
Efficient Neural Computation on Network
Processors for IoT Protocol Classification

Vibha Pant∗, Roberto Passerone†, Michele Welponer†, Luca Rizzon‡ and Roberto Lavagnolo‡
∗Dept. of Computer Science and Engineering, Amrita School of Engineering, Bengaluru,

Amrita Vishwa Vidyapeetham, Amrita University, India
†Department of Information Engineering and Computer Science, University of Trento, Trento, Italy 38123

‡Microtel Innovation Srl, via armentera 8, Borgo Valsugana, Trento, Italy 38051

Abstract—The Internet of Things (IoT) brings forth pressing
requirements on the service providers in terms of service differen-
tiation, which plays an important role in pricing policies as well as
network load balancing. In this paper, we consider differentiation
of application level protocols for IoT from general application
protocols through flow classification. We implement a neural
network classifier that can run at wire speed reaching 100 Gbps
on a network processor. In particular, we study approximations
which allow us to efficiently compute the neural network output,
while complying with the network processor limitations, which
does not provide multiplication or other complex mathematical
operations. The results show that the implementation is efficient
and that the classification error is negligible.

I. INTRODUCTION AND RELATED WORK

Traffic and packet classification is an important functionality

at the basis of network management activities such as resource

planning, quality of service (QoS) provisioning, load balancing

and lawful intrusion detection [1]. In particular, the increasing

adoption of IoT devices raises specific requirements on net-

work operators, which must be able to distinguish IoT traffic to

determine the correct QoS, pricing and provide differentiated

services for applications and network monitoring [2]. Packet

classification must therefore be performed at wire speed, so

that communication flows can be routed to the appropriate pro-

cessing device in a balanced manner according to their class

of service. In this paper, we look at statistical analysis and

classification using neural networks implemented on network

processor (NP) architectures, which are commonly used when

packets must be processed and routed at wire speed, owing to

their dedicated hardware for buffering, table search and update,

and forwarding [3]. On the other hand, NPs are not designed

for complex computation, as their simplified instruction set

does not provide multiplication or higher math operations. Our

main contribution is a set of approximations that make use

of only additions and subtractions, which can be implemented

efficiently on NPs and significantly improve performance. Our

evaluation shows that the approximations do not affect the

classification accuracy appreciably.

Several methods can be used to perform packet and protocol

classification. The simplest and most efficient classification

technique is port matching, where the destination and source

port numbers or IP addresses are matched to a set of well

known values using pre-defined rules [4], [5]. This is fre-

quently used in intrusion detection systems on the server side.

Port spoofing or camouflaging however make this unreliable

and has rendered it obsolete [6]. Packet Payload analysis or

Deep Packet Inspection (DPI) achieve high classification accu-

racy, however in many scenarios the payload is not accessible

due to encryption or legal privacy restrictions [7].

In this paper, we opt for Deep Flow Inspection (DFI) where

we look at traffic as a flow and which does not require the

analysis of the payload. Flow statistics such as flow length,

packet size distribution, session start and end time can be

used in this classification approach [8], [6]. Flow inspection

can be treated as a pattern recognition problem where we can

apply machine learning algorithms [9], [10]. We use artificial

neural networks, which have shown great performance in

classification and clustering of large amounts of data received

from sensors [11]. Shen et al. use several statistical properties

related to packet size as input features to distinguish P2P

traffic [10]. We follow in particular the approach proposed

by Trussell et al., who use packet size distribution to classify

different application protocols [12]. The authors pre-process

the data fed into the neural network and use bins in a histogram

to hold the distribution of packet sizes for each application.

We use a similar approach to pre-process the IoT data. Unlike

previous work, we employ a network processor and take

advantage of its inherent parallel and multi-tasking capabilities

to support computational intensive classification at wire speed.

We first give an overview of the classification methodology

in Section II. We then discuss the approximations required to

implement the algorithm on a network processor in Section III.

Experimental results are presented in Section IV.

II. IOT PROTOCOL CLASSIFICATION OVERVIEW

Our classification strategy uses the packet size distribution

of a flow to determine the likely application protocol [12]. In

particular, we consider the following three protocols, which are

the most used in the IoT: Constrained Application Protocol

(CoAP), primarily used for communication in constrained

nodes with low power, computation and communication capa-

bilities; Message Queuing and Telemetry Transport (MQTT),

which connects embedded devices through a publish, subscribe

and broker environment; and Advanced Message Queuing

Protocol (AMQP), which provides reliable delivery with prim-

itives such as at most once, at least once and exactly once

delivery parameters.

2017 First New Generation of CAS

978-1-5090-6447-2/17 $31.00 © 2017 IEEE

DOI 10.1109/NGCAS.2017.55

181

2017 First New Generation of CAS

978-1-5090-6447-2/17 $31.00 © 2017 IEEE

DOI 10.1109/NGCAS.2017.55

9

����������������� �����
	
��

������
	
��

������
	
��

�����
� ��������

����
����
��������

�����������������

Fig. 1. Neural network diagram

The classification is performed by the three-layer neural

network shown in Figure 1. Following [12], the network is

composed of nx = 50 input nodes xi, nh = 8 hidden nodes

hj and ny = 3 output nodes yk. The packet size distribution

is organized in 50 bins, encoding packet sizes in steps of

32 bytes, up to a maximum size of 1600 bytes. The 50 values

corresponding to the distribution are fed to the corresponding

input layer nodes of the neural network. The input layer is

fully connected to the hidden layer through weights wxh
ij , while

the hidden layer is fully connected to the output layer through

weights why
jk . Before computing the output layer, the values of

the hidden layer are processed through an activation function.

In our case, we use the hyperbolic tangent (tanh). Thus, the

output nodes yk are computed as

yk =
nh−1∑
j=0

why
jk · tanh(hj), hj =

nx−1∑
i=0

wxh
ij · xi

Each output node corresponds to one of the MQTT, AMQP

and CoAP protocols. To correctly classify a protocol, we

expect one of the output nodes to be significantly more active
than the others, i.e., to have a larger value. To check this

condition, the output values are normalized to probabilities

using the softmax function [12]:

pk =
eyk

∑ny−1
j=0 eyj

(1)

We then consider a node active if its probability is above a

threshold t, and inactive if it is below. When exactly one node

is active after the computation, we classify the distribution

as belonging to the corresponding protocol. Otherwise, the

distribution is assumed to belong to a protocol not considered

by the network.
To train the network, we initialize all the weights to random

values around zero, and compute the value of the outputs to

given distributions. The error is the difference between the

probable answer and the expected output, which is known

in the training phase. The back propagation algorithm using

gradient descent and a cross-entropy log loss function is used

to adjust the weights. Once sufficient training samples are

used to bring the network to optimal performance, we use

the network in the feed forward mode to predict the result.

III. NETWORK PROCESSOR IMPLEMENTATION

The main challenge in implementing artificial neural net-

work algorithms on network processors is the lack of math-

ematical operations other than integer addition and subtrac-

tion. While multiplication and complex functions could be

emulated, the performance would suffer considerably. For this

reason, we have resorted to a number of approximations and

incremental techniques to achieve results close to the reference

implementation, while using only additions.

Before discussing these aspects, we briefly review the

architecture of the Mellanox NP-5 network processor [3] that

we use in our work, and our operational flow. A simplified

block diagram is shown on Figure 2, and consists of five

stages that process incoming packets operating in pipeline.

These stages are complemented by two data structures. The

����� ������ ���	
�� �	���

��������������������
�������
����������������������

�� �� �	

���

����������������

��� ��	��

��������	��	

��

�����
�
��

�����
���
��

����

�	���������

Fig. 2. Simplified architecture of the NP-5 processing pipeline

search structure contains tables made of pairs (key, value)
which can be quickly accessed by the search stage. The

statistics structure contains counters which can be initialized,

incremented, decremented or read by all stages. Operationally,

we store the value of the neurons as counters in the statistics

structure and the weights between the input and the hidden

layer as a table in the search structure. We use counters for

the neurons because they function as accumulators, and they

can be stored in internal memory for fast access. We therefore

update the state of the whole neural network incrementally for

each incoming packet, thus avoiding the use of the multiplica-

tion operation, which is not available in the NP-5 architecture.

The flow of operations works as follows. The parse
stage parses the content of each incoming packet, extracts the

packet length information and determines the index i of the

bin, and therefore the counter (input neuron), that must be

incremented to update the packet size distribution. The same

index i is sent to the search stage to retrieve the weights

between input neuron i and the hidden layer. Notice that input

neuron i was incremented by 1, while all other inputs have

not changed. Therefore, the hidden layer neurons must be

incremented exactly by the amount of the weights incoming

from input neuron i, while the other weights can be ignored.

This operation, executed in the resolve stage, uses only

addition and subtraction (for positive and negative weights)

and avoids the use of the multiplication.

The resolve and modify stage then process the rest

of the network, by computing the activation function of the

hidden layer, and updating the values of the output layer

counter. The weights between the hidden and the output layer

are stored as constants directly in the code, instead of using

18210

the search structure, since they must all be used for every

packet. The stages then apply the softmax criterion to classify

the packet distribution. The learn stage can be used to

dynamically update the search structures, and is not currently

used in our implementation. The NP-5 includes 64 pipelines

of this kind to increase the processing rate.

The resolve and modify stages employ a number of

approximations which are discussed below.

A. Fixed point value representation

Since the NP-5 does not provide native support for floating

point numbers, we have used a fixed point representation.

Looking at the training results, we observe that the weights

between the input and the hidden layer are confined within

the interval [−1 : 1], while those between the hidden and

the output layer lie within [−2 : 2]. We therefore use a

sign and magnitude fixed point representation for the weights,

where 1 bit is dedicated to the sign, 2 bits to the integer

part, and the rest to the fractional part. Using a total of 16

bits, the fractional part is represented by 13 bits, giving a

resolution of ±2−13 = 0.00012, which is sufficient for our

aims. We use a sign and magnitude representation for the

weights because the NP-5 does not support two’s complement

operations directly, and the sign tells us immediately whether

we need to use addition or subtraction, while the magnitude

provides the amount without having to use a conversion. We

instead use a two’s complement representation for the neuron

values, which are stored in the counters, because this allows us

to apply the operations without having to look at their sign.

These values use the same number of fractional bits as the

weights, however the integer part must be much larger, since

they accumulate updates from different packets. Fortunately,

counters are 96-bit wide, so we have space to spare. To mimic

the two’s complement encoding, we simply initialize all hidden

and output neurons to an offset of 220: values above 220 are

considered positive, values below are considered negative and

in magnitude equal to the complement to 220.

B. Activation function

When training the network, it is essential to use the hyper-

bolic tangent (or another differentiable function) as activation

function for the hidden layer to be able to compute the gradient

and update the weights. Network evaluation, on the other

hand, does not have this constraint. We therefore approximate

the hyperbolic tangent using the sign function. This has two

advantages. First, the sign function involves only a compar-

ison with zero, thus avoiding the intricacies of computing a

complex function. Secondly, the result of the sign function is

either 1 or −1. Recall that, in order to compute the output

layer, we must multiply the hidden to output weights why by

the corresponding hidden layer values. Since these can only

be 1 or −1, the multiplication reduces to simply a possible

change of sign. The remaining operations are additions. The

results show that this approximation works well, especially

since random errors from different nodes tend to cancel out

when added together. Thus, for every packet, we re-initialize

the output layer to zero, and compute their new values by

considering, in turn, the contribution of each of the hidden

nodes. Unlike the computation from input to hidden layer, this

cannot be done incrementally, since several hidden neurons

may change at the same time, thus complicating the update.

In this case, recomputing the values is simpler.

Notice that we do not overwrite the hidden neurons with

their activated value, but we instead use it immediately to

update the output layer, and then discard it, since it is of

no further use. This way, the hidden neurons retain their

actual, non-activated, value in order to correctly perform the

incremental update from the input layer upon reception of the

next packet.

C. Softmax approximation

The final classification step consists in normalizing the

output layer values, followed by a threshold operation to

choose the active output. As discussed, normalization is tra-

ditionally implemented using the softmax function according

to equation (1), which results in a set of probabilities. After

normalization, the value of each neuron of the output layer

is saturated to 1 if it is above a threshold t, and to 0 if

it is below. In our case, we have chosen t = 0.1. A valid

classification is obtained if only one of the output neurons

is above the threshold. In all other cases, the distribution is

considered unknown.

To avoid the use of the exponential function, we have

determined the conditions that the original neuron values must

satisfy, before normalization, so that only one neuron is above

the threshold after normalization. Without loss of generality,

assume y0 is the largest of the output neurons, and that y1
is the second largest. Because normalization is monotonic, in

order to have only one active output we must impose that

p0 ≥ 0.1 and that p1 ≤ 0.1. From the condition p0 ≥ 0.1
and equation (1), rearranging the terms and solving for y0, we

obtain:

y0 ≥ ln(0.1/0.9) + ln
(∑ny−1

j=1 eyj

)
(2)

We take advantage of the following relations, which are easy

to prove, to compute bounds for the right-hand side:

ln
(∑n−1

j=0 eaj

)
≥ max(a0, . . . , an−1) (3)

ln
(∑n−1

j=0 eaj

)
≤ max(a0, . . . , an−1) + ln(n) (4)

Thus, using equation (4), a conservative condition is that

y0 ≥ −2.197 + y1 + ln(ny − 1)

This condition is always satisfied in our case, since ny = 3
and by definition y0 ≥ y1.

Starting from p1 ≤ 0.1, applying again equation (1) and

solving for y! we obtain:

y1 ≤ ln(0.1/0.9) + ln
(∑ny−1

j=0,j �=1 e
yj

)
(5)

Since y0 is the largest, using equation (3) a conservative

condition is

y1 ≤ −2.197 + y0 (6)

18311

Thus, if y0 ≥ y1 + 2.197 then certainly p0 ≥ 0.1 and

p1 ≤ 0.1, and we have a valid classification. Because of the

conservative approximation, the converse is not always true,

and less stringent conditions could be derived. For instance,

using similar arguments, we can show that if y0 is the largest

value and all other output neurons are the same value, then it

is sufficient that y0 ≥ y1 + 2.08 in case of 3 output neurons.

This is actually the best case. Our approximate condition (6) is

therefore not too tighter, and we expect it to behave correctly

most of the times. This condition involves only additions, and

can be easily implemented on the network processor. Because,

naturally, the neurons are not ordered, we need to apply the

check to all pairs of output neurons.

IV. EXPERIMENTAL RESULTS

We have evaluated our implementation comparing accuracy

and performance of the NP implementation against a C

language implementation of the floating point version, with

full mathematical support, and a fixed-point C version using

the same approximation techniques as the NP (sign activation

function and simplified softmax). For network training and

testing, we have generated traffic under all the investigated

protocols and collected the packet size distributions using

Wireshark. In particular, for the generation of MQTT traffic

we have used the MQTT Python client library1, for CoAP we

have used the Phyton library CoAPthon2, and for AMQP we

have used the Phyton library Pika3.

We have used 13 distributions for training, and 16 distribu-

tions comprising 2193 packets for testing, which are correctly

classified by the neural network. In our evaluation we are more

interested in the performance of the approximations. Table I

reports the average error and standard deviation between the

approximated and the floating point versions at the hidden
layer, after applying the activation function and at the output
nodes. The results show that the error is small. Indeed, the

TABLE I
ERROR ESTIMATION

Hidden Activation Output
err.% std.dev. err.% std.dev. err.% std.dev.

MQTT 0,02 0,0001 1,17 0,0240 1,22 0,0218
AMQP 0,03 0,0002 0,01 0,0003 0,01 0,0002
CoAP 0,04 0,0003 0,49 0,0081 2,57 0,0267

approximated neural network classifies all the test distributions

exactly as the floating point version. This shows that the

approximations are adequate, while the sign function does not

alter the activation function appreciably.

On the other hand, performance is substantially better for

the approximated version. Table II shows the throughput

achieved by the different versions, using the incremental up-

date in all cases, in terms of packet rate (Millions of Packet per

second). The C versions, both floating point and approximated,

1https://pypi.python.org/pypi/paho-mqtt/1.2
2https://github.com/Tanganelli/CoAPthon
3https://pypi.python.org/pypi/pika

are executed over Ubuntu on an Intel i7 quadcore PC at

2.5 GHz. The NP version is executed on the NP-5, running at

500 MHz with 64 parallel pipelines. The results show that the

TABLE II
PERFORMANCE COMPARISON

C (floating) C (approx.) NP-5
Throughput 7.04 MPps 30.3 MPps 98.5 MPps

approximated C version runs 4.3 times faster than the floating

point version, while the NP implementation runs 14 times

faster, and is over 3 times faster than the approximated C

version. On top of that, the NP-5 version includes packet

acquisition, inspection, parsing and forwarding, which are not

accounted for in the C implementation, and which could con-

siderably impact performance. Assuming packets are longer

than 127 bytes, the NP-5 can handle a 100 Gbps channel.

V. CONCLUSION

We have developed a neural network packet classifier for

the IoT running at 100 Gbps on a network processor. We have

discussed a set of approximations to make the implementation

feasible and to improve performance. Given the increasing

adoption of machine learning at the network level, these

techniques may find applications in other fields, such as

recognition and diagnosis and data analysis. These aspects are

part of our future work.

REFERENCES

[1] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communication Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[3] O. E. Ferkouss, I. Snaiki, O. Mounaouar, H. Dahmouni, R. B. Ali,
Y. Lemieux, and C. Omar, “A 100Gig network processor platform
for OpenFlow,” in Proceedings of the 7th International Conference on
Network and Service Management, Oct. 2011.

[4] T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400G+ packet
classification,” in Proceedings of the 13th International Conference on
High Performance Switching and Routing, June 2012.

[5] M. E. Kounavis, A. Kumar, H. Vin, and R. Yavatkar, “Directions in
packet classification for network processors,” 2003.

[6] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions
in traffic classification,” IEEE Network, vol. 26, no. 1, January 2012.

[7] P. Ohm, D. Sicker, and D. Grunwald, “Legal issues surrounding mon-
itoring during network research,” in In Proceedings of the 7th ACM
SIGCOMM Conf. on Internet Measurement, 2007, pp. 141–148.

[8] A. Bär, P. Svoboda, and P. Casas, “MTRAC - discovering M2M devices
in cellular networks from coarse-grained measurements,” in Proceedings
of the International Conference on Communications, June 2015.

[9] L. Grimaudo, M. Mellia, E. Baralis, and R. Keralapura, “SeLeCT: Self-
learning classifier for internet traffic,” IEEE Transactions on Network
and Service Management, vol. 11, no. 2, pp. 144–157, June 2014.

[10] F. Shen, C. Pan, and X. Ren, “Research of P2P traffic identification based
on BP neural network,” in Third International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, Nov 2007.

[11] R. Gopalapillai, J. Vidhya, D. Gupta, and T. S. B. Sudarshan, “Classi-
fication of robotic data using artificial neural network,” in IEEE Recent
Advances in Intelligent Computational Systems, Dec 2013.

[12] H. Trussell, A. Nilsson, P. Patel, and Y. Wang, “Characterization,
estimation and detection of network application traffic,” in Proceedings
of the 13th European Signal Processing Conference, Sept. 2005.

18412

