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Abstract. In their EWSN’07 paper [1], Giusti et al. proposed a de-
centralized wake-up scattering algorithm for temporally spreading the
intervals in which the nodes of a wireless sensor network (WSN) are ac-
tive, and showed that the resulting schedules significantly improve over
the commonly-used random ones, e.g., by providing greater area coverage
at less energy costs. However, an open question remained about whether
further improvements are possible. Here, we complete the work in [1] by
providing a (centralized) optimal solution that constitutes a theoretical
upper bound for wake-up scattering protocols. Simulation results shows
that the decentralized algorithm proposed in [1] comes within 4% to 11%
of the optimum. Moreover, we show that the modeling framework we use
to derive the solution, based on integer programming techniques, allows
for a particularly efficient solution. The latter result discloses important
opportunities for the practical utilization of the model. The model is also
general enough to encompass alternative formulations of the problem.

1 Introduction

The operation of a wireless sensor network (WSN) node is usually characterized
by (long) periods of inactivity spent in a low-power stand-by state, interleaved
with (short) periods where the expected sensing, computation, and communica-
tion duties are carried out. This duty-cycling is used to minimize energy con-
sumption, therefore maximizing the lifetime of the network at large. Neverthe-
less, the performance of WSN applications critically depends on the quality of
the duty-cycling schedule, ensuring that the right nodes are active at the right
time. A random schedule may lead to an inefficient use of resources. Consider
Figure 1, where three nodes cover, with overlaps, a given area. Ensuring that
nodes 2 and 3 are not simultaneously active saves energy. Indeed, since a point
in the target area may be monitored by multiple nodes, it is possible to switch
some off as long as the remaining active nodes cover the target area.

In their EWSN’07 paper [1], Giusti et al. presented a decentralized protocol
that leverages this observation by scattering the nodes’ wake-up times, therefore



taking advantage of the overlap among the nodes’ sensing range. They demon-
strated the effectiveness and practical relevance of their wake-up scattering pro-
tocol in several common WSN scenarios, including the coverage problem above.
However, although they showed that their protocol yields significant improve-
ments over random schedules, they did not answer the question about whether
further improvements can be obtained and, if so, how significant.

This paper provides an answer to this question, by
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Fig. 1. A topology
where wake-up scat-
tering matters.

giving a means to compute the optimal schedule of wake-
up times that maximizes the area covered by a set of
sensor nodes. Our technique, based on integer linear pro-
gramming (ILP), is inherently centralized as it assumes
global topology knowledge. However, the significant the-
oretical contribution of this paper is that, under the
reasonable assumption of a constant and periodically-
repeated awake interval, the resulting optimization prob-
lem can be radically simplified, enabling an efficient so-
lution. The significant computational speed-up we gain
allows us to deal with a large number of nodes in a reasonable time. Therefore, be-
sides providing a theoretical upper bound against which to evaluate distributed
solutions, our technique can be used as an effective design tool in cases where
parameters such as the deployment topology are under control. Moreover, we
envision a combination of the two techniques, where our optimal off-line solu-
tion determines the initial configuration of the system at deployment time, and
the distributed algorithm in [1] is used online to adapt to topology changes.

Section 2 presents a complete description of the problem, followed by the
description of our approach and a proof that our formulation, which offers sig-
nificant computational speed-ups, provides results equivalent to the general case.
In Section 3 we compare quantitatively our optimal solution against the original
decentralized one in [1]. The evaluation confirms that the latter algorithm, al-
beit very simple, is very efficient, as it comes within 4% to 11% of the optimum.
Moreover, through our mathematical formulation we are able to gain insights
into the relationships among coverage, lifetime, and node density.

Our modeling framework is actually general enough to represent problems
other than coverage, similarly affected by duty-cycling: we discuss these issues
in Section 4. Finally, after a concise survey of related approaches in Section 5,
we end the paper with our concluding remarks in Section 6.

2 System Model and Solution Algorithm

Our approach assumes4 a target area A to be monitored using a set of sensor
nodes N . For each node n ∈ N , we know its position in the target area A,
represented as a pair of coordinates (xn, yn), as well as its sensing range nA,
i.e., the area that is directly monitored by n. We assume that the sensitivity of
4 For simplicity, we describe the problem in two dimensions: the extension to a three-

dimensional space is straightforward.



a node in its sensing range is constant, and that the boundaries of the sensing
range are sharp. In other words, the complete topology of the problem is known
in advance. An example was already shown in the introduction in Figure 1.

The system operates according to a periodic schedule. The period, called the
epoch, is denoted by E. In our problem, the lifetime of the system is fixed and
determined by the awake or activation interval of a node, i.e., the interval during
which a node is awake in the epoch. We assume that the awake interval is the
same across all nodes, and that each node is woken up only once per epoch.
Alternative formulations with different awake intervals or multiple activations
per epoch are possible at the expense of increased computational complexity.

Our objective is to maximize the coverage by scheduling the nodes’ wake-up
time. At any time t, the set of nodes awake at t defines a covered area S(t),
equal to the union5 of the sensing areas of all awake nodes. Our objective is thus
to maximize the integral of S(t) over the epoch. Clearly, constraining the awake
interval and the epoch is tantamount to fixing the network lifetime, and one
could argue that we address the problem of maximizing the coverage given the
lifetime. However, as shown in Section 4, solving the problem for different values
of the lifetime allows us to explore the tradeoffs between lifetime and coverage.

Our method to solve the optimization problem goes through two steps, which
are described in detail in Section 2.1 and 2.2, respectively.We first consider and
solve the spatial partitioning problem, i.e., how to determine a finite number of
regions in the target area that, without loss of accuracy, can be used to model
the system topology and the area overlaps. Then, we set up an integer linear
program expressing the scheduling problem, with coverage constraints for each
node and region found in the previous step. The optimization problem is then
solved using standard linear programming and branch-and-bound techniques,
and yields the optimal schedule for the given objective function and constraints.

2.1 Spatial partitioning

The optimization problem can be setup as a linear program by enforcing a certain
level of coverage on the target area A, using appropriate constraints discussed
in Section 2.2. This approach is feasible if A is discretized into a finite number
of regions, to avoid generating constraints for each of the infinitely many points
in A. Here we use the concept of field [2], i.e., regions of A that are invariant
relative to node coverage. In other words, any two points within one such region
are covered by exactly the same nodes. In this case, it is sufficient to consider
only one point per region, or, equivalently, consider the region as a whole.

Several algorithms have been proposed for field computation. Slijepcevic and
Potkonjak approximate the computation by a regular sampling of the area [2],
while Tian and Georganas rely on geometric approximations to compute the
required intersections [3]. Huang and Tseng propose an exact and efficient algo-
rithm for deciding if an area is covered by at least k sensors by considering only
the perimeter of the sensing area [4] and reasoning on the angles of intersection.
5 Unlike the sum of these areas, overlaps are not counted multiple times.



This way, the computational complexity is reduced to O(nd log n), where n is
the number of nodes and d is the average number of nodes that overlap a given
node. Here, we present a simpler algorithm, with the same complexity, for the
case of rectangular rather than the more traditional circular sensing areas, and
use coordinates instead of angles. Our algorithm works without change when the
sensing area is represented by unions of rectangles, including the case of uncon-
nected sensing areas. This feature can be used to approximate arbitrary shapes,
albeit with increased computational complexity. In any case, our optimization is
independent of the shape of the sensing area and the way regions are computed.

In the following sections, we will use r : A→ 2N to

Fig. 2. Target area and
scanning sequence.

Region Nodes Area
ρ0 ∅ 56
ρ4 { 1, 3 } 96
ρ1 { 1 } 144
ρ5 { 2 } 244
ρ2 { 1, 2 } 140
ρ6 { 2, 3 } 272
ρ3 { 1, 2, 3 } 160
ρ7 { 3 } 112

Fig. 3. Regions for the
topology of Figure 2.

denote the function that for each point p ∈ A returns
the set of nodes that cover p. A region (or field) ρ is the
largest subset of points of A which are covered by the
same set of nodes, We denote the set of regions by the
symbol R. For each region ρ ∈ R, the corresponding
area is returned by the function w : R → R+. Given
that there is a one-to-one mapping, we use r(ρ) to de-
note the set of nodes covering region ρ. Note also that
each region need not necessarily be connected, even
when the sensing areas of the nodes are connected and
convex. Thus, this kind of spatial partitioning cannot
be obtained using a simple regular discretization.

The partitioning algorithm works by scanning the
target area horizontally, left to right, stopping at every
vertical boundary of a node’s range, as shown in Fig-
ure 2. At every stop, the algorithm performs a vertical
scan, from bottom to top, that computes the regions
found at that horizontal position, and updates their
area. This is sufficient, since the computation of the
optimal schedule does not require the shape of the
regions, but only their area and corresponding set of
covering nodes. The latter conveniently identifies the
region, as discussed above. For example, in Figure 2, the vertical scan at x0 finds
a sequence of regions corresponding to the sets of nodes

{3}, {2, 3}, {1, 2, 3}, {1, 2}, {2}. (1)

Areas are accumulated incrementally, and computed up to the next stop in
the scanning sequence. The procedure is shown in detail in Algorithm 1. To
perform the horizontal scan, we first build a sequence h scan of all the vertical
boundaries of the nodes, ordered by their horizontal position (line 1). We then
loop through this sequence (line 4) and stop at every element. To perform the
vertical scan we also build a sequence, denoted v scan, by inserting the horizontal
boundaries of the nodes that intersect the scan at the current horizontal position
in the order of their vertical position. For efficiency, this sequence is constructed
incrementally: it is initialized to empty (line 2) and at every step of the horizontal
scan we insert or remove the horizontal boundaries of the node at that position,



Algorithm 1 Spatial partitioning algorithm.
1: h scan = list of vertical boundaries of nodes, ordered by their horizontal position
2: v scan = ∅
3: R = ∅
4: for i = h scan.begin() to h scan.end() do
5: if i is left boundary of node n then
6: Insert the horizontal boundary of n in v scan ordered by vertical position
7: else // i is the right boundary of node n
8: Erase the horizontal boundary of n from v scan
9: end if
10: h extent = horizontal extent to next stop
11: node set = ∅
12: for j = v scan.begin() to v scan.end() do
13: if j is bottom boundary of node n then
14: Insert n in node set
15: else // j is the top boundary of node n
16: Remove n from node set
17: end if
18: v extent = vertical extent to next stop
19: area = h extent · v extent
20: R = R ∪{ node set}
21: node set.area = node set.area + area
22: end for
23: end for

according to whether we are entering (from the left) or exiting (to the right) the
sensing area of the node (lines 6 and 8). In the example of Figure 2, the vertical
scan at x0 would already have the ordered entries (3bot, 1bot, 3top, 1top). At x0,
since we are entering node 2, we add 2bot and 2top in the correct order, to obtain

(3bot, 2bot, 1bot, 3top, 1top, 2top). (2)

The vertical scan starts with the loop at line 12. During this phase, we keep
track of the set of nodes node set for which the current point is in range. This
set is updated at every step of the scan according to whether we are entering the
node’s range from the bottom (line 14) or exiting it from the top (line 16). For
example, by scanning sequence (2) we obtain the regions of sequence (1). After
computing the area of the node set, we add it to the set R (line 20). If the region
was already present in the set, we do not add a new element but simply update
its area (line 21). The result of applying Algorithm 1 to the topology of Figure 2
is shown in Figure 3, where each region ρ is associated with its covering nodes
and its area. Note that the area covered outside the target area A is ignored.

2.2 Computation of the optimal schedule

As discussed, we consider periodic schedules of a fixed duration E, called the
epoch. We assume that every node wakes up exactly once per epoch, and operates
for a defined time I, the awake interval. The optimization problem consists of
finding the time within the epoch at which each node should wake up (the
wake-up time) in order to maximize the total coverage. Intuitively, this can be
achieved by scheduling the operation of overlapping nodes at different times,
while nodes that do not overlap could be scheduled concurrently. The original



decentralized algorithm described in [1] approximates this idea by scattering the
awake times of neighboring nodes, which are more likely to overlap. Finding
the optimal solution to this problem is complex, and a naive formulation easily
results in algorithms that are impractical even for small networks. Nonetheless,
it is possible to simplify the problem by taking advantage of the following result.

Theorem 1. Let the duration E of the epoch be an integer multiple of the awake
interval I. Then there exists a schedule such that every node wakes up at some
integer multiple of I (within the epoch) which maximizes the average coverage.

Instead of considering arbitrary wake-up times distributed on the real line, we
can discretize the problem by dividing the epoch E into L = E/I equal slots of
length I, where every node is awake in exactly one slot. Thus, to solve our prob-
lem, we do not need to look at schedules in which nodes overlap only partially in
time, thereby pruning a large portion of the solution space. Assuming that the
epoch is an integer multiple of the awake interval may seem a severe limitation.
However, high power savings can be achieved only at low duty-cycles, where our
approach has sufficient granularity to provide accurate trade-offs.

To prove the theorem (see [5] for an ex-
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Fig. 4. Node alignment.

tended proof), we assume that the epoch
E is initially finely discretized into s slots,
s# L, and the awake interval spans d slots
(i.e., I = d · E

s ). Since, by hypothesis, E is
an integer multiple of I, we have s = L · d.
The continuous case can be obtained when
s tends to infinity. Figure 4 depicts our no-
tation. Slots are ordered and identified by
their position 0 ≤ k ≤ s − 1. In addition,
all operations on slot indices are done modulo s. Node n has a wake-up time
0 ≤ wn ≤ s − 1. We say that a node is aligned if it is scheduled at an integer
multiple of the awake interval, i.e., if wn mod d = 0. We say that a schedule
is aligned if all nodes in the schedule are aligned. The line that identifies the
slots at which aligned nodes can be scheduled is called an alignment boundary.
The slots between two consecutive alignment boundaries is called an alignment
region. If the schedule is aligned, then all nodes are scheduled at the alignment
boundaries, that is, they pairwise either completely overlap in time, or they do
not overlap at all. Given an arbitrary schedule, we can partition the set N of
nodes into the set A of those that are already aligned, and the set B of those
which are not. For every slot k, we denote by Ak the set of aligned nodes that
are awake at slot k, and by Bk the set of non-aligned nodes that are awake at
slot k. Because all non-aligned nodes span across an alignment boundary, the set
of non-aligned nodes awake at the slots across an alignment boundary are the
same. Thus, for k mod d = 0, Bk−1 = Bk. Similarly, the aligned nodes in slots
that belong to the same alignment region are, of course, the same. Therefore,
Ak = Ak′ for dm ≤ k, k′ ≤ d(m + 1)− 1.

We compute the gain (positive or negative) in covered area that is obtained
by shifting the schedule of all the non-aligned nodes together by one slot to the



left or to the right. To do so, we must compute the coverage before and after
the shift. The change in coverage depends on the area overlaps before and after:
without overlaps all schedules are equivalent. More precisely, because we shift
all non-aligned nodes together, the gain g+

k of slot k for a right shift is given by
the area overlap between the non-aligned and the aligned nodes before the shift,
minus the area overlap of the same non-aligned nodes with the aligned nodes in
the new slot, after the shift. Formally, let ak ⊆ R2 be the region covered by the
nodes in Ak, bk ⊆ R2 the region covered by the nodes in Bk, and A : R2 → R be
the function that to a subset of R2 gives the corresponding area. Then,

g+
k = A(ak ∩ bk)−A(ak+1 ∩ bk). (3)

A slot k which is not near an alignment boundary, however, gives no gain, since
in that case ak = ak+1. Recalling that L = s/d, and by similar arguments for
left shifts, we can therefore express the total gains as

G+ =
L−1∑

i=0

g+
di−1, G− =

L−1∑

i=0

g−di. (4)

The key observation is that a right and a left shift give gains that are equal,
but of opposite sign. In fact, let di = k be a slot marking the beginning of an
alignment region. As observed before, bk−1 = bk. Therefore,

g−di = g−k = A(ak ∩ bk)−A(ak−1 ∩ bk)

= A(ak ∩ bk−1)−A(ak−1 ∩ bk−1) = −g+
k−1 = −g+

di−1

By matching corresponding terms in G+ and G−, it follows that G+ = −G−.
If a shift of the non-aligned nodes does not result in any new node being

aligned, a further shift of the same non-aligned nodes in the same direction will
give the exact same area gain. For instance, let G+

1 be an initial right shift. Under
the new configuration, if the aligned node do not change, it must be G+

1 = −G−
2 .

By the same argument, −G−
2 = G+

2 , and therefore G+
1 = G+

2 . The same holds
for a left shift that does not alter the partition.

The proof of Theorem 1 proceeds by induction. Given a non-aligned schedule,
it is easy to construct an aligned schedule which has equal or better coverage. It
is sufficient to shift the non-aligned nodes in the direction of zero or positive gain
(since gains are opposite, they are either both zero or one of them is positive).
Once a new node is aligned, we proceed by shifting the remaining non-aligned
nodes, until the schedule is fully aligned. Since all moves had zero or positive
gain, the new schedule has equal or better coverage. Thus, given an optimal
schedule, we are always able to find an aligned schedule with the same coverage.

While Theorem 1 guarantees the existence of an aligned optimal schedule, it
does not tell us how to find an optimal schedule in the first place. However, it
ensures that the coarsest possible discretization of the problem is also optimal,
which allows us to set up a significantly simpler optimization problem. We set up
a boolean linear program (BLP), which can be solved by standard commercial



and open source tools. We compute the coverage starting from the partition of
the target area in regions by introducing a set of binary coverage variables Cρ,k

which take value 1 whenever region ρ is covered during slot k ∈ [0, L− 1], and 0
otherwise. Since regions are by definition disjoint, using the coverage variables
Cρ,k and the area function A, the covered area can be computed as

S =
L−1∑

k=0

∑

ρ∈R
Ck,ρ ·A(ρ). (5)

Our objective is to maximize the total area S.
The value of Cρ,k depends on the schedule. To model it, we introduce a set

of binary scheduling variables xn,k which take the value 1 whenever node n is
awake in slot k, and 0 otherwise. Then, we express the relation between the
coverage and the scheduling variables as linear optimization constraints. This
relation can be easily understood by observing that Cρ,k = 1 if and only if at
least one of the nodes that cover ρ is active in slot k, i.e., when xn,k = 1 for
some n ∈ r(ρ). Likewise, Cρ,k = 0 whenever all of the nodes that cover ρ are
inactive in slot k, i.e., when xn,k = 0 for all n ∈ r(ρ). This translates into the
following constraints:

∀ρ ∈ R,∀k ∈ [0, L− 1], Cρ,k ≤
∑

n∈r(ρ)

xn,k (6)

∀ρ ∈ R,∀k ∈ [0, L− 1],∀n ∈ r(ρ), Cρ,k ≥ xn,k (7)

∀n ∈ N ,
L−1∑

k=0

xn,k ≤ 1 (8)

Constraint (6) forces the condition Cρ,k = 0 when no node covers a region in
a slot, (7) ensures that Cρ,k = 1 when at least one node covers a region, and
finally (8) ensures that a node wakes up at most once per awake interval.

The optimization problem can be further simplified by observing that the
coverage variables Cρ,k are constrained by Equations (6) and (7) to never take
values strictly between 0 and 1, regardless of whether they are defined as integer
or real variables. Thus, we can relax Cρ,k to a continuous variable, which is more
efficiently handled by optimization algorithms, by adding the constraints:

∀ρ ∈ R,∀k ∈ [0, L− 1], 0 ≤ Cρ,k ≤ 1 (9)

More complex situations can also be handled, however at the expense of increased
computational complexity. We describe some of these in Section 4, and compare
them against related work in Section 5.

3 Optimal vs. Distributed: Evaluation

As stated previously, our motivation for this work was to find an optimal solu-
tion for the wake-up scattering problem, and determine how close the original



distributed solution [1] comes to it. This section presents an evaluation by using
covered area as the primary performance metric. Specifically, if S(k) is the area
covered during slot k, the covered area during an epoch is 1

L

∑L−1
k=0 S(k). Intu-

itively, this calculates the largest coverage possible given a network topology,
ignoring regions of the field that are not covered by any sensors. Our evaluation
uses GLPK [6], an open source linear programming kit6, to compute the optimal
schedule, and the simulator described in [1] to compute the distributed ones.

While the full details of the distributed solution are available in [1], for com-
pleteness we briefly describe its key functionality here. The distributed solution
starts by assigning each node a random wake-up time. Through a simple se-
quence of message exchanges, each node learns which of its neighboring nodes
wakes up immediately before and after it in the epoch. It also learns when these
nodes wake up relative to its own wake-up time, then selects its new wake-up
time to be approximately in the middle of these two points in time. This process
repeats at all nodes until no significant changes in the wake-up time are made at
a single step. Although the resulting schedule is not aligned on slot boundaries,
by Theorem 1 it can be slotted without loss of coverage.

The majority of our experiments were performed in a 500 × 500 area. The
number of nodes varied from 15 to 50, allowing us to consider increasing node
densities. To achieve statistical significance, each point in our plots represents an
average over 100 distinct topologies. Additionally, because the distributed scat-
tering protocol does not change the wake-up order among nodes and is therefore
affected by the initial random wake-up configuration, the results average 10 dif-
ferent initializations for each topology. This is sufficient as the variation with
different initializations is small. We considered square sensing areas, the sensing
range RS being half of the edge length. For the distributed solution, we used
a circular communication range RC = RS

√
2, creating a sensing square exactly

inscribed in the communication circle. The resulting node densities for RS = 100
range from 2.7 to 9.3. To verify that the results carry over to larger topologies,
we also ran experiments with similar densities obtained with up to 200 nodes in
a 1000× 1000 area, as reported at the end of this section.

We studied two main configurations, corresponding to the two main dimen-
sions of the problem. In the first setting, we fixed the number of slots per epoch
and therefore the duty cycle, and varied the sensing range. In the second, we
reversed roles, fixing the sensing range and varying the number of slots. In each
case, a node is awake for only one slot. The results in Figures 5(a) and 6(a)
clearly show that as either the sensing range or duty cycle increase, both so-
lutions cover larger areas. The standard deviation is a few percent points. In
general, the evaluation shows how the distributed wake-up scattering in [1], al-
beit very simple, is remarkably effective and yields schedules performing within
4% to 11% of the optimal ones computed with the technique presented here.

6 Although the GLPK documentation mentions a 10-100 performance gap w.r.t. com-
mercial tools, our computation times on a common workstation were in the order of
a few hours even for a very complex topology with a hundreds of nodes.
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Fig. 5. Fixed number of slots (L = 4), variable sensing range.
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Fig. 6. Fixed sensing range (RS = 100), variable number of slots.

Interesting trends emerge when studying the percentage improvement of the
optimal solution w.r.t. the distributed one, defined as optimal−distributed

optimal and re-
ported in Figures 5(b) and 6(b). In both plots, each line, representing either
a different sensing range or number of slots, shows a general trend where the
percent improvement increases to a certain point, then begins to decline. This
indicates that at low and high densities the optimal and distributed solutions
behave similarly, while at intermediate densities the optimal one performs better.

The initial similarity of the two solutions is due the fact that at low den-
sities very few nodes overlap in space. In a sense, at low densities the system
is far away from saturation and both solutions find schedules in which overlap-
ping sensing areas overlap very little in time. As the density increases, overlaps
become inevitable and the system must scatter the wake up times to eliminate
them as much as possible. Unfortunately, to properly manage spatial overlaps,
node locations must be considered and nodes close to one another should be
more scattered. However, because the distributed solution does not consider the
distance between nodes and does not change the sequence of node wake-up times,
with more dense scenarios it is more likely that physically close nodes are next
to one another in the wake-up sequence, and therefore less scattered. At low den-
sities, physically close nodes are also close in the schedule, however, with fewer
total neighbors, the interval between wake-up times is larger. In contrast, the
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Fig. 7. Experiments with 1000× 1000 area.

optimal solution considers neither connectivity constraints nor initial wake-up
times, and therefore does not suffer from the same problem.

The tail of the curves, where the two solutions again perform similarly, is
due to the saturation of the covered area in either time or space. With a fixed
number of slots, saturation is due to the increased number of nodes covering a
single point in space. Instead, with a fixed sensing range, saturation arises from
the higher number of nodes awake at a given time. In both cases, the distributed
solution again approaches the optimal.

Because saturation depends on the sensing range and number of slots, the
peak of each line appears at different network densities. In Figure 5(b), larger
sensing ranges saturate faster, while in Figure 6(b), in scenarios with fewer slots,
when nodes are awake for longer, saturation occurs earlier. Interestingly, in Fig-
ure 5(b) the sensing range RS = 75 does not reach saturation, which is however
likely to appear at higher densities.

Finally, to demonstrate that our results scale to larger topologies, we consid-
ered a 1000 × 1000 area containing from 60 to 200 nodes. This yields the same
density as in the previous experiments. Because the computation of the optimal
schedules in this case took two days to complete, we ran only 10 topologies for
each point. The trends in Figure 7 clearly follow those in Figures 5(a) and 6(a),
suggesting that similar trends hold for large topologies as well. This is expected
as both solutions work by considering overlapping sensing ranges, which by na-
ture are localized. Put another way, a 1000× 1000 topology behaves similarly to
a scenario where four of the smaller 500× 500 topologies are juxtaposed to form
a 1000× 1000 square area. The main difference is that, in the larger topologies,
the edges of the four quadrants of the area are properly scattered, while in a
solution which considers each quadrant independently, the edge nodes would not
be properly scattered.

4 Using and Extending the Model

Although our original motivation was to compare the optimal and distributed
solutions, we explore here two additional research contributions: some practical
applications of the optimal results and an extension to a new class of problems.



As shown in Section 3, the distributed solution closely approximates the op-
timal solution, coming within 4% to 11% in all cases. Therefore, the optimal
solution can be naturally applied as a pre-deployment tool to select system pa-
rameters that meet the application needs. For example, consider a system with
given lifetime and coverage constraints. Plots generated by the offline optimiza-
tion tool, such as the one in Figure 8 showing lifetime as the ratio of the epoch
length and the slot length, clearly show the trade-off between lifetime and cover-
age and thus the system behavior with various settings. Although the distributed
solution will not achieve equivalent results, such an evaluation still provides the
developer with valuable insight into system behavior prior to deployment. Al-
ternate topologies may also be considered, either fixing the locations of some
nodes or changing the number of nodes. Because these simulations are relatively
straightforward to perform, extensive pre-deployment evaluation can be per-
formed at little cost. In case of a controlled deployment, not only the centralized
algorithm provide a quick evaluation of the results that can be achieved, but it
can be also used as a full-fledged design tool to decide the initial schedule of
nodes. In this case, the distributed algorithm can be used to adapt to changes
(e.g., depletion of the battery on some nodes) affecting the system topology.

While the above provide an imme-

Fig. 8. Lifetime vs. covered area with
L = 4 slots.

diate, practical use for the optimal so-
lution, we also explored how the for-
mulation proposed in Section 2.2 can
be applied to a wider class of problems
other than coverage. For example, we
can handle the inverse problem: given
a required coverage, find a schedule
that maximizes the lifetime of the net-
work. If we take the common defini-
tion of lifetime based on failure of the
first node, the goal can be achieved by
minimizing the maximum energy con-
sumed by any node in a single epoch.
We can also relax several of the assumption made previously, yielding a more
flexible solution space and perhaps additional efficiency. For example, we can
allow nodes to activate/deactivate multiple times, effectively being awake for
multiple non-contiguous slots each epoch. To ensure that the power consump-
tion model remains accurate in this scenario, we can extend the power model
such that a cost is incurred for each activation. Additionally, one can explore
adding constraints to manage latency in delivery of information to a sink node.
This is naturally expressed as a set of additional constraints on the awake times
between parent and children nodes in a collection tree.

To give an example, we consider the problem of maximizing lifetime given a
certain level of required coverage. We also extend the model to consider multiple
activations of nodes within the epoch, since in this case Theorem 1 no longer
applies. For power consumption, we adopt a model in which a node incurs an



energy cost proportional to its active interval, with an additional cost for each
activation. A conceptual formulation of the problem is the following:

min max
n∈N

αI(n) + βWa(n), (10)

subject to
< the assigned area is covered > (11)

The cost function to be minimized is the largest of the energy consumed by each
node n. Here, α is the energy consumed by a node during an active slot (i.e., for
sensing, computation and communication); I(n) is the total number of active
slots for n; β is the energy spent for activation; and Wa(n) is the number of
times n is activated/deactivated during the epoch. The vector notation in the
cost function can be reformulated in scalar form by rephrasing the minimization
in terms of an additional decision variable µ constrained as follows:

minµ, subject to ∀n ∈ N , µ ≥ αI(n) + βWa(n)

Function I(n) is simply given by I(n) =
∑L−1

k=0 xn,k. Function Wa can be com-
puted by accumulating the difference between adjacent scheduling variables:

Wa(n) =
L−1∑

k=0

|xn,k − xn,(k+1) mod L|,

The above can be linearized using new variables sn,k, and the constraints

sn,k ≥ xn,k − xn,((k+1) mod L)

sn,k ≥ xn,((k+1) mod L) − xn,k

The minimization process ensures that sn,k will equal the absolute value, even
if it is not declared as an integer variable. Finally, constraint (11) can be easily
expressed by requiring that the area of the covered regions, for each slot, be
greater than the given value A0:

∀k ∈ [0, L− 1],
∑

ρ∈R
A(ρ)Cρ,k ≥ A0

where the Cρ,k variables are computed using (6) and (7).
A full evaluation of such alternate scenarios is part of our future work.

5 Related Work

Several studies approached the problem of maximizing the WSN lifetime by
running sensor nodes on a low duty cycle, while maintaining a high level of per-
formance. Regarding the coverage problem, we can classify existing approaches
as centralized techniques, making use of global information about the deploy-
ment, and distributed techniques, typically limited by network connectivity but
more easily adapting to network dynamics.



Within centralized techniques, Slijepcevic and Potkonjak [2] are among the
first to address the problem of maintaining full coverage while minimizing power
consumption through active/sleep schedule. The problem is solved by parti-
tioning the nodes into disjoint sets, activated one at a time, where each set of
nodes completely covers the monitored area. The solution leverages a centralized
heuristic of quadratic complexity in the number of nodes, shown to significantly
improve over a simulated annealing approach. However, no exact solution is de-
rived in the paper. Cardei et al. propose a method where nodes are divided in
sets that are not necessarily disjoint, achieving further improvements [7]. The
goal is to maximize the network lifetime by scheduling the activity of nodes
while maintaining full coverage over a finite set of points. The problem is for-
mulated as an integer linear program that, due to its complexity, is only solved
through heuristics. Similar formulations are proposed in [8,9]. In the first case,
the authors use a two-step procedure to compute the maximal lifetime and to
include communication costs. In the second approach, two coordinated optimiza-
tion problems are solved to determine the subset partitions and their duration.
The authors also propose a greedy distributed heuristic, which is however shown
to yield solutions that may perform as much as 40% of the optimal.

Although our technique is also based on an mixed integer (boolean) linear
program, unlike previous work we do not aim at maintaining full coverage of
an area or of a set of points, rather at establishing a periodic schedule that
guarantees the largest total coverage of an area over a scheduling period given a
specified lifetime of the system, in accordance to the problem statement of [1]. By
doing so, we are also able to compute the optimal trade-off between coverage and
lifetime. An experimental comparison of our approach against previous work is
thus difficult, since the optimization objectives differ. In our approach, each node
is activated exactly once per epoch, with the latter constrained to be an integer
multiple of the awake interval. Cardei et al. show that this choice, compared to
allowing nodes to wake-up multiple times in an epoch, is suboptimal in the case
of full coverage of a set of points [7]. While this applies also to our problem,
we have found that for random topologies, the possible increase in the largest
total coverage is negligible—zero or fractions of a percent. On the other hand, the
restriction allows us to greatly improve the performance of the exact optimization
program, and handle a much larger number of nodes (see Theorem 1).

As for distributed techniques, they typically use information from neighbor-
ing nodes to locally compute a schedule. In the simplest form, nodes wake up
regularly and check whether a neighboring node is awake: if so, they go back to
sleep to conserve energy. Ye et al. [10] complement this simple scheme with an
adaptive sleeping scheme which dynamically determines the duration of the sleep
time to optimally maintain a certain degree of coverage. More elaborate schemes
take coverage information from neighboring nodes into account, to preserve the
full coverage of an area. Tian and Georganas propose a technique that proceeds
in rounds [3]. At the beginning of a round, each node computes the fraction of
its sensed area that is also covered by neighboring nodes, by exchanging position
information. When a node determines that it is fully covered by others it goes to



sleep for the rest of the round. Hsin and Liu [11] improve on this scheme with a
coordinated sleep scheme where the duration of the sleep state is computed as a
function of the residual energy of the node and of the neighboring nodes, instead
of being fixed by the length of the round. This way, they obtain a more graceful
degradation of the overall coverage as nodes fail. Similarly to our distributed
solution, Cao et al. [12] use a setup phase where nodes schedule their operation
to overlap least in time with nearby nodes covering the same area. This is done
by exchanging exact position information and incrementally adjusting the sched-
ule until the procedure converges. More recently, Cărbunar et al. [13] proposed
a distributed algorithm for preserving full coverage and computing the cover-
age boundary. They reduce the problem of finding redundant nodes to that of
checking coverage of certain Voronoi diagrams associated to the topology. This
result is used to efficiently compute the coverage due to the neighbors, while
the diagrams are updated dynamically as nodes fail. Their experiments show a
significant improvement over the method in [3].

In contrast, the distributed technique in [1] is extremely simple, and requires
neither exact position information nor time synchronization—a significant as-
set when considering the overall energy budget of a node. Nonetheless, we have
shown that the resulting schedules provide a degree of coverage that come very
close to the optimum. This is possible since the goal is to maximize the largest
total coverage, instead of maintaining full coverage that, again, makes the ex-
perimental comparison with previous work difficult. Moreover, we showed that
our mathematical formulation is useful to determine the best trade-off between
coverage and lifetime, a very valuable input for dimensioning real deployments.

A related problem is how to achieve the best sensor placement to cover an
area [14]. Solutions rely on integer programming [15], greedy heuristics [16,17,18]
and virtual force methods [19]. These complement the temporal spreading in-
vestigated here, and can be applied in parallel to achieve further improvements.

6 Conclusions and Future Work

In this paper we presented a way to compute optimal schedules for scattering
node wake-up times in a WSN. Although here we focused primarily on area cov-
erage, the wake-up scattering problem has practical relevance in many settings,
as discussed in the original wake-up scattering paper [1]. Our evaluation through
simulation shows that the decentralized algorithm there presented, albeit very
simple, is remarkably efficient, generating schedules whose performance is within
4% to 11% of the optimal ones. The formulation presented in this paper can be
used to evaluate the trade-off between coverage and lifetime and, given the small
difference between the optimal and distributed schedules, guide engineering de-
cisions in practical deployments. Finally, the modeling framework we presented
here is amenable to extension and adaptation towards similar problems. We are
currently investigating such extensions, beginning with the inverse problem of
determining the lifetime of the system given a desired coverage.
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