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Abstract—Sensor networks are increasingly used to control
and monitor industrial and manufacturing processes. In this
paper, we consider the problem of optimizing a cost function for
wireless sensor networks of this kind under energy consumption
constraints. We focus, in particular, on the problem of coverage
optimization through scheduling. Following existing approaches,
we use a mixed integer linear program formulation. We show
how to use partitioning techniques to decompose the problem
into separate subproblems, solved individually, overcoming the
exponential complexity typical of integer linear programming,
while minimizing the loss in optimality. In addition, we evaluate
the achieved degree of optimality by computing relatively tight
bounds with respect to the optimal solution. Finally, we employ
simple but effective heuristics to further improve our solution.
The results show that our procedure is very efficient and scalable,
and is able to find solutions that are very close to optimal. These
characteristics make our approach a perfect fit for large and fixed
deployments of wireless sensors, typical in factory automation and
industrial applications. To show the generality of the approach,
we apply our methodology to three different models of varying
complexity.

Index Terms—Design methodology, modeling, optimization
methods, partitioning algorithms, wireless sensor networks
(WSNs).

I. INTRODUCTION

A MONG embedded devices, wireless sensor networks
(WSNs) are emerging as one of the most interesting

innovations in terms of potential areas of application. They
have an increasing impact in fields such as security, health care,
disaster management, agricultural monitoring, and building
automation. This paradigm is of particular interest in an indus-
trial setting (witnessed by the WISA system from ABB [1]),
because a dense deployment of sensors enables engineers to
more accurately control and optimize process parameters in
manufacturing and to more effectively manage logistics [2], [3].
The most relevant feature of a WSN is that it is a dynamic dis-
tributed system, in which complex tasks are performed through
the coordinated action of a large number of small autonomous
devices (nodes). A problem of paramount importance for a
WSN is maximizing the lifetime of the network. The lifetime is
typically bounded by the amount of energy stored in each node
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Fig. 1. A topology where wake-up scheduling matters. The square represents
the area of interest, the points represent the nodes and the ellipses their sensing
range.

upon its deployment. This is true especially when the system
is deployed in a remote or harsh environment and/or when
maintenance and battery replacement is costly. For instance,
shutting down a production line for battery replacement could
have a significant impact on productivity. The objective is,
therefore, to design distributed algorithms for data processing
and resource management that attain an optimal tradeoff be-
tween functionality, robustness and energy consumption.

A popular way for pursuing this result is the application of
“duty-cycling.” The idea is to keep a node inactive for a long pe-
riod of time when its operation is not needed, and then to awake
it for a short interval to perform its duties (e.g., to sense the sur-
rounding environment). The operation is repeated periodically
and the period is called epoch (in our terminology). Clearly, the
duty-cycle (i.e., the fraction of time the node is active) is directly
linked to the amount of energy spent in every epoch, and hence
to the lifetime.

In this paper, we focus on the problem of determining a pe-
riodic sequence of wake-ups that maximizes a cost function re-
lated to the requested functionality. Because both the epoch and
the awake interval are fixed, the problem can be interpreted as a
maximization of the system functionality given a desired life-
time. Our strategy is to take advantage of the redundancy in
the network to improve the efficiency of executing the required
task. Consider, for instance, the example in Fig. 1, where three
nodes cover, with overlaps, a certain area. In this case, ensuring
that nodes 2 and 3 are not active at the same time is beneficial,
since they share a large portion of the area. In cases like this, a
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random schedule can miss considerable opportunities for opti-
mization. In general, since a point in the target area may be mon-
itored by multiple nodes, it is possible to identify a schedule of
the nodes that maximizes the average of the covered area. This
problem is the representative example of a much larger class in
which the cost function is somehow related to the sensing ac-
tion of the node when it is awake. Several methods have been
developed to solve this and similar problems. In general, these
can be classified as centralized techniques, which make use of
global information about the deployment, and distributed tech-
niques, which are typically limited by network connectivity, but
can more easily adapt to changes in the network. Our work falls
in the category of centralized offline techniques, which are the
most appropriate for static deployments in relatively controlled
environments, such as applications in industrial automation or
building management. In this case, an offline method may pro-
vide a higher degree of optimization and avoid costly (also in
terms of energy consumption) message exchanges required to
perform the online computation. This problem may be solved
exactly as a mixed integer linear program (MILP), but this ap-
proach is impractical for networks with a large number of nodes
due to the inherent exponential computational complexity. In-
stead, we are interested in near-optimal optimization algorithms
that are able to scale well with the size of the deployment.

We propose a methodology for solution of large scale opti-
mization problems for WSN centered around the following three
ideas: (i) partition the problem into smaller subproblems which
are more easily handled by optimization algorithms, thus drasti-
cally reducing complexity; (ii) compute bounds on the degree of
suboptimality that we achieve; and (iii) further optimize the re-
sult using simple but effective heuristics. The main partitioning
task is carried out by adapting standard VLSI partitioning tech-
niques for cell placement [4].

The methodology is first instantiated on the coverage maxi-
mization problem [5], inspired by previous work of Murphy et
al. [6]. After discussing the state-of-the-art, Section III briefly
recalls the problem formulation and shows how it can be solved.
In Section IV, we show that the applicability of the methodology
is in fact more general. In particular, we distill a fundamental
assumption that underlies the methodology and show two dif-
ferent instances of optimization problems that fall within the
assumption range, together with a closed-form expression for
the bound. In the first of these extensions, we explicitly con-
sider the probability of failure for the nodes. In the second one,
we maximize the minimum coverage achieved across the epoch.
The latter problem is particularly interesting when a guaranteed
coverage is requested to the WSN at any time. The different
steps of the methodology are displayed on a simple example
in Section V. An extensive set of experimental data presented
in Section VI demonstrates the scalability of the method, while
the computed bounds show that there are classes of problems
for which it usually identifies a near optimal solution. Finally,
Section VII discusses our future work.

II. STATE-OF-THE-ART

The problem of optimizing energy constrained industrial
WSNs has been approached from the perspective of the com-
munication protocols [7], [8]. Our viewpoint is complementary,

and we optimize the schedule for the sensing operation, rather
than for communication.

Slijepcevic et al. are among the first to address the problem of
maintaining full coverage, while minimizing power consump-
tion through an active/sleep schedule [9]. Nodes are partitioned
into disjoint sets, where each set of nodes completely covers
the monitored area. The sets are activated one at a time in a re-
peating sequence, thus inducing a schedule. The maximum life-
time is obtained using a valid partition with the largest number
of sets, a problem which is shown to be NP-complete.1 The au-
thors propose a quadratic time heuristic, which starts by dividing
the monitored area in fields covered by exactly the same nodes.
The fields covered by the least number of nodes are said to be
critical. The heuristic covers the most critical fields first, recom-
putes the criticalities, and then proceeds by selecting a new set
of nodes. The authors claim to significantly improve over a sim-
ulated annealing approach, both in terms of lifetime and runtime
of the optimization. However, no exact solution or bound is de-
rived in the paper.

The work proposed by Cardei et al. is the most related to
ours in terms of optimization approach [10]. The objective of
the work is to maximize the network lifetime by scheduling the
activity of the nodes, while maintaining full coverage of a finite
set of points. This is achieved by dividing the sensors into sets
which are activated sequentially. Unlike previous work, a sensor
may be part of different sets, and the active duration for each set
is computed optimally by the algorithm to maximize the life-
time. The optimization problem is formulated as an MILP. To
cope with complexity, the authors develop two heuristics, the
first based on a linear relaxation, the second similar to that pro-
posed by Slijepcevic and Potkonjak, where each node is only
partially assigned to a set for a duration equal to a lifetime gran-
ularity parameter. The authors do provide an exact formulation,
but only present results for the two heuristics and no bounds.

A different solution strategy is advocated by Alfieri et al. [11].
The authors formulate the problem as an MILP and propose a
solution strategy that uses two coordinated optimization prob-
lems. With the first one, they generate tentative subsets of nodes
that have to be switched on at the same time. The second is a
linear program that computes the total time every subnet has to
be active. The authors also propose a greedy heuristic, amenable
to a distributed implementation, but its result can be as low as
40% of the optimal.

The same problem (i.e., maximizing the lifetime and full cov-
erage of a specified set of points) is addressed by Liu et al. [12].
The authors propose a two step procedure. In the first step, they
find an upper bound of the maximal lifetime by solving a linear
program which considers different types of costs (including the
cost of sensing and of communication). As a result, they find a
specification on the total time a node should be active, which is
used in the second step to generate a schedule and a route of the
messages to the base station.

1We can solve this problem with our algorithm by optimizing the coverage
for an increasing number of slots. Since nodes wake up once per epoch, each
slot is a disjoint set of nodes. Since we find the optimal solution, we can achieve
full coverage whenever possible. The algorithm terminates as soon as full cov-
erage can no longer be achieved. The maximum number of slots for which this
happens is bounded by the number of nodes, which is a linear factor for each
particular topology. This shows that our problem is also NP-complete: if it were
polynomial, we could solve the full coverage problem in polynomial time.
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Several factors distinguish our technique from existing work.
First, we do not aim at maintaining full coverage of an area or
of a set of points (e.g., as in [10]), but rather at establishing a pe-
riodic schedule that guarantees the largest average coverage of
an area over a scheduling period, or minimum coverage for each
slot, given a specified lifetime of the system. By doing so, we are
able to compute the optimal tradeoff between average coverage
and lifetime. More importantly, we develop a generic method-
ology that can be applied to models of varying complexity by
adjusting the form of the objective function and the constraints.
To address the importance of the system reliability, we could im-
pose a minimum coverage constraint in the problem. The con-
straint guarantees that a percentage of the monitored area is al-
ways covered during the lifetime of the system.

As for many approaches, and following [5], we too formu-
late the problem as an MILP, which has exponential complexity.
Our objective is to make this technique scalable to a large and
dense number of nodes. To do so, instead of considering a con-
tinuous relaxation as in [10], we partition and solve separate
problems in a way that minimizes the potential loss in opti-
mality. The amount of partitioning can be controlled to strike
the desired tradeoff between optimality and computational com-
plexity. The idea of applying partitioning techniques is also em-
ployed by Guo et al. [13] who use a statistical approach to count
targets in an area while avoiding double-counting. In addition to
considering a different problem (maximization of average cov-
erage), the distinctive feature of our work is that we use full in-
formation on the partitioning process to compute relatively tight
bounds with respect to the optimal solution, even when this is
not known.

Our technique assumes a given topology for the network, mo-
tivated by our chosen industrial field of application. Achieving
the best spatial sensor placement has also been studied [14].
Solution techniques include integer programming [15], greedy
heuristics [16]–[18] and virtual force methods [19]. These
works complement our temporal distribution and can be ap-
plied in parallel to achieve further improvements.

III. THE PROPOSED METHODOLOGY

Our goal is to efficiently solve large scheduling problems in
the context of wireless sensor networks that involve the opti-
mization of some cost function. Our focus on this paper lies,
in particular, on coverage problems. These problems are typi-
cally characterized by a complexity that grows exponentially in
the number of nodes. To avoid the exponential growth, we solve
a number of smaller problems obtained through a careful par-
titioning of the initial setup. Because this approach may lead
to a suboptimal global solution, we are interested in deriving
bounds to characterize the quality of the result. In this section,
we present the general approach and show how the bounds can
be computed in a generic way. In the next sections we will con-
sider more specific models, and validate our technique through
experimental results.

We will present our methodology by way of a concrete ex-
ample, which we have used in our previous work [5], and that we
briefly summarize here. We assume that a set of sensor nodes

monitors a set of points . The two sets are related by a binary
coverage relation , where if and only
if sees (or covers) . We denote by the set of nodes that
cover . Points can be given a different weight (certain points
may be more important than others) by a function .
For instance, if a point represents an entire region, then
could be the area of that region [5]. The identification of points
or regions, and the determination of their weight, is orthogonal
to the technique that we present in this paper, and can be done
using one of the many methods described in the literature [5],
[9], [20], [21].

The system operates according to a periodic schedule. The
period, called the epoch, is denoted by . In our problem, the
lifetime of the system is determined by the awake or activation
interval I of a node, i.e., the interval during which a node is
awake in the epoch. The epoch and interval of the system are
determined based on the system time constant. In particular, the
duration of the epoch corresponds to the maximum interval be-
tween two consecutive monitoring of each point. Consequently,
the epoch should be chosen no greater than the minimum in-
terval between two events to be monitored.

At any time , the set of nodes that are awake at that time
defines a covering function , equal to the sum of the weights
of all the points covered by the nodes that are awake (clearly,
the same point is not counted multiple times). The objective of
the optimization is to maximize the sum over the epoch of the
covered area, i.e., the integral

(1)

Below, we will refer to this cost function simply as “coverage.”
For future purposes, it is also useful to introduce the restriction

that considers only a subset in the computation
of the covering function. The integral of this function over the
epoch will be denoted as .

We assume the epoch is discretized into an integer number of
slots and that nodes are switched on and off only at slot bound-
aries. It can be shown that this discretization does not impair
optimality [5]. Without loss of generality, we will consider slots
of size 1. Under this assumption, we can set up our problem as a
Mixed Integer Linear Program (MILP). To do so, we introduce a
set of binary coverage variables that are equal to 1 if point

is covered in slot

point is covered during slot
otherwise

(2)

Using the coverage variables and the function, the func-
tion to be optimized can be computed as

(3)

Our objective is to maximize , whose value depends on the
schedule. To model the schedule, we introduce a set of binary
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scheduling variables that are equal to 1 if node is active
in slot

if is awake in slot
otherwise

(4)

The optimization problem can then be stated as follows [5]:

(5)

(6)

(7)

(8)

(9)

In this formulation, constraints (6) and (7) are instrumental to
the computation of the variable, while constraint (8) en-
forces that each node stays awake for an interval for each
epoch. The ratio is the duty cycle which determines the
energy consumed by each node, and, therefore. the lifetime of
the system. Because our cost function is proportional to the av-
erage coverage (through the epoch), we define this problem as
deterministic average coverage optimization (DACO).

Although the variables can be relaxed to be continuous
[as indicated by constraint (9)], this formulation displays severe
scalability issues that motivated our heuristic approach. In the
sequel, we will denote by the coverage problem defined
over the sets of nodes and of points.

Likewise, we denote by the schedule of the nodes cor-
responding to the optimal solution. For the optimal schedule,
we will denote by the value of the integral and by

(with ) the value of the integral .

A. A Scalable Algorithm

To efficiently solve the class of problems described in the pre-
vious section, we use an algorithm organized in three phases,
as shown in Fig. 2. The first phase consists of partitioning the
set of nodes into disjoint subsets , such that

. We then solve the coverage problem on each
partition independently, and combine the solutions to generate a
schedule. Due to the exponential nature of the covering problem
[9], the cumulative time required to optimize the coverage on the
partitions is radically smaller than the one required to solve the
problem as a whole. However, by dealing with each subproblem
independently, we neglect the interaction between nodes con-
tained in different partitions that takes place through the con-
straints over the shared points, which are removed in the sub-
problems. While we partition the nodes in a way that minimizes
this interaction, the solution is necessarily suboptimal for the
problem as a whole. In the final postprocessing phase, we re-
combine the individual schedules, and improve the coverage
using simple heuristics, reducing the gap from the maximum.
Remarkably, we are able to estimate upper bounds for the devi-
ation between the optimal and the suboptimal solutions. Clearly,

Fig. 2. Overall optimization phases.

the application of the divide and conquer approach outlined
above greatly improves the scalability of the solution algorithm,
as long as the overhead incurred in the first (partitioning) and in
the last (recombination) phases can be kept in check. The de-
tails of each step, and techniques to compute the bounds, are
described below.

B. Partitioning the Problem

The construction of the partition out of
the set can itself be seen as an MILP optimization problem.
The choice of which nodes should be placed in each partition is
driven by the requirement that interactions between the nodes in
the different partitions should be minimized. This way, we can
reduce the mismatch between the solution of the entire coverage
problem and the aggregate solution of the different subprob-
lems (assumed independent). If two nodes cover disjoint sets of
points, then their schedules can be decided independently, since
the relative timing of their activations does not affect the total
coverage. Conversely, if they share points in their sensing range,
then they must be scheduled at different times in order to max-
imize coverage, since points that are covered by several nodes
at the same time are counted only once. In this case, we say that
the two nodes interact. The strength of the interaction depends
on the weight of the shared points. Since noninteracting nodes
can be treated independently, they can be assigned to different
partitions. The larger the interaction, instead, the more conve-
nient it is to keep nodes in the same partition, to better account
for the shared coverage. Thus, the goal of this phase is to find a
partition that minimizes the total interaction between nodes that
belong to different sets.

The optimal partitioning problem is well known in the litera-
ture, as it applies to communication design and to VLSI place-
ment algorithms [4]. It is easy to express it as an integer linear
program [22]. Without loss of generality, consider the case of
splitting the set into two partitions and of equal size.
Let be a binary variable, with , that takes value 0 if
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node belongs to partition and 1 if it belongs to partition
. Equal size partitions can be obtained through the following

constraint:

Likewise, for each point , we introduce two binary variables
and that denote if point is covered by at least one

node, respectively, in partition and . The two variables
can be computed as

(10)

where denotes the OR operation and denotes the logical
negation of . These two expressions can be translated into
linear constraints on the variables by standard techniques. We
are interested in a partition that minimizes the total weight of
the points covered by at least one node from each partition, i.e.,
the overlapping area if the points represent regions. With our
definitions, we need to minimize the following cost function:

(11)

Therefore, we obtain a Boolean Linear Program (BLP).
Although the number of variable for this problem is much

smaller than for the coverage problem, the asymptotic behavior
of solving the partitioning problem this way is still exponen-
tial. To avoid this, we can use efficient and effective heuristics
for the partitioning problem, such as the algorithm proposed by
Fiduccia and Mattheyses [4], initially developed for VLSI stan-
dard cell placement, which has linear complexity in the number
of points covered by the nodes. As shown in the experimental
section, the price to pay in terms of distance from the optimal
solution is acceptable.

When the number of nodes is large, partitioning can be ap-
plied recursively or the number of partitions can be increased
to obtain separate sets of nodes with the desired size. This way,
a tradeoff can be established between optimality (fewer parti-
tions) and computational efficiency. We discuss how to combine
the schedules for the different partitions in Section III-E.

C. Solving and Bounding the Problem

From the two partitions and , we can identify three sets
of points: contains the points seen only by nodes in ,
contains the points seen only by nodes in , and contains
the points seen by nodes in both partitions. In fact, as discussed,
partitioning is done so that the total weight of the points con-
tained in is minimal.

A possible solution for the coverage problem can therefore
be found by solving the two problems and ,
and then combining the two corresponding optimal schedules

and . Let be the combined schedule ob-
tained when nodes are scheduled according to , and
nodes are scheduled according to , and let be

the coverage obtained with this schedule. This solution is fea-
sible for the global problem , since the combination of
the local constraint simply the satisfaction of the global ones.
However, it may be suboptimal: while the solutions of the two
subproblems maximize the coverage in and , respectively,
they fail to consider the interaction on the “overlapped” points
in .

The general structure of the problem, however, allows us to
compute an upper bound on the distance between the optimal
and the suboptimal coverage ( ). Given the
optimal schedule , we can restrict the computation of
the coverage to the two sets and getting and

, respectively. Because the subproblems are less
constrained, it follows that:

(12)

The total coverage of can be found by adding together
the contributions of the three sets , , and

Hence, in view of (12), we can write

Considering that

and that obviously

we obtain

(13)

The value of can be easily computed once the
schedule is known, i.e., after the two individual sub-
problems have been solved. The situation is different for

, since we do not have the global optimal solution.
We can however bound it by first solving the problem ,
and observing that

(14)

The problem can itself be of high complexity, but is
defined on a lower number of points, and therefore more prac-
tical. If still too complex, this second problem itself can be par-
titioned, and an upper bound can be computed recursively, as
long as the number of shared points decreases from one iteration
to the next. Section VI shows that the bounds that we compute
using this technique are tight for the majority of the cases.

Remark 1: An interesting open point in the procedure out-
lined above is whether the shared points should be ne-
glected in the optimization of each of the partition (as suggested
in the discussion above), included in one of them or included in
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both. We carried out a large set of tests for each of these possi-
bilities, but the results on the convenience of one of these possi-
bility appear inconclusive: we could not identify conditions on
the topology that produce a clear “winner” and the differences
were more often than not very small (below a few percent). For
implementation ease, in this paper, we opted for including the
shared points in the optimization problems defined for all parti-
tions.

D. Closed-Form Bound

While the expression of the bound given in (13) is generic,
the particular structure of the model may suggest other ways
of computing the bounds that lend themselves to a closed-form
solution. In our particular example, an upper bound for

can be found considering the best case situation
where every point in is covered by all the nodes that have
it in their range, but in separate slots (disjoint awake intervals)

The upper bound of can, therefore, be com-
puted as

In practice, the bound assumes that the optimal solution will do
as well as the subproblems on the individual partitions (which is
optimistic), and will do the absolute best on the overlaps (which
is also optimistic). Our experiments show that, because the over-
laps are minimized, the bounds are in practice very tight (see
Section VI).

E. Final Optimization

The obvious way to combine schedules computed indepen-
dently for each partition is simply to synchronize them at the
beginning of the epoch. If we define the “phase” of a schedule
as the time in which it is started in the epoch, this corresponds to
running the separate schedules “in phase.” This choice is, how-
ever, arbitrary. Recall, in fact, that a schedule is periodic and
that we evaluate the coverage over the entire epoch. Coverage
is therefore invariant to translations of the schedule on the time
axis. Indeed, the solution returned by the ILP solver is only one
of several equivalent solutions that can be obtained by shifting
the awake interval of all nodes repeatedly one slot to the right
or to the left.

Coverage on points that are shared between nodes of different
partitions, however, is not optimal, and is therefore affected by
changing the relative phase of the schedules. One way to im-
prove the solution is therefore to recompute the total coverage
under all possible shifts, and run the schedules, possibly out of
phase (starting at different times in the epoch), for the best re-
sult. In practice, we need only recompute the coverage of the
points shared by the partitions (the “overlaps”), since, as pointed
out, the coverage on the partitions themselves is constant. Thus,
the complexity of this computation is linear in the number of
overlapping points times the number of slots in the epoch. This

heuristic is particularly simple and fast, but provides excellent
results. In addition, since the coverage on the individual parti-
tions is not affected by the operation, we can recompute tighter
bounds on the solution that take the new schedule on the over-
laps into account.

The extension to several schedules, obtained from a recursive
application of the partitioning procedure, is not totally straight-
forward, since the number of possible relative shifts grows expo-
nentially with the number of partitions. For instance, while with
two partitions one has to test only shifts (i.e., the number of
slots), with four partitions the number of tests grows to . In
general, the number of shifts to test is given by , where
is the number of partitions. For this work, we do not investigate
efficient ways to optimize this step and simply recombine the
schedules in the reverse order of partitioning (from the leaves to
the root). This choice is justified by the consideration that adja-
cent partitions are also those that likely interact the most.

IV. EXTENDED MODELS

The general methodology shown in Fig. 2 is applicable to a
variety of models. Indeed, the definition of the methodology is
underpinned by one simple assumption.

Assumption 1: Consider the problem of finding a global
schedule for a set of nodes that satisfies all the constraints (i.e.,
it is feasible). Suppose the nodes are partitioned into disjoint
sets, for which separate subproblems are defined. Then, every
collection of schedules that are feasible for each subproblem is
also feasible for the global problem.

The assumption is obviously satisfied by the DACO problem.
Indeed, the constraints that are satisfied by the solution of each
subproblem imply the ones in the global problem [(6) to (9)],
or in any case the existence of a consistent assignment for the
decision variables. In fact, the class of scheduling problems for
which Assumption 1 is satisfied is much larger. In this section,
we propose two representative examples.

A. Maximizing the Minimum Coverage

The solution of the DACO problem maximizes the total area
covered throughout the epoch given a desired lifetime. Because
each node is switched on once in the epoch, it is implicitly guar-
anteed that each point is covered at least once. In some appli-
cations such a guarantee may be insufficient. Instead it may be
desirable to have a uniform coverage across the slots. This can
be achieved by changing the cost function (5), and requiring that
the minimum coverage in all slot be maximized

(15)

This problem can be rephrased as a BLP using an auxiliary vari-
able and introducing some additional constraint

(16)

(17)

The additional constraints do not invalidate the compliance
of the problem with Assumption 1. Therefore, the proposed
methodology is entirely applicable. In the remainder of this
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paper, we will refer to this problem as Deterministic Minimal
Coverage Optimization (DMCO).

Remark 2: Compared to DACO, DMCO offers higher tem-
poral reliability on the coverage. Indeed, the DACO problem
could, in principle, produce schedules in which most of the cov-
erage is concentrated in certain slots, while in others the cov-
erage could be very low. This is impossible with DMCO. Addi-
tional guarantees on the coverage of “sensitive” points could be
attained by inserting additional constraints or by attaching a dif-
ferent weight to the points to emphasize the relative importance
of some of them. These slight modifications of the problem, can
be easily addressed by simple adaptations of the algorithm.

Bounding the distance from the optimum. By applying our
methodology to the DMCO problem we are able to compute a
suboptimal solution and a bound, as described in Section III-C.
For the bounds, this requires solving an optimization problem
defined on the points shared between the partitions. Although
this problem is simpler than the original one (since there are
fewer points and nodes involved) and it can be solved by recur-
sively applying the partitioning methodology proposed here, its
solution is time demanding if compared with the closed-form
bound identified for the DACO problem. Unfortunately, a tight
closed-form bound is not easy to find in this case. Nonethe-
less, it is possible to simplify the solution of this new optimiza-
tion problem by continuous relaxation (i.e., converting the bi-
nary variables to reals bounded in the [0, 1] interval). Indeed, as
shown in (14), we are in this case interested in finding an upper
bound for , which is obviously provided by the con-
tinuous relaxation

B. Addressing Failures

One of the most relevant distinctive features of a WSN is the
intrinsic lack of reliability of the nodes. Not only is it possible
that a node fails to detect the event of interest, but it could also
fail to report it (e.g., due to a packet drop). A possible way for
modeling this limitation is by introducing a probability for
each node to “correctly” sense the point during its wake-up
interval. As a result, in a given slot the area is covered with
some probability (depending on the number of nodes that are
on). A reasonable cost function to maximize is in this setting the
expected value of the covered area. Since this quantity changes
in the different slots, we can reasonably maximize its average
in the epoch. This problem is henceforth referred to as expected
average coverage optimization (EACO), which is proportional
to the sum of the expected coverage through the epoch.

For slot , let represent the probability of covering the
point in that slot. For the sake of simplicity, we restrict to the
case that two nodes and cover a point . If the probabili-
ties are independent, then is given by the probability that

senses , plus the probability that senses , minus the prob-
ability that both and sense

(18)

This equation straight forwardly descends from the axiomatic
theory of probability. Using this construction, we can obtain the
EACO problem by simply replacing (6) and (7) with the equa-
tions that for each point and each slot express the probability

, and by changing the meaning of in the cost function
(3) (which for DACO is a binary variable, while for EACO is a
real variable representing a probability).

In order to cast the problem as a BLP, we can use standard
techniques. For instance, the nonlinear constraint associated
with the probability in (18) can be “linearized” by an additional
variable that replaces the term

(19)

(20)

(21)

(22)

This way, if and only if , and 0,
otherwise.

This idea can easily be generalized to the case of more than
two nodes covering a point (we omit the details for the sake of
brevity). This way, we finally come up with a BLP that obvi-
ously falls within the range of Assumption 1. Hence, it is pos-
sible to apply the methodology presented in this paper.

Bounding the distance from the optimum. Contrary to the
DMCO problem, for the EACO problem it is possible to identify
a closed-form bound, which is proven very tight in our experi-
ments.

We define as the event that node that is active in
slot successfully covers point , which is in its sensing range.
We denote by the probability of the event. This
probability is simply given by

In this setting, the probability is the joint probability for all
events associated with the nodes that cover and are
active in slot

(23)

An upper bound for in the estimated average
(EACO) model can be found by applying Boole’s Inequality

(24)
In plain words, the joint probability of a set of events
is bounded by the sum of their probabilities. Therefore,
the expected value of the coverage of point in is
upper-bounded by and its total
expected covered area through the epoch is upper-bounded
by . As for the DACO
problem, the bound can be further refined considering that
a point cannot, in any case, be covered for more times than
the number of available slots. Hence, an upper bound for the
coverage of the points shared by two partitions
can be computed as follows:



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 2, MAY 2011 335

Fig. 3. The WSN topology with 20 nodes. The red areas are the regions covered
by nodes in the first partition, the blue areas are the regions covered by nodes
in the second partition, and the gray area are regions covered by nodes in both
partition.

where

The bound can, therefore, be computed as follows:

(25)

V. EXAMPLE

In order to clarify the most significant aspects of our method-
ology, it is useful to show its concrete application on an example.
In this section we show how to solve the EACO problem for
a simple topology consisting of 20 nodes that are deployed in
a 100 100 unit region, as shown in Fig. 3. In the example,
nodes 1–7, 9, 11–17, 19 have probability of success 1, nodes 8
and 18 have very low probability of success 0.2, and nodes 5
and 20 have probability of 0.5. Each node has sensing range of
20 units and is placed randomly in the region. For simplicity, the
sensing region of each node is represented as a square centered
in the node deployment position. As a first phase, a spatial scan
algorithm can be used to identify rectangular regions, each one
covered by a set of nodes [5]. Such regions can be seen as the
set of points in the EACO formulation, and the area of each
region is used as the weight function .

The first step of the methodology is to partition the set of
nodes in two sets, minimizing the area of the shared regions
(points). In this case, it is sufficient to use two partitions,
since a partition of ten nodes is easily manageable by standard
MILP solvers. The two partitions identified by the Fiduccia

Fig. 4. The schedule of the topology after partition. (a) The schedule for the
first partition. (b) The schedule for the second partition.

and Mattheyses algorithm share 39 regions out of 137, and are
shown in dark inFig. 3.

The second step is to carry out the optimization for each par-
tition separately. The result is a schedule for the nodes of each
partition that maximizes the sum of average coverage over the
slots. The schedules produced in this way are shown in Fig. 4.
For instance, node 1 and node 20 are scheduled in the same slot
because they do not share any point, while node 4 is scheduled
in a different slot from node 1 since their sensing area is largely
overlapping.

The recombined schedule for the two partitions is shown in
Fig. 5. Fig. 5(a) is the combined schedule of partition 1 and
partition 2. The total expected area covered by this schedule over
four slots is 10688.09 (the average is 2672.02) for partition 1 and
9476.35 (2369.09 for each slot) for partition 2. Accounting for
overlaps, the total average for the two partitions is 4886.90.

To account for the interaction on the shared points, we apply
the postprocessing step described in Section III-E: the schedule
of partition 1 is rigidly shifted with respect to the schedule of
partition 2 to increase the coverage. The new schedule is shown
in Fig. 5(b). The average coverage after postprocessing grows to
4972.5, a 1.7% improvement over the coverage before postpro-
cessing. Using the closed-form bound shown in Section IV-B,
we can approximate the distance of the postprocessing coverage
from the optimal coverage which is 265.42 (1.32%). The actual
distance of the postprocessing coverage from the optimal cov-
erage is 181.460254 (0.9%). For the sake of completeness, we
report in Fig. 5(c) the optimal schedule resulting from the solu-
tion of the EACO problem as a whole.

VI. EXPERIMENTAL RESULTS

The different phases of the methodology described in this
paper have been implemented by a combination of scripts and
Java programs.

As input, we use a file describing the topology of the nodes
on a test area and their sensing range (as shown in Fig. 3). The
first step is to partition the nodes. To this end, we construct a
graph . The set of vertices corresponds to the
set of nodes in the system. Edges, instead, are used to model
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Fig. 5. The schedule of the topology. (a) The combined schedule of the first and second partition. (b) The sub optimal schedule of the topology after post opti-
mization. (c) The optimal schedule for the topology.

the overlaps between the sensing ranges of the nodes: an edge
exists between two nodes and whenever they cover a
common point. Edges are weighted by the sum of the weights
of the common points in the sensing range of the nodes, as a
measure of the degree of overlap. For instance, if nodes and

have points and in common, with and
, then and would be connected by an edge

with weight . Our objective is to partition the set of
nodes so that the overlap between the partitions is minimized.
This can be accomplished by partitioning the vertices into two
sets of equal size, so that the sum of the weights of the edges that
go across the partitions is minimum. This formulation matches
exactly the one used by min-cut placers in VLSI design, for
which several tools are available. In this work, we have used the
freely available MLPart [23], part of the Capo placer, which is an
efficient implementation of the Fiduccia–Mattheyses algorithm.

Any standard MILP solver can be used to carry out the opti-
mization (second phase of the algorithm). The results reported
in this section were obtained using CPLEX (by IBM Inc.). Fi-
nally, our software also performs the optimal rephasing of the
schedules (third phase) described in Section III-E.

We have evaluated the effectiveness of our approach on sev-
eral random topologies, ranging from a few tens of nodes to a
thousand. The first thing we tested with our experiments was
the performance and the scalability of the methodology. Topolo-
gies were randomly generated with uniform distribution. Exper-
iments with other distributions show consistent results. Points

are taken to be the regions covered by the different groups of
nodes (see [5] and [9]) and their weight is set equal to the area
of the region they represent. To test different densities (average
number of nodes that see a point), we changed the sensing range
of the nodes for each topology. We formulated and solved the
DACO, the DMCO and the EACO problems for each of the
topologies thus obtained. The results are reported in Table I.

Each row in the table refers to a family of five random topolo-
gies. For each family of topologies we report the computation
time, including the partitioning overhead, and the bound aver-
aged through the different topologies of each family. For the
DACO and EACO problems, we report the closed-form bound,
and for the DMCO we computed the bound by continuous
relaxation of the optimization problem defined on the shared
points. For the DACO and EACO problems, in our experiments,
the closed-form bounds were considerably tighter and easier
to obtain than the ones based on continuous relaxation on the
shared points (which are omitted for brevity). As it is possible
to see, the problem is tractable even for a very large number of
points and nodes. The EACO and DACO problems are solved
very efficiently even on a 32 bits INTEL I686 processor with
4 GB of RAM. The similarity in the computation time for
the EACO and the DACO problems is due to the partitioning
overhead that dominates over the optimization of the partitions.
Decreasing the number of partitions, however, quickly makes
the EACO and the DMCO problems intractable (we set a time
out at two hours for the optimization time). A thorough tradeoff
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TABLE I
PERFORMANCE RESULTS, LARGE TOPOLOGIES

TABLE II
TIGHTNESS OF BOUNDS

analysis between partitioning and optimization is reported in
Section VI-A3. The solution is reasonably close to the optimal
one, its bound ranging from 1% to 5%. The solution of the
DMCO is much more demanding (although still tractable if
sufficiently partitioned). Also, the bound of the solution was
comparatively higher (from 13% to 17%).

Assessing the Tightness of the Bound: From the previous ex-
periments, the point remained open of understanding if a large
bound (e.g., for DMCO) is the result of a low quality of the so-
lution or of a high degree of conservativeness of the bound. To
investigate the matter we have solved the problem with a di-
rect approach (i.e., without partitioning). With a reasonably low
density we could make the test also for large topologies, get-
ting the solution in a few hours instructing the CPLEX solver to
stop when it was 0.5% apart from the continuous relaxation. In
Table II, we report for each family of topologies the actual dis-
tance between the solution produced by CPLEX for the global
problem and the one produced by our methodology. For the
EACO and the DACO problems, the bound is very tight even
applying the closed-form version. For DMCO, the actual dis-
tance is less than one half of the one estimated by the bound.

Fig. 6. Time comparison of optimization experiments without partitioning and
with partitioning.

This is suggestive of a good performance of the algorithm and
of the need for further investigation on the bound. To improve
the bound, we tried solving the optimization problem on the
shared points exactly (rather than with the continuous relax-
ation) without significant improvements (not even 1% in the face
of a substantial increase of the computation time).

Comparison With the Solution Time of the Global Problem:
We compare the computation time of the optimization algorithm
with and without partitioning. We present the results for the
DACO problem, for which the solution of the global problem
was reasonably feasible even for topologies characterized by
high density (cutting off the solution when it was 1.5% from the
optimum of the continuous relaxation). The results are reported
in Fig. 6, where we considered topologies with 300 nodes and
different densities. The density is reported on the axis as the
number of points seen on average by a node, while the axis
shows the computation time in a logarithmic scale, highlighting
the difference in orders of magnitude. The greater efficiency of
our approach is evident, except for very sparse topologies for
which the overhead of partitioning the problem is dominant. The
performance gain increases with the density and it reaches be-
tween four and five orders of magnitude for ten points per node.

Choosing the Number of Partitions: In this section, we
present experiments aimed at providing guidelines for the
choice of the number of partitions. As discussed above, the
convenience of our algorithm over the solution of the complete
problem is very much related to the density of the nodes.
Therefore, the evaluation of the number of partitions has to be
made for a fixed density. To explore this issue, we have carried
out a set of experiments for fixed density and varying number
of nodes and partitions. The average density was approximately
six points per node.

Fig. 7(a) compares the optimization time and the overhead
time, for an increasing number of partitions and a fixed number
of nodes, in this case equal to 100. When the number of par-
titions is small, the optimization time prevails over the parti-
tioning overhead. When the number of partitions is large, the
relation between these two components is inverted. The plot also
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Fig. 7. (a) Comparison between optimization time and the timing overhead
for experiments with 100 nodes. (b) The ratio of cumulative runtime without
and with partitions for different number of nodes. (c) Cumulative runtime of
optimization for 1, 2, 4, 8, 16, and 32 partitions. (d) The optimality gap for
experiments with 1, 2, 4, 8, 16, and 32 partitions.

shows the cumulative runtime of the optimization, which, as ex-
pected, presents a minimum, located at four partitions for these
experiments (25 nodes per partition).

We are interested in characterizing, for a given density of
nodes (and also for the particular solver and computer in use),
how many times a problem should be partitioned for both effi-
ciency and optimality. We do this heuristically by benchmarking
the ratio between the computation time for random topologies
when the problem is not partitioned and when it is partitioned in
two, for an increasing number of nodes. The results of these ex-
periments are shown in Fig. 7(b). From the plot, we observe that
when the number of nodes decreases below about 20–25, the
ratio falls below 1, indicating that partitions of about 25 nodes
and below should not be further partitioned.

Fig. 7(c) shows additional cumulative performance curves for
topologies with 200, 300, and 500 nodes. If we select 25 nodes
per partition, our heuristics indicate that the best performance
should be achieved for four partitions for 100 nodes, eight parti-
tions for 200 nodes, 12 partitions for 300 and 20 for 500. This is
fairly consistent with the experiments, which also show that the
curve is rather flat around the minimum (despite the log scale),
suggesting that the exact choice of nodes per partition is not
extremely critical as long as it is within a reasonable neighbor-
hood of the benchmark. The performance gain at the minimum
increases as the number of nodes gets larger, and reaches one
order of magnitude for 500 nodes. As discussed before (Fig. 6),
these gains increase for topologies of higher density.

Fig. 7(d) also shows the average gap between the coverage
achieved with the optimal solution and the coverage obtained

by solving the partitioned problem. As expected, this value in-
creases monotonically with the number of partitions, since a
larger portion of overlap is neglected as the number of partitions
increases. These curves provide data to evaluate a trade-off be-
tween computation time and optimality.

Application of K-Way Partitioning: An interesting future
work direction is the application of k-way partitioning, instead
of recursive bipartitioning to decompose the optimization
problem. In principle, this method could allow us to further
reduce the area of the overlapped regions, with a better de-
coupling of the optimization problem defined on the different
partitions.

We have made a preliminary evaluation of this possibility
using a demonstrative implementation of the hMetis algorithm
[24], which is only able to manage small graphs. We ran some
tests on the DACO and DMCO problems for topologies with 60
nodes and around 125 points (the resulting partitioning problem
was very close to the maximum size the tool could manage).
The results were encouraging. For the DACO problem, we exe-
cuted the algorithm for 20 topologies and in all cases it identified
the global optimum (whereas the algorithm with the recursive
scheme scored an average distance from the optimum of 0.6%).
For DMCO defined on the same set of 20 topologies, the k-way
partitioning reached an average distance from the optimum of
4.6%. Even in this case, there was a remarkable improvement
over the recursive algorithm, which scored an average distance
of 8.5%.

VII. CONCLUSION

The demand for energy efficiency in wireless sensor networks
requires a careful deployment and schedule of the node opera-
tions. Typical integer linear program formulations suffer from
high computational complexity and do not scale well with the
size of the network. It is, therefore, useful to have heuristics that
can be applied broadly, and whose quality can be measured. In
this paper, we have presented a methodology to decompose a
large problem into individual subproblems, and shown how to
derive bounds that provide a measure of the degree of optimality
that was achieved. Our method is generic and can be applied
to a variety of sensor network models. The experimental results
show that our procedure is very efficient and scalable, and is able
to find solutions that are very close to optimal in many cases.

Our current work is focused on further extending the models
and investigating alternative more accurate formulations for the
bounds. Our objective is to eventually integrate the problem of
coverage with the communication architecture and with the pro-
tocol layer, using realistic sensor models [7], [8]. An interesting
direction is to integrate the optimal schedule of wake-up time
for the nodes with power-aware routing policies in multihop net-
works [25]. The dynamics of the sensed phenomena could also
be accounted for to adapt the solution to the nature of the mon-
itored area, and to adjust the protocol parameters. Our current
work is also concentrating on developing efficient online heuris-
tics with provable convergence properties. Likewise, because of
partitioning, the offline method lends itself to a parallelized im-
plementation, which could dramatically speed up the search for
the optimal solution.
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