

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38100 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

Efficient coverage optimization in energy-constrained
Wireless Sensor Networks

Luigi Palopoli, Roberto Passerone and Paolo Toldo

April 2009

Technical Report Number: DISI-09-023

.

Efficient coverage optimization in energy-constrained
Wireless Sensor Networks

Luigi Palopoli
DISI - University of Trento

via Sommarive 14
38100 Povo di Trento (TN),

Italy
luigi.palopoli@unitn.it

Roberto Passerone
DISI - University of Trento

via Sommarive 14
38100 Povo di Trento (TN),

Italy
roberto.passerone@unitn.it

Paolo Toldo
DISI - University of Trento

via Sommarive 14
38100 Povo di Trento (TN),

Italy
paolo.toldo@studenti.unitn.it

ABSTRACT
We consider the problem of optimizing the area coverage of
a wireless sensor network under energy consumption con-
straints. Following existing approaches, we use a mixed in-
teger linear program formulation. We then show how to use
partitioning techniques, developed in the context of VLSI
place and route, to decompose the problem into separate
sub-problems, overcoming the exponential complexity typ-
ical of integer linear programming, while minimizing the
loss in optimality. In addition, we are able to evaluate the
achieved degree of optimality by computing relatively tight
bounds with respect to the optimal solution. Finally, we em-
ploy simple but effective heuristics to further improve our
solution. The results show that our procedure is very ef-
ficient and is able to find solutions that are very close to
optimal.

Categories and Subject Descriptors
C.3 [Computer System Organization]: Special-purpose
and application-based systems Real-time and embedded sys-
tems; G.1.6 [Numerical Analysis]: Optimization integer
programming

General Terms
Algorithms, Design, Performance

Keywords
Energy aware, scheduling, coverage, optimization, partition-
ing, Wireless Sensor Networks

1. INTRODUCTION
Among embedded devices, wireless sensor networks (WSN)

are emerging as one of the most interesting innovations in
terms of potential areas of application and impact in fields
such as security, health care, disaster management, agricul-
tural monitoring and building automation. The most rele-
vant feature of a WSN is that it is a dynamic distributed
system, in which complex tasks are performed through the
coordinated action of a large number of small autonomous
devices (nodes). In this paper, we address the problem of
maximizing the lifetime of the network which is typically
bounded by the available energy in the node, especially when
the system is deployed in a remote environment and/or when
maintenance and battery replacement is costly. The objec-
tive is therefore to design distributed algorithms for data

processing and resource management that attain an opti-
mal trade-off between functionality, robustness and energy
consumption.

A popular way for pursuing this result is the application
of “duty-cycling”. The idea is to keep a node inactive for a
long period of time when its operation is not needed, and
then to awake it for a short interval to perform its duties
(e.g., to sense the surrounding environment). Here we fo-
cus on the problem of determining a sequence of wake-ups
which maximizes the average area “sensed” by the network
given a desired value for the lifetime. Several methods have
been developed to solve this problem. In general, these can
be classified as centralized techniques, which make use of
global information about the deployment, and distributed
techniques, which are typically limited by network connec-
tivity, but can more easily adapt to changes in the network.
In all cases the result is a static or dynamic pattern of acti-
vations (schedule) for the nodes that determines their active
and sleep times.

Our work falls in the category of centralized off-line tech-
niques, which are most appropriate for static deployments
in relatively controlled environments, such as applications in
industrial automation or building management. In this case,
an off-line method may provide a higher degree of optimiza-
tion and avoid costly (also in terms of energy consumption)
message exchanges required to perform the on-line computa-
tion. This problem may be solved exactly as a mixed integer
linear program (MILP), but this approach is impractical for
networks with a large number of nodes due to the inherent
exponential computational complexity. Instead, we are in-
terested in near optimal optimization algorithms that are
able to scale well with the size of the deployment.

In this paper, we start from the MILP formulation pro-
posed in [9] (which will be summarized in details in Sec-
tion 2) and show how to (Section 3): (i) partition the prob-
lem into smaller sub-problems which are more easily handled
by optimization algorithms, thus drastically reducing com-
plexity, (ii) compute bounds on the degree of sub-optimality
that we achieve, and (iii) further optimize the result us-
ing simple but effective heuristics. The main partitioning
task is carried out by adapting standard VLSI partitioning
techniques for place and route. The results, presented in
Section 4, demonstrate that our procedure is particularly
efficient and the computed bounds show that we are able to
find close to optimal solution. Finally, Section 5 discusses
possible extensions and future work.

1

1.1 Related work
Slijepcevic et al. are among the first to address the prob-

lem of maintaining full coverage while minimizing power
consumption through an active/sleep schedule [10]. In the
proposed approach, the nodes are partitioned into disjoint
sets, where each set of nodes completely covers the moni-
tored area. The sets are activated one at a time in a re-
peating sequence, thus inducing a schedule. The authors
propose a quadratic time heuristic which starts by dividing
the monitored area in fields covered by exactly the same
nodes. The fields covered by the least number of nodes are
said to be critical. The heuristic covers the most critical
fields first, recomputes the criticalities, and then proceeds
by selecting a new set of nodes. The algorithm terminates
when all nodes have been included in the schedule. The
technique is shown to significantly improve over a simulated
annealing approach, both in terms of lifetime and runtime
of the optimization. However, no exact solution is derived
in the paper.

The work proposed by Cardei et al. is the most related to
ours in terms of optimization approach [3]. The objective of
the work is to maximize the network lifetime by scheduling
the activity of the nodes while maintaining full coverage of a
finite set of points. This is achieved by dividing the sensors
into sets which are activated sequentially. Unlike the previ-
ous work, a sensor may be part of different sets (so that a
node may be activated several times over a period), and the
active duration for each set is computed optimally by the
algorithm to maximize the lifetime. The optimization prob-
lem is formulated as a MILP. To cope with the complexity
of the problem, the authors develop two heuristics: the first
is based on a linear relaxation, while the second is similar
to that proposed by Slijepcevic and Potkonjak, where each
node is only partially assigned to a set for a duration equal
to a lifetime granularity parameter. While the authors do
provide an exact formulation, they only present results for
the two heuristics.

A different solution strategy to a very similar problem is
the one advocated by Alfieri et al. [2]. The authors formulate
the problem as a mixed ILP and propose a solution strategy
that uses two coordinated optimization problems. With the
first one, they generate tentative “subnets”, i.e., subsets of
nodes that have to be switched on at the same time. The
second is a linear program that computes the total time
every subnet has to be active. The authors also propose a
greedy heuristic, amenable to a distributed implementation,
but its result can be as low as 40% of the optimal.

The same problem (i.e., maximizing the lifetime and main-
taining a full coverage of a specified set of points) is ad-
dressed by Liu et al. [7]. The authors propose a two step
procedure. In the first step, they find an upper bound of the
maximal lifetime by solving a linear program which consid-
ers different types of costs (including the cost of sensing and
of communication). As a result, they find a specification
on the total time a node should be active, which is used in
the second step to generate a schedule and a route of the
messages to the base station.

Several factors distinguish our proposed technique from
the existing work. First, we do not aim at maintaining full
coverage of an area or of a set of points, but rather at es-
tablishing a periodic schedule that guarantees the largest
average coverage of an area over a scheduling period given
a specified lifetime of the system. By doing so, we are able

to compute the optimal trade-off between average coverage
and lifetime.

As for many approaches, and following [9]), we too formu-
late the problem as a MILP, which is known to have expo-
nential complexity. Our objective is to make this technique
scalable to a large and dense number of nodes. To do so, in-
stead of considering a continuous relaxation as in [3], we par-
tition and solve separate problems in a way that minimizes
the potential loss in optimality. The amount of partitioning
can also be controlled to strike the desired trade-off between
optimality and computational complexity. This way we can
handle more complex problems than in [9], where nodes are
restricted to wake up exactly once per period to decrease
complexity. In addition, because we have full information
on the partitioning process, we are able to compute rela-
tively tight bounds with respect to the optimal solution,
even when this is not known.

2. PROBLEM STATEMENT
We briefly summarize the technique proposed in [9]. We

assume that a set of sensor nodes N is used to monitor a set
of points P . The two sets are related by a binary coverage
relation R ⊆ N × P , where (n, p) ∈ R if and only if n sees
(or covers) p. We denote by r(p) the set of nodes that cover
p. Points can be given a different weight (certain points may
be more important than others) by a function w : P → R.
For instance, if a point p represents an entire region (covered
by the same nodes) then w(p) could be set to the area of that
region [9]. The identification of points or regions, and the
determination of their weight, is orthogonal to the technique
that we present in this paper, and can be done using one of
the many methods described in the literature [10, 11, 6, 9].

The system operates according to a periodic schedule.
The period, called the epoch, is denoted by E. In our prob-
lem, the lifetime of the system is determined by the awake
or activation interval I of a node, i.e., the interval during
which a node is awake in the epoch. At any time t, the
set of nodes that are awake at that time defines a a cov-
ering function S(t), equal to the sum of the weights of all
the points covered by the nodes that are awake (clearly, the
same point is not counted multiple times). The objective
of the optimization is to maximize the sum over the epoch

of the covered area, i.e., the integral S =
R E

0
S(t). Below,

we will refer to this cost function by simply using the word
“coverage”. For future purposes, it is also useful to introduce
the restriction SPs

(t) that considers only a subset Ps ⊆ P
in the computation of the covering function. The integral of
this function over the epoch will be denoted as SPs

.
We assume that the epoch is discretized into an integer

number of elementary time units (slots) and that nodes wake
up and go to sleep only at slot boundaries. Without loss
of generality, we will consider slots of size 1. Under this
assumption, we can set up our problem as a Mixed Integer
Linear Program (MILP).

To this end, we introduce a set of binary coverage variables
Cp,k that are equal to 1 if point p is covered in slot k. Using
the coverage variables and the w function, the function S to
be optimized can be computed as;

S =
E−1
X

k=0

X

p∈P

Cp, k · w(p). (1)

Our objective is to maximize S, which depends on the sched-

2

ule. To model the schedule, we introduce a set of binary
scheduling variables xn,k that are equal to 1 if node n is
active in slot k. The optimization problem can therefore be
stated as follows [9]:

max

E−1
X

k=0

X

p∈P

Cp, kw(p). (2)

∀p ∈ P ,∀k ∈ [0, E − 1], Cp,k ≤
X

n∈r(p)

xn,k (3)

∀p ∈ P ,∀k ∈ [0, E − 1],∀n ∈ r(p), Cp,k ≥ xn,k (4)

∀n ∈ N ,
E−1
X

k=0

xn, k = I (5)

xn,k ∈ {0, 1} , Cp, k ∈ R

\

[0, 1] (6)

In this formulation, constraint (3), (6) are instrumental to
the computation of the Cp, k variable, while constraint (5)
enforces that each node stays awake for an interval I for
each epoch. Although the Cp, k variable can be relaxed to
be a continuous variable (without changing the problem),
this formulation displays severe scalability issues that moti-
vated our heuristic approach presented below. In the sequel,
we will denote by P(N , P ,) the coverage problem defined
over the sets N of nodes and P of points. Likewise, we
denote by P⋆(N , P) the schedule of the nodes correspond-
ing to the optimal solution. For the optimal schedule, we
will denote by cP⋆(N ,P) the value of the integral S and by
cP⋆(N ,P)|Ps

(with Ps ⊆ P) the value of the integral SPs
.

3. A SCALABLE ALGORITHM
To efficiently solve the problem described in the previous

section, we use an algorithm organized in three phases, as
shown in Figure 1. The first phase consists of partition-

Figure 1: Overall optimization phases

ing the set N of nodes into disjoint subsets N1,N2, . . . ,Nm,
such that N =

Sm

i=1 Ni. We then solve the coverage prob-
lem on each partition independently, in the second phase.

Due to the exponential complexity of the MILP, the cumu-
lative time required to optimize the coverage on the parti-
tions is radically smaller than the one required to solve the
problem as a whole. However, in order to deal with each
sub-problem independently, we must neglect the interaction
between nodes contained in different partition. While we
partition the nodes in a way that minimizes this interaction,
the solution obtained by combining the optimal schedules of
the partitions is necessarily sub-optimal for the problem as a
whole. In the final phase, we recombine the individual sched-
ules. Remarkably, we are able to estimate upper bounds for
the deviation between the optimal and the sup-optimal so-
lutions. Finally, we can improve the coverage using a simple
gradient descent heuristic, reducing the gap from the maxi-
mum.

Clearly, the application of the divide and conquer ap-
proach outlined above greatly improves the scalability of the
solution, as long as the overhead incurred in the first and in
the last phases can be kept in check. With this requirement
in mind, we now describe each of the phases in details.

3.1 Partitioning the problem
The construction of the partition {N1, N2, . . . , Nm} out

of set N can itself be seen as a MILP optimization prob-
lem. Indeed, the choice of which nodes should be placed in
each partition is driven by the requirement that interactions
between the nodes in the different partitions should be min-
imized. This way, we can reduce the mismatch between the
solution of the entire coverage problem and the aggregate so-
lution of the different sub-problems (assumed independent).
Roughly speaking, if two nodes cover disjoint sets of points,
then their schedules can be decided independently, since the
relative timing of their activations does not affect the total
coverage. Conversely, if they share points in their sensing
range, then they must be scheduled at different times in or-
der to maximize coverage, since points that are covered by
several points at the same time are counted only once. In
this case we say that the two nodes interact. The strength of
the interaction depends on the weight of the shared points.

Since non-interacting nodes can be treated independently,
they can be assigned to different partitions. The larger the
interaction, instead, the more convenient it is to keep nodes
in the same partition, to better account for the shared cov-
erage. Thus, the goal of this phase is to find a partition that
minimizes the total interaction between nodes that belong
to different sets.

The optimal partitioning problem is well known in the
literature, as it applies to communication design and to VLSI
placement algorithms [4]. It is easy to express it as an integer
linear program. Without loss of generality, consider the case
of splitting the set N into two partitions N1 and N2 of equal
size. Let pn be a binary variable, with n ∈ N , that takes
value 0 if node n belongs to partition N1 and 1 if it belongs to
partition N2. Equal size partitions can be obtained through
the following constraint:

X

n∈N

pn =
|N |

2

Likewise, for each point p, we introduce two binary variables

V
(1)

p V
(2)

p that say if point p is covered by at least one node

in one of the two partitions. Namely, V
(1)

p (V
(2)

p) is 1 if p is
covered by at least one of the node in the partition N1 (N2)

3

and 0 otherwise. The two variables can be computed as:

V (2)
p =

_

n∈N|(n, p)∈R

pn (7)

V (1)
p =

_

n∈N|(n, p)∈R

pn, (8)

where
W

denotes the OR operation and pn denotes the logi-
cal negation of pn. These two expressions can be translated
into linear constraints on the variables by standard tech-
niques. In this setting, the total weight of the points seen by

nodes present in both partitions is given by:
P

p∈P w(p)(V
(1)
p +

V
(2)

p − 1). Therefore, we obtain a Boolean Linear Program.
Although much more practical than the coverage problem
(the number of variables is much smaller), the asymptotic
behavior is still exponential. Luckily, there exist efficient
and effective heuristics for the partitioning problem, such
as the algorithm proposed by Fiduccia and Mattheyses [5],
initially developed for VLSI design, which has linear com-
plexity in the number of points covered by the nodes. As
clearly shown in the experimental section, the price to pay
in terms of distance from the optimal solution is fairly ac-
ceptable.

When the number of nodes is large, partitioning can be
applied recursively or the number of partitions can be in-
creased to obtain separate sets of nodes with the desired size
(and which can be handled by the ILP solver). This way, a
trade-off can be established between optimality (with fewer
partitions) and computational efficiency. We discuss how to
properly combine the schedules for the different partitions
later in Section 3.3.

3.2 Solving and bounding the problem
From the two partitions N1 and N2 we can identify three

sets of points: P1 contains the points seen only by nodes in
N1, P2 contains the points seen only by nodes in N2, and
P1, 2 contains the points seen by nodes in both partitions.
In fact, partitioning is done so that the total weight of the
nodes contained in P1,2 is minimal.

A possible solution for the coverage problem can therefore
be found by solving the two problems P(N1, P1), P(N2, P2)
and then combining the two corresponding optimal sched-
ules P⋆(N1, P1) and P⋆(N2, P2). Let P+(N , P) be the
combined schedule obtained when nodes N1 are scheduled
according to P⋆(N1, P1), and nodes N2 are scheduled ac-
cording to P⋆(N2, P2), and let cP+(N ,P) be the coverage
obtained with this schedule. This solution, produced by
our procedure, is necessarily suboptimal, since the schedule
P+(N , P) is a feasible solution for P(N , P). More intu-
itively, while the solutions of the two subproblems maximize
the coverage in P1 and P2 respectively, it fails to consider
the interaction on the “overlapped” points in P1,2.

The structure of the problem, however, allows us to com-
pute an upper bound on the distance between the opti-
mal and the suboptimal coverage (cP⋆(N ,P)−cP+(N ,P)).
Given the optimal schedule P⋆(N , P), we can restrict the
computation of the coverage to the two set P1 and P2 get-
ting cP⋆(N ,P)|P1

, cP⋆(N ,P)|P2
respectively. Because the

sub-problems are less constrained, it follows that:

cP⋆(N1,P1) ≥ cP⋆(N ,P)|P1
,

cP⋆(N2,P2) ≥ cP⋆(N ,P)|P2
.

(9)

The total coverage of cP⋆(N ,P) can be found summing up

the three contributions of sets P1, P2 and P1,2:

cP
⋆(N ,P) = cP

⋆(N ,P)|P1
+ cP

⋆(N ,P)|P1
(10)

+ cP
⋆(N ,P)|P1,2

.

Hence, in view of (9), we can write:

cP
⋆(N ,P) ≤ cP

⋆(N1,P1) + cP
⋆(N2,P2)

+ cP
⋆(N ,P)|P1,2

.

Considering that

cP
+(N ,P) = cP

+(N ,P)|P1
+ cP

+(N ,P)|P2

+ cP
+(N ,P)|P1,2

,

we can re-write (10) as

cP
⋆(N ,P) − cP

+(N ,P) ≤ cP
⋆(N ,P)|P1,2

− cP
+(N ,P)|P1,2

.

An upper bound for cP⋆(N ,P)|P1,2
can be found assuming

that each point in P1,2 is covered in a disjoint awake interval
by all the nodes that have it in their range:

cP
⋆(N ,P)|P1,2

≤
X

p∈P1,2

min

E

I
, |r(p)|

ff

w(p).

The cP+(N ,P)|P1,2
term can be computed directly from

the schedule P+(N , P). The bound B can therefore be
computed as follows:

B =
X

p∈P1,2

min

E

I
, |r(p)|

ff

w(p) − cP
+(N ,P)|P1,2

In practice, the bound assumes that the optimal solution will
do as well as the sub-problems on the individual partitions
(which is optimistic), and will do the absolute best on the
overlaps (which is also optimistic). Our experiments show
that, because the overlaps are minimized, the bounds are in
practice very tight (see Section 4).

3.3 Final optimization
The obvious way to combine schedules computed inde-

pendently for each partition is simply to synchronize them
at the beginning of the epoch. In other words, we run the
separate schedule “in phase”. This choice is, however, arbi-
trary. Recall, in fact, that a schedule is periodic and that
we evaluate the coverage over the entire epoch. Coverage
is therefore invariant to translations of the schedule on the
time axis. Indeed, the solution returned by the ILP solver
is only one of several equivalent solutions that can be ob-
tained by shifting the awake interval of all nodes repeatedly
one slot to the right or to the left.

Coverage on points that are shared between nodes of dif-
ferent partitions, however, is not optimal, and is therefore
affected by changing the relative phase of the schedules. Our
first heuristic to improve the solution is therefore to recom-
pute the total coverage under all possible shifts, and run
the schedules, possibly out of phase, for the best result. In
practice, we need only recompute the coverage of the points
shared by the partitions (the “overlaps”), since, as pointed
out, the coverage on the partitions themselves is constant.
Thus, the complexity of this computation is linear in the
number of overlapping points times the number of slots in
the epoch. This heuristic is particularly simple and fast, but
provides excellent results. In addition, since the coverage on
the individual partitions is not affected by the operation, we

4

can recompute tighter bounds on the solution that take the
new schedule on the overlaps into account.

The extension to several schedules, obtained from a recur-
sive application of the partitioning procedure, is not totally
straightforward, as the number of possible relative shifts
grows exponentially with the number of partitions. We
have found that, empirically, it is convenient to re-phase the
schedules towards the root of the partitioning tree, rather
than at the bottom, to take advantage of more topology
information.

For an additional improvement, we consider the increase
or decrease in coverage which results from swapping the
awake time of any pair of nodes in the combined schedule.
This procedure can be repeated in a gradient descent fash-
ion until no more swaps provide any improvement. Inspired
by the partitioning algorithms [4], we have implemented a
procedure that improves on this simple heuristic, and per-
forms swaps that temporarily decrease the coverage (if no
other swap would increase it), in the hope that a new con-
figuration is reached which will bring the gradient descent
to an even better solution. This procedure, which has poly-
nomial computational complexity, is shown in Algorithm 1.
The procedure performs n/2 swaps per iteration, where n

Algorithm 1 Gradient descent algorithm

1: current is the given schedule
2: repeat

3: best = previous = current
4: gmax = gcurrent = 0
5: for (i = 0 to n/2) do

6: find na, nb which maximize gain gi

7: swap na and nb in current and lock them
8: gcurrent = gcurrent + gi

9: if (gcurrent > gmax) then

10: gmax = gcurrent

11: best = current
12: end if

13: end for

14: current = best
15: unlock all nodes
16: until (best = previous)

is the number of nodes. In line 6 we find the best swap,
whether or not it increases the coverage, and lock the nodes
in their new places so that they are not further reconsid-
ered during the iteration. At the same time, if there is an
improvement, we keep track of the best schedule (line 9).
When all nodes have been considered for swapping, we com-
mit the best solution, unlock all the nodes, and repeat if
there was an improvement. In this process, the schedules on
the individual partitions may change (decrease) to favor a
larger coverage of the overlapping points, since all nodes are
affected by the optimization. For this reason, bounds can-
not be updated after this step. The previously computed
bounds, however, still apply.

4. EXPERIMENTAL RESULTS
We have implemented a series of scripts and Java pro-

grams to realize the three optimization phases described in
Section 3, including the data preparation and the coordina-
tion of the different tools, for a total of approximately 4,000
lines of code.

In order to carry out the first phase of the algorithm,
we model the partitioning problem as a graph G = (V, E).
The set of vertices V corresponds to the set of nodes N in
the system. Edges, instead, are used to model the overlaps
between the sensing ranges of the nodes: an edge exists be-
tween two nodes ni and nj whenever they cover a common
point. Edges are weighted by the sum of the weights of
the common points in the sensing range of the nodes, as a
measure of the degree of overlap. For instance, if nodes ni

and nj have points p1 and p2 in common, with w(p1) = w1

and w(p2) = w2, then ni and nj would be connected by an
edge with weight w1 + w2. Our objective is to partition the
set of nodes so that the overlap between the partitions is
minimized. This can be accomplished by partitioning the
vertices into two sets of equal size, so that the sum of the
weights of the edges that go across the partitions is min-
imum. This formulation matches exactly the one used by
min-cut placers in VLSI design, for which several tools are
available. In this work, we have used the freely available
MLPart [8], part of the Capo placer, which is an efficient
implementation of the Fiduccia-Mattheyses algorithm.

To solve the optimization problems (second phase of the
algorithm) we have used the freely available Gnu Linear Pro-
gramming Kit (glpk). Our software is also able to carry out
the third phase by performing the optimal re-phasing of the
schedules and to optionally execute the simple gradient de-
scent algorithm described in Section 3.3.

We have evaluated the effectiveness of our approach on
several random topologies, ranging from a few tens of nodes
to a thousand. For the smaller topologies, we are able
to compute the absolute optimal schedule using the exact
MILP formulation, and we can therefore compare the ap-
proximate solution and evaluate the tightness of our bounds.
Topologies with 60 nodes take already 40 hours to compute
exactly. Larger topologies are therefore impractical using
glpk. Although commercial solvers may be able to handle
a larger number of nodes exactly, the asymptotic behavior
will still be exponential, requiring the use of heuristics.

The results of our experiments are shown in Table 1. The

Top. Nodes Points Parts Time (s) Bound %
1 1000 3125 64 88 1.8
2 1000 3483 64 107 1.9
3 1000 4149 64 118 0.9

4 700 2202 64 71 0.9
5 700 2681 64 79 1.3
6 700 3215 64 85 2.2

7 500 1021 64 52 0.4
7’ 500 1021 32 35 0.1
8 500 3023 64 76 4.5
8’ 500 3023 32 57 2.3
9 500 3452 64 78 7.2
9’ 500 3452 32 61 3.0

10 300 1958 32 38 1.1
10’ 300 1958 8 22 0.0
11 300 1736 32 39 3.2
11’ 300 1736 8 757 0.8

Table 1: Experimental results, large topologies

topologies are created by placing the nodes randomly on a

5

target area, while points are taken to be the fields as de-
scribed in [10, 9] and their weigth is set equal to the size of
the region they represent. We then report the total number
of partitions, and the time required to perform the opti-
mization. For these topologies we are unable to compute
the exact optimal solution. Instead, the last column shows
the bound of our solution from the optimal, computed af-
ter the re-phasing operation. For the larger topologies, the
additional gradient descent proves to be too expensive. The
absolute coverage, which varies between 20% and 85% of the
coverable area is not reported to reduce the size of the table.

We first note that the processing time is in the order of
a few minutes even for the large topologies with 64 parti-
tions. Sometimes the overhead for partitioning exceeds the
optimization time, so that fewer partitions run faster with
better coverage. This suggests that it is generally better to
partition the problem up to the largest number of nodes that
can be handled by the ILP solver, and no more.

The bounds are generally very low, indicating that our
strategy is able to compute a solution which is very close to
the optimal. Topologies such as 7 and 7′ show that, with
a reduced number of partitions, the bound improves. In
one case (11′), the running time has been larger than usual,
denoting some difficulties in the optimization.

Table 2 compares the bounds with the actual distance
from the optimal solution. We show the number of nodes

Nodes Points Bound % Act. Dist. % Diff. %
30 186 0.10 0.10 0.00
30 230 0.73 0.69 0.04
30 578 1.48 1.45 0.03
35 425 0.91 0.74 0.17
60 587 1.27 0.90 0.37

Table 2: Tightness of bounds

and points, the bound computed by our procedure, and the
actual distance from the optimal solution. The last column
shows the error in the bound (expressed in percentage of the
coverable area), which is low, although it increases with the
size of the deployment.

5. CONCLUSIONS
We have addressed the off-line problem of scheduling the

wake-up times of a set of wireless nodes to maximize sens-
ing coverage given a desired energy consumption level and
lifetime. We employ partitioning techniques to recursively
decompose an exponential problem and make it practical
with current solvers. We have also shown how to compute
upper bounds for the real optimal solution, and presented
heuristic techniques to locally improve the final result.

Currently, we are considering the converse problem of
maximizing the lifetime of the system given a desire average
coverage. This could be set up as an independent prob-
lem, or we can use our current formulation using a bisection
procedure to identify the optimal point. The number of par-
titions could progressively decreased in the bisection process
to improve accuracy.

MILP formulations abound in the context of wireless sen-
sor networks, and involve also problems such as routing
topology creation [1] and energy-aware performance max-
imization. We are currently exploring how to extend our

technique to these cases, which includes the creation of clus-
ters on the basis of node connectivity. One problem that we
need to address, for instance in the case of routing, is how
to deal with dependencies between partitions which are not
accounted for during the partitioning process itself. One
solution would be to locally augment the partitions with a
limited number of virtual nodes that model such dependen-
cies, in the spirit of the“terminal propagation” technique [4].
The evaluation of bounds would have to be adapted accord-
ingly.

6. REFERENCES
[1] J. N. Al-Karaki, R. Ul-Mustafa, and A. E. Kamal.

Data aggregation in wireless sensor networks - exact
and approximate algorithms. In IEEE Workshop on
High Performance Switching and Routing (HPSR)
2004, Phoenix, Arizona, USA, April 2004.

[2] A. Alfieri, A. Bianco, P. Brandimarte, and C. F.
Chiasserini. Maximizing system lifetime in wireless
sensor networks. European Journal of Operational
Research, 127(1):390–402, August 2007.

[3] M. Cardei, M. Thai, Y. Li, and W. Wu.
Energy-efficient target coverage in wireless sensor
networks. In Proc. of INFOCOM, 2005.

[4] A. E. Dunlop and B. W. Kernighan. A procedure for
placement of standard-cell VLSI circuits. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 4(1):92–98, January 1985.

[5] C. M. Fiduccia and R. M. Mattheyses. A linear time
heuristic for improving network partitions. In
Proceedings of the 19th Design Automation
Conference, pages 175–181, June 14-16, 1982.

[6] C. Huang and Y. Tseng. The coverage problem in a
wireless sensor network. In Proc. of the 2nd ACM Int.
Conf. on Wireless Sensor Networks and Applications
(WSNA03), September 2003.

[7] H. Liu, X. Jia, P. Wan, C. Yi, S. Makki, and
N. Pissinou. Maximizing lifetime of sensor surveillance
systems. IEEE/ACM Trans. on Networking,
15(2):334–345, 2007.

[8] MLPart. http://vlsicad.ucsd.edu/GSRC/
bookshelf/Slots/Partitioning/MLPart/.

[9] L. Palopoli, R. Passerone, G. P. Picco, A. L. Murphy,
and A. Giusti. Maximizing sensing coverage in wireless
sensor networks through optimal scattering of wake-up
times. Technical Report DIT-07-048, DIT, University
of Trento, July 2007.

[10] S. Slijepcevic and M. Potkonjak. Power efficient
organization of wireless sensor networks. In Proc. of
the IEEE Int. Conf. on Communications (ICC), June
2001.

[11] D. Tian and N. Georganas. A coverage-preserving
node scheduling scheme for large wireless sensor
networks. In First ACM Int. Wkshp. on Wireless
Sensor networks and Applications (WSNA), 2002.

6

