2 = ((I1 Ulz) — (01 UO2),01 UOy, L1 U Ly).

The additional set of signal is used by an agentto indicate that no agemtcan compose
with p if ¢ uses signals ird.
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Theorem 3.89. Let < be an order foQ such thatrename proj and|| are T-monotonic. Then
p=<ponyifICI',OOCOCO UL andL C L.

Proof: The proof is similar to the proof of theorem 2.30. Let= (I,O,L) andy =
(I',O', L") be two agents such that< p/. Then consider the agegt= (O',I', A —
(I'UO'UL")) and deduce the conditions for whioknamér)(p), proj(B)(p) andp|| q
are all defined. O

We will consider the order such that< ¢/ exactly when/ C I',O' C O C O'UL’/
andL C L.

Theorem 3.90. The functionsrename proj and|| are T-monotonic with respect te&.
Proof: The proof is similar to the proof of theorem 2.31. O

Note that the subset of agents= { (1,0, L) : L = (} is closed under the opera-
tions and thus constitutes a subalgePBraf Q. It is easy to show thaP is isomorphic to the
IO Agent Algebra of example 3.87. By extension, we consider the Locked IO Agent Algebra
a superalgebra of the 10 Agent Algebra.

The order can be characterized a§-@onformance order relative to composition,
whereG = { (0,0, L)} includes all the only the agents with no inputs. Clea¥lys down-
ward closed relative te.

Let nowp’ = (I',0', L') be an agent, and consider the set of agents(I, O, L)
compatible withy/. We have

qllp'=(IUI')-(0U0"),0U0, LUL),
with the following conditions for membership @& and for definedness:

IuICcouo,
(OUL)N(O'UL') =0,
INL=0ANLNT'=0ANLNL =0.

These conditions imply (since also for each agén€) and L must be disjoint) that

h < 1 C 0O
I' C O C A-(O'UL)
ph € L C A-(OUu0O'UL)
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Notice that the two agentg = (1,0 U{a}, L), andgs = (1,0, L U {a}) are comparable
andgq; < g¢o. Therefore the set of compatible agentg/dias a greatest element. It is easy to

show that the greatest element is also a mirror function, so that
mirror(p') = (O',I') A — (I'UO"U L')).

Hence, the algebra also hag/aconformance order relative to composition.

In the particular case of the simple 10 agentsis of the formp’ = (I’,0', ().
Hencemirror(p') = (O',I', A — (I' U O")). Note how all the maximal elements found in
example 3.87 are contained mirror(¢/) in the superalgebra. In the superalgebra, however,

the compatibility set is extended upwards by agents that converge to a unigue greatest element.

Example 3.91 (Dill’s 10 Agent Algebra). We have seen in example 3.54 that the Dill's IO Agent
Algebra does not have a characterization in terms of conformance relative to composition. It
is therefore impossible to find a mirror function in this case. We will however reconsider this

example when we restrict the order to agents that share the same alphabet, below.

In this section we have seen examples of agent algebras that don’t have a mirror function,
despite having &-conformance order relative to composition (see example 3.83 and example 3.87).
The solution adopted in those cases consists of augmenting the model with enough information to
let a single environment characterize the order. In the next two sections we explore alternative
solutions that consist of adding some extra condition to the definition of the mirror function in order

to restrict the size of the compatibility set.

3.3.1 Mirrorswith Predicates

Let Q be an ordered agent algebra, andgddbe an agent. IQ has aG-conformance
order relative to composition, then the compatibility setp(g) of p’ completely characterizes the
set of agent such thaip < ¢/ (see lemma 3.75). Each individual agerih the compatibility set
contributes to the characterization of the order by discriminating among two sets: the set of agents
p that are compatible with do not conformto ¢/; and the set of agenjsthat are compatible with
q thatpotentially conform tog/. In other words, each compatible agent has a particular view of the
conformance order.

When a mirror function exists, one agent (the greatest element) has an exact view of the
conformance order. In that case, the compatibility set isfequal to the set of agents that conform
to mirror(p’), and, vice-versa, the compatibility set miirror(¢/) is equal to the set of agents that
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conform top’. For an arbitrary element of the compatibility set we can only establish a containment
relationship.

Definition 3.92 (Refinement Set). Let Q be an ordered agent algebra, andget Q.D. The
refinement set of p/, written ref(p'), is the set of agentgsuch thap < ¢/':

ref(p) = {p:p < p'}.

Lemma 3.93. Let Q be an ordered agent algebra with a mirror function relative thet  be an
agent such thamirror(y/) is defined. Then

ref(p') = cmp(mirror(p')).

Proof: The proof consists of the following series of double implications:

p € ref(p)
by definition 3.92
& p=p
by definition 3.61, sincenirror(y/) is defined
& pl mirror(p') € G
by definition 3.72
& p e cmp(mirror(p')).

O

Lemma 3.94. Let Q be an ordered agent algebra witlifeconformance order relative to composi-
tion. Letp’ be an agent and lete cmp(p') be a compatible agent. Then

ref(p’) C cmp(q).
Proof: The proof consists of the following series of implications:
p € ref(p’)
by definition 3.92
& p=yp
since @ has aG-conformance order relative to composition

& Vg,p' lgeG@=pllged
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sinceq € cmp(p'), q || p' € G, therefore

= pll¢eq
by definition 3.72

& pecmplg).

O

These two results are represented graphically in figure 3.1 and figure 3.2. Given aip agent

mirror(q)

mirror(p')

cmp(p')

Figure 3.1: Refinement sets and compatibility sets with mirrors

in the compatibility set off, we call thediscrimination set of ¢ the set of agents thatdiscriminates
exactly for the purpose of conformancerto

Definition 3.95 (Discrimination Set). Let Q be an ordered agent algebra witlizaconformance

order relative to composition. Let be an agent and let€ cmp(p’) be a compatible agent.
Thediscrimination set of ¢ overy/ is the set

disy(q) ={p:p2p' e plqea}

Lemma 3.96 (Discrimination). Let Q be an ordered agent algebra witlizaconformance order

relative to composition. Lef be an agent and lgte cmp(p’) be a compatible agent. Then
disy (q) = (Q.D — cmp(q)) U ref(p’).

Proof: We must show thap € (Q.D — cmp(q)) U ref(y/) ifand only ifp < p' < p|| ¢ € G. For
the forward direction we consider the following two cases:
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Figure 3.2: Compatibility sets of compatible agents

o If p € Q.D — cmp(q), thenp ¢ cmp(q) andp || ¢ ¢ G. By lemma 3.94ref(p/) C
cmp(q), thereforep & ref(p'). Thereforep A p’. Hencep <p' & p | q € G.

e If p € ref(p’), thenp < p'. By lemma 3.94ref(p') C cmp(q), thereforep € cmp(q).
Thereforep || ¢ € G. Hencep < p' & pllq € G.

For the reverse direction, Iptbe an agent such that< ¢ < p || ¢ € G. We then consider
the following two cases:

e If p <9/, thenp € ref(p’) and therefore € (Q.D — cmp(q)) U ref(p').

e If p A p/, then, by hypothesisp || ¢ ¢ G. Hencep ¢ cmp(q). Thereforep €
Q.D — cmp(q), and consequently € (Q.D — cmp(q)) U ref(y/).

Corollary 3.97. Let Q be an ordered agent algebra with a mirror function relativ€' td.et  be
an agent such thawirror(y/) is defined. Then

dis, (mirror(p')) = Q.D.
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Proof: The proof consists of the following equalities:
dis, (mirror(p')) = {p : p X p' & p || mirror(p) € G}
by lemma 3.96
= (Q.D — cmp(mirror(p))) U ref(p')
by lemma 3.93
= (Q.D —ref(p')) Uref(p’)
= Q.D.
U

The above results show that every compatible agent can be used as a “mirror” if the
characterization is restricted to its discrimination set. This suggests an extended notion of mirror

function, whose applicability is subject to the satisfaction of a predicate.

Definition 3.98 (Mirror Function with Predicate). Let Q be an ordered agent algebra and¥die
a downward closed set of agents@f For each agent, let pred(p’) C Q.D be a predicate
over Q.D such thatef(p') C pred(p'). Then,Q hasa mirror function with predicate relative
to G if and only if

1. Q.mirror (which we may simply write asrhirror” when there is no ambiguity about
what agent algebra is being considered) is a partial function fotm D,

2. mirror(p) is defined if and only if there existssuch thap || ¢ € G,

3. If p € predyp’), thenp < p’ if and only if either mirror(y/) is undefined omp ||
mirror(p') € G.

Corollary 3.99. Let Q be an ordered agent algebra with a mirror function with predicate relative to
G. Then, for all agentp andy/, the following two statements are equivalent

1L.p=2yp
2. p € pred(p’) and eithemirror(p') is undefined op || mirror(p') € G.

The regular mirror function can be interpreted as a mirror function with predicate by
simply setting for all agentg

predp’) = Q.D.
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Hence mirror functions with predicate are more general than the regular mirror functions.
Unfortunately mirror functions with predicate do not enjoy the same characterization in
terms ofG-conformance relative to composition and greatest elements of the compatibility set (see

theorem 3.80). A simple counterexample is obtained by considering the predicate

predp’) = {p:p =p'}.

In this case, any agent of the compatibility set can function as the mirror. This extreme case is,
of course, useless, since the complexity of checking membership with the predicate is the same as
the complexity of checking conformance. Mirror functions with predicate are therefore most useful
when the predicate is relatively easy to check.

The choice of the predicate is guided by the following result.

Theorem 3.100. Let Q be an ordered agent algebra witlizaconformance order relative to com-
position. For all agentg/, let mirror(p’) € cmp(p') be a compatible agentrjrror(y/) is
undefined ifcmp(p’) = 0), and letpred(p') C Q.D be a predicate. Then the following two

conditions are equivalent:
1. mirroris a mirror function with predicatpredrelative toG.

2. For all agent®/, ref(p') C predp’) and if mirror(p') is defined, therpred(p’) C
dis, (mirror(p')).
Proof: For the forward direction, by definition 3.98, for all agedtsef(p’) C pred(p’). Let now
p’ be an agent such thatirror(y/) is defined and lep € pred(p’) be an agent. Then,

p € pred(p’)
by definition 3.98, sinc& has a mirror function with predicate relative@
= p=p & pl miror(p) e G
by definition 3.95
= p e disy (mirror(p')).
Hence,pred(p’) C dis, (mirror(p')).
For the reverse direction, assumed (/) C pred(p’) C dis, (mirror(p')). Clearly
mirror is a partial function, andnirror(p) is defined if and only if there existg such that

p |l ¢ € G. Let nowp be an agent such thate pred(y’). We must show that < p’ if and
only if either mirror(p') is undefined op || mirror(p') € G. We consider two cases.
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Assumemirror(p’) is undefined. Then, by hypothesisnp(y/) = 0, and there-
fore, sinceQ has aG-conformance order relative to composition, for all agents < p.
Thereforep < p' if and only if mirror(p') is undefined.

Conversely, assummirror(p') is defined. Then,

p € pred(p’)
since by hypothesipred(y/) C dis, (mirror(p’))
= p € disy(mirror(p'))
by definition 3.95

= p=p<&p| miror(p)) € G.

Hencemirror is a mirror function with predicatpredrelative toG. O

The greater the element in the compatibility set, the larger the discrimination set.

Lemma 3.101. Let Q be an ordered agent algebra witlizaconformance order relative to compo-

sition. Letp’ be an agent and lgt andg, be compatible agents such that< ¢». Then
disy (q1) C disy (g2).

Since greater elements have larger discrimination sets, andmiadg@) must be a subset
of the discrimination set ahirror(y/), it is convenient to choose a maximal element of the compat-
ibility set for mirror(p'). In this way, we have the maximum flexibility in choosing a predicate that
is computationally easy to check. However, unlike regular mirror functions, the mirror of an agent
with predicate is not necessarily a maximal element of the compatibility set.

The following examples show the use of mirror functions with predicate in the cases

where a regular mirror function does not exist.

Example 3.102 (10 Agent Algebra). Example 3.87 shows that the IO agent algebra does not have
a mirror function relative t@-, despite having &-conformance order relative to composition.
In this example we show how to derive a mirror function with predicate.
Letp’ = (I',O’) be an agent. As shown in example 3.87, the agert (O', I')

is a maximal element of the compatibility setf We now wish to us@; as a mirror ofp’
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with the use of a predicate. To do so, we compute the discrimination get of

disy (q1) = (Q-D — cmp(q1)) U ref(p’)

= (QD—-{(I,O):ICI'NO'COCA-THU{(I,0): ICI'NO=0'"}
= {(I,O): I'CIVOCO'VA-T CO}U{(I,0): ICI'ANO=0"}

= {([,O): I'CIVOCO'VA-T'COV{ICI'NO=0"}

Recall thatpred(p’) must includeref(p'). A reasonable choice faredy/) in this case is the
following:

predp’) = {p: a(p) C a(p’)}.

This predicate is easy to check for finite alphabets, and satisfies the condifign C
predp’) C disy(q1). Therefore, by theorem 3.10@ has a mirror function with predicate
relative toG, where

mirror((I,0)) = (0,1), predy') = {p: a(p) C a(p)}.

Note thatq; is not the only compatible agent that can be used as a mirror with the above
predicate. For example, the maximally compatible agert (O’, A — O’) has the following

discrimination set:

disy (q2) = (Q.D — cmp(gz)) U ref(p’)

= (QD—{([,O): ICA-O0'AO=0'HU{({,0): ICI'ANO=0"}
= {(I[,O): A-O'CcIVO#0}U{(I,0): ICI'ANO=0"}

= {(I,O): A-O'CIVO#0'V(ICI'AO=0")}

It is easy to check that the conditioef(y) C pred(p') C dis,(g2) is satisfied. HenceQ
has also the following mirror function with predicate:

mirror((1,0)) = (0, A= 0), predp’)={p:alp) Ca@®)}.

We have noted how mirror functions with predicate lose the characterization in terms of
conformance order that simple mirror functions have. For a restricted case, however, we can re-
duce a mirror function with predicate to a regular mirror function by extending the model as in
example 3.84 and example 3.88. The construction consists of augmenting the model by providing
each agent with the information conveyed by the predicate of their mirror. This construction is
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still somewhat preliminary, as it doesn’'t guarantee a downward closed conformance set. In addi-
tion, the conformance set does not necessarily enjoy the properties that are necessary for applying
theorem 3.119 below.

Theorem 3.103. Let Q be an agent algebra with a mirror function with predicate relativé,tsuch
that pred(p) = pred(mirror(p)). If G is downward closed, then the agent algeQrhas a
mirror function relative ta7, where

e O.D={(p,set) :p€ Q.D Aset C Q.D A pred(p) N set = ()}
e (p,set) < (p,set’) if and only if eitherQ.mirror(p') is not defined, or, if defined,

set C set’,

pred(p) C set’' U pred(p’) and
p || Q.mirror(p') € G.

e proj(B)((p, setp)) = (proj(B)(p), proj(B)(set,)) if all quantities are defined.
e renamér)((p, set,)) = (renamér)(p), renamér)(set,)) if all quantities are defined.
o (p,sety) || (g, sety) is defined if and only if

p || ¢ is defined

pred(p) N set, = 0,
pred(q) N set, = 0 and

set, N sety = 0.

In that case
(p, setp) || (a,setq) = (p [l g, setp U setq)
e Q.mirror((p, set)) is defined if and only ifQ.mirror(p) is defined. In that case,
Q.mirror((p, set)) = (Q.mirror(p), Q.D — (set U pred(p))).

e G =G x22D

Proof: We must show tha@.mirror is a mirror function relative t@.
Clearly Q.mirror is a partial function fromQ.D to Q.D. Also, if, for an agent
(p, set), Q.mirror((p, set)) is defined, ther®.mirror((p, set)) || (p, set) € G. Conversely,
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if (q,sety) || (p,set) € G, thenq || p € G, henceQ.mirror(p) is defined, and therefore
Q.mirror((p, set)) is defined.

Assume now thatp, set) =< (p',set’), and assume tha®.mirror((p/, set')) =
(Q.mirror(p'), Q.D — (set’ U pred(p'))) is defined. Then

e By hypothesip || Q.mirror(y/) € G.
e predp) N (Q.D — (set' U pred(p’))) = 0, sincepred(p) C set’ U pred(p’).

e pred Q.mirror(p')) N set = (), since by hypothesipred(Q.mirror(p))) = pred(yp’),
predp’) N set’ = () andset C set'.

e setN(Q.D — (set’ Upredyp'))) =0, sinceset C set'.

Therefore(p, set) || (Q.mirror(p'), Q.D — (set’ U pred(p'))) € G.
Conversely, assume, set) || (Q.mirror(p'), Q.D — (set’ U pred(p’))) € G. Then

e set C set’ U predp’), sinceset N (Q.D — (set’ U pred(p’))) = (. In addition,
set N pred(p') = 0, sinceset N pred Q.mirror(p')) = 0 and pred Q.mirror(p')) =
pred(p'). Thereforeset C set’.

e predp) C set’ U pred(p'), sincepred(p) N (Q.D — (set’ U pred(p’))) = 0.
e By hypothesiw || Q.mirror(p)) € G.

Therefore(p, set) < (p/, set’).

Similarly, if Q.mirror((p', set')) is not defined, thertp, set) < (¢, set’) if and
only if Q.mirror((p', set')) is not defined.

Therefore, by definition 3.61Q.mirror is a mirror function forQ relative toG. O

Theorem 3.104. Let Q andQ be as in theorem 3.103. Then the functiorQ.D — Q.D such that
for all agentyp

e(p) = (p.0)
is an embedding.

Proof: It is easy to show that commutes with the operators of the algebra, that is, for example,
that

proj(B)(e(p)) = e(proj(B)(p))-



192

To complete the proof we must show thak ¢/ if and only if (p, 0) < (¢, 0).

Let p andp’ be such thap < p'. If Q.mirror(p’) is not defined, therip, ) =<
(p',0). Alternatively, assume&.mirror(p') is defined. Then, since < p/, p € pred(p') and
pl|| @.mirror(p’) € G. Sincepredis monotonic relative tes, pred(p) C pred(y/). Therefore,
by definition of Q, (p, ) < (¢',0).

Conversely, assum@, ) < (¢/,0). If Q.mirror(p’) is not defined thep < p'.
Alternatively, assum&.mirror(y/) is defined. Then, by definition @, pred(p) C pred(y),
and therefore, singe € pred(p), p € predy/). In addition,p || Q.mirror(p’) € G. Therefore,
by definition 3.98, alsp < p'.

Hencep =< p' if and only if (p, 0) < (p/,0). O

Corollary 3.105. Let Q and Q be as in theorem 3.103 such thGitis downward closed, and let
(p',0) be an agent oD. If (p, set) = (¢/,0), thenset = (.

The above results show thatifis an agent inQ, then the mirror ofy/, #) in Q charac-
terizes exactly the agengssuch thaip < ¢/.

3.3.2 Mirrorsand Subalgebras

In the previous section we have employed a predicate to focus the application of the mirror
function to only those agents that the mirror can discriminate. Here we use an alternative approach,
and consider only a subset of the agents to reduce the size of the compatibility sets. We choose
the subset so that it is downward closed, and closed under parallel composition, thus effectively
constructing a subalgebra when the operators of projection and renaming are removed from the
sighature. Since the compatibility sets are smaller, subalgebras have a greater chance to have a
G-conformance order relative to composition and a mirror function.

An example that is particularly useful in practice is the subset of agents that have the same
alphabet. In particular, we are interested in studying the conformance order and the corresponding
mirror function for algebras whose order satisfies the constraint

p=p = alp) =a@).

Note that ifa(p) = a(q), thena(pllq) = a(p) = a(q). Therefore the subset of agents with a certain
alphabet that satisfy the above constraint is closed under parallel composition and thus constitute
a subalgebra of the original agent algebra (restricted to parallel composition only). Note also that
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the projection and renaming operators have no effect in determining conformance relative to com-
position and mirror functions. Therefore, the results of the previous sections apply to this restricted
case, provided that the necessary restrictions on the alphabet are enforced throughout. Projection
and renaming can be used, instead, to transition from one subalgebra to another subalgebra with
a different alphabet. This will be useful in solving the local specification synthesis problem under
these specific assumptions.

Let Q be an agent algebra and assume that for all alphabetise algebraP such that
P.D = {p:a(p) = A} is a subalgebra of and is closed under. Assume also that each subal-
gebra has &-conformance order relative to composition and a mirror function relativé. thote
that sinceP.D must be downward closed for all alphabets= ¢ only if a(p) = «a(p’). The
results obtained in the subalgebras can be rephrased in terms of the original algebra by restricting
the definitions of conformance order and mirror function to apply only when the alphabets of the
agents involved are the same. Note that weratechanging the definition of conformance, but we
are simply reflecting the restrictions of the subalgebra in the superalgebra.

Definition 3.106. Let Q be an agent algebra and (&the a downward closed set of agentshfQ
has asame alphabet G-conformance order relative to composition if and only if for all agents
pandp’, p < p' if and only if a(p) = «(p’) and for all agentg such thain(q) = a(p), if
P |lg€ Gthenp| g€ G.

Definition 3.107. Let Q be an ordered agent algebra anddebe a downward closed set of agents
of Q. Then,Q has a same alphabet mirror function relative to G if and only if

1. Q.mirror is a partial function fromD to D,
2. mirror(p) is defined if and only if there existssuch thatx(q) = a(p) andp || g € G,

3. p < p'ifand only if «(p) = «(p’) and eithemirror(p’) is undefined op || mirror(p') €
G.

The additional conditions in these definitions consistently restrict the alphabets of the
agents involved to the alphabet of the agent for which we are considering the mirror.

In particular we are interested in the characterization of the mirror in terms of the greatest
element of the compatibility set and of conformance relative to compaosition.

Definition 3.108 (Compatibility Set). Let Q be an ordered agent algebra &hd downward closed
set of agents. Thalphabet invariant G-compatibility set of an agent, written cmp(p), is
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defined as follows:

cmp(p) ={q:alqg) =alp) Ap| qge G}

Theorem 3.109. Let Q be an ordered agent algebra andddbe a downward closed set of agents.

Then the following two statement are equivalent:

1. Q has an alphabet invariant mirror function relativeio

2. Q has an alphabet invariagt-conformance order relative to composition, and for all

agents, cmp(p') is either empty or if it is not empty it has a greatest element.

These definitions and results apply, for example, to Dill’'s trace structure algebra [34]
and can be applied to any model in which substitutability in defined only for agents that share the
same interface. These notion can however be generalized to any arbitrary equivalence relation that
partitions the sets of agents into equivalence classes that are closed under composition and under

the agent ordering. We omit the details of this generalization.

3.3.3 Construction of Algebras

In this section we explore conformance and mirrors for the direct product of algebras and
for subalgebras. We begin by showing that if two agent algebras have a conformance order, then
the agent order in their product is weaker than the corresponding conformance order. We also show
that the product does have a conformance order, in case the algebras have a mirror function, and the

mirror is defined for all agents.

Theorem 3.110. Let Q; and Q5 be agent algebras with@; and G>-conformance order, respec-
tively. Let @ = Q; x Qs be the direct product (definition 2.13) @ and Q, and let
G = G1 x Gy. Then for allp,p’ € Q.D, if p <o p' then for all expression contexfs, if
E[p'] € GthenE[p] € G.

Proof: Letp = (p1,p2) andp’ = (p!,p)) be agents such that < p/. The proof consists of the
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following series of implications:

p=y
by definition 2.13
& p1 =g, PI Ap2 20, )
by hypothesis
& (VE,E[p|] € Gy = E[p1] € G1) A (VE, E[ph] € G2 = E|ps] € G2)
by definition 2.13
= VE,E[p'] € G= E]p| €G.
]

Unfortunately the reverse of the last implication in the proof above does not hold, that is
Q does not necessarily haveGaconformance order. This is because a coni#éxhay be defined
for an agenp;, while it may not be defined for the pajp;, p2). However, the result holds in the
presence of mirror functions, when the mirror function is always defined. In that case, in fact, the
expression contexts can be reduced to a single environment, and the difficulty above disappears.

Theorem 3.111. Let Q; and Q> be agent algebras with a mirror function relativeGpand G,
respectively, such that for all agents mirror(p) is defined. LetQ = Q x Qs be the
direct product (definition 2.13) of; and Q5 and letG = G x G5. Then for all agents
(p1,p2) € Q.D, mirror((p1,p2)) = (mirror(py), mirror(pz)) is a mirror function forQ
relative toG.

Proof: Clearly @.mirror is a partial (in fact, total) function. Sincirror is always defined, we

must show that for alb = (p;, p2) there existg such thap || ¢ € G.

mirror((p1, p2))}
by hypothesis
< mirror(py)d A mirror(ps)l
by definition 3.61
& (Jqi,p1 [l g1 € G1) A (Ba2,p2 || g2 € G2)
by definition 2.13
& Haq,q2), (p1,p2) [ (@1, 32) €G

& 3JgpllgeCG
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It remains to show that for ah,/ € Q.D, p < p' if and only if p || mirror(p/) € G. Let

p = (p1,p2) andp’ = (p',ph).

pp
& (p1,p2) 2 (Ph,p5)
by definition 2.13
& pL=2piAp2 X1
by definition 3.61, sincenirror(y,) andmirror(p),) are both defined
& py || mirror(p) € Gy A py || mirror(ph) € G
by definition 2.13
& (p1,p2) || (mirror(p} ), mirror(p)) € G
by hypothesis
& (p1,p2) || mirror((p}, p3)) € G

& pl mirror(p') € G

O

In the rest of the section we consider subalgebras. We distinguish between two cases.
For the first case, we consider subalgebras that preserve the agent ordering, as described in defini-
tion 2.41. We show that, in that case, the conformance order in the subalgebra becomes stronger,
since fewer contexts may contribute to the notion of conformance. Consequently, the subalgebra
may fail to have a conformance order. If however the superalgebra has a mirror function, and if the
subalgebra is closed under that mirror function, then the subalgebra has the same mirror function

and therefore a conformance order.

Theorem 3.112. Let Q' be an ordered agent algebra witlizaconformance order and I be a
subalgebra ofY. LetG = G' N Q.D. Then for all agentg andy’ in Q, if p <o p’ then for
all expression contextg over Q, if E[¢/] € G, thenE[p] € G.

Proof: Let &’ be the set of expressions ovéf, and let€ be the set of expressions ov@r Note
that sinceQ is a subalgebra ofY, an expression ove® is also an expression ovel, and
therefore€ C &'.

Let nowp andp’ be elements 0®.D. The proof consists of the following series of
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implications.

p=oyp

by definition 2.41

& p2op
since @’ has aG’-conformance order, by definition 3.26

& VEe& EpleG = Eped
sinceQ.D is closed inQ’.D under the operator§f = G' N Q.D, £ C &',
and since foralp € Q.D, E[y/] € G’ & E[p] € G,

= VE€e& Ep|eG=E]p e

The reverse of the last implication does not hold. In fact, while it is true thagif € G,
then E[p] € G', the subalgebra can only consider a subset of the contexts, and may therefore be

unable to completely characterize the order.

Theorem 3.113. Let Q' be an ordered agent algebra with a mirror functioirror relative toG
and letQ be a subalgebra o closed undemirror. LetG = G' N Q.D. ThenQ has a

mirror function relative ta3.

Proof: We show that thamirror is a mirror function forQ relative toG. Clearly mirror is a partial
function.

Let nowp € Q.D be an agent. limirror(p) is defined, then, sinc@ is closed
under mirror,mirror(p) € Q.D. Sincemirror is a mirror function relative ta? for @',
by lemma 3.62p || mirror(p) € G'. Sincep € Q.D, mirror(p) € Q.D, and sinceQ is
closed under parallel composition,| mirror(p) € Q.D. Therefore, sinc& = G N Q.D,
p || mirror(p) € G. Hence, ifmirror(p) is defined, then there exisis(i.e., mirror(p)) such
thatp || ¢ € G.

Conversely, if there existg € Q.D such thap || ¢ € G, then, sinceQ C &, also
p |l ¢ € G'. Therefore, by definition 3.6Imirror(p) is defined.

Let nowp € Q.D andp’ € Q.D. It remains to show that < ¢/ if and only if
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eithermirror(p') is undefined op || mirror(p') € G.
p=op

sinceQ C Q'

& p=gp
since @’ has a mirror function relative t6, by definition 3.61

& mirror(p')1 V p || mirror(p') € G’
sinceQ is closed under mirror an@ = G' N Q.D

& mirror(p')1 V p || mirror(p') € G

O

For the second case, we consider a subalgebra that does not preserve the order, but that
is simply closed under the operators. This notion of subalgebra corresponds to the one described
in definition 2.18. We assume that both the superalgebra and the subalgebra have a conformance
order. We show that the order in the subalgebra is stronger than the order in the superalgebra, since

in the subalgebra case there are fewer context to be satisfied in the definition of conformance.

Theorem 3.114. Let Q' be an ordered agent algebra witlizaconformance order and I be a
subalgebra ofY’. LetG = G' N Q.D and assum& has aG-conformance order. Then for

all agentgp andy’ in Q,
p=op =p=gp.
Proof: Letp andp’ be elements 0.D. The proof consists of the following series of implications.
p=op
sinceQ’ has aG’-conformance order, by definition 3.26
& VEe& EpeG = Eped
sinceQ.D is closed inQ’.D under the operator§f = G' N Q.D, £ C &',
and since foralp € Q.D, E[p/] € G’ & Ep'] € G,
= VE€& Epe G= E]pl e
since Q@ has aG-conformance order, by definition 3.26

& p=oyp
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3.4 Local Specification Synthesis

With conformance we have addressed the problem of characterizing substitutability under
all possible contexts. Relative conformance has been introduced to reduce (whenever pbssible)
complexity of the problem by considering only a limited set of contexts. Relative conformance,
however, when applicable, does not change the notion of substitutability, since, in that case, relative
and general conformance coincide (see theorem 3.42).

In this section we address the problem of deriving the local specification for an agent in
a context, such that when an agent that satisfies the local specification is substituted in the context,
the resulting system satisfies a global specification. Instances of this problem include supervisory-
control synthesis [4], the rectification and optimization problem [13], and protocol conversion [73].
We will show that, under certain conditions, a mirror function provides us with a closed form solu-

tion.

Definition 3.115 (Local Specification). Let Q be an ordered agent algeb#a,an expression con-
text, and letp’ be an agent. Aocal specification for ¢ in E is an ageny such that for all
agents,

p=<q&e Ep)=p.

In the rest of this section we address the problem of deriving the local specifigation
given the expression contekt and the global specificatigin. The solution involves the use of the
mirror function. However, to solve the equation for the local specification, the conformance set must
have some additional closure properties. We call a conformance set with these additional properties
arectification set.

Definition 3.116 (Rectification Set). Let O be an agent algebra. A s6tC Q.D is arectification

set if it satisfies the following requirements:
Downward closure If p' € G andp < p/, thenp € G.

Closure under projection If p € G, then for all alphabets3, proj(B)(p) is defined and
proj(B)(p) € G.

Closure under inverse projection If p € G, then for all alphabet$3 and all agentg, if
proj(B)(p') = pthenp’ € G.
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Closure under renaming If p € G, then for all bijections:, if renamér)(p) is defined then
renamér)(p) € G.

An agent algebra must be normalizable to synthesize a local specification. In fact, we
need two additional properties to make sure that certain operations are well defined.

Definition 3.117 (Rectifiable Algebra). Let Q be a normalizable agent algebra. Thes rectifi-
able if it satisfies the following axioms, whepas an agent:

A26. renamér)(p) is defined if and only itx(p) C dom(r).
A27. For all alphabetsi such thatx(p) C A, renaméid,)(p) = p.

In order to find an algebraic solution to the problem of finding a local specification it is
convenient to first transform the expression context into an equivalent expression in RCP normal

form.

Lemma 3.118. Let Q be a normalizable agent algebra. LEf5] be an expression context that

contains only one instance of the free variable. Thes equivalent to an expression
E' = proj(B)(renamép) || q)
in RCP normal form.

Proof: By theorem 3.16, and since parallel composition is associative (definition 2.6, axiom A6),

E is equivalent to an expression
Ey = proj(B)(renamer)(B) || renamery)(p1) || - -- || renaméry)(Enr)),

where g is the free variable angh throughp, are the constant agents that appear in the
expressionr. Note that theorem 3.16 also ensures {happears only once ifj, since it
appears only once if.

Let nowgq be the agent such that
q = [ renamégr,)(p1) || - -- || renaméry)(Ey)].
Then, by theorem 3.4,

By = proj(B)(renamér)(f) || q)-
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We can now state and prove the main result of this section.

Theorem 3.119 (L ocal Specification Synthesis). Let Q be an ordered rectifiable algebra anddet
be arectification set, such th@thas a&-conformance order relative to composition. Assume
@ has a mirror function relative t@'.
Let E[3] be an expression context that contains only one instance of the free vari-
able, and lep be an agent such thatirror(p) is defined. Let

proj(B)(renamér)(f) || q)

be an expression in RCP normal form equivalenfto The existence of this expression is
guaranteed by lemma 3.118 above. gt = codon(r) U a(q) U B and let#~! be an
extension of-—! to A; such that—! is a bijection. Then

EB| =Zp
if and only if
B < mirror(renaméi=")(q || proj(B)(mirror(p)))) ande(B) C dom(r).

Proof: The proof is composed of the following series of double implications.

proj(B)(renamér)(f) || ¢) < p

by the characterization of*” in terms of G, sincemirror(p) exists
& proj(B)(renamer)(B) || q) || mirror(p) € G
since( is closed under projection and inverse projection
& proj(B)(proj(B)(renamér)(f) || q) || mirror(p)) € G
since, by Ala(proj(B)(renamér)(B) || ¢)) € B and
sincea(proj(B)(renamér)(5) || ¢) N a(mirror(p)) C B,
therefore by A25
& proj(B)(proj(B)(renamér)(8) || ¢)) || proj(B)(mirror(p)) € G
by A20
& proj(B)(renamer)(B) || q) || proj(B)(mirror(p)) € G
by A20
& proj(B)(renamer)(B) || q) || proj(B)(proj(B)(mirror(p))) € G
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since, by Alx(proj(B)(mirror(p))) € B and
sincea(renamér)(5) || ¢) N a(proj(B)(mirror(p))) C B,
therefore by A25
& proj(B)(renamer)(B) || q || proj(B)(mirror(p))) € G
sinceG is closed under projection and inverse projection
& renamér)(f) || q || proj(B)(mirror(p)) € G
by A27
< renaméid 4, )(renamér)(p) || ¢ || proj(B)(mirror(p))) € G
since7~ ! is a bijection overd;
& renamér o 7 1) (renamér)(B) || q || proj(B)(mirror(p))) € G
by A21
& renamér)(renamér~1)(renamér)(B3) || ¢ || proj(B)(mirror(p)))) € G
sinceG is closed under rename (and consequently under inverse rename)
& renamér ') (renamér)(B) || q || proj(B)(mirror(p))) € G
by A24
& renamér b (renamér)(B)) || renamér 1) (q || proj(B)(mirror(p))) € G
by A21
& renamér' o r)(B) || renaméi~')(q || proj(B)(mirror(p))) € G
sincer~! is an extension of !
& renaméidgom))(B) | renamer~")(q || proj(B)(mirror(p))) € G
by A27
& (| renaméi=1)(q || proj(B)(mirror(p))) € G anda(B) C dom(r)
by the characterization of®” in terms of G

& B = mirror(renamér ") (q || proj(B)(mirror(p)))) anda(B) C dom(r)

O

Theorem 3.119 applies in general to an agent algebra with the required properties. In
subsection 3.3.2 we have explored a notion of mirror that applies to individual partitions of an agent
algebra when the equivalence classes are closed under parallel composition and under the agent
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ordering. There we have specifically considered the case where implies thatp andyp’ have

the same alphabet. In that case, a simplified version of the theorem can be derived. Specifically, we
assume we are looking for the local specification of an agewith a specific alphabet;, under

a global specificatiop with alphabetA. The context is represented by another ageritiote that

the projection in the normal form expression is required to retain alphdjpsince it must match

the alphabet of the specification. Also, we know that the mirror function preserves the alphabet.

Under this assumption, we may therefore prove the following result.

Theorem 3.120. Let Q be an ordered agent algebra with a same alphabet mirror function relative
to G (def. 3.107). Letp;, po andp be agents with alphabet;, A, and A respectively.
Assume thatmirror(p) is defined, thatd C A; U Ay, A1 C Ay U A. Assume further that

mirror(proj( Ay )(p2 || mirror(p))) exists. Then

proj(A)(p1 || p2) = p
if and only if
p1 = mirror(proj(Ay)(ps2 || mirror(p))).
Proof: Note that sinced C A; U A,, then
a(proj(A)(p1 || p2)) = AN (AL U Ag) = A.
The proof is given by the following series of double implications.
proj(A)(p1 || p2) = p

by the characterization ofR” in terms of G, sincemirror(p) exists and

sincea(proj(A)(p1 || p2)) = a(p)
& proj(A)(py || p2) || mirror(p) € G
By A2 sincea(mirror(p)) = A
& proj(A)(p: || p2) || proj(A)(mirror(p)) € G
By A5
& proj(An (A1 U A2))(p1 || p2) || proj(A N A)(mirror(p)) € G
by A15 since(4; UA)NACA

& proj(A)(p: || p2 || mirror(p)) € G
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Sinced is closed under projection and inverse projection
< p1 | p2 || mirror(p) € G
Sinced is closed under projection and inverse projection
& proj(Ar)(p1 || p2 || mirror(p)) € G
by A15 sinced; N (A2 U A) C Ay
& proj(Ai)(p1) || proj(Ai N (Az U A))(p2 || mirror(p)) € G
By theorem 3.66 and theorem 3.63 since
mirror(proj(Ay)(p2 || mirror(p))) exists
& proj(Ar)(py) || mirror* (proj(Ay N (A U A))(py || mirror(p))) € G
by the characterization of*” in terms of G, since
A1 CAUA= A1N(AUA) = A and
mirror(proj(Ay)(p2 || mirror(p))) exists
and has alphabet;

< p1 =2 mirror(proj( Ay ) (p2 || mirror(p)))

O

Note that the requirements @r are unchanged, and it still must be closed under pro-
jection and inverse projection. This essentially allows us to switch from one equivalence class to
another during the proof of the theorem (see the steps that require closure of the conformance set un-
der projection and inverse projection in the proof above). Note also that certain of the assumptions
of the theorem are not really restrictions on its applicability. For example, since we are considering
the problenproj(A) (p1||p2) = p, itfollows thatAN(A;UAs) = A (sincep < p' = a(p) = a(p'))
which impliesA C A; U A,. Likewise, we can derive the following series of equalities from the
form of the result:

Ay = a(mirror(proj(A; N (Az U A))(p2 || mirror(p)))
= a(proj(Ay N (A> U A))(pz || mirror(p))
= A1N(A2UA)N (AU A)
= A N(AyUA),

which implies that4; C A, U A.
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In the following example we show how to use the local specification synthesis technique
in the 10 Agent Algebra.

Example 3.121 ((Locked) 1O Agent Algebra). Consider the 10 agent algebra described in exam-
ple 3.87. Figure 3.3 shows an intuitive graphical representation of the system

pl’Oj({ a, ba ¢, d,@,f})(,@ || Y41 || p2)’

where

P = ({aagah}?{d})a
p2 = ({d}, {9}

andg is an agent variable. Suppose we would like to solve the systemdorthat it satisfies

( 7

proj({ a,b,c,d, e, f})(-)

Figure 3.3: 10 agent system

the specification

pl = ({ a, b}v{cv d})

As discussed in example 3.87, this algebra does not have mirrors, and therefore we are unable
to apply our solution to the local specification synthesis. However we can embed the model
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in the Locked IO agent algebra described in example 3.88 as follows:

P = ({a,g,h},{d},[b),
p2 = ({d},{g.7},0)
P = ({ab}{cd}0).

Because of the embedding, the system expression is unchanged. Thus, by applying theo-

rem 3.119 we obtain

proj({ a,b,c,d, e, f1)(B | pr [ p2) = ¢’

if and only if

B j mirror(pl H b2 || pro]({ a, ba ¢, da €, f})(mlrror(p,)))
Substituting the real quantities for the symbols:

mirror(py || p2 || proj({ a,b, ¢, d, e, f})(p')) =
= mirror(({ a,g,h},{d},0) | ({d},{g,5},0) |
I proj({ a,b,c,d, e, f})(mirror(({ a, b}, { ¢, d},0))))
= mirror(({ a,h},{d,g,5},0) |
I proj({a,b,¢,d,e, f})({ ¢,d},{a,b}, A—{a,b,c,d}))
= mirror(({ a,h},{d,9.7},0) | proj({ a,b,c,d. e, f})({ c.d}, { a, b}, {e, f}))
= mirror(({ h,c},{a,b,d,g9,5},{e f}))
= ({ab,dg,5},{h,ct,A={a,bc de f g,hj})
Recall thatp < p' ifand only if I C I', O’ C O C O’ U L' andL C L'. If we only consider
agents that havé = (), the agent® = (I, O, L) that can be assigned fomust be such that

@ glg {aabadagaj}
{C,h} gOg A_{aabadaeafagaj}

We interpret this result as follows. Agemtan have as input any of the inputs allowed by the
specification (i.e.¢ andb) and any of the outputs that are already present in the system (

g andj), whether they are retained)(or not (g andy). It cannot have any additional input,
since they would be left “unconnected” and hidden, a situation that is not allowed by the



207

definition of the algebra. Note thatis notrequired to have any input, even though(which
is in the specification) is not already present. That is because the order only requires that the
set of inputs of the implementation leentained in the set of inputs of the specification.

On the other handy must have outputg and#h in order for the system to satisfy the
specification. In factg is required by the specification and is not already present in the rest of
the system, whilé is an input top;, and it must be converted to an output in order to project
it away. Agentp can also have additional outputs, but moandb which are inputs to the
system (having them as outputs would make them outputs, contrary to the specifiecation),
andj, which are already outputs in the system (and thus would collide and make the parallel
composition undefined), andand f, which are retained in the projection but are not allowed

by the specification.

3.5 Conservative Approximationsand Mirrors

In section 4.4 we show for trace-based agent algebras how a relation between models of
individual behaviors of different concurrent systems can be used to induce a conservative approxi-
mation between the corresponding agent models. The relation is used to derive a Galois connection
between the powersets of the behaviors. A second Galois connection, in the opposite direction, is
obtained by computing the complement of sets of behaviors relative to the universe of behaviors.
This technique is interesting because it simplifies the construction of a conservative approximation
by considering functions or relations on the simpler models of individual behaviors.

It is impossible to apply the same result in the framework of agent algebra, where agents
are not necessarily described as sets of behaviors. However, a similar technique of complementing
the components of a conservative approximation can be used when a mirror function exists. In this
case, the mirror takes the place of set complementation.

In the following, we start by defining the dual of a function relative to a mirror. We
then show that the duals of a Galois connection between two partially ordered domains of agents is
again a Galois connection, in the reverse direction. Finally we derive the necessary and sufficient

conditions for the pair of Galois connection to form a conservative approximation.

Definition 3.122 (Dual). Let Q andQ’ be ordered agent algebras with a mirror function relative to
G andG’, respectively. Leif : 9.D — Q'.D be a function from agents i@ to agents inQ.
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Thedual of f, writtenf, is a function fromQ.D to @.D such that for all agents € Q.D,

f(p) = mirror(f(mirror(p)).

Theorem 3.123 (Dual Connection). Let Q andQ’ be partially ordered agent algebras with a mirror
function relative toG and G, respectively. Let{«,y) be a Galois connection fro@.D to
Q'.D. Then(7, &) is a Galois connection fror@.D to Q.D.

Proof: Letp € Q.D andp € Q'.D be agents. We prove thaty') < pif and only if p’ < a(p).
The result can be derived as follows.

') =p
by definition 3.122
& mirror(~y(mirror(p'))) < p
by lemma 3.65
& mirror(p) < ~y(mirror(p'))
since(a, ) is a Galois connection, by definition 2.74
& a(mirror(p)) =< mirror(p')
by lemma 3.65
& mirror?(p') < mirror(a(mirror(p)))
by theorem 3.66, sinc€’ is partially ordered
& p' < mirror(a(mirror(p)))
by definition 3.122
& p 2alp).

O

Theorem 3.124. Let Q and Q' be partially ordered agent algebras with a mirror function relative
to G and G, respectively. Lef«,v) be a Galois connection fror@.D to @.D, and let
(¥, @) be the dual Galois connection fro@ to Q (by thm. 3.123). Then the following two

statements are equivalent.

1. Forall agentg’ € Q'.D, v(p') < 5(p').

2. Forall agentg’ € Q'.D, y(mirror(p')) < mirror(y(p')).
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Proof: Letp’ € Q'.D be an agent. Then
(') 270"
by definition 3.122
& y(p') < mirror(y(mirror(p')))
by lemma 3.65
& mirror? (y(mirror(p'))) < mirror(vy(p'))
by theorem 3.66, sinc@ is partially ordered
& y(mirror(p')) < mirror(y(p)).
U
Corollary 3.125. Let Q and Q' be patrtially ordered agent algebras with a mirror function relative
to G andG’, respectively. Leta, v) be a Galois connection fro@.D to 9.D, and let(y, &)

be the dual Galois connection fro@ to Q (by thm. 3.123). Theria, «) is a conservative
approximation if and only if for all ageni$ € Q'.D, y(mirror(p')) < mirror(y(p')).

Proof: The result follows directly from theorem 3.124 and corollary 2.101. O
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Chapter 4

Trace-Based Agent Algebras

A trace-based agent algebra is a particular kind of agent algebra whose agents are com-
posed of sets of elementary elements that we call traces. Trace-based agent algebras are based on
trace algebras and trace structure algebras [12] and can be used to construct different models of
concurrent systems. In this chapter we introduce the concept of a trace-based agent algebra, show
its construction, and we then present several examples of trace-based algebras that span different

levels of abstraction and application areas of interest in the design of embedded systems.

4.1 Introduction

The models of computation in use for embedded concurrent systems represent a design
by a collection of agents (processes, actors, modules) that interact to perform a function. For any
particular input to the system, the agents react with some particular execution, or behavior. In the
trace-based agent algebras framework we maintain a clear distinction between models of agents and
models of individual executions. In different models of computation, individual executions can be
modeled by very different kinds of mathematical objects. We always call these obtrgms A
model of an agent, which we callteace structure, consists primarily of a set of traces. This is
analogous to verification methods based on language containment, where individual executions are
modeled by strings and agents are modeled by sets of strings. However, our notion of trace is more
general and so is not limited to strings.

Traces often refer to the externally visible features of agents: their actions, signals, state
variables, etc. We do not distinguish among the different types, and we refer to them collectively us-
ing the set of signals in the master alphaldetEach trace and each trace structure is then associated
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with an alphabe# C A of the signals it uses.

The first step in defining a model of computation as a trace-based agent algebra is to
construct atrace algebra. The carrier of a trace algebra contains the universe of traces for the
model of computation. The algebra also includes operations on traces spohjegion andre-
naming. Intuitively, these operations correspond to encapsulation and instantiation, respectively.
Any mathematical object that satisfies certain minimum requirements can be used as a trace. These
requirements are formalized as the axiomsra€e algebra.

The second step is to construdtace structure algebra. Here each element of the algebra
is a trace structure, which consists primarily of a set of traces from the trace algebra constructed in
the first step. Given a trace algebra, and the set of trace structures to be used as the universe of
agent models, a trace structure algebra is constructed in a fixed way. The construction ensures that
the trace structure algebra is also an agent algebra. Thus, constructing a trace algebra is the creative
part of defining a model of computation. Constructing the corresponding trace structure algebra is
much easier. A trace structure algebra includes the operatigmsjettion, renaming andparallel
composition on agents.

Each trace structure algebra has a refinement order that is based on trace containment.
We say that an agemt refines an agent,, writtenp; < po, if the set of traces af,; is a subset
of the set of traces gf;. Intuitively, this means that the implementatipncan be substituted for
the specificationp,. It is easy to show that the refinement relationships constitutes a preorder on
the set of trace structures. The definitions and the construction given in this section make sure that
the operators of a trace structure algebraammonotonic relative to the refinement order, and that
therefore the trace structure algebra is an ordered agent algebra.

Conservative approximations can also be defined between trace structure algebras. Defin-
ing a conservative approximations and proving that it satisfies the definition can sometimes be dif-
ficult. However, a conservative approximation between trace structure algebras can be derived from
a homomorphism between the underlying trace algebras, which is often easier to define.

The relationships between trace algebras and trace structure algebras is depicted in fig-
ure 4.1. This figure also shows the relationships between different algebras in terms of conservative
approximations.

It is often convenient to make a distinction between two different kinds of behaviors:
complete behaviors angbartial behaviors. A complete behavior has no endpoint. Since a complete
behavior goes on forever, it does not make sense to talk about something happening “after” a com-
plete behavior. A partial behavior has an endpoint; it can be a prefix of a complete behavior or of
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An agent is a set of behaviors
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Figure 4.1: Algebras and their relationships

another partial behavior. Every complete behavior has partial behaviors that are prefixes of it; every
partial behavior is a prefix of some complete behavior. The distinction between a complete behavior
and a partial behavior has only to do with the length of the behavior (that is, whether or not it has an
endpoint), not with what is happening during the behavior; whether an agent does anything, or what
it does, is irrelevant.Complete traces and partial traces are used to model complete and partial

behaviors, respectively.

Trace algebras that include complete and partial traces can be enriched with the additional
operation oftoncatenation, which intuitively corresponds to sequential composition. Concatenation
can be used to define the notion of a prefix of a trace. We say that a:ttiaceprefix of a trace
if there exists a tracg such thatz is equal tor concatenated with. Likewise, the corresponding
trace structure algebra includes an operatioseqfiential composition, which complements that of

parallel composition, and is particularly useful for modeling programmable embedded systems.

In summary, drace algebra has a set of traces as its domain, and each trace is interpreted
as an abstraction of a physical behavior. A sequence of actions is a standard example of a trace, but
in trace algebra any mathematical object can used as a trace as long as certain axioms are satisfied.
An agent is modeled by tace structure, which contains a set of traces from some trace algebra,

representing the set of possible behaviors of the agent.

The operations of parallel composition, projection and renaming are defined over a do-
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main of trace structures, formingtieace structure algebra. These operations satisfy the axioms of
agent algebra, so a trace structure algebra is a special case of an agent algebra.

4.2 TraceAlgebrasand Trace Structure Algebras

We begin with the definition of trace algebra and of trace structure. We then construct
trace structure algebra and show that trace structure algebras are agent algebras. In the following

we assume thatl is the master alphabet.

Definition 4.1 (Trace Algebra). Let A be a master alphabet. tRace algebra C over A is a triple
(B, proj, rename such that

e For every alphabetl over A, B(A) is a non-empty set, called the set of traces oter

Slightly abusing notation, we also writgas an abbreviation for
|J {B(4) : Ais an alphabet oved}.
Note that for two alphabetd; and Az, B(A;) and5(Az) need not be disjoint.
e For every alphabeB over A, proj(B) is a partial function froni3 to B.
e For every renaming functionover A, renamér) is a partial functions frons to .

The following axioms must also be satisfied. For each axiom, we assumel thatl B
(and their decorated versions) are alphabets gyjethatr (and its decorated versions) is a
renaming function over, and that: € B(A).

T1. proj(B)() is always defined androj(B)(z) € B(A N B).
T2. proj(A)(z) = =.

T3. proj(B)(z) = proj(B N A)(x).

T4. proj(B)(proj(B')(z)) = proj(B N B')(x).

T5. renamér)(x) is defined wheneved C dom(r) and in that caseenamér)(z) €
B(r(A)).

T6. renaméid 4)(z) = x.
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T7. If renamér)(z) is defined, themenamer)(z) = renamér |,_,, 4)) ().

T8. Letxy € B(A;) andzy € B(As) be such thaproj(A; N As)(z1) = proj(A; N
As)(x2). For all alphabetsi such thatd; U A C A, there exists: € B(A) such that
x1 = proj(A;)(xz) andzy = proj(Asq)(x).

TO. If A'n A =10, thenproj(B U A")(x) = proj(B)(z).
T10. renamér)(x1) = renamér)(xs) = 1 = 2.
T11. renaméry)(renamérs)(x)) = renaméry o ro)(x).

T12. Assumer = 7 |yomy: 7' = 7 lgomrrys " = 7 lgom)» @nd thatdom(r) C dom(r’)
anddom(r) C dom(r""). Then

renamér)(proj(B)(z)) = proj(r'(B))(renamér”)(z))
if both sides of the equation are defined.
T13. Assumer | = id gomr)np- Then
proj(B)(z) = proj(B)(renamgr)(x))
if both sides of the equation are defined.

Definition 4.2 (Trace Structure). LetC = (B, proj, rename be a trace algebra ovet. The set of

trace structures over(C is the set of ordered pai(s, P), where

e Ais an alphabet oved, and

e Pisasubseto5(A).
We call A the alphabet ané the set of possible traces of a trace struciure (A, P).

Note that it is necessary to make the alphabet explicit in the definition of a trace structure,
since the set8(A;) andB(A2) are not necessarily disjoint for distinct alphabdfsand A,. Con-
sequently, ifP C B(A;) andP C B(A,), it would be impossible to associate a unique alphabet to
the trace structure that h@sas its set of traces, unless the alphabet is itself part of the structure.

Definition 4.3 (Trace Structure Algebra). LetC = (B, proj, rename be a trace algebra ovet
and let7 be a subset of the trace structures ogerThen A = (C,7T) is atrace struc-
ture algebra over( if and only if the domairf/ is closed under the following operations on
trace structures: parallel composition (definition 4.4), projection (definition 4.5) and renam-
ing (definition 4.6).
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Definition 4.4 (Parallel Composition). p = p; || p2 is always defined and

A = A UAy
P = {weB(A): proj(A)(z) € P, Aproj(Az)(x) € P},

Definition 4.5 (Projection). p = proj(B)(p') is always defined and

A = BnA
P = proj(B)(P"),

whereproj is naturally extended to sets.
Definition 4.6 (Renaming). p = renamér)(p') is defined wheneved’ C dom(r). In that case

A = r(A)

P = renamér)(P'),
whererenames naturally extended to sets.

Note that in definition 4.5 and definition 4.6, the operations effectively yield a trace struc-
ture, since by T1proj(B)(P') C B(A), and by T5renamér)(P') C B(A).

Theorem 4.7. Trace structure algebras are agent algebras.

Proof: We need to show that Al to A7 are satisfied. Al follows from T1 and A2 follows from T2.
Also, A3 follows from T5. A5, A6 and A7 all follow easily from definition 4.4. O

Theorem 4.8. Trace structure algebras are normalizable agent algebras.

Proof: It is easy to show, by simply extending to sets the corresponding axiom, that A18 follows
from T6 and T7, that A19 follows from T9, A20 follows from T4 and that A21 follows from
T11. The following lemmas prove the validity of the remaining axioms.

Lemma4.9. Trace structure algebras satisfy A22.

Proof: Letr be a renaming function and Iét be an alphabet oved. We wish to show that

there exist renaming functiomsandr” such that for all trace structures

renamér)(proj(B)(p)) = proj(r'(B))(renamér”)(p)).
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Let 7 be an extension of to . A. We construct’ andr” as follows:

/ N
ro= 7

"= P4 (B dom(r))-

Letp be an agent with alphabet. The following series of double implications shows
that renamér)(proj(B)(p)) is defined if and only ifproj(+'(B))(renamér”)(p)) is
defined.

renamér)(proj(B)(p)){

by Tl and T5

AN B C dom(r)

AN BnNdom(r) = ()

AN (B —dom(r)) =10
AN(A— (B —dom(r))) =10

ACA—(B-dom(r))

t ¢ 0T O

A C dom(r")
by T1 and T5
< proj(r'(B))(renamér”)(p))..

The desired result then follows from T12, since= 7 |yom,y, 7' = 7 | gomry, 7" =
7 | dom(ry» @nddom(r) C dom(r') anddom(r) C dom(r"). O

Lemma4.10. Trace structure algebras satisfy A23.

Proof: Let B, A and A’ be alphabets such thit4 — A') — B| > |A — B|. We need to
show that there exists a renaming functiosuch that-(4) N A C B and for all trace

structure such thatv(p) C A,

proj(B)(p) = proj(B)(renamér)(p))-

Letr be a renaming function such th@m(r) = A and such that for alk € A,

r(a){ a fa€eB

¢ Wwherec ¢ A’ U B, otherwise
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The renaming functiom, which must be a bijection, exists since the sizedof B is
smaller than the size of the available signdls- (4 U B). In addition, since the range
of r does not include any element éfunless itis also iB, r(A) N A’ C B. Let now
p be a trace structure such thatp) C A. Then, sincedom(r) = A, a(p) C dom(r).
Therefore,proj(B)(renamér)(p)) is always defined, as isroj(B)(p). The equality
then follows from T13, since |z = id yom(r)nB- O

Lemma4.11. Trace structure algebras satisfy A24.

Proof: Let r be a renaming function. We wish to show that for all trace structures
(Al, Pl) andpg = (AQ,PQ),

renamér)(p1 || p2) = renamér)(p1) || renamer)(pz)-

The following series of double implications shows thewamér)(p || p2) is defined

if and only if renamér)(p,) || renamér)(p,) is defined.

renamér)(p: || p2)4
by definition 4.4 and T5

& Ap U Ay C dom(r)
< A; Cdom(r) A As C dom(r)
by definition 4.4 and T5

< renamér)(pi1) || renamér)(p2)].

We now prove that the two sides of the equation are equal. Clearly,,sia@ebijection,
’r'(Al U Az) = ’I“(Al) U T(Az), so that

p = (r(A1UAy), P) = renamér)(p: || p2)

p = (r(A1) Ur(As), P') = renamér)(p1) || renamér)(ps).
have the same alphabet. In addition,

P = {yeB

P' = {yeB(r(A1)Ur(As)) : proj(A;)(y) € renamér)(P;)
A proj(Az)(y) € renamer)(Py)}
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We wish to show thay € P if and only ify € P'. To do so, we will show that for
everyy € B(r(A; U Ap)) there isz € B(A; U Ay) such thaty = renamér)(z) and
proj(A;)(z) € P; if and only if proj(r(4;))(y) € renamér)(F;), fori =1,2.
Lety € B(r(A; U Ay)). By T5, z = renamér—')(y) is defined, and: €
B(A; U Ay). In addition,
renamér)(z) = renamér)(renamér=")(y))
by T11
= renaméror ')(y)
sincer is a bijection
= renameid codon(r))(y)
by T6
= .
Then,
proj(Ai)(z) € Py
& dz1 € Py [proj(Ar)(z) = z1]
by T10
< dz € Py [renamér)(proj(A;y)(z)) = renamér)(z)]
< renamér)(proj(A;)(z)) € renamér)(P;)
by T12
< proj(r(Ai))(renamér)(z)) € renamér)(P;)
sincey = renamér)(x)
& proj(r(A1))(y) € renamér)(P;).
Similarly, proj(As)(z) € P, if and only if proj(r(As))(y) € renamér)(P). There-
fore,y € Pifand only ify € P'. O

Lemma4.12. Trace structure algebras satisfy A25.

Proof: Let B be an alphabet. We wish to show that for all trace structures(A;, P;) and
p2 = (AQ, PQ) such that4d; N 4, C B,

proj(B)(p1 || p2) = proj(B)(p1) || proj(B)(p2)-
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By T1 and definition 4.4, both sides of the equation are always defined. We now prove
that if A; N Ay C B, then they are also equal. CleadyN (4; U As) = (BN A;) U
(BN As), so that

p = (BN(A1UA),P)=proj(B)(p: || p2)
p’ = ((BNA))U(BNAy), P') = proj(B)(p1) || proj(B)(p2).

have the same alphabet. In addition,

P = {yeB(BN(A1UAy)):3z e B(A1UAs) [y =proj(BnN(A4; U As))(z)
A Proj(A1)(z) € Pi A proj(As)(x) € Py]}
P' = {yeB(BN(A1UA)):proj(B N Ai)(y) € proj(B)(Fr)
A proj(B N Az)(y) € proj(B)(F)}
We wish to show thay € P ifand only ify € P.

For the forward direction, ley € B(B N (A; U Ay)) be such thay € P.
Then there exists € B(A; U Az) such that

y = proj(B N (A U Az))(z)
and
proj(Ai)(z) € P
proj(A2)(z) € P,
Then
proj(B N A1) (y)
= proj(B N Ay)(proj(B N (4; U As))(x))
by T4
= proj(BN A NBN (AL UAy))(x)
= proj(Bn Ay)(z).
But sinceproj(A;)(z) € Py, clearly by T4,proj(B N A;)(y) € proj(B)(Py). Simi-

larly, proj(B N As)(y) € proj(B)(F.). Thereforey € P'.
For the reverse direction, refer to figure 4.2. lyet B(B N (4; U A)) be
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o J?EBAlUAQ

/N

2168 Bﬂ A1UA2 UA1 ZQEB A1UA2))UA2
yEB AlUAQ
pro;BmAl B(BNAy) proj(BN As)(y) € B(BN As)
[

Figure 4.2: Proving A25

such thaty € P'. Then

proj(B N A1)(y) € proj(B)(P)
by T3
& proj(B N Ai)(y) € proj(B N Ay)(Pr)
& dz1 € Pi[proj(B N Ay)(y) = proj(B N A1) (z1)]
by T8, sinceBN A; = (BN (A1 U Ag)) N Ay,
= 32} € B((BN (A1 UA))UA))[proj(BnN (A1 U Al))(2]) =y
A Proj(Ar) () = 2]
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Similarly
proj(B N As)(y) € proj(B)(F)
= 32% € B((B N (A1 U Az)) U AQ))[prOj(B N (A1 U AQ))(Z%) =y
A pIOj(A)(25) = =]
SinceA;NAy C B, ((Bﬂ(AlLJAQ))UAl)ﬂ((Bﬂ(Al UAQ))UAQ) = Bﬂ(AIUAQ).
(

Therefore, by T8, sincE BN (A1 UAs))UA)U((BN(A1UAg))UAy) C AU Ay,
there exists: € B(A4; U Az) such that

proj((B N (A1 U 4z)) U A1) (x)
proj((B N (A1 U 4z)) U Az)(x)

!
21

!
22
Therefore, by T4,

y = proj(Bn (A, U Ay))(z)
z1 = proj(A)(z)
zp = proj(As)(z)

But then, since;; € Py andz, € P,y € P. O

4.2.1 Signaturesand Behaviors

The simple model of agent and of the operations on agents introduced in definition 4.2
and definition 4.3 ignores any consideration regarding the “interface” of an agent. In other words,
an agent is simply a container of behaviors. The set of signals used by an agent, i.e., its alphabet,
is one example of what we call tleggnature of an agent. The signature is a representation of the
interface of an agent in terms of its signals, their role and their properties. We consistently use
the term signature for this purpose, since the term interface is interpreted differently by different
communities.

Signatures can themselves form an agent algebra. For instance, the alphabet algebra in-
troduced in example 2.7 is an example of a signature algebra where each signature consists solely
of a set of signals. The 10 agent algebra (example 2.10) extends the alphabet algebra by classifying
each signal as either an input or an output. In this case, parallel composition and projection must
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be restricted to avoid intuitively inconsistent or problematic operations. Finally, typed 10 agents
(example 2.12) is a signature algebra that includes typing information for each signal in the agent.
We view the signature and the behavior of an agent as orthogonal, although sometimes
related, representations. In other words, the signature and the behavior are two incomparable ab-
stractions of an agent. It is therefore natural to construct a complete model of an agent algebra by
combining a signature algebra with a trace structure algebra. In particular, the product of a signature
algebral’ and a trace structure algebgis used to construct agents of the fofmp), wherey is
the signature ang is the behavior of the agent. For consistency, we require that the alphabet of the
signature and the alphabet of the corresponding trace structure be the same. Theorem 2.19 proves

that the subset of agents of a product algebra that have this property is again an agent algebra.

4.2.2 Concatenation and Sequential Composition

In the presentation so far we have emphasized a kind of composition of agents that corre-
sponds to their parallel execution. Many models of computation, however, also include the ability
to compose agents in “sequence”. This could be seen as a parallel composition where control flows
from one agent to another, thus making only one agent active at a time. Nevertheless, this situation
is so common that it warrants the introduction of some special operations and notation.

For these models we introduce a third operation on traces cedlezhtenation, which
corresponds to the sequential composition of behaviors. Similarly to the other operations, concate-
nation must also satisfy certain properties that ensure that its behavior is consistent with its intuitive
interpretation. Other than that, the definition of concatenation depends upon the particular model of
computation. Concatenation is also used to define the notion of a prefix of a trace. We say that a
tracez is a prefix of a trace if there exists a tracg such that: is equal tax concatenated with.

Our treatment of concatenation and sequential composition is consistent with the one
introduced by Burch [12]. In particular, Burch introduces a set of axioms that formalize the intuitive
notion of concatenation and its properties. For example, concatenation is required to be associative,
but is not required to be commutative. We do not reconsider those axioms here, and reserve a
complete treatment of concatenation, including sequential composition and its consequences on
conformance orders and mirrors for our future work.

With concatenation, we distinguish between a complete behavior and a partial behavior.
A complete behavior has no endpoint. Since a complete behavior goes on forever, it does not make
sense to talk about something happening “after” a complete behavior. A partial behavior has an
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endpoint; it can be a prefix of a complete behavior or of another partial behavior. Every complete
behavior has partial behaviors that are prefixes of it; every partial behavior is a prefix of some
complete behavior. The distinction between a complete behavior and a partial behavior has only
to do with the length of the behavior (that is, whether or not it has an endpoint), not with what is
happening during the behavior; whether an agent does anything, or what it does, is irrelevant.

Complete traces andpartial traces are used to model complete and partial behaviors, re-
spectively. A given object can be both a complete trace and a partial trace; what is being represented
in a given case is determined from context. For example, a finite string can represent a complete
behavior with a finite number of actions, or it can represent a partial behavior. In the following, we
will denote the set of partial traces with alphabeasBp(A), and the set of complete traces with
alphabetd asB¢(A).

As discussed above, concatenation induces a corresponding operation on trace structures
that we callsequential composition. Because of the different nature of complete and partial traces,
the definition of trace structures must be extended to contain a set of completeltracds (A)
and a set of partial tracd% C Bp(A), whereA is the alphabet of the agent. We also denote with
P = Pc U Pp the set of all traces (consistently with the previous formulation). The sequential
compositionp” = p - p’ is then defined whed = A’, and in that case:

AII — A:AI
P\ = PoU(Pp-PL),
P! = Pp-Ph.

where concatenation is naturally extended to sets of traces. Note that the concatenation of a partial
trace with a complete trace is a complete trace, while the concatenation of two partial traces is again
partial. Because complete traces have no endpoint, the concatenation of a complete trace with a
partial trace is not defined. As for parallel composition, the definition of sequential composition is
constructed from equivalent concepts in the trace algebra. Therefore, the trace structure algebra can
still be constructed automatically.

4.3 Modelsof Computation

In this section we will present examples of agent models that use signatures and trace
structures as their building blocks. In section 1.6 we have introduced our motivating example (see
figure 1.3), and informally studied a model of computation for continuous time by first considering
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its natural semantic domain, and then formalizing it in terms of traces and trace structures. The
examples in this section are formalizations of the semantic domain of the remaining models of
computation for that same example. In all cases we follow the same pattern by first presenting the
natural semantic domain, and then the formalization in terms of trace algebras. For each model of
computation we also sketch an example of its typical applications in terms of a subsystem of the
PicoRadio architecture shown before. Later we will show how we can derive relationships between
these models within the framework.

The proof that the trace algebras defined below satisfy the axioms of trace algebra is usu-
ally straightforward and typically follows directly from the definitions with minimal manipulation,
with the exception of T8 that requires exhibiting a witness to the existential quantifier. However,
our examples are usually fairly simple and it is easy to construct the right trace given the common
projection of two other traces. We therefore omit the details of these proofs.

4.3.1 Hybrid Systems

The example presented in section 1.7 is a simple formalization of a continuous time
model. Here we make the formalization more precise, and we also extend the model to not only
cover continuous time behavior, but also hybrid continuous and discrete behavior.

A typical semantics for hybrid systems includes continutbowss that represent the con-
tinuous dynamics of the system, and discreteps that represent instantaneous changes of the
operating conditions. In our model we represent both flows and jumps with single piece-wise con-
tinuous functions over real-valued time. The flows are continuous segments, while the jumps are
discontinuities between continuous segments. We assume that the variables of the system take only
real or integer values and we defer the treatment of a complete type system for future work. The
sets of real-valued and integer-valued variables for a given trace are Gaked V7, respectively.

Traces may also contain actions, which are discrete events that can occur at any time.
Actions do not carry data values. For a given trace, the set of input actiovis and the set of
output actions isVip.

The signaturey of each agent is a 4-tuple of the above sets of signals:

Y= (VRa VZaMlaMO)-

The sets of signals may be empty, but we assume they are disjoint. The alphapbatdftherefore
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the alphabet of an agent with signaturgs
A=V UVzUM;UM,.

Later we will define the operations on signatures, as well as those on traces and agents. The sig-
nature defined here, together with its operations, is an extension of both the alphabet algebra of
example 2.7 (in that the set of signdls and Vz have no direction) and the 10 agent algebra of
example 2.10.

The set of partial traces for a signaturés Bp (). Each element oBp(v) is as a triple
x = (v,0, f). The non-negative real numbéris theduration (in time) of the partial trace. The
function f has domaim4d. Forv € Vg, f(v) is a function in[0, 6] — R, whereR is the set of real
numbers and the closed interjal 4] is the set of real numbers betwe@mndd, inclusive. This
function must be piece-wise continuous and right-hand limits must exist at all points. Analogously,
forv € V, f(v) is a piece-wise constant function iy 6] — Z, whereZ is the set of integers. For
a € M; U Mo, f(a) is a function in[0, ] — {0,1}, wheref(a)(¢t) = 1 if and only if actiona
occurs at time in the trace.

The set of complete traces for a signaturis B-(y). Each element 0B () is as a pair
z = (v, f). The functionf is defined as for partial traces, except that each occurrenffe 8fin
the definition is replaced b , the set of non-negative real numbers.

To complete the definition of this trace algebra, we must define the operations of projec-
tion, renaming and concatenation on traces. The projection opep@tp(B3)(x) is always defined
and the trace that results is the same: &xcept that the domain of is restricted to the elements
that are inB. The renaming operatiort = renamér)(z) is defined if and only ifA C dom(r). If
x is a partial trace, thew’ = (v, d, f) wherey' results from using: to rename the elements of
andf' =ro f.

The definition of the concatenation operatgr= z; - 9, Wherez, is a partial trace and
Zo IS either a partial or a complete trace, is more complicatedy 1§ a partial trace, thenm; is
defined if and only it; = v, and for alla € A,

f1(a)(01) = f2(a)(0)

(note thatd,, J-, etc., are components af andz, in the obvious way). When defined; =
(71,93, f3) is such that; = §; + d2 and for alla € A

f1(a)(d) fO0<d<d

f3(a)(0) = fola)(6 —61) if 61 < 8 < d3.
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Note that concatenation is defined only when the end points of the two traces match. The concate-
nation of a partial trace with a complete trace yields a complete trace with a similar definition. If
T3 = I - L9, thenzy is aprefix of z3.

Trace structures in this model have again signatuaed are constructed as usual as sets

of partial and complete traces.

4.3.2 Non-metric Time

In the definition of this trace algebra we are concerned with the order in which events oc-
cur in the system, but not in their absolute distance or position. This is useful if we want to describe
the semantics of a programming language for hybrid systems that abstracts from a particular real
time implementation.

Although we want to remove real time, we want to retain the global ordering on events
induced by time. In particular, in order to simplify the abstraction from metric time to non-metric
time described below, we would like to support the case of an uncountable number of.events
Sequences are clearly inadequate given our requirements. Instead we use a more general notion of
a partially ordered multiset to represent the trace. We repeat the definition found in [76], and due to
Gischer, which begins with the definition of a labeled partial order.

Definition 4.13 (Labeled Partial Order). A labeled partial order (Ipo) is a 4-tuple(V, %, <, u)

consisting of
1. avertex set V, typically modelingevents;

2. analphabet X (for symbol set), typically modelingctions such as the arrival of integer
3 at port@, the transition of pin 13 of IC-7 to 4.5 volts, or the disappearance of the 14.3

MHz component of a signal,

3. apartial order < onV, with e < f typically being interpreted as evennecessarily

preceding evenf in time; and

4. alabeling function 1 : V — X assigning symbols to vertices, each labeled event rep-
resenting aroccurrence of the action labeling it, with the same action possibly having

multiple occurrence, that ig, need not be injective.

n theory, such Zeno-like behavior is possible, for example, for an infinite loop whose execution time halves with
every iteration.
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A pomset (partially ordered multiset) is then the isomorphism class of an Ipo, denoted
[V, 3, <,u]. By taking Ipo’s up to isomorphism we confer on pomsets a degree of abstractness
equivalent to that enjoyed by strings (regarded as finite linearly ordered labeled sets up to isomor-
phism), ordinals (regarded as well-ordered sets up to isomorphism), and cardinals (regarded as sets
up to isomorphism).

This representation is suitable for the above mentioned infinite behaviors: the underlying
vertex set may be based on an uncountable total order that suits our needs. For our application,
we do not need the full generality of pomsets. Instead, we restrict ourselves to pomsets where the
partial order is total, which we catibmsets.

It is easy to define a non-metric trace algebra using tomsets. Traces have the same form
of signature as in metric time model of the previous section:

Y= (VRa VZaMlaMO)-

Both partial and complete traces are of the farrs (y, L) whereL is a tomset. When describing

the tomsefl. of a trace, we will in fact describe a particular Ipo, with the understanding/tisathe
isomorphism class of that Ipo. An actienc . of the Ipo is a function with domaid such that for

allv € Vg, o(v) is areal number (the value of variahleesulting from the action); for all v € 17,

o(v) is an integer; and for alk € M; U My, o(v) is either0 or 1. The underlying vertex sét,
together with its total order, provides the notion of time, a space that need not contain a metric. For
both partial and complete traces, there must exist a unique minimal eleniefit’). The action
wu(min(V')) that labelamin(V) should be thought of as giving the initial state of the variableig in
andVz. For each partial trace, there must exist a unique maximal elemea()’) (which may be
identical tomin(V')).

Notice that, as defined above, the set of partial traces and the set of complete traces are
not disjoint. It is convenient, in fact, to extend the definitions so that traces are labeled with a bit
that distinguishes partial traces from complete traces, although we omit the details.

According to this definition, it is possible for a trace to exhibit stutterstufter occurs in
a trace when two consecutive vertices in the vertex set are mapped onto the same label. In the case
of non-metric time we are interested in the first occurrence of an event, and not in its repetitions.
For that reason, and for other technical reasons, we define an operastatienfremoval that takes
a non-metric time trace that possibly contains stutters, and produces a hon-metric time trace without
stutters.

The key to defining this operation is a formalization of the intuitive notiononisecutive
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vertices in the vertex set. This notion fails in the case of dense or continuous vertex sets, where it is
impossible to identify two vertices such that no other vertex is contained between them in the order
relation. Instead, we define an equivalence relation, catigter equivalence, that partitions the

entire vertex set into its set of stutters.

Definition 4.14 (Stutter Equivalence). Let L be an Ipo and/ be its vertex set. Then,v, € V
are stutter equivalent if and only if for alle V such thaty < v < v9, o(v) = o(v1).

This relation is clearly reflexive, symmetric and transitive, and is therefore an equivalence
relation on the vertex set.

In particular we can define an Ipo based on the set of equivalence classes generated by
the equivalence relation. For an equivalence classwe defines([v]) = o(v). The function is
well defined. In fact, for aly; € [v] andvy € [v], o(v1) = o(v2), therefore the definition is
independent of the particular representative of the equivalence class. Analogofiglyanifi [v;]
are two equivalence classes, then we deffine< [vs] if and only if [v;] = [vs] Or v1 < ve. This
relation is also well defined, since each equivalence class is essentially an interval in the original
Ipo. The structure composed of the §€f of equivalence classes, the induced total order and the
induced labeling function thus constitute an Ipo without stutters. Note that this Ipo is nothing more
than the quotient structure of the Ipo with stutters with respect to stutter equivalence.

It is easy now to define the operation of stutter removal simply as as the process of taking
a tomset, an Ipo representing the tomset, its quotient structure relative to stutter equivalence, and
finally the isomorphism class. To prove that this operation is well defined, we must show that the
result is independent of the particular choice of Ipo taken as a representative of the tomset. This is
a rather technical argument, and we omit the details.

A tomset isstutter free if and only if it has no stutters, i.e., the equivalence classes under
stutter equivalence are all singletons. This is always the case after the application of stutter removal.
Therefore we define a non-metric time trace as a stutter free tomset.

By analogy with the metric time case, it is straightforward to define projection and re-
naming on actiong € Y. This definition can be easily extended to Ipo’s and, thereby, traces.
Projection, however, must be followed by an additional operation of stutter removal, since hiding
certain signals from the trace may expose stutters that were not present before.

The concatenation operatiag = z; - x5 is defined if and only ifz; is a partial trace,
y1 = 72 and g (max(Vy)) = pe(min(Vs)). When defined, the vertex s& of z3 is a disjoint
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union:
Vs=WVi (V2 — min(V2))

ordered such that the ordersigfandV; are preserved and such that all elementg @fre less than

all elements of;. The labeling function is such that for alle 15

ps3(v) = pi(v) for min(Vy) < v < max(V;)

ps(v) = po(v) for max(Vy) < w.

Analogously to the operation of stutter removal, the operations of projection, renaming
and concatenation are well defined only if the result is independent of the particular choice of
representative of the Ipo’s involved. Again, we omit the details of this proof.

Trace structures are constructed, as usual, as sets of traces. In particular, the operation
of parallel composition is defined in terms of the projection operation. It is interesting to note that
parallel composition need not be followed by stutter removal, since the composition of stutter free

trace structures is again stutter free.

433 CSP

Communicating Sequential Processes were introduced by Hoare [50]. It consists of a
collection of agents that interact through the exchange of actions. Actions are shared and must be
synchronized: when an agent wishes to perform an action with another agent, it must wait until the
other agent is ready to perform the same action.

CSP is particularly well suited to handle cases where a tight synchronization is required
or to schedule access to a shared resource. In our example we can use CSP to model a manager
subsystem that regulates access to a set of parameters and tables that can be set and read by the
user and by the protocol stack. To do this, the manager initially waits to synchronize with either the
protocol stack or the user input; once synchronized with one of the two parties, it reserves the shared
resource and handles the communication by performing a set of actions (e.g., read, write, update).
At the end of the transaction, the manager goes back to its initial state and waits to synchronize
again. Figure 4.3 shows a diagram of this subsystem.

Constructing a trace algebra and a trace structure algebra for this model is particularly
simple because the communication model fits very easily in our framework. A single execution of

an agent (a trace) is simply a sequence of actions from the alpHatfgiossible actions. Formally,
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Figure 4.3: Table manager and Ul interface
we define
B(A) = A,

where the notatioM* includes both the finite and the infinite sequences oVeProjection and
renaming are defined as expectedz iE B(A), thenproj(B)(z) is the sequence formed from

by removing every symbat not in B. More formally, if #/ = proj(B)(z), then the length of’
(written len(z')) is

len(z') ={j eN:0<j < len(z) Az(j) € B}|

wherelen(z') = w when the set is infinite. The-th element of/ corresponds to the-th element
of z that belongs td. Hence, ifz(n) € B, then' (k) = z(n) where

k={jeN:0<j<nAz(j) € B}

Note that any: andk combination is unique.

For renaming, assume without loss of generality that 3(A) is of the form
z = (ag,a1,a2,...);
then
renamér)(z) = (r(ap),r(a1),r(az),...).
The same can be restated more formally as

renamér)(z) = An € N [r(z(n))].
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Models of agents are obtained in the standard way, as a collection of sequences. For
the CSP model we use the 10 agent algebra of example 2.10 as the signature algebra, so that the
signaturey of each agent includes a set of input actidrend a set of output action8. Given the
definition of projection, parallel composition (see definition 4.4) clearly requires that trace structures
(agents) synchronize on the shared actions. Additionally, since we are taking the product with the
10 agent algebra, the parallel composition is defined only if the agents that are being composed have
disjoint sets of output actions.

This model is based solely on actions that bear no value. It is straightforward to extend

the model to include a value for each action. We define:
B(A) = (Ax V)™,

whereV is the set of possible values. Projection and renaming are extended by having them act
only on the first component of the pair. Formallyzife B(A) and2’ = proj(B)(x) then the length
of 2’ (written len(z')) is

len(z') =1{j eN:0<j <len(z) Nz(j) € Bx V}
andz’(k) = z(n) for all k < len(z), wheren is the unique integer such thatn) € (B, V) and
E={jeN:0<j<nAz(j) € BxV}.
Likewise for renaming. Without loss of generality, assume
z = ((ag,v0), (a1,v1),...);
then
renamér)(z) = ((r(ao), vo), (r(a1),v1),...),
or, equivalently
renamér)(z) = An € N [(r(z1(n)), z2(n))],

With this definition we can construct a trace structure that represents the table manager
depicted in figure 4.3. The signatuseincludes inputs and outputs to and from both the protocol
stack and the user interface, with actions that set and read the appropriate parameters. For example,
the parameters could be a set of virtual connections, specified as pair of addveisaad\{pi) and
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the packet length. Two typical traces for the manager deal with handling requests from the protocol
and from the user, as in

P = {<psreqvci(10),vpi(13),psrelease... >,
< userreq,length(1500),vpi(0),... >,...},

whereps refers to the protocol stack, ander to the user interface. Note that while the manager
can non-deterministically choose to serve the protocol stack or the user, it must continue to serve
the party that was chosen until the shared resource is released.

Compared to the traditional CSP model, ours differ in some respects. For example, in our
model it is possible for several agents to synchronize on the same action, thus making it possible
for one agent tdoroadcast an event. In a more traditional model, only one of the listeners is able to
react to the event. This is a consequence of our definition of parallel composition.

Another difference is that in our model (and in all other models constructed using trace
algebras), the operation of parallel composition and renaming are clearly differentiated. In other
words, parallel composition in our model does ootate the connections, but is limited to con-
structing an agent whose projections are compatible with the ones being composed. Renaming
must be invoked separately (and before the compaosition) to create the appropriate instances of the

agents to be composed (see also the discussion on the operators in section 1.4).

4.3.4 Process Networks

Process networks are collections of agents that operate on infinite streams of data [53, 54,
32]. Streams are traditionally implemented as FIFO queues that connect processes that can produce
(write) and consume (read) tokens. Process networks are particularly well suited to modeling dig-
ital signal processing applications, given the good match between the typical data model of signal
processing and the communication model of process networks.

As an example we might consider a demodulator that uses a local reference to convert
an incoming signal from high to base band. The decoder receives a stream of tokens that corre-
sponds to, for instance, the output of the local oscillator described above in subsection 4.3.1. At
the same time it receives a stream of data tokens to be demodulated. The demodulator combines
the two streams and then applies a filter to retain only the component of interest. A diagram of this
subsystem is shown in figure 4.4.

The important property of this model is that the exact time at which tokens arrive at the
input is irrelevant, and that only their order within the same stream determines the output stream
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Figure 4.4: A signal demodulator

(together, of course, with their value). The natural domain for this kind of model is then clearly
that of a function on streams, which can in turn be formalized as sequences. In the case of our
demodulator, if we denote with R and E' the reference and the modulated streams, and with D the
demodulated stream, we can represent the decoder in the natural domain as a function f from the

inputs to the output:
D = f(R,E).

Parallel composition of agents is defined by composing for each stream s the function
whose range is s with the function whose domain is s. This definition becomes circular in the
presence of loops in the structure of the parallel composition. In this case, the composition is
defined by breaking the loop at some point, and then looking for the fixed points of the function
that results. If we do not restrict the range of the possible functions f, the parallel composition
may have several fixed points (or even no fixed points at all), and hence exhibit non-deterministic
behavior. Because we ultimately want to model physical processes that are deterministic, we must
impose some constraints on f. These are well known properties required of process networks (see,
for example, the excellent presentation by Lee et a. [62]). Here we show how they impact the
construction of the semantic domain in our framework.

We say that a stream v is a prefix of a stream w if v is equal to some initial segment of
u. Thisrelation can be extended to sets of streams by requiring that all streams in the first set be a
prefix of the corresponding stream in the second set. This relation is easily proved to be a partial
order on the streams.

To ensure that a composition of stream functions is determinate, the function f of each
of the components must be continuous with respect to the prefix ordering on the streams. If that is
case, then we are assured that there exists aunique least fixed point, and the parallel composition is
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defined in terms of that. In addition, continuity implies monotonicity, which in turn ensures that the
response of the system to a specific input can be computed incrementally from progressively longer
prefixes.

In the following we will show two ways of describing the process networks model in our
framework. The first method is closer to the semantic domain based on functions on streams, but
falls short in the definition of parallel composition. The second method fixes this problem, at the
expense of modeling the traces at a more detailed level of abstraction.

In our initial attempt we follow the natural semantic rather closely. Similarly to the CSP
model, we use the 10 agent algebra of example 2.10 asthe signature algebra, since process networks
clearly distinguish between inputs and outputs. In the example above, we have

I = {R,E},
O = {D}.

Given a stream function, atrace isasingle application from a set of input streams to a set of output
streams. If we define the alphabet of atrace to bethe set A = I U O, and formalize streams as
the finite and infinite sequences over avalue domain V, denoted by V°°, then the set of all possible

tracesis
B(A)=A— V™.

Asusual, atrace structure is simply the signature together with aset of traces, i.e., p = (v, P) where
P C A — V. If we separate the contributions of the inputs and the outputs, the set P of traces

can be seen as (is isomorphic to) a subset of
(I - V®)x (0= V™),

that is, as afunction on streams.

In order to comply with the process network model, we also insist that the functions
so identified have the necessary continuity and monotonicity properties with respect to the prefix
ordering defined on the sequences. In other words, not al sets of traces may form atrace structure.

We define a functional trace structure as one that associates at most one output stream to

each input stream. More formally, the condition is equivalent to requiring that

proj (I)(x) = proj (I)(y) = = =y,
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for al traces z,y € P. To define monotonicity we first need a partial order on traces. We say that
atrace z € B(A) isaprefix of atracey € B(A), written z C y, if z(a) isa prefix of y(a) for all
a € A. Let p = (v, P) be atrace structure. Then p is monotonic if for al z,y € P,

proj (I)(z) C proj(1)(y) = proj (0)(x) C proj(O)(y).

Note that, in particular, this aso implies

proj (I)(z) E proj (I)(y) = = E y.

Finally we define the process network trace structure algebra as the algebra that contains all and
only the functional and monotonic trace structures.
The operations of projection and renaming on traces are easily defined. If 2z € B(A), B

isan alphabet and r is a renaming function, then

proj (B)(z) = Xa€ BN Al z(a),

rename(r)(z) = Ala € Alz(r(a))].

Parallel composition on trace structures is defined as usual interms of the projection operation. Note
that the trace structure obtained from a composition contains al the traces that are compatible with
the agents being composed; in particular, it will contain all the fixed-points in a composition that
involves afeedback loop. Figure 4.5 illustrates the point. Here two instances of the trace structure 7
are composed so that the input of one corresponds to the output of the other. The trace structures are
also defined to be the identity function on streams, i.e., they contain all pairs of identical input and
output streams. It is easy to show that also the composition contains all pairs of identical streams.
This is a problem, as it doesn’t faithfully represent the semantics of the original formulation of
process networks, that in this case includes only empty streams, the least of the fixed-points in the
composition. The problem with our model is that whether a trace is included in the composition
or not depends exclusively on whether its projections are part of the individual components. In
order to include only the least fixed-point, we would also need to check whether other traces (more
specifically, prefixes) are also included in the composition.

Our solution to this problem avoids changing the definition of parallel composition (which
is common to al trace structure algebras), but requires us to develop a new semantic domain at a
more detailed level of abstraction. The additional information is sufficient to determine the result of
the parallel composition exactly. Note that we could define the semantic domain in its exact natural
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Figure 4.5: Paralel composition with feedback

form in the more general framework of agent algebra. The framework of trace algebra, however,
provides us more flexibility in deriving relationships between agent models, as will be shown later.
In the new formalization, each trace is atotally ordered sequence of events. Formally we

have:
B(A) = (A x V)>®.

Note that this is exactly the definition that we have for the semantic domain for communicating
sequential processes. The definition of projection and renaming also parallels the definitions given
in subsection 4.3.3, and will not be repeated here. The signature of the trace structuresisagain apair
of digoint setsy = (I, O) as before. Despite the similarities with CSR, this formulation resultsin a
different model of computation because the class of trace structures that we construct must satisfy
some additional conditions, as was also the casein our initial formalization of process networks.

In the new formulation, the traces in the trace algebra carry order information for all
events. This means that we can tell whether an input (or an output) event occurred before or after
another input or output event. Because the semantics of process networks is independent of this
ordering, atrace structure must contain traces that represent all orderings of inputs and outputs that
are compatible with a particular stream function. The word “compatible” here has two meanings.
First we must only include those orderings that result in monotonic functions. Second, inputs and
outputs can not occur arbitrarily ordered in a trace: output tokens should never precede the input
tokens that caused them. The rest of this section makes these two requirements more precise.

It is easy to construct a homomorphism A to the previous trace algebra that loses the
ordering information. Given atrace z in the alphabet A, we isolate the sequence relative to asignal
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a using a projection operation, and then construct the appropriate function. More formally:
h(z) = Xa € A dn € N{[(proj ({ a})(z))(n))s],

where the subscript v denotes the second component of apair in A x V. This function is a homo-
morphism in that it commutes with the application of the other operations on traces, projection and
renaming.

The functionality and monotonicity conditions are best expressed in the domain of stream
functions, as we don’'t want the particular order of atrace to affect the prefix relation. A functional

trace structure can be defined asfollows. For all z,y € P, thefollowing condition must be satisfied:

h(proj (I)(z)) = h(proj (I)(y)) = h(x) = h(y).

Similarly for monotonicity. If p = (~, P), then p ismonotonic if for al =,y € P,

h(proj (I)(z)) E h(proj (I)(y)) = h(proj(O)(z)) E h(proj (O)(y))-

In order to include all orderings in the trace structures, we might be tempted to state that
if z € P, then any other trace y such that h(y) = h(z) should bein P. Doing this would remove all
information regarding the ordering of inputs and outputs. As aresult, the composition would again
suffer from the same problem (inclusion of al of the fixed-points) that we had with the previous
model. Instead, we must strengthen this condition.

We do this in two steps. Given atrace structure p = (-, P), we first look for a subset
P, C P of only those traces that can be characterized as quiescent, in the sense that all the outputs
relative to the inputs have been produced. In fact, we are looking for the set I3 with the added
property that the outputs occur in the sequence as soon as possible. Thisissimilar to the fundamental
model assumption in asynchronous design. In the formalization that follows, we will assume that
tokens have no value to simplify the notation. Under this assumption, Ij can be formalized as
follows:

Po={z€P:Vo,y e B(A)Vbe I [z =x(b)y = z € P]},

where the notation (b) denotes the sequence made of only the symbol . The intuition behind this
definition is as follows. Assume that atrace z € P can be written as the concatenation z(b)y with
x € P. Then, since p is functional, for any trace «/ such that h(proj (I)(z')) = h(proj (I)(x)),

we have h(proj (O)(z")) = h(proj (O)(x)). So, in particular, none of the output tokens that are
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contained in the suffix y ever occur before the input token b in any other trace in P with the same
inputsas z. If y starts with an output token ¢, this condition tells usthat ¢ does not appear any sooner
in any other trace, and therefore that z outputs ¢ as soon as possible. The universal quantification
on z, y and b extends the property to the entire trace z.

Since P, is the “fastest” subset of P, we can now construct a new set that includes all
possible delays of the output. We construct this set by induction. Given aset X of traces, we define
afunction F that adds all traces where each output that precedes an input is delayed by one position.
Formally:

F(X)=XU{z(bcyy € B(A) :z(c,b)y e X Nbe I Ace O}. 4.1

Intuitively we would like to repeatedly apply this function starting from I3 until we reach a fixed-
point. This function is monotonic relative to set containment (given X; C X, F'(X2) will add at
least the traces that F'(X;) adds, plus possibly some more). In addition, F' creates progressively
larger sets, i.e.,

VX [X C F(X)).

When this is the case, we say that F isinflationary at X. These two properties are enough to
guarantee the existence of afixed-point [91]. In fact, they guarantee the existence of aleast fixed-
point greater than or equal to Ry, the minimal set that contains B and al the traces with delayed
outputs®. Let's denote with pr(P) the fixed-point obtained by starting the recursion with the R
associated to P. Then we define the trace structure algebra for process networks as the one that
contains only those trace structures such that

P = Pp(P).

The system shown in figure 4.5 now results in a correct composition. In fact, the bottom
trace structure I will require that the input at A appear before any output on B in al its traces.
Likewise, the top trace structure will require its input, which corresponds to B, to occur before the
output A. This contradiction will rule out al traces except the empty one, as dictated by the least
fixed-point semantics.

435 Discrete Event

A discrete event system consists of agents that interact by exchanging events on a set of
signals. Each event is labeled with a time stamp that denotes the time at which the event occurred.

2Technically it is the greatest lower bound of the set of fixed-points of F that are greater than or equal to P.
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The notion of timeis global to the entire system, so that if any two events have the same time stamp
then they are considered to occur at the same time. The set of time stamps is often taken to be the
set of positive integers or real numbers, ordered by the usual order. The order isthen extended to the
events so that events with smaller time stamps precede events with higher time stamps. The model
iscalled discrete because it is required that for each signal the set of time stamps is not dense in the
reals.

Examples of discrete event systems abound, as both Verilog [93] and VHDL [2] use this
model astheir underlying simulation semantics. For our example, we might consider the subsystem
that implements the protocol stack that handles the data stream after it has been demodulated. The
stack includes functions that modify and depend on the tables and parameters managed by the sub-
system described in the section on CSP (subsection 4.3.3). In addition, the protocol stack interacts
with the physical layer at the lower levels, and then unpacks and delivers the raw data to the appli-
cation. The non-recurring nature of these operations, their unpredictable timing and the dependency
of the protocol behavior on their timing make a discrete event model more suitable than, say, a

data-flow model. A typical protocol stack of four layersis shown in figure 4.6.

To the application

v !

Transport Layer

v !

Network Layer

!

MAC Layer

!
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To physical layers

Figure 4.6: Protocol Stack
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In the natural semantic domain, each behavior of an agent can be characterized as a se-
guence of events, each associated to an increasing time stamp. Note that events that occur in un-
related parts of the system are still ordered by their time stamps. Different events may occur with
the same time stamp. In most cases, if two discrete event models differ at all, they differ in the way
events with the same time stamp are handled. For the purpose of simulating such systems, some
models define a notion of a delta cycle that orders the events with identical time stamps. Others
don’t define any specific way to handle this occurrence, leading to non-determinism.

It is natural to construct a semantic domain in our framework based on the interpretation
of abehavior as a sequence of events with time stamps. If A isthe set of signals, V' the set of values
and R” the set of non-negative reals, we define the traces as follows:

B(A) = (A x V x R )™,

Two conditions must beimposed on the time stamps of atrace. First, the time stampsin the sequence
must be non-decreasing, i.e., if z isatrace and n and m are two natural numbers such that n, m <

len(x), then
n<m = xz(n) < z(m)y,

where the subscript ¢ denotes the time stamp of the event. Second, the time stamps of an infinite
sequence = must be divergent, i.e., for all t € R”, thereisan event in z with time stamp greater than
t. Discreteness can be enforced by requiring that for al non-negative reals t € R, thereis only a
finite number of eventsin x such that 2:(n), < t. Projection and renaming are defined similarly to
the functions defined for CSP in subsection 4.3.3.

The signature «y of a trace structure is taken from the 10 agent algebra, and therefore it
distinguishes between the set of inputs I and the set of output O, that together form the alphabet A.
Trace structures are then built as a signature with a set of traces in away similar to the models that
we have aready presented. Constraints can be imposed on the set P of traces of a trace structure,
anal ogous to the monotonicity and continuity requirements for process networks.

As an example from our protocol stack, one of the layers may include, among others, two
traces, one for a successful operation, and the other for the occurrence of atimeout. The discrete
event model isrequired in this case, as the process network model is unable to handle timeouts.

In some discrete event models, a new event occurs on a signal if and only if the corre-
sponding value for that signal has changed since the previous occurrence. Traces that have this
property are called stutter free. If thisisthe case, it is convenient in our framework to define the
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set of traces as the subset of stutter free traces. We can do this by defining a function that, given
a trace, produces its unique stutter free equivalent by removing the unnecessary events, similarly
to the stutter removal technique described for non-metric time models (see subsection 4.3.2). Note
that discrete traces result in discrete traces after stutter removal.

4.3.6 Pre-Post

One of the fundamental features of embedded software isthat it interacts with the physical
world. Conventional axiomatic or denotational semantics of sequential programming languages
only model initial and final states of terminating programs. Thus, these semantics are inadequate to
fully model embedded software.

However, much of the code in an embedded application does computation or internal
communication, rather than interacting with the physical world. Such code can be adequately mod-
eled using conventional semantics, as long as the model can be integrated with the more detailed
semantics necessary for modeling interactions. The pre-post model is quite similar to conventional
semantics, in that we are concerned with modeling non-interactive constructs, such as the ones that
occur in a programming language. Thus, in this case, we are interested only in an agents possible
fina states given an initial state. As described earlier, however, we can also embed the pre-post
model into more detailed models. Thus, we can model the non-interactive parts of an embedded
application at a high level of abstraction that is smpler and more natural, while also being able to
integrate accurate models of interaction, real-time constraints and continuous dynamics.

In our example, this model may be appropriate for the higher levels of the protocol stack,
and in particular for the application layer where most of the functionality can be described as non-
interactive procedure calls. Note how this model of computation differs from those that were in-
troduced in the previous sections, all of which included some notion of “evolution” of the system.
Nonetheless, traces do not necessarily require that notion, and we can easily fit this model in our
framework.

Traditionally, the semantics for this kind of modelsis constructed by first defining a state
asaset of variables S = { s;}, and then indicating the rules according to which each construct in the
programming language modifies this state. A natural semantic domain for describing the constructs
istherefore a set of pairs of initial and final state, one for each possible initial state.

The formulation in the framework of trace algebra is ailmost identical to the natural do-
main. The signature - of the agents is simply the set of variables A that the agent depends on and
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writes to (and is identical to the alphabet algebra of example 2.7). The signature may also be ex-
tended to distinguish between different types of variables, as aready seen in our previous hybrid
model. Each trace is made of pairs of states. A state s isafunction with domain A that to each vari-
able a € A associates avalue s(a) from aset of values V. We aso define a degenerate, undefined
state 1. Given an alphabet A atraceissimply apair of states

B(A) = (si, 1),

where s;, sy : A — V denote the initial and the final state, respectively. Here, the initia state must
be non-degenerate. A degenerate fina state denotes constructs whose final state is either undefined,
or that fail to terminate.

If s: A — V isasdtate, we can define projection and renaming on states as follows:

proj (B)(s) = Aa € BN A [s(a)],

rename(r)(s) = Aa € A [s(r(a))].
Then, if z = (s;, s¢) isatrace, we define projection and renaming by the obvious extension:

proj (B)(x) = (proj(B)(si), proj(B)(sy)),

rename(r)(xz) = (rename(r)(s;), rename(r)(sy)).

A trace structure is easily constructed as a set of traces. As usual, the notion of paral-
lel composition arises automatically given the definition of projection. However, in this particular
model, parallel composition is not the main operation of interest, since we are modeling the be-
havior on non-interacting constructs. In fact, handling shared variables of concurrent programs is
problematic with these definitions, and we define parallel composition to be undefined when the
signatures of two agents overlap. Instead, we concentrate on the concatenation operation which is
relevant to define the concept of sequential composition.

As mentioned in subsection 4.2.2, we must distinguish between complete and partial
traces. The above definition of a trace can be interpreted either way, depending on whether we
consider the behavior to be completed or not. A non-terminating trace could be considered as a
partial trace, assuming that non-termination occurs within a bounded amount of time. Thisis quite
unusual: it may occur, for example, if the duration of an infinite loop decreases exponentialy from
one iteration to the other.

If 2 = (s;,s7) and 2’ = (s}, s;) are traces, the concatenation operation 2" = z - 2’ is
defined if and only if z is apartial trace, the signature A and A are the same, and the final state of
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z isidentical to the initial state of 2/. As expected, when defined, z”” has alphabet A" = A = A’
and contains the initial state of z and the final state of #:

2" = (si,57).

Trace structures in thismodel have signature A which indicates the variables accessible in
the scope where the statement appears. For ablock that declares local variables, the trace structure
for the statement in the block includes in its signature the local variables. The trace structure for the
block isformed by projecting away the local variables from the trace structure of the statement.

The trace structures of this model are used to provide a semantics of the statements of
a programming language. Clearly, the sequential composition of two statements is defined as the
concatenation of the corresponding trace structures. the definition of concatenation ensures that the
two statements agree on the intermediate state. In the rest of this section we discuss the semantics
of several constructs that are commonly found in programming languages.

For example, the traces in the trace structure for an assignment to variable v are of the
form (s;,sr), where s; is an arbitrary initial state, and s isidentical to s; except that the value of
v is equal to the value of the right-hand side of the assignment statement evaluated in state g (we
assume the evaluation is side-effect free).

The semantics of a procedure definition is given by a trace structure with an alphabet
{wv1,...,v.} where v is the k-th argument of the procedure. The semantics of a procedure call
proc(a, b) istheresult of renamingv; — a and v9 — b on the trace structure for the definition
of pr oc. The parameter passing semanticsthat resultsisvalue-result (i.e., no aiasing or references)
with the restriction that no parameter can be used for both a value and result. More realistic (and
more complicated) parameter passing semantics can also be modeled.

To define the semantics of conditional constructs we introduce a function init(zx, c¢) that
is true if and only if the predicate c is true in the initial state of trace x. For the semantics of
i f-then-el se,letcbetheconditional expression and let P and Py bethe sets of possible traces
of thet hen and el se clauses, respectively. The set of possible traces of thei f -t hen- el seis

P={z¢€ Pr:init(z,c)} U{x € Pg : —init(z,c)},

that is, we choose the traces from one or the other clause according to the truth val ue of the condition.
Notice that this definition can be used for any trace algebra where init(z, ¢) has been defined, and
that it ignores any effects of the evaluation of ¢ not being atomic.



244

In the case of whi | e loops we first define a set of traces E such that for al x € E and
traces y, if x -y isdefined then z - y = y. For pre-post traces, E isthe set of all traces with identical
initial and final states. If ¢ isthe condition of the loop, and P; the set of possible traces of the body,
we define Pr, and Py, to be the set of terminating and non-terminating traces, respectively, for
iteration k, as follows:

Pry = {ze€E:-init(z,c)}

Pyo = {ze€FE:init(z,c)}
Pryiy1 = Pnyg-Pp-Pro
Pyri1 = Pnji-Pp-Pyy

The concatenation of Pr and Py at the end of the definition ensures that the final state of a
terminating trace does not satisfy the condition ¢, while that of a non-terminating trace does. Clearly
the semantics of the loop should include all the terminating traces. For non-terminating traces, we
need to introduce some additional notation. A sequence Z =< zx,... > IS a non-terminating

execution sequence of aloop if, for al k, z, € Py, and 2,1 € 2, - Pp. Thissequenceisachainin

the prefix ordering. Theinitial state of Z is defined to be the initial state of z. For pre-post traces,

wedefine Py, | tobeall traces of theform (s, L) where s istheinitial state of some non-terminating
execution sequence Z of the loop. The set of possible traces of the loop is therefore

P=(JPry)UPy,..
k

4.4 Refinement and Conservative Approximations

In the previous section we have presented the formalization of several models of com-
putation at different levels of abstraction, and how they can all be described in the framework of
trace algebra. For each model we have suggested a particular application in the context of a system
similar to the PicoRadio project. The whole system is depicted in figure 1.3. In order to under-
stand the behavior and the properties of the whole system, we need to understand the interplay
between the different subsystems. We can accomplish this by relating the semantic domains that we
have developed in the previous section and by studying how the different notions of computation fit
together.
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4.4.1 Conservative Approximations|nduced by Homomor phisms

Asdiscussed in section 2.6, we can relate different agent algebras, and therefore different
models of computation, through a conservative approximation. Burch shows that for trace based
agent algebras it is possible to build a conservative approximation starting from afunction (or more
in general, from arelation) between the trace algebras [12]. To make the conservative approximation
compositional, it is required that the function be a homomorphism. In this section we revisit these
constructions, which are presented in more general terms. Our presentation aso highlights the
similarities between this technique and the work of Sifakis[65] and Negulescu [71].

Before introducing conservative approximations, we must define a refinement order for
trace structures. This definition will be generalized in section 5.1 (definition 5.1).

Definition 4.15 (Refinement order). Letp = (A, P) and p' = (A’, P') be two trace structures.
Then

p=p & A=A ANPCP.

In other words, an agent p refines an agent ¢/ if the possible behaviors of p are also possible
behaviors of ¢/. Inthis case, we also say that the implementation p satisfies the specification 4. This
definition is therefore similar to traditional notions of refinement using language containment. It is
easy to show that the operators of projection, renaming and parallel composition are T-monotonic
relative to this order. Therefore, atrace structure algebrais a partially ordered agent algebra.

Conservative approximations can be derived from a function that relates the underlying
trace algebras. In order to obtain compositional conservative approximations, the function must
commute with the operators of the trace algebra. Such a function is called a homomorphism. The

following definition is a speciaization of the notion of homomorphism to trace algebras.

Definition 4.16 (Homomor phism). Let C and C’ be trace algebras. Let h: B — B be afunction
such that for all alphabets A, h(B(A)) C B'(A). Then h is a homomorphism from C to C' if
and only if

h(rename(r)(xz)) = rename(r)(h(z)),
h(proj (B)(z)) = proj(B)(h(z)),
where the right hand side of the equation is defined if the left hand side is defined.

A conservative approximation on the trace structures is essentially apair of functions that
operate on sets of traces. Given a function on traces, there are different ways one could derive
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a function on sets of traces. Here we use the notion of an axiality, that is of the one-to-one cor-
respondence between relations between two sets and Galois connections between their powersets.
Lemma 4.18 bel ow, which makes this correspondence precise, isawell known results in the theory

of Galois connections.

Definition 4.17 (Axiality). Let B and B be setsand let p C B x B’ be abinary relation between B
and B'. The axialities of p are the two functions p, : 25 — 25" and p,, : 25" — 25 defined as

pa(X) = {yeB :JzeBre X A(z,y) € p|},
py(Y) = {zeB:VyeB'[(z,y) Ep=yeY]}

Lemma4.18. Let B and B' be sets. Then p C B x B’ isabinary relation between 5 and 5 if and

only if (pa, p,) isaGalois connection between 25 and 25"

Proof: For the forward direction, assume p C B x B is abinary relation between B and B'. Let
X C BandY C B'. Weprove that p,(X) C Y if and only if X C p,(Y). The proof
consists of the following series of double implications.

pa(X) CY
by definition 4.17,
{yeB :3zeBlre X N(z,y) €p]} CY

{yeB :3zeBlzec X A(z,y) €pl}NY =0

EpANYEY]

EpNygY]t=10

{zeB:zeXin{zeB:VyeB -[(z,y) EpANygY]} =10

(z,y)
(z,y)
VyeB'VreB-lzre XA(z,y) EpAygY]
Ve e BYy € B =[x € X A (z,y)
{zeB:FyeB [zeXN(zy)

T ¢ 0

XC{zeB:VyeB [(z,y) ep=yeY]}
by definition 4.17,
& X Cpy(Y).

For the reverse direction, assume that («, ) is a Galois connection and define, for al = € B

andy € B,
(z,y) €p & y € a({z}). (4.2)

We show that for all X C B, p,(X) = «a(X). We proceed by induction on the size of X.
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For the base case, by corollary 2.77, a(l)) = (), and clearly, by equation 4.2,
pa(0) = 0. Therefore, p,(0) = a (D). Assume now p,(X) = a(X) andlet X' = X U { z'}.
We show that p,(X') = «(X"). The proof consists of the following series of implications,
starting from definition 4.17.

pa(X") = {yeB :Ixe Bz e X' A(z,y) € p|}
by the definition of p (equation 4.2),
= {yeB:xeBlreX Anyeca{z})]}
= {yeB:JreBlreXAycal{z})]}u{yeB  yecafs'})}
by definition 4.17,
= pa(X)Ua({2'})
by hypothesis
= a(X)Ua({z'})
since, by theorem 2.90, « distributes over U,

= a(XU{z'})=aX').

The following result is obtained by applying lemma 4.18 to the inverse relation 5 !.

Lemma4.19. Let B and B' be sets. Then p C B x B’ isabinary relation between B and B if and

only if ((p=")a, (p~1),) isaGalois connection between 25" and 25.

We are interested in relations on traces that preserve the alphabet. In other words, we
are interested in relations p between B and B such that if (z,y) € p, then there exists an al phabet
A suchthat z € B(A) and y € B'(A), (i.e., p relates only traces with the same alphabet). Then,
for each alphabet A, the relation p4 C B(A) x B'(A), obtained by restricting p to the traces
with alphabet A, determines two pairs of axidities between 25(4) and 25'(4)| which form Galois
connections. Since in the following the a phabet will always be clear from context, we will drop the
subscript A from p4, and refer to its axialities simply as p, and p,,.

Let now C and C’ be trace algebras and let A and A’ be trace structure algebras over C
and C’, respectively. If p preserves the alphabets, then its axialities can be extended to functions
between the trace structures in A and A'. With alittle abuse of notation we will write for a trace
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structurep = (A, P):

Pa(p) = (4, pa(P)).

Since they form apair of Galois connections, it is natural to ask whether they also form a conserva-
tive approximation. In the following we will consider only trace structures algebras whose domain
consists of all the trace structures over the corresponding trace algebra. We call such trace structure
algebras complete.

Corollary 4.20. Let C = (B, proj, rename) and C' = (B', proj’, rename’) be trace algebras and let
p C B x B' beabinary relation between B and B that preserves the alphabets. Let A and A
be the complete trace structure algebras over C and C. Then the following two statements are
equivalent.

e (pa,(p™1),) isaconservative approximation from A to A'.
e Foral trace structures p/ in A'.D, p,(p') < (p™H)a(p').
Proof: The result follows directly from corollary 2.101. O

Thefollowing two results give sufficient conditions to prove that the axialities of arelation
on traces form a conservative approximation. Thefirst showsthat if p istotal, the the corresponding
Galois connections indeed form a conservative approximation. The second shows that if p isalso a
function, then the induced conservative approximation is aso the tightest.

Lemma4.2l. Let Band B’ besetsand let p C B x B’ be abinary relation between B and B'. If p
istotal, thenforal Y C B, p,(Y) C (p™")a(Y).

Proof: LetY C B'. Letz € p,(Y), and let ¢/ € B’ be such that (z,y') € p. We know that
y' exists, since p is total. We must show that = € (p ')o(Y). The proof consists of the
following series of implications.

z € py(Y)
by definition 4.17,
& VYyeB [(z,y) ep=>yeY]
since (z,y') € p,

= ¢y ey
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since (z,y') € p,

= JyeByeYAl(ny) €y

= ze€f{zeB:IyeB yeY A(z,y) €p]}
& ze{zeB:eB yeYA(y,z)ep ']}
by definition 4.17,

& ze(p HalY)

O

Lemma4.22. Let Band B’ be setsand let p : B — B’ be afunction from B and B'. Then for all
Y CB,py(Y) = (palY).

Proof: Let Y C B'. Sincep istota, by lemma 4.21, we only need to prove that (o 1), (Y) C
py(Y). Letz € (p7)o(Y) and let y = p(z). Since p isafunction, (z,y) € p if and only if
y=vy'.

z€(p Mall)

by definition 4.17,

& ge{zeB:WeB yeYA(y,z)€p ']}
& ze{zeB:eB yeY A(zr,y) €p|}
since (z,y') € pandsince (z,y) € p = y =1/,
= 4y ey

since (z,y') € pandsince (z,y) € p = y =1/,
= VYyeB |[(z,y) Ep=>yeY]
= zef{zeB:VyeB[(z,y) eEp=yeY]}
by definition 4.17,

& zep,(Y).
U

The above result shows that, for complete trace structure algebras, a function between
the sets of traces induces the tightest conservative approximation (see corollary 2.105). Before we
derive the close form expression for the conservative approximation induced by a function (and

by a homomorphism of trace algebras in particular), we briefly review the notation proposed by
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Loiseaux et a. [65] based on the forward and backward image of arelation. This notation issimpler
to use to derive the closed form expression of the conservative approximation. Here we show that

the forward and backward images are equivalent to the axialities of the relation.

Definition 4.23 (Forward and Backward Image Function). Let B and B’ be sets and let p C
B x B be abinary relation between B and B. The forward image post[p] : 28 — 28, and
the backward image pre[p] : 28 — 28 of p are defined as

postlp)(X) = {ye€B:3xecX|[(z,y) €pl},
prefp](Y) = {ze€B:3yeY [(z,y) € pl}.
Definition 4.24 (Dual of Function). Let B and B’ be setsand let f : 28 — 25" be afunction. The

dual of f isthefunction f : 28 — 25’ such that

F(X) = f(X),
where X denotes the complement of the set X.

Theorem 4.25. Let B and B’ be setsand let p C B x B’ be a binary relation between 5 and 5.
Then,

pa = Ppostipl,

py = prelpl.

Proof: Clearly, by inspection of definition 4.17 and definition 4.23, p, = post[p]. The proof is
completed by the following series of equalities, which begins with the definition of dual of a
function (def. 4.24):

pre[pl(Y) = prefo](Y)
by definition 4.23,

= {zeB:eY [(x,y) €pl}

= {ze€B:-yeY|(x,y) € p]}

= {z€B:VyeY [(z,y) p]}

= {zeB:WeB [(z,y) cp=yeY]}
by definition 4.17,

= py(Y).
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Corollary 4.26. Let B and B be setsand let p C B x B’ be abinary relation between 5 and 5.
Then,

(0o = postlp™'],

(07", = prelp 1]

The forward image of arelation is related to the backward image of the inverse relation
asfollow.

Lemma4.27. Let Band B besetsand let p C B x B’ be abinary relation between 5 and 5. Then,

post[p~'] = pre[p],
pre[p~'] = post[p].

Hence we can express all axiaities in terms of images of p. In particular, it is easy to
find a closed form expression for the conservative approximation induced by a homomorphism on
traces, as defined in corollary 4.20.

Theorem 4.28. Let C = (B, proj, rename) and C' = (B, proj’, rename’) be trace algebras and let
h be a homomorphism from C to C'. Let A and A’ be the complete trace structure algebras
over C and ', respectively. Then the pair of functions ¥ = (I, ¥,,) defined by

\Iju(p) = (Aah(P))a
i(p) = (A,B'(A) - h(B(A) - P))

is a conservative approximation from A to A’

Proof: Recall that a homomorphism on trace algebras preserves the alphabets. Let (A, P) be a
trace structurein A. Then,
A, post[h](P))
h(P)),

[](P))

pa(p) = (
(4,
(A, post
(A, post
(A
(

(r 1)y =
[h](P))
,h(B(A) — P))
A,B'(A) — h(B(A) — P)).

The result then follows from corollary 4.20 and lemma 4.22. O
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Itiseasy to show that because h isahomomorphism, then the conservative approximation
induced by h isaso compositional. Burch [12] actually derives adifferent formulation for the lower
bound. Specificaly, he has

Vi(p) = (A, h(P) — h(B(A) — P)).
The two formulas are equivalent if A is surjective.

Lemma4.29. Let C and C’ be trace algebras and let h be a surjective homomorphism from C to C.
Then for al P,

Proof: Lety € B'(A) and let z € B(A) be such that y = h(z). We know that z exists since h is
surjective. It is enough to show that if y € B(A) — h(B(A) — P) theny € h(P).

y € B'(A) — h(B(A) - P)
= y ¢ h(B(A) —P)
= z€P

= y € h(P).

O

Even when h isnot surjective, the two formulations give conservative approximations that
have the same “distinguishing power” in terms of their ability to reflect verification results from the
abstract to the concrete model.

Lemma 4.30. Let C and C’ be trace algebras and let h be a homomorphism from C to C'. Let
p1 = (A, P1) and p = (A, P) be trace structures over C and C, respectively. Then

Ty(p1) 2 Ui(p)
if and only if
Tu(p1) = Ti(p).
Proof: We will show that

h(Py) C B'(A)—h(B(A)-P)
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if and only if
h(P) S h(P)—h(B(A) - P).

The backward implication is obvious. For the forward implication, assume that h(R) C
B'(A) — h(B(A) — P). We show that P, C P, which implies h(P;) C h(P). This, in turn,
implies the desired result. The proof consists of the following series of implications.

r e P
since h(Py) C B'(A) — h(B(A) — P),
= h(z) € B(A) — h(B(A) — P)
= h(z) ¢ h(B(A) - P)
= z¢B(A)-P
=

xz e P.

Hence P, C P. |

Although the conservative approximations using the two different lower bounds are es-
sentialy equivalent, they are not equal. In particular, the inverses of the conservative approximation
may be different. Thisis apparent if C' contains traces that are not in the image of the homomor-
phism. In this case, the inverse of ¥ = (¥, ¥,) is never defined. To see why that is the case,
assume ' € B'(A) isnot in the image of the homomorphism. Then, clearly, for al P C B(A),
' & h(P), and ' € B'(A) — h(B(A) — P). Hence ¥;(p) and ¥, (p) are never equal. On the
other hand, if P = h~!(h(P)) (i.e, the set P includes all the traces that are mapped onto the set
h(P)), then h(B(A) — P) N h(P) = (. Then necessarily h(P) = h(P) — h(B(A) — P), which
implies ¥(p) = ¥, (p) and ¥y, ((A4, h(P)) = (A, P). In other words, by ignoring the existence of
additional traces, ¥, is effectively determining that certain agents can be represented “exactly” at
the abstract level.

In the case above, V] is not even the concretization function of any Galois connection
from A’ to A. Assume, in fact, that p’ = (A, P’) isatrace structure in A’ such that P’ contains a
trace z’ that is not in the image of the homomorphism. By theorem 2.93, the abstraction map on g
isthe least element of the set

Mg (P') = {p = (A,P) : P' C h(P) — h(B(A) — P)}.
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But, clearly, there is no P such that P C h(P) — h(B(A) — P), since 2/ € P’ and for al P,
' ¢ h(P) since 2’ is not in the image of h. Hence, since Ay (P') is empty, it has no least
element, and therefore, by theorem 2.97, U} is not the concretization map of any Galois connection.
Consequently, ¥} is aso not induced by any relation (or function) on the sets of traces in the form
of an axiality.

An upper bound that includes the information carried by extra traces not in the image of

the homomorphism aso exists. Consider for example the following abstraction:
U, (p) = (B'(A) — h(B(A))) UR(P).

The following two results again show that the conservative approximation (¥, ¥,,) has the same

distinguishing power as (¥;, ¥, ), and that in case h is surjective, they are the same.

Lemma 4.31. Let C and C’ be trace algebras and let 1 be a homomorphism from C to C'. Let
p1 = (A4, P1) and p = (A, P) be trace structures over C and C, respectively. Then

Tu(p1) =2 Wilp)
if and only if
Ui(p1) = Yy(p).
Proof: The backward implication is again obvious. For the forward direction, assume
h(Pr) C B'(A) — h(B(A) — P).
We wish to show that
(B'(A) — h(B(A))) Uh(P1) C B'(A) — h(B(A) - P).

To do so, it is sufficient to show that (B'(A) — h(B(A))) C B'(A) — h(B(A) — P), since we
aready know, by hypothesis, that h(P) C B'(A) — h(B(A) — P). Letthenz € B'(A) be
atracein C' such that z € B'(A) — h(B(A)). Then, necessarily, = ¢ h(B(A)). Therefore,
since h(B(A) — P) C h(B(A)), z & h(B(A) — P). Hence, sincex € B'(A), z € B'(A) —
h(B(A) — P). Consequently, (B'(A) — h(B(A))) C B'(A) — h(B(A) — P). O

Lemma4.32. Let C and C’ be trace algebras and let h be a surjective homomorphism from C to C.
Then for al P,

(B'(A) — h(B(A))) Uh(P) = h(P).



Proof: The result follows easily from the fact that if & is surjective, then h(B(A)) = B(A) and
therefore B'(A) — h(B(A)) = 0. O

In summary, given a homomorphism between trace structures, it is possible to derive
conservative approximations between the corresponding complete trace structure algebras. The
notion of axiality provides us with one formulation of the conservative approximation. We have
also shown how to derive conservative approximations that have the same distinguishing power, but
that differ in the existence of an inverse function. If the homomorphism is not surjective, then itis
impossible to derive such approximations as axialities of arelation on traces, evidence of the fact
that conservative approximations are more general than Galois connections.

In the rest of this chapter we will explore conservative approximations between some of
the models that were presented in the previous section. We will do so by establishing homomor-
phisms on trace structures, and by choosing the formulation of conservative approximation given
by (¥, ) above. We do so for several reason. First, our homomorphisms are, in general, surjec-
tive. Hence, for al purposes, and for refinement verification in particul ar, the choice of conservative
approximation is irrelevant. In addition, (¥}, ¥,,) clearly highlights that the inverse is defined for
al trace structures p = (A, P) such that P = h~'(h(P)), that is for all the agents whose set of
traces contains all the concretizations of their abstractions. Thisis convenient when considering the
embedding of one agent model into another, as explained in section 2.8. Further the formulation
also highlights that for all trace structures, ¥;(p) < ¥, (p), anecessary and sufficient condition for
the existence of a conservative approximation going in the opposite direction (since, because h is
surjective, we are using the axiality).

If the trace structure algebras considered are not complete, asit is the case in some of the
examples that we present, the upper and the lower bound computed according to our formulation
may not correspond to any trace structure in the more abstract model. In this case, the conservative
approximation must be altered. Specifically, a new conservative approximation (U/, &) must be

found such that for all trace structures p,

IA

o (p) Wi (p)
,(p) = T(p)
If that is the case, then, by theorem 2.61, (¥/, ¥,/) is also a conservative approximation. There

might be a choice of the specific looser bound to be used. We do not consider this problem here,

and reserve it for our future work.
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45 Examplesof Conservative Approximations

This section is devoted to extending the examples presented in section 4.3 by relating the
different models with conservative approximations. We will address two cases in particular. The
first is devoted to the study of an embedded software control application and to the construction
of relationships between the continuous time, the non-metric time and the pre-post model. Thisis
achieved by first constructing appropriate homomorphisms of trace algebra, and by applying the
results of the previous section to obtain a conservative approximation.

The second set of examples includes some of the models used by our motivating example
in section 1.6. Specifically, we will analyze how to construct conservative approximations from
the continuous time model of computation to the discrete event model, and from the discrete event
model to the process networks model. For this last example we will also consider the form of the

inverse of the conservative approximation.

45.1 Cutoff Control

Our example is asmall segment of code used for engine cutoff control [8]. This example
is particularly interesting to us because the solution proposed in [8] includes the use of a hybrid
model to describe the torque generation mechanism.

The behaviors of an automobile engine are divided into regions of operation, each char-
acterized by appropriate control actions to achieve a desired result. The cutoff region is entered
when the driver releases the accelerator pedal, thereby requesting that no torque be generated by
the engine. In order to minimize power train oscillations that result from suddenly reducing torque,
a closed loop control damps the oscillations using carefully timed injections of fuel. The control
problem istherefore hybrid, consisting of adiscrete (the fuel injection) and a continuous (the power
train behavior) systemstightly linked. The approach taken in [8] isto first relax the problem to the
continuous domain, solve the problem at this level, and finally abstract the solution to the discrete
domain.

Figure 4.7 shows the top level routine of the control agorithm. Although we use a C-like
syntax, the semantics are simplified, as described before for the pre-post model. The controller is
activated by arequest for an injection decision (this happens every full engine cycle). The algorithm
first reads the current state of the system (as provided by the sensors on the power train), predicts
the effect of injecting or not injecting on the future behavior of the system, and finaly controls
whether injection occurs. The prediction uses the value of the past three decisions to estimate the
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position of the future state. The control algorithm involves solving a differential equation, whichis
doneinthecall to conput e_si gnas (see [8] for more details). A nearly optimal solution can be
achieved without injecting intermediate amounts of fuel (i.e., either inject no fuel or inject the max-
imum amount). Thus, the only control inputs to the system are the actionsact i on.i nj ecti on
(maximum injection) and act i on_no_i nj ect i on (zero injection).

Even this small fragment of code highlights the different nature of several of the con-
structs. For example, the function call to conput e_si grmas, and the corresponding implemen-
tation, need not be described in a model that uses a notion of time. Thus, the pre-post model is
sufficient. On the other hand, the awai t statement depends upon the arrival of an event, and is
therefore best represent in atimed model, whether it has a metric or not. Conversely, performance
constraints, such as the maximum delay for an iteration of the loop, requires not only a notion of
time, but also ametric. The homomorphisms below and the corresponding conservative approxima:
tions can then be used to translate one representation into the other, according to the type of analysis

that must be performed on the design.

4.5.2 Homomorphisms

The trace algebras defined above cover a wide range of levels of abstraction. The first
step in formalizing the rel ationships between those levels is to define homomorphisms between the
trace algebras. As mentioned in section 4.4, trace algebra homomorphisms induce corresponding
conservative approximations between trace structure algebras.

453 From Metricto Non-metric Time

A homomorphism from metric time trace algebra to non-metric time should abstract away
detailed timing information. It is easy to define a homomorphism by simply interpreting the non-
negative reals as the vertex set, and the assignments on the non-negative reals as the labeling func-
tion. Theresult isan Ipo to which we apply the stutter removal procedure defined in subsection 4.3.2,
and then take the isomorphism class.

Nevertheless, to better highlight what the homomorphism does, we here proceed in a
more direct way. This requires characterizing events in metric time and mapping those events into
anon-metric time domain. Since metric time trace algebrais, in part, value based, some additional
definitions are required to characterize events at that level of abstraction.
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void control_algorithm ( void ) {
// State definition
struct state {
double z1;
double z,;
double w,;
} current_state;
// Init the past three injections (assume injection before cutoff)
double u;, us, ug = 1.0;
// Predictions

double o,,, 0p;

loop forever {
await ( action_request );
read_current_state ( current_state );
compute_sigmas ( 6., 09, current_state, uy, us, us );
// Update past injections
U1 = u2;
U2 = U3;
// Compute next injection signal
if (om <o0) {
action_injection ( );
ug = 1.0;
} else {
action_no_injection ( );

uz = 0.0;

Figure 4.7: The control algorithm
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Let = be ametric trace with signature -y and alphabet A such that

Y= (VRaVZaMIaMO)
= VerUVZUM;UMop.

We define the homomorphism 4 by defining a non-metric time trace y = h(x). This requires
building avertex set V' and alabeling function 4 to construct an Ipo. Thetrace y isthe isomorphism
class of thislpo. For the vertex set we take al reals such that an event occurs in the trace z, where

the notion of event is formalized in the next severa definitions.

Definition 4.33 (Stable function). Let f be afunction over aredl interval to R or Z. The function
isstableat ¢ if and only if there existsan e > 0 such that f isconstant on theinterval (¢ —e, t].

Definition 4.34 (Stabletrace). A metrictimetrace z isstableat ¢ if and only if foral v € \R UV
the function f(v) isstable at ¢; and for al a € My U Mo, f(a)(t) = 0.

Definition 4.35 (Event). A metric timetrace x hasaneventat ¢t > 0 if it is not stable at ¢. Because
ametric time trace doesn’t have aleft neighborhood at ¢ = 0, we aways assume the presence
of an event at the beginning of thetrace. If x has an event at ¢, the action label o for that event
isafunction with domain A such that for all v € A, o(a) = f(a)(t), where f isacomponent

of x as described in the definition of metric time traces.

Now we construct the vertex set V' and labeling function p necessary to define y and,
thereby, the homomorphism h. The vertex set V' is the set of reals ¢ such that = has an event at ¢.
While it is convenient to make V' a subset of the reals, remember that the tomset that results is an
isomorphism class. Hence the metric defined on the set of realsislost. The labeling function u is
such that for each element ¢t € V, u(t) isthe action label for theevent at ¢ in .

Note that if we start from a partial trace in the metric trace we obtain atrace in the non-
metric trace that has an initial and final event. It hasaninitial event by definition. It has afinal event
because the metric trace either has an event at § (the function is not constant), or the function is
constant at § but then there must be an event that brought the function to that constant value (which,
in case of identically constant functions, istheinitial event itself).

To show that / does indeed abstract away information, consider the following situation.
Let 21 be ametric time trace. Let x5 be same trace where time has been “stretched” by a factor of
two (i.e, foral v € Ay, z1(a)(t) = z2(a)(2t)). The vertex sets generated by the above process are
isomorphic (the order of the eventsis preserved), therefore h(z;) = h(zs2).
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454 From Non-metric to Pre-post Time

The homomorphism A from the non-metric time traces to pre-post traces requires that the
signature of the trace structure be changed by removing M; and M. Let y = h(z). Theinitid
state of y isformed by restricting p(min(V')) (theinitial state of z) to 1& U V7. If = isacomplete
trace, then thefinal state of y is_L. If x isacomplete trace, and there existsa € My U Mo and time
t such that f(a)(t) = 1, the final state of y isalso L. Otherwise, the fina state of y is formed by
restricting p(max(V)).

45.4.1 Using Non-Metric Time Traces

Using an inverse conservative approximation, as described earlier, the pre-post trace se-
mantics described in the previous subsection can be embedded into non-metric time trace struc-
tures. However, this is not adequate for two of the constructs used in figure 4.7: awai t and the
non-terminating loop. These constructs must be describe directly at the lower level of abstraction
provided by non-metric time traces.

As used used in figure 4.7, the awai t (a) simply delays until the external action a
occurs. Thus, the possible partia traces of awai t are those where the values of the state variables
remain unchanged and the action a occurs exactly once, at the endpoint of the trace. The possible
complete traces are similar, except that the action a must never occur.

To give a more detailed semantics for non-terminating loops, we define the set of exten-
sions of anon-terminating execution sequence Z to be the set

ext(Z) ={z € B(y) : Yk [z € pref(x)]}.

For any non-terminating sequence Z, we require that ext(Z) be non-empty, and have a unique
maximal lower bound contained in ext(Z), which we denote lim(Z). In the above definition of the
possible traces of aloop, we modify the definition of the set of non-terminating behaviors Iy, to
be the set of 1im(Z) for all non-terminating execution sequences Z.

4542 Using Metric Time Traces

Analogous to the embedding discussed in the previous subsection, hon-metric time traces
structures can be embedded into metric-time trace structures. Here continuous dynamics can be
represented, as well as timing assumptions about programming language statements. Also, timing
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constraints that a system must satisfy can be represented, so that the system can be verified against
those constraints.

455 From Continuous Timeto Discrete Event

This abstraction is similar in nature to the one presented from continuous time to non-
metric time. Similarly to that case, to construct an approximation we must first define the notion
of an event at the level of the continuous time traces. Abstraction, in this case, can be done in
several ways. One, for example, is to consider an event as the snapshot of the state at certain
regular intervals. Another technique consists of abstracting the value domain, and identify an event
whenever the signals cross certain discrete thresholds. Aswas done previously, we take yet another
approach, and identify an event whenever any of the signals changes with respect to its previous
value. To do that, we refer again to definition 4.35 to make this notion precise.

In the continuous time model signals may change value simultaneously. In the discrete
event model, on the other hand, events are totaly ordered, even when they have the same time
stamp. Hence, after identifying an event, we must also decide how to order simultaneous eventsin
the same time stamp. Because there is no obvious choice, we map each event in continuous time
to the set of all possible orderings in discrete event. This choice implies that for each trace in the
continuous time model there correspond several traces in the discrete event model. Consequently,
the approach based on the homomorphism on traces outlined in the previous section will not work.

To construct a trace in the discrete event model we must create a sequence where each
element corresponds to an event for some signal at some time in continuous time. To simplify the
task, we introduce two additional, and somewhat more elaborate, trace algebras for the discrete
event model.

In the first trace algebra, we construct a“sequence” by taking the set of reals as an index
set, and by mapping the index set to sequences of events that represent the delta cycles for each
particular time stamp. An empty sequence of delta cycles denotes the absence of events for the

particular time stamp. Formally, we define the set of possible traces as:
B(A) =R = (Ax V)>®,

where A is, as usual, the set of signals, and V is the corresponding set of possible values. This
formulation clearly includes systems that are not discrete: imagine, for instance, that the sequence
corresponding to the delta cycles is non-empty for every ¢t € R’ . Thus we must further restrict the
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set of possible traces to only those whose set of non-empty time stamps is discrete, as was discussed
in subsection 4.3.5.

Projection and renaming are defined as expected. Their formal definition gives us the
opportunity to introduce a construction theorems that allows one to build new trace algebras from
existing ones. In this particular case, note how the set of traces is defined as a function whose range
isthe set of traces defined in subsection 4.3.3 for the CSP model. The following theorem shows that
when projection and renaming are defined appropriately, the result is always another trace algebra.

The proof is simple but tedious, so we omit the details.

Theorem 4.36. LetC' = (B'(A), proj, rename) be atrace algebraand let Z be aset. Then thetrace
algebra C such that:
B(A) = Z— B(A),
proj(B)(z) = Ad € Z [proj(B)(z(d))],

rename(r)(z) = Md € Z [rename(r)(z(d))],
isatrace algebra.

In our particular case welet B (A) = (A x V), Z = R” and projection and renaming
as defined in subsection 4.3.3. Hence for atracez € R — (A x V)>® we have

proj(B)(z) = AteR’ [proj(B)(z(1))],
rename(r)(z) = Xt € R’ [rename(r)(z(t))].
A trace structure has again signature v = (I, O) and is otherwise obtained as usual as a
et of traces.
The second trace algebra that we introduce is similar to the one just presented, but without
ordering information within atime stamp. Then we build a mapping from each of the new traces to

aset of discrete event traces, that contain all possible interleavings of the events.
Recall (see above) that traces in the discrete event model of computation are of the form:

B(A) =R — (A x V)™,

The ordering information in the sequence of delta cycles can be removed by considering the more
abstract set of traces:

B(A) =R/ — 24V,
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It is easy to construct afunction 4 from 55 to B that removes the ordering information. If z € B(A)
isof theform z = z(t,n), we define 2’ = h(z) asthetrace z' = z'(t) such that for all t € R*

'(t) = {(a,v) € AxV :IneNz(tn) = (a,v)}

It iseasy to show that / iswell defined, and that it is onto. However h is not one-to-one, so that its
inverse h~! mapsasingletrace 2’ € B'(A) to aset of tracesin B(A). This set of traces corresponds
to al possible interleavings of the set of pairs of signals and values, with or without repetitions.

It is now easy to define a function g from traces in the continuous time to traces in the
discrete event model without ordering. If y = y(t, a) is a continuous time trace, then define # =
g(y) asthetrace 2/ = «/(t) such that for all t € R”

7'(t) = {(a,v) € Ax V : xhasanevent onsignal a attimet A z(t,a) = v}.

We can now define an approximation between the continuous time and the discrete event model
based on the functions ¢g and 4.

Let p = (v, P) be atrace structure in the continuous time model. To build an upper bound
we naturally extend the functions g and h to sets of traces as follows:

Tu(p) = (7, b~ (g(P)))-

A lower bound could be constructed in several ways. Note, however, that without any further
constraint the discrete event model can represent continuous functions exactly. In other words,
since our mapping on trace structures is actually one-to-one, it does not constitute an abstraction.

The obvious choice in this case is therefore to simply have

foral T.

The key to getting areal abstraction is that of defining exactly the conditions that make
the discrete event model discrete. This can be done by replacing the set of reals in the definition of
the trace algebra with a different set D. The result is a parametrized trace algebra

B(A) = D — (A x V).

Depending on the choice of D different kinds of abstractions are possible.
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45.6 From Discrete Event to Process Networks

In this section we will explore the relationships between the discrete event model pre-
sented in subsection 4.3.5 and the process network model presented in subsection 4.3.4. We will
use the simple version of DE that consists of a sequence of events.

During the presentation we will refer to figure 4.8 and figure 4.9. Figure 4.8 depicts the
mappings that relate traces in the different domains. Figure 4.9 shows the corresponding mappings
when applied to the domains of trace structures (sets of traces).

‘ﬂ%

Figure 4.8: Relations between trace algebras

We have aready pointed out that the natural domain is that of functions on streams. Our
initial abstract formalization is amodel of traces that isisomorphic to the set of streams. However,
the corresponding formalization in terms of trace structures led to a problem with the composition
operator: in the origina model, composition is defined so that it includes only the least fixed-point
of the functions that satisfy a certain equation; in our model, instead, composition includes all
the fixed-points. Thus we are unable to find an isomorphism between the trace structures of our
formalization and the agents in the natural domain, that is a one-to-one mapping that preserves
compoasition.

We have then developed a more detailed domain, in which sequences are used to em-
phasize the order relationships between inputs and outputs that allows us to build the fixed-point
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isomorphism
g

Figure 4.9: Relations between trace structure algebras

in the composition. By doing this we abandon the isomorphism of the traces with the domain of
streams. To be classified as process network agents, trace structures in this formalization must sat-
isfy constraints that ensure that a function on stream is in fact being constructed. The discussion
then suggests that there is an isomorphism (which preserves the operation of composition) between
the detailed model of trace structures and the agents in the natural semantic domain.

Recall that traces in the abstract process network algebra belong to the set:

B(A)=A— V™.
Traces in the more detailed algebra belong to the other set:
B(A) = (A x V)™.

As shown in subsection 4.3.4, traces in this more detailed model can be mapped into traces in the
more abstract model by virtue of a homomorphism A that removes the order relationships across
signals. When naturally extended to trace structures (i.e., to set of traces), h maps agents in the
detailed domain into agents in the abstract domain. The homomorphism on individual traces is
obviously not one-to-one. However, when considered as a mapping of trace structures from the
(restricted set of agents in the) detailed trace structure algebra into the more abstract algebra, the
function is a one-to-one mapping. In fact, if two trace structures p and p, map into the same trace
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structure in the abstract algebra, then they must have the same fundamental mode representation 3.
The inductive construction of equation 4.1 then shows that m = p,. Because h is one-to-one when
applied to agents, there is an inverse function ~~! from the abstract trace structure algebra into the
detailed algebra.

The relationships between the discrete event and the process network model of computa-
tion can be described as a mapping to one of the two formulations. Recall that traces in the discrete
event model are of the form:

B(A) = (A x V x R")™,

A straightforward mapping can be constructed from the discrete event traces to the detailed process
network traces. The mapping isafunction g that simply removes the time stamp from the sequence.
In other words, if

z = ((ao,vo, o), (a1,v1,t1),...)

is adiscrete event trace, then

g(z) = ((ap,v), (a1,v1),...).

This mapping is a homomorphism on traces, in that it commutes with the operations of projection
and renaming. In other words, if 2 is a discrete event trace, then

g9(proj(B)(z)) = proj(B)(g(x)),

g(rename(r)(z))

rename(r)(g(z)).

The natural extension to sets of traces g(P) of the homomorphism g isafunction that maps discrete
event agents into process network agents. This function is an upper bound ¥, of a conservative
approximation:

U (T) = (v, 9(P)).

For the lower bound ¥; we must map to a restricted set of traces. Namely, the inverse image of
U, (P) should map to traces that are only in P. This can be accomplished using the homomorphism
g asfollows:

i(p) = (v,9(P) — g(B(A) — P)),



267

where B(A)— P isthe complement of P with respect to the universe of traces. Thislower bound can
be made tighter by considering only the traces that occur in the agents that form the trace structure
algebra.

It can be shown that the two mappings so defined form a conservative approximation.
This formulation can be generalized. In fact, nothing in the derivation of ¥, and ¥; depends on
the particular models of computation considered. Hence, whenever there is a homomorphism g
between the sets of traces of two different models of computation, we can construct a conservative
approximation using the same formulation. We refer the reader to [14] for more details on this
technique.

What does this mapping look like? Consider for examplethe inverter shown in figure 4.10.
It has an input ¢ and an output b. If we assume the inverter has a constant positive delay ¢, then a
possible trace of the agent in the discrete event model might look like the following:

z = ((a,0,0), (b,1,0), (a, 1,3.5), (b,0,3.5 + 9),...),
assuming that 0 < 3.5. The corresponding trace in the process networks model is

7' = ((a,0), (b,1), (a,1),(b,0),...).

This trace is included in the upper bound computed by ;. If the agent does not contain atrace for
any possible delay 4, then this trace is not included in the lower bound ;. In fact, atrace y with a
similar sequence of events, but different delay, would be in B(A) but not in P; because g discards
the delays, g(x) = g(y) and, by definition of ¥; above, x is removed from the mapping. In other
words, the process network model does not distinguish between agents with different delays and we
are indeed computing an approximation.

It is interesting to consider the inverse of this conservative approximation. The inverse
mapping corresponds to trying to embed an agent of the process networks model into a discrete
event context. Here we must find agents p such that ¥, (p) = ¥,(p) = p’. Because of the particular
abstraction we have employed, this occurs whenever the agent p has non-deterministic delay. In
this case, given atrace x, al other traces y with the same sequence of events but different delay are
included in the set of possible traces of the agent, and therefore retained in the computation of the
lower bound. Hence, for every agent ¢/ in the process network model of computation, there exists
anagent p = ;,,, (p') in the discrete event model, where p has the same behaviors as g and chooses
non-deterministically the delay of the outputs. Any deterministic implementation of this embedding
will therefore have to make an upfront choice regarding the timing of the agent.
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Figure 4.10: Inverter agent with delay ¢

The functions ¥, and ¥, that we have just defined certainly constitute an abstraction.
However, in this particular case the abstraction does not ensure that the corresponding trace struc-
turein the process network algebra satisfies the constraints for that model defined in subsection 4.3.4
involving equation 4.1. In fact, for each trace in the discrete event model there should correspond
severa (possibly infinitely many) traces in the process network model that include all possible de-
layed outputs. Itispossible to consider only arestricted version of the discrete event trace structures
that maps correctly in the detailed process network algebra. To simplify this task, we will take an

aternative route and use the abstract process network algebra as an intermediate step.

Notice that the abstract process network trace structure algebra requires that agents be
monatonic and functional. This requirement must still be satisfied by the discrete event agent that
we want to abstract. An equivalent constraint that can be imposed at the discrete event level is that
of receptiveness. Intuitively, atrace structure isreceptive if it can’'t constrain the value of itsinputs.
The technical definition of receptiveness (see [34]) requires the device of infinite games: an agent
is receptive if it can aways respond to an input with outputs that make the trace one of its possible
traces.

We can show that if adiscrete event agent p is both receptive and functional, then it isalso
monaotonic (where the prefix order corresponds to the usual prefix on sequences). In fact, assume
it is not monotonic. Then there are traces = and y in p such that proj (I)(z) T proj(I)(y), but
proj (O)(z) Z proj(O)(y). Butif p is receptive, then = can be extended to atrace 2 such that
proj (I)(z') = proj(I)(y) and ' € T. By the functionality assumption, 2/ = y. Butz C 2/, a
contradiction. Hence p must be monotonic.

A homomorphism ¢’ between the discrete event traces and the abstract process network
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traces is given by the composition of ¢ and h. The natural extension to sets gives us a mapping
¢'(P) on trace structures and a corresponding conservative approximation. An approximation from
the discrete event trace structure algebrato the detailed process networks trace structure algebra can
now be constructed by taking the composition of the mapping ¢ and A~ as shown in figure 4.9.
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Chapter 5

Protocol Conversion

In the previous chapter we have presented several examples of models of computation
formalized astrace-based agent algebras. In this chapter we derive aconformance order and amirror
function for trace structure algebras, and introduce a richer trace-based model, derived from Dill’s
trace structures [33], in which agents have two sets of traces, corresponding to successful and faulty
behaviors, respectively. This representation is extremely useful in interface specifications, where
the model must provide information about the conditions of correct operation. We demonstrate its

use in the problem of protocol conversion.

5.1 Conformanceand Mirrorsfor Trace Structure Algebras

In section 4.4 we have defined a simple ordering of trace structures based on trace con-
tainment (see definition 4.15). The order relationship is there restricted to agents that have the same
alphabet. We now wish to generalize this definition, and to allow an order relationship to exist
between agents that have different alphabet. We do so in two steps. We initially define an order
which is convenient for deriving a mirror function in the algebra. This order, however, is such that
the renaming operator is not T-monotonic. Our venture into anon-T-monotonic model is however
only temporary, and required simply to make the mathematics more tractable. The order can then
be modified to make all operators T-monotonic by restricting the set of refinements to agents that
have a smaller alphabet. In this case, the mirror function must also be modified, in away similar to
the one used in example 3.84. To keep the presentation simple, we will omit the details of this last
step.

We begin by defining the agent order. Idealy, we would like to closely follow the def-
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inition of definition 4.15. For example, if p and ¢/ are trace structures with alphabets A and 4/,

respectively, we could require that the set of traces of p be a subset of the projection onto A of the
set of traces of p’. Our objective is however that of deriving a mirror function, which, as we know,
exists only if parallel composition is able to characterize the order using a single agent. Thisisin
turn possible only if the inverse of the projection operator is surjective, in the sensethat if A C A,

then for all traces 2 € B(A), there existsatrace y € B(A') such that - = proj (A)(y). Inthat case,

in fact, agents with larger alphabets have complete knowledge about agents with smaller a phabets.
In addition, since we are not restricting the alphabets to be contained into one other, we look for
amore general definition. The following definition is equivalent to our first attempt when inverse
projection is surjective, and is convenient to use in our subsequent proofs. We say that p islessthan
or equal to p’ whenever for all the traces in the combined alphabet A U 4, if the projection on A is

contained in p, then the projection on A’ is contained in p/.
Definition 5.1 (Agent Order). Letp = (A, P) andp’ = (A’, P') be two trace structures. Then
p=p Ve BAUA) proj(A)(z) € P= proj(A’)(z) € P'.

Note that if A = A’, then the above definition reduces to P C P, consistently with
definition 4.15. We must however show that the relation defined above is a preorder, i.e., that it is
reflexive and transitive. This is the case only if, as described earlier, the inverse of the projection

function is surjective.

Theorem 5.2. Let C be atrace algebra such that for all alphabets A and A4, if A C A’ then for
al traces x € B(A) there exists atracey € B(A') such that x = proj(A)(y). Then <isa

preorder.

Proof: Thereation < isclearly reflexive. We will use the following result.

Lemmab5.3. Let A, A’ and A” beaphabetssuchthat A C A/ and A C A”. Then, foral u €
B(A") thereexist v € B(A") and w € B(A’UA") suchthat proj (A)(u) = proj (A)(v),
proj (A’)(w) = v and proj (A”) (w) = v.

Proof: Letu € B(A') beatrace. Let beu' = proj (A’ N A”)(u). Clearly v’ € B(
Therefore, by hypothesis, there existsv € B(A") such that proj (A’ N A”)(v)
T4, proj (4)(u) = proj(A)(proj (A’ N A”)(w)) = proj(A)(u) = proj (4)(proj (4’ N
A")(v)) = proj(A)(v). In addition, by T8, there exists w € B(A U A”) such that
proj (A’)(w) = v and proj (A”) (w) = v. O

AN Ay,
=u'. By



272

To show that it is transitive, assume p < ¢/ and that p’ < p”. We must show
that p < p”. Todo o, let = € B(A U A”) be such that proj(A4)(z) € P. We show that
proj (A")(z) € P".

In fact, by lemma5.3, there exist z € B(AU A’) and 2’ € B(AU A" U A”) such
that proj (A)(z) = proj(A)(z), proj(A U A”)(72') = z and proj (A U A')(z') = z. Note
also that proj (A)(7') = proj (A)(proj (A U A')(z")) = proj(A)(x) and that proj(A')(z") =
proj (A')(proj (AU A')(z')) = proj (4') (x).

Likewise, there exist y € B(A' U A”) and 2" € B(A U A" U A") such that
proj (A)(y) = proj(A')(='), proj(A U A’ U A")(2") = 2/ and proj(A' U A")(2") = y.
Therefore, by T2, 2" = 2.

Since proj (A)(z) € P and proj(A)(z) = proj(A)(z), and since p < ¢/, by def-
inition 5.1, proj (4’)(z) € P'. But proj(A')(y) = proj(A") (") = proj(A’)(x), therefore
proj (A")(y) € P'. Sincep’ < p”, proj(A”)(y) € P". Note however that proj (A”)(z") =
proj (A")(=') = proj(A")(proj(A U A")(z')) = proj(4”)(z). Similarly, proj (A")(=") =
proj (A”)(proj (A" U A")(z")) = proj(A”)(y). Hence, proj (A")(z) = proj (A")(y). There-
fore, proj (A”)(z) € P". Consequently, by definition 5.1, p < /. O

For the rest of this chapter we assume that the hypothesis of theorem 5.2 are satisfied by

the trace algebras that we work with. The constraints essentially implies that the set of traces with a

certain alphabet can be used to represent (via projection) all the traces that have smaller a phabet, or

that, in other words, adding information to a trace does not destroy the existing information. Note

that al of the examples presented in this work satisfy those assumptions.

Asanticipated, the renaming operator is not T-monotonic relative to this agent order. For

the purpose of the mirror, however, we focus our attention on the parallel composition operator only,

sinceit is the only operator responsible for the conformance order relative to composition required

for a mirror function. The next result shows that, indeed, paralel composition is T-monotonic

relative to the agent order.

Theorem 5.4. Parallel composition is T-monotonic relative to <.

Proof: Letp = (A, P) andp’ = (A, P') be trace structures such that p < /. We must show that

foral g =(A44,P,),pl ¢ < p' || ¢. Wehave

rlle = (AUA, PQ={zecB(AUA,): proj(A)(z) € P Aproj(4y)(z) € Py})
Pllg = (AUA,P'Q={zeB(AUA):proj(A)(z) € P Aproj(4g)(z) € Py})
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By hypothesis, sincep < ¢/, foral z € B(AU 4’),

proj(A)(z) € P = proj(A')(z) € P'.

Wemust show that p || ¢ < p' || ¢, that is, for al € B(AU A" U A,),

proj (AU A,)(z) € PQ = proj(A' U A,)(z) € P'Q.

Letz € B(AU A" U A,). The proof then consists of the following series of implications:

proj (AU Ay)(z) € PQ

= proj(A)(proj (AU Ay)(x)) € P Aproj(Ag)(proj (AU Ay)(z)) € P,
sinceAC AUA;and A, C AU Ay, by A20

= proj(A)(z) € PAproj(Ay)(z) € Py
by hypothesis

= proj(A')(z) € P A proj(4,)(z) € P,
sinceA' C A"UA;and A, C A" U A, by A20

= proj(A')(proj (A' U A,)(w)) € P A proj (A,)(proj (A U A,)(z)) € P,

= proj(A'U A,)(z) € P'Q.

O

The next step for deriving amirror function isto choose aconformance set G such that the

algebra has a G-conformance order relative to composition. This can be accomplished by having
G ={p=(A,P): P =0} Clearly, G isdownward closed relative to <. The next theorem shows

that G induces the required conformance order relative to composition. Note however that, in

general, a conformance order depends on the particular set of trace structures that a trace structure

algebra contains. Different sets of trace structures, in fact, induce different sets of contexts, and

therefore a different notion of conformance. For the purpose of our work here we assume that the

trace structure algebra is complete, i.e., it contains the set of all trace structures.

Theorem 5.5. Trace structure algebras have a GG-conformance order relative to composition.

Proof: Letp = (A, P)andp’ = (A', P') betrace structures. We must show that p < ¢/ if and only

if for al trace structures ¢, ¢/ || ¢ € G impliesp || ¢ € G.

The forward direction follows from T-monotonicity, since G is downward closed.



274

For the reverse direction, assume that for al trace structures ¢, g || ¢ € G implies
p|l ¢ € G. We must show that for al tracesz € B(AU 4'),

proj(A)(z) € P = proj(A')(z) € P'.
Letqg = (A, B(A") — P'). Then, clearly, p’ || ¢ € G. Therefore, also
pllg=(AUA"  {z e BLAUA) : proj(A)(z) € P A proj(A')(z) € B(A") — P'}) € G.
Hence, for all tracesz € B(AU A’),
proj (A)(x) € P = proj (A')(z) ¢ B(A') - P,
or, equivalently
proj (A)(x) € P = proj (A')(z) € P,
which proves the result. O

We now explore the structure of the compatibility set of atrace structure p relative to the
conformance set G. The form of the compatibility set isin fact related to the order according to
the results of lemma 3.75 and lemma 3.76. The notation for the compatibility set makes use of the
inverse of the projection function, defined as follows.

Definition 5.6 (Inverse Projection). Let 2 € B(A) beatrace. Then
proj (A) 7} () = {y € B(AU A') : proj (A)(y) = x}.

If atrace belongs to the trace sets of different alphabets (say, x € B(4) and z € B(A»)),
then the notation that we use for inverse projection is ambiguous since it does not make clear which
alphabet is assumed for the argument. Thisis not usually a problem, since the aphabet of the trace
is clear from context. The alternative isto explicitly add the alphabet as a parameter to the operator.
We do not use this solution to avoid cluttering our notation.

Like projection, inverse projection is naturally extended to sets of traces, provided that all
the traces in the set have the same aphabet. The following result shows that projection and inverse
projection distribute over set union.

Lemmab5.7. Let A and A’ be aphabets and let S, F' C B(A) be sets of traces. Then,

L proj(A")(S U F) = proj (A')(S) U proj (A")(F).



275

2. proj(4')~'(S U F) = proj(4)~(S) U proj (4)~ (F).
Proof: The proof of item 1 is composed of the following series of equalities.
proj(A)(SUF) = {yeBA):3zeSUF [y=proj(4)(z)]}
= {yeB(A): 3z e S[y=pro(4)(z)]V
Vz € F [y = proj(4)(z)]}
= {yeB(A):3weSy=prgj(A)(z)]}U
U{y € B(A): 3z € F [y = proj(4')(z)]}
= proj(A')(S) U proj (A)(F).
Similarly, the proof of item 1 is composed of the following series of equalities.
proj(A)H(SUF) = {yeB(AUA):proj(A)(y) € SUF}
= {yeBAUA): proj(A)(y) € SV proj(A)(y) € F'}
= {yeB(AUA):proj(A)(y) € S}U
U{y € B(AUA') : proj(4)(y) € F}
= proj(A")~1(S) U proj (A)) "' (F).

O

Using this notation, the following result makes clear the connection between our notion

of order and the traditional ordering based on trace containment.

Corollary 5.8. Letp = (A, P) andp = (A', P') be trace structures. Then
p <’ & proj(A')(proj (A')~H(P)) C P".

Proof: For the forward direction, assume p < /. Let 2’ € proj(A’)(proj (A')~'(P)). Then there
existsz € B(A U A’) such that proj (A)(z) € P and proj(A')(z) = z'. Sincep < p', by
definition 5.1, proj (A')(z) € P'. Therefore 2/ € P'.

For the reverse direction, assume 2z € B(A U A') isatrace such that proj (A)(z) €
P. Thenz € proj(A")~1(P) and proj (A")(x) € proj(A")(proj (A")~1(P)). Hence, since
proj (A")(proj (A")~1(P)) C P', proj (A')(x) € P'. Therefore, by definition 5.1, p < p/. O

Ifinaddition A C A’, the above simply means that the inverse projection of p is contained

inp’, as shown below.
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Lemma5.9. Let A C A’. Then proj (A')(proj (A')~Y(P)) = proj (A")~1(P).

Proof: Clearly, by definition 5.6, proj (A')~'(P) € B(AU A"). Butsince A C A/, AUA" = A'.
Therefore, by T2, proj (A')(proj (A") =1 (P)) = proj (A")~(P). O

Recall that two agents p and ¢/ are compatible if their parallel composition is defined and
the result of the composition is an agent in the conformance set. The compatibility set of an agent
isthe set of all agents compatible with ¢/. Using inverse projection, we can express the compatibility
set of atrace structure ¢/ explicitly, as shown by the next theorem.

Theorem 5.10 (Compatibility Set). Let p = (A, P) and p' = (A', P') be trace structures. Then
p € cmp(p') if and only if

P C B(A) — proj (A)(proj (A)~(P")).
Proof: Letp’ = (A’, P') beatrace structure. The compatibility set of ¢/ isthe set

cmp(p’) = {p=(A,P) :p|lp' € G}.
Therefore
p=(A,P) € amp(p))
& {xeB(AUA):proj(A)(z) € PAproj(A)(z) € P} =10
& Pnproj(A)(proj(A)~H(P') =0
& P CB(A) - proj(A)(proj (A)~' (P')).
]

Recall that since parallel composition is T-monotonic and since G is downward closed
and the algebra has a G-conformance order relative to composition, the set of maximal elements
of the compatibility set are sufficient to characterize the entire set. Our next result shows that the
compatibility set actually contains a greatest element. Recall, however, that since < is a preorder,
in general there may be several greatest elements.

Theorem 5.11 (Greatest Elements). Let o’ = (A’, P') be a trace structure. A trace structure
p = (A, P)suchthat A’ C A and

P = B(A) — proj (A)(proj (4) " (P")).

is agreatest element of cmp(y/).
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Proof: To prove the result, we start by showing that all the agents with the required property above
are equivalent relative to the agent ordering. We then choose one representative of the equiv-
alence class, and show that it is a greatest element.

Letp; = (A, P1) and py = (As, P») be two trace structures such that

P = B(A1) - proj(4:)(proj(4:) ' (P))
Py = B(Az) - proj(Az)(proj(Az)~ ' (P"))

and such that A’ C A; and A’ C A,. We show that p; ~ p». Infact, since A’ C A; and
A’ C Ay, by lemmab.9,

P = B(A) - proj(A)~' (P
Py = B(Az) — proj(As) (P
To show that p; < po, we use the contrapositive of the definition and show that if = €

B(A; U Ay) is atrace such that proj(As)(z) & P, then proj(A;)(z) ¢ Py. The proof
consists of the following series of implications:

proj (Az)(z) & P»

= proj(As)(z) € proj(A2) " (P')

= proj (A')(proj(Az)(z)) € P’
since A’ C A,

= proj(A')(z) € P’
since A’ C A,

= proj(A')(proj(A)(z)) € P’

= proj(Ai)(z) € proj (A1)~ (P")

= proj(A;)(z) € P.

Therefore, p; < po. Symmetrically, p2 < p;. Hence, p; = po.

We now take ¢ = (A', B(A") — P') as arepresentative of the class of compatible
agents such that A’ C A. It remains to show that if p = (A, P) isatrace structure such that

P C B(A) — proj (A)(proj (4) ' (P"))

(i.e, p isin the compatibility set of p/), thenp < q.
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Recall that for agents with the same alphabet the order reduces to trace inclusion.
Therefore it is sufficient to show that p < ¢ only for the agents such that

P = B(A) — proj(A)(proj (A)~' (P")),

since the result holds for the remaining agents by transitivity. In addition, we have aready
showed that p < g incase A’ C A, since, in that case, p and ¢ are order equivalent.

Assume now that A does not include A’ (i.e., A’ € A). We again use the contra-
positive and show that if z € B(A U A') isatrace such that proj (A')(z) ¢ B(A’) — P', then
proj (A)(z) ¢ P. Infact,

proj(A')(z) & B(A") — P
= proj(A')(z) € P!
z € proj(A)~1(P")
() € proj (A)(proj (A)~"'(P"))
() & B(A) — proj (4) (proj (A)~* (P"))
= proj(A)(z) ¢

4

j
= proj(4)
= proj(4)

)

Hence p < ¢, which proves the result. O

The compatibility set contains several greatest elements, which are equivalent to each
other in terms of the agent ordering. Notice that as the alphabet gets larger more behaviors are
added to a greatest element so that the new signals are used in ways (in fact, in al the ways) that are
compatible with the behaviors of the origina agents. This information is however irrelevant to the
characterization of the order. Therefore it is natural to choose among the greatest element the one
that has the smaller a phabet.

Corallary 5.12. p = (A’, B(A") — P') isagreatest element of cmp(y/).

Given our choice of conformance set GG, we have shown that trace structure algebra have a
G-conformance order relative to composition, and that the compatibility set of every trace structure

has a greatest element. The following result is now straightforward.

Corollary 5.13. Trace structure algebras have a mirror function relative to G, and for al trace
structuresp = (A4, P),

mirror(p) = (A, B(A) — P).
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Proof: The result follows directly from theorem 3.80. O

It is easy to show that trace structure algebras are also rectifiable, so that we can apply
the local specification synthesis technique. It is instructive to compare our result with the solution
proposed by Yevtushenko et al. [98] (see subsection 1.8.11 for their notation and a comparison),
where the local specification is given by

S=A-

Q

)

for different notions of the composition operator. To do so, we must restrict our attention to a so-
lution with a specific aphabet, and therefore consider the formulation of theorem 3.120. Assuming
that trace structures are built over the language (set of strings) of an a phabet, we have

p1 = mirror(proj (Ay)(ps || mirror(p)),

where p isthe global specification, p; isthe context, and p; the unknown component. Our definition
of mirror is equivalent to complementing the language, therefore

p1 X proj(Ar)(p2 || D).

Yevtushenko et al. prove their solution for both parallel and synchronous composition. In our case,
the specialization involves only changing the definition of projection, since the definition of parallel
composition is derived from that of projection. It is easy to show that the parallel composition
corresponds to having projection retain the length of the sequence by inserting empty symbols in
place of those that must be removed. Analogously, parallel composition corresponds to having
projection alter the length of the sequence by removing the symbols that should not be retained.
Note, however, that by employing our framework we need only prove that the operations satisfy the

required properties for trace algebras in order to ensure the validity of the result.

5.2 Two-Set Trace Structures

The trace structure algebra model that we have been using so far is able to characterize
the set of possible traces that each agent might exhibit in response to actions from its environment.
There are applications however where we would like to express more than simply the possibility of a
behavior occurring for an agent. For example, while abehavior may be possible for an agent, it may
cause the agent to fail, or to enter abad state. In other words, we are looking for amodel that is able

to express the circumstances under which the agent is operated on correctly by the environment.
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One such model is the trace structure for asynchronous circuits based on successes and
failures introduced by Dill [34]. In thismodel, atrace isasuccess if it is apossible behavior and is
accepted asacorrect use by the agent. A traceisafailureif itisapossible behavior of the agent, but
iscontrary to itsintended use. In this section we generalize the model introduced by Dill to abstract
executions, and derive a conformance order and a mirror function.

The agent model is based on the same notion of trace algebra as the traditional one-set
trace structure. Trace structures are however augmented with an additional set of traces, asfollows.

Definition 5.14 (Two-Set Trace Structure). Let C = (B, proj, rename) be atrace algebra over A.
The set of two-set trace structures over C is the set of ordered tuples (A, S, F'), where

e Aisan aphabet over A,
e Sisasubset of B(A), and

e Fisasubset of B(A).

We call A the aphabet of the trace structure, S the set of successful traces and F' the set of
failure traces of the trace structurep = (A, S, F).

Both successes and failures are legal behaviors of an agent. Therefore, for atwo-set trace
structurep = (A, S, F') we define P = S U F' to be the set of possible traces of the trace structure.
This notation is consistent with the one employed for the traditional one-set model. Note also that
S and F' need not be digoint.

A trace structure algebra based on two-set trace structures is defined as usual, with the
appropriate changes in the way the operators are computed.

Definition 5.15 (Two-Set Trace Structure Algebra). LetC = (B, proj, rename) be atrace agebra
over A and let 7 be asubset of the two-set trace structures over C. Then A = (C, T') isatwo-
set trace structure algebraif and only if thedomain 7 is closed under the following operations
on trace structures: parallel composition (definition 5.16), projection (definition 5.17) and
renaming (definition 5.18).

Definition 5.16 (Parallel Composition). p = p; || p2 isaways defined and
A = AUA
S = {zeB(A): proj(A)(z) € 51 A proj(Az)(z) € Sa}
F = {z€B(A): proj(Ai)(z) € F1 A proj(As)(z) € P2} U
{z € B(A) : proj(A1)(x) € P1 A proj(As)(z) € Fo}.
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Definition 5.17 (Projection). p = proj (B)(p') is aways defined and

= BNnA
S = prg(B)(S),
F = proj(B)(F'),

where proj is naturally extended to sets.
Definition 5.18 (Renaming). p = rename(r)(p') is defined whenever A’ C dom(r). In that case

= 7(4)
S = rename(r)(S’),

F = rename(r)(F'),
where rename is naturally extended to sets.

The particular definition of parallel composition (def. 5.16) can be explained as follows.
A trace is a success of the composite p; || p2 Whenever the trace is a success of both p; and p,. A
trace isafailure of the composite if it isa possible traces of one component, and it isafailure of the
other component. Note that if atrace is afailure of one component, but it is not a possible trace of
the other component, the trace does not appear as afailure of the composite. Thisis because, in the
interaction, the particular behavior that results in afailure will never be exercised, asit is ruled out
by the other component.

The proofs of theorem 4.7 and theorem 4.8 can be adapted to show that two-set trace
structure algebras are agent algebras, and normalizable agent algebras, respectively. We omit the
details of these proof, and focus the rest of this section on defining an agent order and deriving the
appropriate notions of conformance and mirror. Aswas already the case for one-set trace structures,
the proposed ordering is such that the rename operator is not T-monotonic. We remind the reader
that we do so to simplify the notation and the presentation. The Locked Alphabet Algebra described
in example 3.84 should be used as a guide to transform the model to a fully T-monotonic agent
algebra.

We have defined the order for one-set trace structures as the containment relationship
between the trace sets. To put it another way, we are interpreting the trace set of a specification
as the set of alowed behaviors. An agent is an implementation of the specification if it contains
only alowed behaviors. The definition of order for two-set trace structures is similar. As for the
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one-set case, we require that atrace is apossible behavior of an implementation p only if itisalso a
possible behavior of the specification ¢/, i.e.,, P C P'. At the same time, an implementation should
operate correctly whenever its specification does. Thisimpliesthat an implementation may fail only
if its specification fails, which is equivaent to requiring that the failures of the implementation be
contained in the set of failures of the specification, or in other words, that ¥ C F. The following
definition generalizes these requirements to trace structures with arbitrary alphabet.

Definition 5.19 (Ordered Two-Set Trace Structure Algebra). Let A = (C, T) be atwo-set trace
structure algebra, and let p = (A, S, F) andy = (A’, S’, F') be two trace structures. We say
that p islessthan or equa to ¢/, writtenp < p/, if and only if for al z € B(AU 4'),

proj(A)(z) e P = proj(A’)(z) € P and
proj(A)(z) € F = proj(A4')(z) € F'.

The proof that < isapreorder is similar to the proof of theorem 5.2.
Using inverse projection, we can express the same definition in the more traditional nota-

tion of trace inclusion.

Corollary 5.20. Letp = (A,S,F) andp = (A', S, F') be trace structures. Thenp < ¢/ if and
only if

proj (A')(proj(4)'(P)) € P' and
proj (A)(proj (4') \(F)) < F'.

As expected, when the alphabets of the agents are the same, the definition reduces to
requiring that P C P’ and that F C F'. Note that the above definitions also imply that S C
S’ U F'. This simply indicates that an implementation may have a non-failing behavior where the
specification had afailure.

It is easy to adapt the proof of theorem 5.4 to show that parallel composition is T-
monatonic relative to the defined agent ordering. We here state the result without proof.

Theorem 5.21. Parallel composition of two-set trace structures is T-monotonic relative to <.

5.2.1 Conformanceand Mirrors

In order to derive a mirror function, we first need to characterize the order in terms of

conformance relative to composition. For this purpose we must choose aconformance set G. Recall
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that the set of failures in a two-set trace structures represent the behaviors that are possible for an
agent, but that denote an incorrect use of the agent on behalf of its environment. Recall also that
a conformance set induces a notion of compatibility in the form of a compatibility set. In this
case, it makes sense to consider two agents compatible whenever the two agents do not fail each
other, or, in other words, when the set of failures of their paralel composition is empty. This
notion is egquivalent to the failure-free requirement of the asynchronous trace structures introduced
by Dill [34]. The next result shows that two-set trace structures have a conformance order relative
to composition with respect to this notion of compatibility. Asfor the one-set case, we assume that
the trace structure algebrais complete.
LetG={p=(A,S,F): F ={(}. Clearly G isdownward closed relative to <.

Theorem 5.22. Two-Set trace structure algebras have a G-conformance order relative to composi-

tion.

Proof: Letp = (A,S,F)andp = (A’, S, F') be trace structures. We must show that p < ¢/ if
and only if for al trace structures ¢, ¢ || ¢ € G impliesp || ¢ € G. Asusud, the forward
direction follows from T-monotonicity, since G is downward closed.

For the reverse direction, assume that for al trace structures ¢, g || ¢ € G implies
p || ¢ € G. We must show that for all tracesz € B(AU A),

proj(A)(z) e P = proj(A’)(z) € P and
proj(A)(z) e F = proj(A')(z) € F'.

Letq = (A',S" — F',B(A") — P'). The set of possible traces of ¢ is F, = (S’ — F') U
(B(A") — (S"UF") =B(A") — F'. Then

Pla = (AN =F),(F'n(BA) - F)U(BA)-P)nP))
= (A, S" - F"0),

therefore p’ || ¢ € G. Hence, by assumption, also p || ¢ € G. Therefore, since

pla = (AUA.{zeBAUL): proj(A)(a) € S Aproj(4)(x) € (5"~ F)),
{z € B(AUA") : proj(A)(z) € F A proj(A')(z) € B(A") — F'}
U{zeB(AUA) :proj(A)(z) € P Aproj(A')(xz) € B(A") — P'})
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it must also be
{z e B(AUA"): proj(A)(z) € F Aproj(A')(z) € B(A") —F'} = § and
{z € B(AUA") : proj(A)(z) € P A proj(A')(z) € B(A") — P'}) = 0
or, equivalently, for all traces z € B(A U A'),
proj(A)(z) € F = proj(A’)(z) € F' and
proj(A)(z) € P = proj(A)(a) € P,

which proves the result. O

Analogoudly to one-set trace structures, we now explore the form of the compatibility set
and search for agreatest element. The greatest element is then used to construct a mirror function.
As mentioned above, and given the particular conformance set GG, two agents are compatible if they
don't fail each other. Therefore, the failures of one should not be possible traces of the other. The
following result expresses formally this intuitive notion.

Theorem 5.23 (Compatibility Set). . Letp = (A, S, F) andp' = (A', S’, F') be trace structures.
Thenp € cmp(p') if and only if

N

F B(A) — proj (A)(proj (A)~" (P")) (5.1)
P C B(A) - proj(A)(proj (A) ™ (F")) (52)
Proof: Recall that the set of failures of the parallel composition p || # is given by (definition 5.16)

F" = {xeB(AUA) :proj(A)(z) € F Aproj(A')(z) € P'}U
{z e B(AUA'): proj(A)(z) € P A proj(A')(z) € F'}.

Since G is composed of al and only the agents with an empty set of failures, p and g are
compatible if and only if F” = (). Consequently, both terms in the union above must be
empty. The proof can therefore be completed by a series of double implications similar to the
one used in the proof of theorem 5.10. O

When the alphabets are the same, p is compatible with ¢/ if and only if ¥ C P’ and P C
F', where complementation includes only traces with the given alphabet. The greatest elements of
the compatibility set are again to be found as those agents whose al phabet includes the a phabet of
p’, and whose sets of traces satisfy equation 5.1 and equation 5.2 when the containment relation
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is replaced by equality. The following result states this property in terms of the successes and the
failure sets, rather than the possible and the failure traces.

Theorem 5.24 (Greatest Element). Let p' = (A’, S’, F') be a trace structure. A trace structure
p=(A,S,F)suchthat A’ C A and

B(A) — proj (A)(proj (4)~* (P"))
2 proj (A)(proj (A)~1(S") — proj (A)(proj (A) 1 (F"))
B(A) — proj (A)(proj (A) ™" (F))

N

isagreatest element of cmp(y').

Proof: We refer to the proof of theorem 5.11 to show that p is a greatest element if

F = B(A) - proj(4)(proj (A) ™ (P"))
P = B(A) - proj(A)(proj (A) ("))

To express the result in terms of S, recall that, by definition, P = S U F. Therefore S must
be a subset of P and must contain at least al the elements of P that are not in F'. Thus,

Hence,

S C P = B(A) — proj(A)(proj (A)(F")),
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and

n
U

P—-F

D (B(A) — proj (A)(proj (A)"(F"))) — (B(A) — proj (A)(proj (A) " "(P')))
B(A) — (B(A) — proj (A) (proj (4) " (P))) — proj (A) (proj (A) " (F"))
sinceP' = S"U F'

2 B(A) = (B(A) — proj(A)(proj (A)~' (8" U F"))) — proj (A4) (proj (A) ™" (£"))

J

since, by lemma 5.7, projection and inverse projection distribute over set union
2 B(A) — (B(4) — (proj (4) (proj (4)~(S")) U proj (4) (proj (4) ' (F")))) —
— proj (A)(proj (4) ' (F))
D B(A) — (B(A) — proj (A) (proj (4)~"(S")) — proj (A) (proj (4) ™ (F"))) —
— proj (A)(proj (A)™' (£))
since proj (A)(proj (A)~'(F")) is removed anyway
D B(A) — (B(A) — proj(A4)(proj (A)~1(8"))) — proj (4) (proj (A)~* (F"))
2 proj(A)(proj (A)~1(S"))) — proj (A) (proj (A) ' (F)).

U

As for the single-set case, we choose among the greatest element the one that has the
smaller alphabet. In addition, we select the greatest element with the smallest success set.

Corollary 5.25. p = (A", 8" — F', B(A") — P') isagreatest element of cmp(y/).

Since two-set trace structure algebra have a GG-conformance order relative to composition,
and since the compatibility set of every trace structure has a greatest element, the algebra has a
mirror function.

Corollary 5.26. Two-set trace structure algebras have a mirror function relative to GG, and for al
two-set trace structuresp = (A4, S, F),

mirror(p) = (A, S — F,B(A) — P).
Proof: The result follows directly from theorem 3.80. O

It is instructive to compare our results with the one obtained by Dill [34]. In his work,
Dill defines two models based on trace structures for asynchronous circuits. There, atrace structure
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distinguishes between input and output signals. In addition, trace structures are defined so that they
are receptive relative to their input signals. This implies that the trace structure must contain a
possible trace for al possible sequences of input signals (the trace may indifferently be a success or
afailure, aslong asitisapossible trace). Thisensuresthat acomponent, viewed as atrace structure,
aways exhibits some behavior in response to any possible input from the environment, whether or
not the behavior is consistent with the intended use of the component. However, this also restricts
the kind of trace structures that can be part of the trace structure algebra. In particular, only trace
structures that are receptive are considered in the set of trace structures of the algebra.

In contrast, we have assumed so far that trace structure algebras are complete. With that
assumption, we have shown that the agent order defined in definition 5.19 is a G-conformance order
relative to composition, when G is taken to be the set of trace structures that are failure-free (theo-
rem 5.22). Astrace structures are removed from the trace structure algebra, and the notion of com-
patibility isleft constant, the conformance order changes, as already demonstrated in theorem 3.114.
More specifically, the conformance order in the subalgebra is stronger than the conformance order
in the superalgebra, in the sense that if p < ¢/ in the complete algebra, then p < ¢/ in the incomplete
algebra.

Dill defines the order for asynchronous trace structures to correspond exactly to a G-
conformance order, where G is the set of failure-free agents. By our previous argument, the or-
der in Dill’s trace structure algebra is therefore stronger than the order defined in definition 5.19.
Consequently, Dill’s trace structure algebrais not closed under the mirror function derived in corol-
lary 5.26 (if it were, then the orders would be the same, as shown in theorem 3.113). Thisis not
surprising: if p = (A, S, F) isareceptive trace structure, then mirror(p) = (A, S — F,B(A) — P)
is not necessarily receptive, and therefore may not be included in the trace structure algebra

Nonetheless, Dill’s trace structures do have a mirror function. Dill proves this result
by showing that each trace structure p in his model is order equivalent to a trace structure p in
canonical form. A trace structure p in canonical form is essentially the most general representative
of an equivalence class under the agent ordering, and is obtained by applying two operations, called
autofailure manifestation and failure exclusion, that extend the sets of traces of a trace structure
by adding those traces that do not affect the conformation order. The mirror of a trace structure
in canonical form is the same as the mirror had the algebra been complete, and can therefore be
computed as described in corollary 5.26. The mirror for atrace structure p that is not in canonical
formisobtained by first transforming p into the order equivalent trace structure p in canonical form,

and by then taking the mirror. Since p is order equivalent to p, then mirror(p) = mirror(p).
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The construction employed in Dill’s asynchronous trace structures isin fact a special case
of amore general fact. Asthe order in the subalgebra is strengthened by the removal of agents, trace
structures get organized into equivalence classes. The mirror for an equivalence class corresponds
to the mirror of an upper bound of the equivalence class in the superalgebra. If the upper bound
is also the greatest element of the equivalence class, then it is a canonical form. The next result
makes these conditions precise. In the following we will consider an algebra & and a subalgebra
Q. Hence, the primed version of the operators and relations will refer to the operators and relations

of @', while the un-primed version to those of Q.

Lemma5.27. Let Q' be an agent algebra with amirror function mirror’ relative to a conformance
set G'. Let Q be a subalgebra (def. 2.18) of @', with a mirror function mirror relative to
G =G'NQ.D. Thenfor all agentsp € Q.D,

1. cmp(p) € cmp'(p),

2. if mirror(p) is defined, then mirror' (p) is defined,

3. if mirror(p) is defined, then mirror(p) <’ mirror’ (p), and
4. if mirror'(p) ~' g and ¢ € Q.D, then mirror(p) = q.

Proof: To show item 1, we show that if ¢ € cmp(p), then ¢ € cmp (p). The proof consists of the

following series of implications.

q € cmp(p)
by definition 3.72,

& qllpe@G

since Q isasubalgebraof @, ¢ | p = ¢ ||’ p, therefore
= ql'peG

since G C G',
= ql'ped

by definition 3.72,

& qeamp(p).

Therefore, cmp(p) C cmp'(p).
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Item 2 follows directly from item 1. In fact, if mirror(p) is defined, then by defi-
nition 3.61, cmp(p) # 0. Therefore, since cmp(p) € cmp (p), aso cmp/(p) # 0. Hence,
again by definition 3.61, mirror' (p) is defined.

We now show item 3. Assumethat mirror(p) is defined. Then, by item 2, mirror' (p
is also defined. By theorem 3.80, mirror(p) = max(cmp(p)), hence mirror(p) € cmp(p).
By the argument above, then, mirror(p) € cmp/(p). Therefore, since also mirror' (p) =
max’(cmp’(p)), mirror(p) =<' mirror'(p).

To show item 4, assume g € Q.D and that mirror’ (p) =' q. Consider the following

series of implications that start from lemma 3.62.

p || mirror' (p) € G’
since mirror' (p) ~' q,
= pl'aed
since both p and ¢ arein Q, and since Q is asubalgebra of &,
= pllaed
sincep|l¢g€ Q. DandG =G N Q.D,
= pllgeG
by definition 3.72,
= ¢ € cmp(p)
since mirror(p) = max(cmp(p)),

= g =< mirror(p).

On the other hand, by item 3, mirror(p) <' mirror’ (p). Therefore, since ¢ &' mirror' (p), also
mirror(p) =<' q. Hence, by theorem 3.114, mirror(p) < ¢. Hence, since both ¢ < mirror(p)

and mirror(p) < q, mirror(p) = q. O

Theorem 5.28 (Canonical Form). Let Q' be an agent algebra with amirror function mirror' rela-
tive to a conformance set GG'. Let Q be a subalgebra (def. 2.18) of @', with amirror function
mirror relativeto G = G' N Q.D. Letp € Q.D be an agent such that mirror(p) is defined,
and let [p] denote the set of agents that are order equivalent to p in Q. Then,

1. mirror’(mirror(p)) isan upper bound of [p] in &, and
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2. mirror'(p) =' mirror(p) if and only if p = max/([p]) and mirror' (mirror(p)) ~' q and
qe€ Q.D.

Proof: We first show that the relevant mirrors are defined. In fact, since mirror(p) is defined,
then, by item 2 of lemma 5.27, mirror’ (p) is also defined. In addition, by theorem 3.63,
mirror(mirror (p)) is defined. Therefore, by item 2 of lemma5.27, also mirror (mirror (p)) is
defined.

To prove item 1, we show that if ¢ € [p], then ¢ <" mirror’(mirror(p)). The proof

is composed of the following series of implications.

q € [p]
by definition of [p],
= qZ=p
since Q hasamirror function relative to G,
& q|| mirror(p) € G
since Q isasubalgebra of &
= q|" mirror(p) € G
since G C G',
= ¢/ mirror(p) € G’
since mirror’ (mirror(p)) is defined, by theorem 3.63, theorem 3.66 and corollary 3.33,
= q || mirror’(mirror' (mirror(p))) € G’
since mirror’ isamirror function relative to G for @/,

& g =" mirror’ (mirror (p)).

To prove the forward direction of item 2, assume that mirrof' (p) ~' mirror(p).
To prove that p = max/([p]), observe that, by item 1, mirror' (mirror(p)) is an upper bound
of [p]. In addition, by theorem 3.66, mirror (mirror'(p)) ~' p. Also, since by hypothe-
sis mirror' (p) ~' mirror(p), by corollary 3.70, mirror' (mirror(p)) ~' mirror' (mirror’ (p)).
Therefore, since &/ is transitive, mirror' (mirror(p)) ~' p. Hence, p is aso an upper bound
of [p]. But since by definition p € [p], p = max/([p]). In addition, since p € Q.D,
mirror’ (mirror(p)) ~ ¢ =pandq € Q.D.

We now prove the backward direction of item 2. The proof is composed of the
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following series of implications.
mirror' (mirror(p)) ~' ¢ Aq € Q.D
by item 4 of lemma5.27,
= mirror(mirror(p)) = q
since, by theorem 3.66, mirror(mirror(p)) = p, by transitivity,
= qRp
by definition of order equivalence,
& q€[p]
since, by hypothesis, p = max/([p]),
= q='p
since mirror' (p) is defined, by definition 3.61,
= q||" mirror'(p) € G’
since ¢ &' mirror'(mirror(p)), by corollary 3.33,
= mirror'(mirror(p)) || mirror'(p) € G’
by definition 3.61,
= mirror'(p) <’ mirror(p)
by item 3 of lemma5.27, mirror(p) =<' mirror' (p), therefore,
= mirror'(p) =" mirror(p).

O

Theorem 5.28 shows that if the mirror of an agent p in the subalgebra is equal to (more

precisely, order equivalent to in Q') its mirror in the superalgebra, then p is the greatest element in

terms of the order in @' of the equivalence class of the order equivalent agents in the subalgebra. In
this case, p isthe canonical form of [p], and the mirror function of the superalgebra can be applied
to any agent in [p] after canonicalization. A sufficient condition that a subalgebra must satisfy to

apply this technique is the following.

Theorem 5.29. Let Q' be an agent algebrawith amirror function mirror relative to a conformance

set G'. Let Q be a subalgebra (def. 2.18) of @', with a mirror function mirror relative to
G = G'N Q.D. Assume aso that for al agents p € Q.D, [p] has a greatest element in &,
andlet C = {qe€ Q.D:3p e Q.D [¢q = max'([p])]} be the set of the greatest elements, If



292

for al ¢ € C, mirror' (q) € Q.D, then mirror, (p) = mirror' (max'([p])) isamirror function
relative to G for Q.

Proof: By item 4 of lemma 5.27, for al ¢ € C, mirror(q) ~ mirror'(¢). In addition, by corol-
lary 3.70, for all agentsp € Q.D, mirror(p) =~ mirror(max ([p])), and therefore mirror(p) ~
mirror (p). Hence, by corollary 3.81, mirror;(p) isamirror function for Q relativetoG. O

Analogously to one-set trace structure algebras, also two-set trace structure algebras are
rectifiable. The next section illustrates the use of two-set trace structures and the local specification

synthesis technique to solve the problem of protocol conversion.

5.3 Local Specifications and the Problem of Converter Synthesis

Two-Set trace structures are particularly well suited to modeling behavioral interfaces and
protocols. The set of failure traces, in fact, states the conditions of correct operation of an agent.
They can therefore be interpreted as assumptions that agents make relative to their environment.
Two agents are compatible whenever they respect those assumptions, i.e., they do not engage in
behaviors that make the other agent fail. Interface protocols can often be described in thisway. The
transactions that do not comply with the protocol specification are considered illegal, and therefore
result in an incorrect operation of the agent that implements the protocol.

In this section we present an example of use of such interface specifications, together
with an application of thelocal specification synthesis technique to deriving aconverter between two
incompatible protocols. Wefirst set up and solve the conversion problem for send-receive protocols,
where the sender and the receiver are specified as automata. A third automaton, the requirement,
specifies constraints on the converter, such as buffer size and the possibility of message loss. We
then repeat and extend the example using atwo-set synchronous trace structure model and the local

specification synthesis technique.

5.3.1 Automata-based Solution

We illustrate our approach to protocol conversion by way of an example, which is an
extension (and in some sense, aso asimplification) of the one found in [74]. A producer and a con-
sumer component wish to communicate some complex data across a communication channel. They
both partition the data into two parts. The interface of the producer is defined so that it can wait
an unbounded amount of time between the two parts. Because the sender has only outputs, thisis
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equivalent to saying that the interface does not guarantee to its environment that the second part will
follow the first within afixed finite time. On the other hand, the interface of the consumer is defined
so that it requires that once the first part has been received, the second is also received during the
state transition that immediately follows the first. Because the receiver has only inputs, this speci-
fication corresponds to an assumption that the receiver makes on the set of possible environments
that it can work with. Clearly, the two protocols are incompatible. Below, we illustrate how to
synthesize a converter that enables them to communicate correctly. In particular, the guarantees of
the sender are not sufficient to prove that the assumptions of the receiver are always satisfied. Thus
adirect composition would result in a possible violation of the protocols. Because no external envi-
ronment can prevent this violation (the system has no inputs after the composition), an intermediate
converter must be inserted to make the communication possible.

The two protocols can be represented by the automata shown in figure 5.1. There, the

a) Handshake b) Serial

SORoY

Figure 5.1: Handshake and serial protocols

symbols ¢ and b (and their primed counterparts) are used to denote the first and the second part of
the data, respectively. The symbol T denotesinstead the absence or irrelevance of the data. In other
words, it acts asadon’t care.

Figure 5.1.a shows the producer protocol. The self loop in state 1 indicates that the trans-
mission of a can be followed by any number of cycles before b is aso transmitted. We call this
protocol handshake because it could negotiate when to send the second part of the data. After b is
transmitted, the protocol returnsto itsinitial state, and is ready for anew transaction. The ability to
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handle multiple transactions is al'so an extension of our previous work.

Figure 5.1.b shows the receiver protocol. Here state 1 does not have a self loop. Hence,
once ¢ has been received, the protocol assumes that b is transmitted in the cycle that immediately
follows. This protocol is called serial because it requires a and b to be transferred back-to-back.
Similarly to the sender protocol, once b is received the automaton returns to its initial state, ready
for anew transaction.

We have used non-primed and primed versions of the symbols in the aphabet of the
automata to emphasize that the two sets of signals are different and should be connected through a
converter. It isthe specification (below) that defines the exact relationships that must hold between
the elements of the two a phabets. Note that in the definition of the two protocols nothing relates the
guantities of one (a and b) to those of the other (d and &'). The symbol a could represent the toggling
of asignal, or could symbolically represent the value of, for instance, an 8-bit variable. Itisonly in
the interpretation of the designer that « and & actually hold the same value. The specification that
we are about to describe does not enforce this interpretation, but merely defines the (partial) order
in which the symbols can be presented to and produced by the converter. It is possible to explicitly
represent the values passed; this is necessary when the behavior of the protocols depends on the
data, or when the data values provided by one protocol must be modified (translated) before being
forwarded to the other protocol. The synthesis of a protocol converter would then yield a converter
capable of both tranglating data values, and of modifying their timing and order. However, the price
to pay for the ability to synthesize data trandators is the state explosion in the automata to describe
the interfaces and the specification.

Observe adso that if ¢ and b are symbolic representation of data, some other means must
be available in the implementation to distinguish when the actual data corresponds to ¢ or to b. At
thislevel of the description we don’t need to be specific; examples of methods include toggling bits,
or using data fields to specify message types.

What constitutes a correct transaction? Or in other words, what properties do we want the
communication to have? In the context of this particular example the answer seems straightforward.
Nonetheless, different criteria could be enforced depending on the application. Each criterion is
embodied by adifferent specification.

One example of a specification is shown in figure 5.2. The aphabet of the automaton
is derived from the Cartesian product of the alphabets of the two protocols for which we want
to build a converter. This specification states that no symbols should be discarded or duplicated
by the converter, and symbols must be delivered in the same order in which they were received,
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moreover, the converter can store at most one undelivered symbol at any time. The three states in

(T, T) (a,a’) (b,b)

(\

(Ta) \(T.p)
@m) (b.T)

(a,a) (b,b’)
(T,T) (a b) (T,T’)

(b,a’)
Figure 5.2: Specification automaton

the specification correspond to three distinct cases.

e State O denotes the case in which all received symbols have been delivered (or that no symbol
has been received, yet).

e State a denotes the case in which symbol a has been received, but it hasn’'t been output yet.

e Similarly, state b denotes the case in which symbol b has been received, but not yet output.

Note that this specification is not concerned with the particular form of the protocols being con-
sidered (or else it would itself function as the converter); for example, it does not require that the
symbols a or b be received in any particular order (other than the one in which they are sent). On
the other hand, the specification makes precise what the converter can, and cannot do, ruling out for
instance converters that simply discard all input symbols from one protocol, never producing any
output for the destination protocol. In fact, the specification admits the case in which ¢ and b are
transferred in the reversed order. It also does not enforce that « and b always occur in pairs, and
admits a sequence of a’s without intervening b's (or vice versa). The specification merely asserts
that a’ should occur no earlier than a (an ordering relation), and that ¢ must occur whenever a new
a or b occurs. In fact, we can view the specification as an observer that specifies what can happen (a
transition on some symbol is available) and what should not happen (atransition on some symbol is

not available). Assuch, it is possible to decompose the specification into several automata, each one
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of which specifies a particular property that the synthesized converter should exhibit. Thisissimilar
to the monitor-based property specification proposed by Shimizu et al. [87] for the verification of
communication protocols. In our work, however, we use the monitors to drive the synthesis so that
the converter is guaranteed to exhibit the desired properties (correct-by-construction).

re-TT Tt |
| [} H H
Handshake a,b,T;: :a,b 'T; Serial
protocol = Converter | ~|  protocol
! |
a,b,T a\b,T
Y Y
Specification

Figure 5.3: Inputs and outputs of protocols, specification, and converter.

A high-level view of the relationship between the protocols and the specification is pre-
sented in figure 5.3. The protocol handshake produces outputs ¢ and b, the protocol serial accepts
inputs o’ and b'. The specification acceptsinputs a, b, d, b', and acts as aglobal observer that states
what properties the converter should have. Once we compose the two protocols and the specifica-
tion, we obtain a system with outputs a, b, and inputs &, v’ (figure 5.3). The converter will have
inputs and outputs exchanged: « and b are the converter inputs, and d, b’ its outputs.

The synthesis of the converter begins with the composition (product machine) of the two
protocols, shown in figure 5.4. Here the direction of the signals is reversed: the inputs to the pro-
tocols become the outputs of the converter, and vice versa. This composition is also a specification
for the converter, since on both sides the converter must comply with the protocols that are being
interfaced. However this specification does not have the notion of synchronization (partial order, or
causality constraint) that the specification discussed above dictates.

We can ensure that the converter satisfies both specifications by taking the converter to be
compoasition of the product machine with the specification, and by removing transitions that violate
either protocol or the correctness specification. Figure 5.5 through figure 5.7 explicitly show the
steps that we go through to compute this product. The position of the state reflects the position of
the corresponding state in the protocol composition, while the label inside the state represents the



297

Figure 5.4: Composition between handshake and serial

corresponding state in the specification. Observe that the bottom-right state is reached when the
specification goes back to state 0. This procedure corresponds to the synthesis algorithm proposed
in our previous work [74]. The approach here is however fundamentally different: theillegal states
are defined by the specification, and not by the particular algorithm employed.

The initial step is shown in figure 5.5. The composition with the specification makes the
transitions depicted in dotted line illegal (if taken, the specification would be violated). However,
transitions can be removed from the composition only if doing so does not result in an assumption
on the behavior of the sender. In figure 5.5, the transition labeled T /d leaving state O can be
removed because the machine can still respond to a T input by taking the self loop, which islegal.
The same applies to the transition labeled b/ T’ leaving state a which is replaced by the transition
labeled b/a’. However, removing the transition labeled T /¥ leaving the bottom-right state would
make the machine unreceptive to input T. Equivaently, the converter is imposing an assumption
on the producer that T will not occur in that state. Because this assumption is not verified, and
because we can't change the producer, we can only avoid the problem by making the bottom-right
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Figure 5.5: Converter computation, phase 1

state unreachable, and remove it from the composition.

The result is shown in figure 5.6. The transitions that are left dangling because of the
removal of the state should also be removed, and are now shown in dotted lines. The same reasoning
as before applies, and we can only remove transitions that can be replaced by others with the same
input symbol. In this case, al illegal transitions can be safely removed.

The resulting machine shown in figure 5.7 has now no illegal transitions. This machine
complies both with the specification and with the two protocols, and thus represents the correct
conversion (correct relative to the specification). Notice how the machine at first stores the symbol
a without sending it (transition a/T’). Then, when b is received, the machine sends «, immediately

followed in the next cycle by ¥, as required by the serial protocol.

5.3.2 Trace-Based Solution

The solution to the protocol conversion problem as described in the previous section re-
quires that we develop a trace-based model of a synchronous system. The model that we have in
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Figure 5.6: Converter computation, phase 2

mind is essentially identical to the synchronous models proposed by Burch [12] and Wolf [96]. For
our simple case, an individual execution of an agent (atrace) is a sequence of actions from the al-
phabet A = { T,a,b,d',b'} of signals, where T denotes the absence of an action. Thisissimilar to
the form of the traces of the CSP model described in subsection 4.3.3. The renaming operator isaso
defined similarly. Projection however is different. In the CSP case, projection shrinks the sequence
as it removes elements. This would be appropriate for an asynchronous model. Here, instead, we
need to retain the information on the cycle count. Therefore, projection simply replaces the action
to be hidden by the specia value T. For instance,

proj({ a})(<a’ b7a7—|—’b7a7 b’ b7a7' * '>) = <a’ T7a7—|—’ T7a7—|—’ T7a7' * '>'

Parallel composition is defined as usual (def. 5.16). Because the length of the sequence is retained,
parallel composition resultsin alock step execution of the agents.

It is easy to represent the two protocols and the correctness specification as two-set trace
structures constructed from the trace algebra just described. We can represent the sets of traces
using the automata of figure 5.1 and figure 5.2. Note that now the specification consists of only
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Figure 5.7: Converter computation, phase 3

outputs, since even the inputs to the receiver protocols are converted into outputs once the final
system that includes the converter is constructed. Therefore, we do not need to add any failure to
the specification, nor to the sender protocol, which also consists of just outputs. The receiver, on
the other hand, must be augmented with a state representing the failure traces. A transition to this
additional state istaken from each state on all the inputs for which an action is not already present.

We are interested in a solution with a specific aphabet. Therefore we adopt the simple
agent ordering that requires the a phabets of the agents being compared to be the same. In this case,
if S isthe sender protocol, R the receiver, C' the converter and P the specification, we may compute

the converter by setting up the following local specification synthesis problem:
S|R|C=P.

The solution is given by theorem 3.120, as
C <X mirror(S || R || mirror(P)).

Note that projections are not needed in this case, since after the composition of S and R the alphabet
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isaways A = {T,a,b,T',d,b'}, which is also the aphabet of C. Note also that the mirror
switches inputs with outputs, so that the parallel composition in the solution is well defined.

We require that our agents be receptive, that isthat they have a possible transition on every
input. We are therefore working in a subalgebra of the complete trace structure algebra. The mir-
ror of an agent is thus computed by first determining the greatest element of its equivalence class
(the canonical form) according to the results of theorem 5.28. This can be achieved by applying
the operations of autofailure manifestation and failure exclusion, similarly to the the synchronous
trace structure algebra of Wolf [96]. A state is an autofailure if al its outgoing transitions are fail-
ures. Failure exclusion, instead, results in the removal of successful transitions whenever they are
matched by a corresponding failing transition on the same input. After these operation, the mirror
can be computed by applying the formula of corollary 5.25. Because language complementation is
involved, thisis most easily done by first making the automaton deterministic. For a deterministic
and receptive agent the mirror can be computed by replacing for each state the existing outgoing fail-
ing transitions with transitions whose input symbol is not already handled by some other outgoing
transition.

When doing so in the example above, we obtain exactly the result depicted in figure 5.7,
with additional failing transitions that stand to represent the flexibility in the implementation. In
particular, the state labeled O in figure 5.7 has failing transitions on input b, the state labeled 1 on
input a and the state labeled 2 on input b.

5.3.3 End to End Specification

A potentially better approach to protocol conversion consists of changing the topology of
the local specification problem, by providing aglobal specification that extends end to end from the
sender to the receiver, as shown in figure 5.8. The global specification in this case may be limited
to talking about the behavior of the communication channel as awhole, and would be independent
of the particular signals employed internally by each protocol. In addition, in a scenario where the
sender and the receiver function as layers of two communicating protocol stacks, the end to end
behavior is likely to be more abstract, and therefore simpler to specify, than the inner information
exchange.

We illustrate this case by modifying the previous example. In order to change the topol-
ogy, the sender and receiver protocols must be modified to include inputs from (for the sender)
and outputs to (for the receiver) the environment. Thisis necessary to let the protocols receive and
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Figure 5.8: End to end specification

deliver the data transmitted over the communication channel, and to make it possible to specify
a global behavior. In addition to adding connections to the environment, in this example we aso
explicitly model the data. Thus, unlike the previous example where the specification only required
that a certain ordering relationship on the data be satisfied, we can here express true correctness by
specifying that if avalue isinput to the system, the same value is output by the system at the end
of the transaction. Since the size of the state space of the automata increases exponentially with
the size of the data, we will limit the example to the communication of a two-bit integer value. To
make the example more interesting, we maodify the protocols so that the sender serializes the least
significant bit first, while the receiver expects the most significant bit first. In this case, the converter
will also need to reorder the sequence of the bits received from the sender.

All signals in the system are binary valued. The protocols are simple variations of the
ones depicted in figure 5.1. The inputs to the sender protocol include asignal ft that is set to 1 when
datais available, and two additional signals that encode the two-bit integer to be transmitted. The
outputs also include asignal st that clocks the seria delivery of the data, and one signal sd for the
data itself. The sender protocol is depicted in figure 5.9. We adopt the convention that asigna is
true in the label of atransition when it appears with its original name, and it is false when its name
is preceded by an n. Hence, for example, ft implies that ft = 1, and nft that ft = 0. The shaded
state labeled F in the automaton accepts the failure traces, while the rest of the states accept the
successful traces. Note that the protocol assumes that the environment refrains from sending new
data while in the middle of atransfer. In addition, the protocol may wish to delay the transmission
of the second bit of the data for as many cycles as desired.

Similarly, the receiver protocol has inputs rt and rd, where rt is used to synchronize
the start of the seria transfer with the other protocol; the output tt finaly informs the environment
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Figure 5.9: The sender protocol

when new datais available. The receiver protocol is depicted in figure 5.10. Thereceiver failsif the
second bit of the datais not received within the clock cycle that follows the delivery of the first bit.

The automaton for the global specification is shown in figure 5.11. The global specifica-
tion has the same inputs as the sender protocol, and the same outputs as the receiver protocol. A
trace is successful if a certain value is received on the sender side, and the same value is emitted
immediately or after an arbitrary delay on the receiver side. Analogously to the sender protocol, the
specification fails if anew data value is received while the old value has not been delivered yet.

Following the same notation as the previous example, the solution to the conversion prob-
lem can be stated as

C < mirror(proj ({ st,sd,rt,rd})(S || R || mirror(P))).

The projection is now essential to scope down the solution to only the signals that concern the
conversion algorithm. The agents of the algebra are again receptive, therefore similar considerations
as those expressed before for the computation of the mirror in a subalgebra apply. In particular,
autofailure manifestation and failure exclusion is applied before computing the mirror in order to
reach the greatest element of the equivalence class of order equivalent agents. The agent is aso
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Figure 5.10: The receiver protocol

made deterministic if necessary. The result of the computation is shown in figure 5.12, where, for
readability, the transitions that lead to the failure states have been displayed in dotted lines. The
form of the result is essentially identical to that of figure 5.7. Note how the converter switches the
position of the most and the least significant bit of the data during the transfer. In this way the
converter makes sure that the correct data is transferred from one end to the other. Note, however,
that the new global specification (figure 5.11) had no knowledge whatsoever of how the protocols
were supposed to exchange data. Failure traces again express the flexibility in the implementation,
and at the same time represent assumptions on the environment. These assumption are guaranteed
to be satisfied (modulo afailure in the global specification), since the environment is composed of

the sender and the receiver protocol, which are known variables in the system.

The solution excludes certain states that lead to a deadlock situation. Thisisin fact an
important side effect of our specific choice of synchronous model, and has to do with the possibility
of combinational loops that may arise as a result of a paralel composition. When this is the case,
the mirror of an otherwise receptive agent may not be receptive. Thisis because it is perfectly ad-
missible in the model to avoid afailure by witholding an input, i.e., by constraining the environment

not to generate an input. But since the environment is not constrained, this can only be achieved by
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Figure 5.11: The global specification

“stopping time” before reaching the deadlock state. Since thiswould beinfeasible in any reasonable
physical model, we consider deadlock states tantomount to an autofailure, and remove them from
thefinal result. This problem can be solved by employing asynchronous model that deal s with com-
binational loops directly. Thisis an aspect of the implementation that has been extensively studied
by Wolf [96], who proposes to use a three-valued model that includes the usual binary values 0 and
1, and one additional value to represent the oscillating, or unknown, behavior that results from the
combinational loops. Exploring the use of this model in the context of protocol specification and
converter synthesis is part of our future work.

A similar condition may occur when an agent tries to “guess’ the future, by speculating
the sequence of inputs that will be received in the following steps. If the sequence is not received,
the agent will find itself in a deadlock situation, unable to roll back to a consistent state. Thisis
again admissible in our model, but would be ruled out if the right notion of receptiveness were
adopted. These states and transitions are also pruned as autofailures.

We have implemented this trace structure algebra in a prototype application in approxi-
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Figure 5.12: Thelocal converter specification

mately 2400 lines of C++ code. In the code, we explicitly represent the states and their transitions,
while the formulas in the transitions are represented implicitly using BDDs (obtained from a sep-
arate package). This representation obviously suffer from the problem of state explosion. Thisis
particularly true when the value of the data is explicitly handled by the protocols and the specifi-
cation, as aready discussed. A better solution can be achieved if the state space and the transition
relation are also represented implicitly using BDDs. Note, in fact, that most of the time the data is
simply stored and passed on by a protocol specification and is therefore not involved in deciding its
control flow. The symmetries that result can therefore likely be exploited to simplify the problem
and make the computation of the solution more efficient.

Note that the converter that we obtain is non-deterministic and could take paths that are
“dower” than one could expect them to be. This is evident in particular for the states labeled -0
and -1 which can react to the arrival of the second piece of data by doing nothing, or by transition-
ing directly to the states *0 and *1, respectively, while delivering the first part of the data. This
is because our procedure derives the full flexbility of the implementation, and the specification de-
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picted in figure 5.11 does not mandate that the data be transferred as soon as possible. A “faster”
implementation can be obtained by selecting the appropriate paths whenever a choice is available,

as shown in figure 5.13. In this case, the converter starts the transfer in the same clock cycle in
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Figure 5.13: The optimized converter

which the last bit from the sender protocol is received. Other choices as aso possible. In general, a
fully deterministic converter can be obtained by optimizing certain parameters, such as the number
of states or the latency of the computation. More sophisticated techniques might also try to enforce
properties that were not included aready in the global specification.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we have described general techniques for constructing semantic domains
for different models of computation at different levels of abstraction. Each semantic domain is
constructed as an algebra, called an agent algebra, that includes a set of agents and three operators
on agents. The operators, caled renaming, projection and paralel composition, correspond to the
operation of instantiation, scoping and composition of the model of computation.

The approach that we have taken in building our framework is axiomatic. The semantic
domains that fit in our framework can take any form. Our only requirement is that the operators
on agents satisfy certain properties (axioms) that formalize their intuitive interpretation. The results
that we derive in the framework depend only on the axioms, and they therefore apply to all the
semantic domains that satisfy the requirements.

In particular we have considered semantic domains that are ordered by arelation of refine-
ment. We have introduced the notion of a T-monotonic function as an extension of monotonicity to
partial functions, that isjustified by interpreting the refinement relation as asubstitutability ordering.
We have then studied relationships between different semantic domains in the form of conservative
approximations, i.e., pairs of functions that preserve refinement verification results across different
semantic domains. We have a so shown that conservative approximations are more general than the
traditional notion of abstract interpretation.

We have then characterized the order of a semantic domain in terms of a conformance
relationship, which is based on substitutability of agents under every context. We have also shown
under what conditions a single context, called the mirror, can be used to characterize the confor-
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mance relationship. We have used the mirror to algebraically solve the problem of the synthesis of
the local specification, a useful technique that can be applied in many different circumstances.

6.2 Future Work

In this work we have laid the semantic foundations, and derived general properties and
results, for studying the relationships and the verification and synthesis techniques of different se-
mantic domains. Here we outline possible directions for further research and for applications of our

framework.

6.2.1 Extensionstothe Theory

In this dissertation we have presented the basic theory of agent algebras and of the subclass
of trace-based agent algebras. While we have provided exact or sufficient characterizations of many
of the concepts involved in the design of semantic domains, several extensions to the theory are till
possible.

We have introduced a preorder on the agents to model a relationship of substitutability.
One aspect that is of particular interest is to study the properties of the semantic domain when the
order gives rise to alattice structure. In this case, certain upper bounds and greatest elements that
are required for constructions that involve mirror functions and/or conservative approximations are
guaranteed to exist. In particular, we have shown in section 3.5 that the mirror, when it exists, can
be used as a complementation operator to construct a conservative approximation from a Galois
connection. The ramifications of this technique are yet to be explored.

We have also shown in theorem 2.59 that the inverse of a conservative approximation
always corresponds to the greatest and the least element of the equivalence classes induced by the
upper and lower bound of a conservative approximation. If theinverseis not defined, these elements
do not exist. It would be interesting to explore how a semantic domain should be “completed” to
add the necessary elements that make the inverse of a conservative approximation always defined.

In the context of trace-based agent algebras we have introduced the concept of complete
and partial traces, which is inspired by the work of Dill [34] and Burch [12]. The axioms intro-
duced by Burch should be reconsidered in light of our new results on trace-based agent algebras.
In particular, we are interested in deriving sufficient conditions for the set of partia traces to ex-
actly characterize the set of complete traces of an algebra. Thisis interesting when the verification
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problem is limited to considering only safety properties. Our current work includes exploring these
conditions. In particular we have characterized complete traces as the limit of directed sets of par-
tial traces and defined the concept of a basis set of traces that is similar to the one introduced by
Stoy [89]. The main result of this characterization shows that the set of partial traces completely
characterizes the algebra if and only if the algebra is closed under limits and the limit of the set of
prefixes of acomplete trace is equal to the complete trace. Considerations of space have precluded
us from presenting these results in this work. We are currently exploring sufficient conditions that

are simpler to check, and that guarantee the desired characterization.

6.2.2 Finitely Representable M odels

The work in this dissertation is based on a denotational representation of the semantic
domains that is convenient for manual, formal reasoning. In doing so, we have de-emphasized
finitely representable, or executable models. The applications of the techniques described in this
thesis, however, will likely have to be supported by afinite representation of the models for which
the operators of the algebra are computable. Thisis, for example, essential to carry out simulations,
or to solve problems of refinement verification. In our work we have concentrated on problems
that relate to the correctness of the technique. A finite representation also raises the question of
the efficiency of a certain computation. We believe that the upfront theoretical work is useful in
two ways. First, once a model of computation is shown to fit in our framework, the results are
guaranteed to be correct no matter what the implementation looks like. The model designer can
therefore concentrate on improving the efficiency of the implementation. Second, the conditions
that are sufficient and (often) necessary to apply a certain result may guide the model implementer
and suggest ways of increasing the efficiency of the implementation.

Among the models that we are most interested in are synchronous and asynchronous
models at different levels of abstraction. The relationship between these models could shed light on
the properties of GALS systems and on their correct deployment. In particular we intend to adapt
the work of Benveniste et a. [11] by deriving conservative approximations between synchronous
and asynchronous models. These approximations are interesting, because it can be shown that
their inverses are not embeddings. In addition, we plan to use the more expressive synchronous
model proposed by Wolf [96] that correctly handles combinatoria loops, and, therefore hierarchical
designs.

In the context of trace-based agent algebras, finitely representable models often rely on
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an implicit representation in the form of a machine that distinguishes the traces that are part of an
agent from those that are not. Automata are one example of such recognizers for the special case of
languages over aset of symbols. Partial behaviors, and the operation of concatenation, could be used
to extend the automata model to recognize arbitrary traces. To do o, it is sufficient to partition the
set of partial traces of an agent into equivalence classes. Each equivalence class consists of the set
of traces that share the same suffixes within a particular agent. Thus, an equivalence class encodes
al the information necessary to determine the future behavior of the agent. The equival ence classes
can therefore be taken as the set of states of the generalized automaton. An agent transitions from
one equivalence class to another by executing a partial trace. Partia traces thus form the labels of
the transitions of the generalized automaton.

A simple construction can be used in order to represent ageneralized automaton as atrace-
based agent algebra. We first define the set of atomic partia traces as the set of triples (s, z, $),
where s and s’ are generalized states, and x isapartial trace that labels atransition between s and 4.
The set of partial and complete traces can then be obtained simply as the closure of the set of atomic
traces under a special operation of concatenation that is defined only if the fina state of the first
trace matches the initial state of the second trace (and if the concatenation of the partial traces on
the transition is also defined). We are exploring the use of this construction in our implementation
of thelocal specification synthesis technique.

6.2.3 Applications

Severa applications of this framework can be considered. Our main interest is in the
study of heterogeneous systems. In particular, our future research includes applying our results to
the formal definition of the interaction of models of computation in the Metropolis framework. The
concept of a conservative approximation plays here a central role.

The formalization of the process of platform-based design presented in subsection 2.8.5is
also part of our current research. The concept and the formalization of the common semantic plat-
form employed in the mapping process can be used to study new ways of combining the functional
and the architectural representations of a system. More efficient estimation techniques can thus be
devised if the correct abstractions are employed.

Many are the applications of the local specification synthesis technique. As explained
in the introduction, several engineering problems can be stated in those terms, and therefore alge-
braically solved using our solution. Our future research includes applying our results to optimize the
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efficiency of the computation for specific finitely representable models. One such application isthe
automatic generation of modules that trandate an abstract, transaction-level, protocol specification
to one that is more detailed and suitable for design at the RTL level. By employing a combination
of transaction-level and RTL-level models, verification and ssimulation can be made more efficient.

6.2.4 Generalized Conservative Approximations

Conservative approximations have been introduced as a broad class of relationships be-
tween models of computation that preserve refinement verification results. We have explored ex-
amples of conservative approximations for trace-based agent algebras, and we have shown how
these can be obtained from homomorphisms on traces. The homomorphism however is defined to
preserve the alphabet of traces, so that the conservative approximation, too, must preserve the a pha-
bet. Moreinteresting conservative approximations can be constructed by | etting the homomorphism
change the “signature” of atrace. For example, we might adopt the following definition.

Definition 6.1 (Homomorphism). Let C and C' be trace algebras. Let h: B — B’ be afunction
such that for all alphabets A, there exists an alphabet A such that h(B(A)) C B'(A’). Then
h isahomomorphism from C to C' if and only if

h(rename(r)(xz)) = rename(r)(h(z)),
h(proj (B)(z)) = proj(B)(h(z)),
where the right hand side of the equation is defined if the left hand side is defined.

While such a homomorphism can change the alphabet of atrace, it can't change it arbi-
trarily. Infact, in order for theright hand side above to be defined in the case of rename, the al phabet
of h(x) must be a subset of the alphabet of . Thisis sufficient if we are abstracting certain sig-
nals, like clocks and activation signals, that have no meaning in a more abstract model. Thisisalso
appropriate for converting a detailed protocol specification into a more abstract, transaction-based,
specification.

Arbitrary changes of the signature are also possible. In that case, however, we must
consider functions between trace algebras that are not only applied to traces, but also to the operators
of the algebra. In that case, the function A must satisfy the following conditions,

h(rename(r)(z)) = rename(h(r))(h(z)),

h(proj(B)(x)) = proj (h(B))(h(x)),
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where h(r) and h(B) are the appropriate renaming function and projection sets to be applied in the
abstract model. By doing so we can modify the alphabet of atrace in arbitrary ways. Note that in
this case the homomorphism becomes similar to afunctor between categories, where a category has
traces as objects and the operators of the algebra as morphisms.

We have considered conservative approximations induced by a homomorphism for com-
plete trace structure algebras. A promising avenue of future research consistsin studying conditions
to obtain the most faithful abstraction in case the trace structure algebra is not complete (see aso
the discussion in subsection 1.8.5).

6.2.5 Cosimulation

We have mostly worked with denotational models. Yet, agent algebras can be constructed
where agents are described operationally, for example using transition systems. Partial traces, in
this case, would be essential to describe the state that a system reaches after a finite number of tran-
sitions, or simulation steps. Agent algebras could then be used to study the behavior of asimulator
for a model of computation, by relating its executions to a denotational semantic domain through
the use of a conservative approximation.

Our current interest however is directed towards understanding the relationships between
the operational semantics of simulators for different models of computation. In particular, we are
considering the co-composition of agents that belong to pairs of models of computation related
by a common refinement, as described in section 2.8. The common refinement also induces a
relationship between the partial executions of the simulators of the individual models, which must
be kept under synchronization to approximate the behavior obtained in the common refinement.
We are researching ways to derive the correct synchronization between the simulators, so that the
cosimulation is consistent with the common refinement. This technique can therefore be applied to
formally describe the interaction of different simulation engines, and to the process of architecture
exploration in particular. In this context, we are also exploring the use of closure operators as
described in subsection 2.8.4.



314

Bibliography

[1]

[2]
(3]

[4]

[5]

[6]

[7]

M. Josie Ammer, Michael Sheets, Tufan C. Karalar, Mika Kuulusa, and Jan Rabaey. A low-
energy chip-set for wireless intercom. In Proceedings of the Design Automation Conference
(DAC), Anaheim, CA, June 2-6 2003.

Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, 1995.

J. Augusto De Oliveiraand Hans Van Antwerpen. The Philips Nexperiadigial video platforms.
In Grant Martin and Henry Chang, editors, Winning the SoC Revolution. Experiences in Real
Design, pages 67-96. Kluwer Academic Publishers, 2003.

Adnan Aziz, Felice Balarin, Robert K. Brayton, Maria D. Di Benedetto, Alex Saldanha, and
Alberto L. Sangiovanni-Vincentelli. Supervisory control of finite state machines. In Pierre
Wolper, editor, Proceedings of Computer Aided Verification: 7th International Conference,
CAV' 95, Liege, Belgium, July 1995. Springer, 1995. LNCSvol. 939.

F. Baarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-Software
Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic Press, June 1997.

Felice Balarin, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-Vincentelli, Yosi-
nori Watanabe, and Guang Yang. Concurrent execution semantics and sequential simulation
algorithms for the metropolis meta-model. In Proceedings of the Tenth International Sympo-
sium on Hardware/Software Codesign, Estes Park, CO, May 2002.

Felice Baarin, Luciano Lavagno, Claudio Passerone, Alberto L. Sangiovanni Vincentelli,
Marco Sgroi, and Yosinori Watanabe. Modeling and designing heterogeneous systems. In
J. Cortadellaand A. Yakovlev, editors, Advancesin Concurrency and System Design. Springer-
Verlag, 2002.



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

315

A. Baluchi, M. Di Benedetto, C. Pinello, C. Rossi, and A. Sangiovanni-Vincentelli. Cut-off
in engine control: a hybrid system approach. In |EEE Conf. on Decision and Control, 1997.

M. Barr and C Wells. Category Theory for Computer Science. Prentice Hall, 1990.

Albert Benveniste and Gérard Berry. The synchronous approach to reactive and real-time
systems. Proceedings of the |EEE, 79(9):1270-1282, September 1991.

Albert Benveniste, Luca P. Carloni, Paul Caspi, and Alberto L. Sangiovanni-Vincentelli. Het-
erogeneous reactive systems modeling and correct-by-construction deployment. In Rajeev
Alur and Insup Lee, editors, Third International Conference on Embedded Software, volume
2855 of Lecture Notes in Computer Science, pages 35-50, Philadelphia, PA, October 2003.

Springer-Verlag.

Jerry R. Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, August 1992.

Jerry R. Burch, David L. Dill, Elizabeth S. Wolf, and Giovanni De Micheli. Modeling hierar-
chical combinational circuits. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’ 93), pages 612-617, November 1993.

Jerry R. Burch, Roberto Passerone, and Alberto L. Sangiovanni-Vincentelli. Overcoming het-
erophobia: Modeling concurrency in heterogeneous systems. In M. Koutny and A. Yakovlev,
editors, Application of Concurrency to System Design, 2001.

Jerry R. Burch, Roberto Passerone, and Alberto L. Sangiovanni-Vincentelli. Using multiple
levels of abstractions in embedded software design. In Henzinger and Kirsch [48], pages
324-343.

Luca P. Carloni, Alberto L. Sangiovanni-Vincentelli Fernando De Bernardinis, and Marco
Sgroi. The art and science of integrated systems design. In Proceedings of the 28" European
Solid-Sate Circuits Conference, ESSCIRC 2002, Firenze, Italy, September 2002.

S. Chaki, S.K. Rgjamani, and J. Rehof. Types as models: Model checking message-passing
programs. In Proc. 29th ACM Symp. Princ. of Prog. Lang., 2002.

Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, , and Freddy Y. C. Mang. Syn-
chronous and bidirectional component interfaces. In Proceedings of the 14th International



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

316

Conference on Computer-Aided Verification (CAV), volume 2404 of Lecture Notes in Comt-
puter Science, pages 414-427. Springer-Verlag, 2002.

Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Marielle Stoelinga. Re-
source interfaces. In Proceedings of the Third International Conference on Embedded Soft-
ware (EMSOFT), volume 2855 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew J. McNelly, and Lee Todd.
Surviving the SOC Revolution. A Guide to Platform-Based Design. Kluwer Academic Pub-
lishers, Norwell, MA, 1999.

Elaine Cheong, Judy Liebman, Jie Liu, and F. Zhao. TinyGALS: a programming model for
event-driven embedded systems. In Proceedings of the 18" Annual ACM Symposium on Ap-
plied Computing, pages 698—704, March 2003.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-S GACT Symposium on Principles of Programming Languages, pages
238-252, Los Angeles, California, 1977. ACM Press, New York, NY.

P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing ap-
proaches to abstract interpretation, invited paper. In M. Bruynooghe and M. Wirsing, edi-
tors, Proceedings of the International Workshop Programming Language | mplementation and
Logic Programming, PLILP’92,, Leuven, Belgium, 13-17 August 1992, Lecture Notes in
Computer Science 631, pages 269-295. Springer-Verlag, Berlin, Germany, 1992.

Peter Cumming. The TI OMAP™™™ platform approach to SoC. In Grant Martin and Henry
Chang, editors, Winning the SoC Revolution. Experiences in Real Design, pages 97-118.
Kluwer Academic Publishers, 2003.

Julio L. da Silva J., Marco Sgroi, Fernando De Bernardinis, Suetfei Li, Alberto L.
Sangiovanni-Vincentelli, and Jan Rabagy. Wireless protocols design: Challenges and op-
portunities. In Proceedings of teh 8" IEEE International Workshop on Hardware/Software
Codesign, CODES 2000, pages 147-151, San Diego, CA, May 2000.

Julio L. da Silva Jr., Jason Shamberger, M. Josie Ammer, Chunlong Guo, Suetfei Li, Rahul
Shah, Tim Tuan, Mike Sheets, Jan M. Rabaey, Bora Nikolic, Alberto L. Sangiovanni-



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

317

Vincentelli, and Paul Wright. Design methodology for picoradio networks. I1n Proceedings of
the Design Automation and Test in Europe, Munich, Germany, March 2001.

J. Davisll, M. Godl, C. Hylands, B. Kienhuis, E. A. Lee, JieLiu, X. Liu, L. Muliadi, S. Neuen-
dorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Overview of the ptolemy project. ERL
Technical Report UCB/ERL No. M99/37, Dept. EECS, University of California, Berkeley,
July 1999.

John Davis I, Christopher Hylands, Bart Kienhuis, Edward A. Leeg, Jie Liu, Xia Liu, Lukito
Muliadi, Steve Neuendorffer, Jeff Tsay, Brian Vogel, and Yuhong Xiong. Heterogeneous
concurrent modeling and design in java. Technical Memorandum UCB/ERL M01/12, EECS,
University of California, Berkeley, March 2001.

Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering, pages 109-120. ACM Press,
2001.

Lucade Alfaro and Thomas A. Henzinger. Interface theories for component-based design. In
Henzinger and Kirsch [48], pages 148-165.

Lucade Alfaro, Thomas A. Henzinger, and Marielle Stoelinga. Timed interfaces. In Proceed-
ings of the Second International Workshop on Embedded Software (EMSOFT), volume 2491
of Lecture Notesin Computer Science, pages 108-122. Springer-Verlag, 2002.

E. A. de Kock de, G. Essink, W. J. M. Smits, P. van der Wolf, J. Y. Brunel, W. M. Kruijtzer,
P. Lieverse, and K. A. Vissers. YAPI: application modeling for signal processing systems.
Proceedings of the 37" Design Automation Conference, 2000.

David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1988. Also appeared as[34].

David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

Santanu Dutta, Rune Jensen, and Alf Rieckmann. Viper: A multiprocessor SOC for advanced
set-top box and digital tv systems. |IEEE Design & Test of Computers, September-October
2001.



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

318

H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Undergraduate Texts in
Mathematics. Springer-Verlag, second edition, 1994.

S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of embedded
systems. Formal models, validation, and synthesis. Proceedings of the IEEE, 85(3):366—-390,
March 1997.

Stephen Edwards. Languages for Digital Embedded Systems. Kluwer Academic Publishers,
Norwell, MA, 2000.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations and Initial
Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science.  Springer,
1985.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Module Specifications and
Constraints. EATCS Monographs on Theoretical Computer Science. Springer, 1989.

Hartmut Ehrig, Paul Boehm, and Werner Fey. Algebraic concepts for formal specification
and transformation of modular software systems. In Proceedings of the 23'¢ Annual Hawaii

International Conference on System Sciences, volume 2, pages 153-164, January 2-5 1990.

M. Erng, J. Koslowski, A. Melton, and G. E. Strecker. A primer on galois connections. In
Papers on General Topology and Applications, volume 704 of Ann. New Yosk Acad. i,
pages 103-125. Madison, WI, 1993.

Alberto Ferrari and Alberto L. Sangiovanni-Vincentelli. System design: Traditional concepts
and new paradigms. In Proceedings of the International Conference on Computer Design,
ICCD 1999, pages 2—-12, October 1999.

Thorsten Grotker, Stan Liao, Grant Martin, and Stuart Swan. System Design with SystemC.
Kluwer Academic Publishers, Norwell, MA, 2002.

Yuri Gurevich. Evolving algebra 1993: Lipari guide. In Egon Boerger, editor, Specification
and Validation Methods, pages 9-36. Oxford University Press, 1994.

Yuri Gurevich. Sequential abstract state machines capture sequential algorithms. ACM Trans-
actions on Computational Logic, 1(1):77-111, July 2000.



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

319

Thomas A. Henzinger. Masaccio: a forma model for embedded components. In J. van
Leeuwen, O. Watanabe, M. Hagiya, PD. Mosses, and T. Ito, editors, TCS 00: Theoreti-
cal Computer Science, volume 1872 of Lecture Notes in Computer Science, pages 549-563.
Springer-Verlag, 2000.

Thomas A. Henzinger and Christoph M. Kirsch, editors. Embedded Software, volume 2211 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

ThomasA. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for hierarchical
hybrid systems. In M. di Benedetto and A. Sangiovanni-Vincentelli, editors, HSCC 00: Hy-
brid Systems—Computation and Control, volume 2034 of Lecture Notesin Computer Science,
pages 275-290. Springer-Verlag, 2001.

C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, MA, 1986.

Ben Horowitz, Judy Liebman, C. Ma, T. John Koo, Thomas A. Henzinger, Alberto L.
Sangiovanni-Vincentelli, and Shankar Sastry. Embedded software design and system inte-
gration for rotocraft uav using platforms. In Proceedings of the 13" IFAC World Congress on
Automatic Control. Elsevier, December 2002.

Gilles Kahn. The semantics of a simple language for paralel programming. In J. L. Rosen-
feld, editor, Proceedings of the IFIP Congress 74, Information Processing 74, pages 471475,
Amsterdam, The Netherlands, 1974. North Holland.

Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
B. Gilchrist, editor, Proceedings of IFIP Congress, Information Processing 77, pages 993—
998, Toronto, Canada, August 1977.

Kurt Keutzer, Richard Newton, Jan Rabaey, and Alberto L. Sangiovanni-Vincentelli. System-
level design: Orthogonalization of concerns and platform-based design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19:1523-1543, December 2000.

Cindy Kong and Perry Alexander. Heterogeneous computer-based system specification. In
Formal Specification of Computer-Based Systems Workshop, Washington, DC, April 20 2001.



[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

320

Cindy Kong and Perry Alexander. Modeling model of computation ontologies in rosetta. In
Formal Specification of Computer-Based Systems Workshop, Lund, Sweden, April 10-11 2002.

Cindy Kong and Perry Alexander. Multi-faceted requirements modeling and analysis. In |[EEE
Joint International Requirements Engineering Conference, Essen, Germany, September 9-13
2002.

Cindy Kong and Perry Alexander. The rosetta meta-model framework. In Proceedings of the
IEEE Engineering of Computer-Based Systems Symposium and Workshop, Huntsville, AL,
April 7-11 2003.

Kim G. Larsen and Liu Xinxin. Equation solving using modal transition systems. In Proceed-
ings of the Fifth Annual IEEE Symposium on Logic in Computer Science (LICS 90), pages
108-117, June 4-7 1990.

Luciano Lavagno, Alberto L. Sangiovanni-Vincentelli, and Ellen Sentovich. Models of com-
putation for embedded system design. In Proceedings of the NATO AS on System Level
Synthesis for Electronic Design, Il Ciocco, Italy, August 1998. Kluwer Academic Publishers.

E.A.Leeand A. L. Sangiovanni-Vincentelli. A framework for comparing models of computa-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 17(12):1217-1229,
December 1998.

Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75:1235-1245, September 1987.

Edward A. Lee and Yuhong Xiong. System-level types for component-based design. In Hen-
zinger and Kirsch [48].

Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bougjjani, and Saddek Bensalem.
Property preserving abstractions for the verification of concurrent systems. Formal Methods
in System Design, 6:1-35, 1995.

S. MacLane. Categories for the Working Mathematician. Graduate Text in Mathematics.
Springer Verlag, New York, 1971.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1980.



[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

321

Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267—
310, 1983.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

T. J. Mowbray, W. A. Ruh, and R. M Soley. Inside CORBA: Distributed Object Standards and
Applications. Addison-Wesley, 1997.

Radu Negulescu. Process Soaces and the Formal Verification of Asynchronous Circuits. PhD
thesis, University of Waterloo, Canada, 1998.

Radu Negulescu. Process spaces. In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture
Notes in Computer Science. Springer-Verlag, 2000.

Roberto Passerone, Luca de Alfaro, Thomas A. Henzinger, and Alberto L. Sangiovanni-
Vincentelli. Convertibility verification and converter synthesis: Two faces of the same coin.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD’02), November 2002.

Roberto Passerone, James A. Rowson, and Alberto L. Sangiovanni-Vincentelli. Automatic
synthesis of interfaces between incompatible protocols. In DAC, San Francisco, CA, June
1998.

B. C. Peirce. Category Theory for Computer Scientists. MIT Press, 1991.

Vaughan R. Pratt. Modelling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33-71, February 1986.

Jan Rabaey, M. Josie Ammer, Julio L. da Silva jr., Danny Patel, and S. Roundy. Picoradio
supports ad hoc ultra-low power wireless networking. |EEE Computer Magazine, pages 42—
48, July 2000.

John C. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998.

James A. Rowson and Alberto L. Sangiovanni-Vincentelli. Interface-based design. In Pro-
ceedings of the 34" Design Automation Conference, DAC 1997, pages 178-183, June 1997.



[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

322

Martijn J. Rutten, Jos T. J. van Eijndhoven, Egbert G. T. Jaspers, Pieter van der Wolf,
Om Prakash Gangwal, Adwin Timmer, and Evert-Jan D. Pol. A heterogeneous multipro-
cessor architecture for flexible media processing. Design & Test of Computers, pages 39-50,
July-August 2002.

Alberto Sangiovanni-Vincentelli, Marco Sgroi, and Luciano Lavagno. Formal models for
communication-based design. In Proceedings of the Eleventh International Conference on
Concurrency Theory, August 2000.

Alberto L. Sangiovanni-Vincentelli. Defining platform-based design. EEdesign, February
2002.

Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. A classification of models for con-
currency. In Proceedings of the 4 International Conference on Concurrency Theory, CON-
CUR"93, volume 715 of Lecture Notes in Computer Science, pages 82-96. Springer-Verlag,
1993.

Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models for concurrency: Towards
aclassification. Theoretical Computer Science, 170:297-348, 1996.

Marco Sgroi, Michael Sheets, Andrew Mihal, Kurt Keutzer, Sharad Malik, Jan Rabaey, and
Alberto Sangiovanni-Vincentelli. Addressing system-on-a-chip interconnect woes through
communication-based design. In Proceedings of the 38" Design Automation Conference,
DAC 2001, pages 667-672, Las Vegas, NV, June 2001.

C. J. Richard Shi. Entity overloading for mixed-signal abstraction in VHDL. In Proceedings of
EURO-DAC ' 96, European Design Automation Conference, pages 562-567, September 23-27
1996.

Kanna Shimizu, David L. Dill, , and Alan J. Hu. Monitor-based formal specification of PCI.
In FMCAD, Austin, Texas, 2000.

Pete Sterrantino, David Hacker, and Ralph Fravel. An embedded computer-based intraopera-
tive spinal nerve integrity monitor. In Proceedings of the 16" |EEE Symposium on Computer-
Based Medical Systems (CBMS 2003), pages 367-370, June 2003.

Joseph E. Stoy. Denotational Semantics: The Scott-Srachey Approach to Programming Lan-
guage Theory. The MIT Press, 1997.



[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

323

Functional specification for SystemC 2.0, January 2001. Available from the Open SystemC
Initiative (OSCI) at http://www.systemc.org.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285-309, 1955.

Paul Taylor. Practical Foundations of Mathematics. Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, 1999. Also available on the web at the address
http://mww.dcs.gmul.ac.uk/~pt/Practi cal-Foundations/index.html.

D. E. Thomasand P. Moorby. The Verilog Hardware Description Language. Kluwer Academic
Publishers, 1991.

Brett Warneke, Matt Last, Brian Leibowitz, and Kris Pister. Smart Dust: Communicating with
acubic-millimeter computer. |EEE Computer, 34:44-51, January 2001.

Glynn Winskel and Mogens Nielsen. Models for concurrency. In S. Abramsky et al., ed-
itor, Handbook of Logic in Computer Science, volume Vol. 4, Semantic Modelling. Oxford
University Press, Oxford, 1995.

Elizabeth S. Wolf. Hierarchical Models of Synchronous Circuits for Formal \erification and
Substitution.  PhD thesis, Department of Computer Science, Stanford University, October
1995,

B. Woodward, R. S. H. Istepanian, and C. |. Richards. Design of atelemedicine system using
amobile telephone. 1EEE Transactions on Information Technology, 5(1):13-15, March 2001.

Nina Yevtushenko, Tiziano Villa, Robert K. Brayton, Alex Petrenko, and Alberto L. San-
giovanni-Vincentelli. Sequential synthesis by language equation solving. Memorandum No.
UCB/ERL MO03/9, Electronic Research Laboratory, University of Californiaat Berkeley, 2003.



