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Abstract

Wireless sensor networks (WSNs) often rely on duty-
cycling, alternating periods of low-power stand-by with
others where sensing, computation, and communication are
performed. Duty-cycling brings substantial energy savings,
but may complicate the WSN design. The effectiveness of
a node in performing its task (e.g., sensing events occur-
ring in an area) is affected by its wake-up schedule. Ran-
dom schedules lead to deployments that are either ineffec-
tive (e.g., insufficient sensing coverage) or inefficient (e.g.,
areas covered by multiple nodes simultaneously awake).

In this paper, we focus on the problem of scattering
the nodes’ wake-up times optimally, to achieve maximal
coverage of a given area. In previous work [5], we pre-
sented a decentralized protocol that improves significantly
over random wake-up schedules. Instead, here we provide
a centralized optimal solution that complements the work
in [5] by identifying the theoretical upper bound to dis-
tributed protocols. Moreover, the modeling framework we
present, based on integer programming techniques, is gen-
eral enough to encompass alternative formulations of the
problem. These include the inverse problem of determining
the optimal schedule given a desired coverage, as well as
other problems based on constraints other than coverage
(e.g., latency of data dissemination).

1. Introduction

The operation of a wireless sensor network (WSNs) node
is typically characterized by (long) periods of inactivity,
spent in a low-power stand-by state, interleaved with (short)
periods where the expected sensing, computation, and com-
munication duties are carried out. This duty-cycling is fre-
quently used to reduce energy consumption to a minimum,
and therefore maximize the lifetime of the network at large.

Nevertheless, the performance of the WSN application
critically depends on the quality of the duty-cycling sched-
ule, which ensures that the right nodes are active at the right
time. A random schedule may lead to highly inefficient de-
ployments. For instance, consider Figure 1, where three
nodes cover, with overlaps, a certain area. In this case, hav-
ing node 2 and node 3 not be active at the same time is
beneficial, since they share a large portion of the area. A
random schedule may miss considerable opportunities for
optimization.

In this paper, our objective is to maximize the area mon-
itored by sensors. In contrast with the existing work con-
cisely surveyed in Section 2, we do not achieve this goal
by controlling the placement of nodes, which is an input in
our case. Instead, we operate on the nodes’ wake-up times:
by properly scattering them, we take advantage of the over-
lap among the nodes’ sensing range. Indeed, since the same
point in the target area may be monitored by multiple nodes,
it is possible to switch off certain nodes without affecting
the coverage, as long as the remaining active nodes cover
the area of interest.

In [5] we presented a decentralized wake-up scattering
protocol, whose effectiveness and practical relevance we
demonstrated in several common WSN scenarios, including
the coverage problem above. However, although we showed
that our protocol yields significant improvements over ran-
dom schedules, an open question remained about whether
further improvements can be obtained.

This paper provides an answer to this question, by giving
a means to compute the optimal schedule of wake-up times
that maximizes the area covered by a set of sensor nodes.
Our technique is inherently centralized, as it assumes global
knowledge. Therefore, although it can be applied directly
in constrained deployments, it is most useful as a theoret-
ical upper bound against which to evaluate distributed so-
lutions. This and other assumptions are discussed in Sec-
tion 3, along with an overview of our approach, which is



Figure 1. Example of topology where scatter-
ing matters

described in detail in Section 4.1 and 4.2. Section 5 reports
quantitative results derived using our approach in various
WSN scenarios, as well as comparisons with the decentral-
ized, on-line approach described in [5].

The contribution we put forth in this paper is not lim-
ited to the coverage problem. The modeling framework
we present, using integer programming techniques, is gen-
eral enough to encompass alternative formulations, includ-
ing the inverse problem of determining the optimal schedule
given a desired coverage, as well as other problems based
on constraints other than coverage (e.g., latency of data dis-
semination). Therefore, it provides a theoretical foundation
for tackling problems that are similarly affected by duty-
cycling. These aspects are discussed in Section 6, before
the concluding remarks in Section 7.

2. Related work

The introduction of duty cycling to increase system life-
time focused research attention on mitigating its negative
effects on system behavior both at the MAC layer and
above.

At the MAC layer, a variety of solutions either synchro-
nize or spread awake intervals. For example, SMAC [15]
and TMAC [11] yield solutions where all nodes are awake
during the same, short interval, enabling communication.
Applying this approach for sensing leads to an unde-
sirable system with coverage only for the single, short
synchronized awake interval. Other approaches such as
LMAC [12] and ZMAC [9] spread out communication, as-
signing TDMA-like slots. However, unlike our approach,
a node is assigned only a single slot, and the scheduling is
generally random.

Above the MAC, achieving the best spatial sensor place-
ment has been studied [8]. Solution techniques include inte-
ger programming [3], greedy heuristics [1, 6, 7] and virtual
force methods [16]. These works complement our temporal
distribution and can be applied in parallel to achieve further
coverage improvements.

In temporal scattering, our distributed wake-up scatter-
ing protocol [5], and a similar but more complex solu-
tion [2] have been formulated and evaluated. As these solu-
tions are based on local information exchange, they neither
achieve the globally optimal scattering schedule, nor can
they perform well in environments where the communica-
tion range is smaller than the sensing range. In this paper,
our previous scattering protocol serves as a point of com-
parison.

Finally, the notion of applying linear programming to
find optimal solutions in WSNs has been applied to a sim-
ilar problem of multiple-point coverage [14], however, the
goal of that work is to select a set of sensors, not to schedule
the awake times of all sensors.

3. System model and assumptions

System model We are given1 a target area A to be moni-
tored using a set of sensor nodesN . For each node n ∈ N ,
we are given the position of the node in the target area A as
a pair of coordinates (xn, yn), as well as its sensing range
nA, i.e., the area that is directly monitored by n. In other
words, we are given the complete topology of the problem.
An example was already shown in the introduction in Fig-
ure 1.

The system operates according to a periodic schedule.
The period, called the epoch and denoted by E, is further
discretized into a finite number of slots, in which each node
may be either active or asleep. In our problem, the lifetime
of the system is fixed a priori, and determined by the awake
or activation interval, i.e., the interval during which a node
is awake. We assume that the awake interval, potentially
spanning multiple slots, is the same across all nodes, and
that each node is woken up only once per epoch. Alterna-
tive formulations with different awake intervals or multiple
activations per epoch are possible at the expense of a more
cumbersome treatment, and are therefore omitted here.

A discretized epoch simplifies the optimization task
which can be expressed as a slot assignment problem,
and formulated as an integer (in fact, boolean) linear pro-
gram [13]. The granularity of the discretization, i.e., the
duration of a slot, obviously affects (adversely) the achiev-
able quality of the final result, but also lowers the complex-
ity of solving the linear program. A trade-off can therefore

1For simplicity, we describe the problem in a two-dimensional space:
the extension to a three-dimensional space is straightforward.



be established between optimality and the time it takes to
compute the solution.

Assumptions In our formulation we make a number of
simplifying assumptions. For instance, we assume that the
sensitivity of a node in its sensing range is constant, and
that the boundaries of the sensing range are sharp. These
limitations can be addressed by considering different (e.g.,
concentric) sensing areas for each node, and by weighing
them differently in the optimization constraints. This is, in
fact, what we do to overcome the problem of sharp bound-
aries: since the contribution to a constraint of some area is
weighted by the area itself, small errors in the determina-
tion of the sensing range will have a low impact on the final
result. On the other hand, accurate models would not only
make the solution substantially harder, but would likely still
be affected by large errors. This justifies our use of a sim-
pler model for the sake of tractability.

Another important assumption, intrinsic to the central-
ized way we solve the problem, is that the topology of the
system should not evolve in time. This condition may not
be satisfied by systems that require the mobility of the sen-
sor nodes. A topology change may also be due to the failure
of a node. In these cases, a new optimum must be recom-
puted with the new topology. Similarly, we consider the
topology of the system exclusively in terms of sensing, re-
gardless of connectivity. However, we believe these are rea-
sonable assumptions, as our main target is not to use our
results directly in real deployments, rather to derive a theo-
retical optimum useful as a baseline against which to com-
pare distributed, on-line, practically usable protocols such
as the one we described in [5].

4. Solution Algorithm

The objective of scattering the wake up times of the
nodes is to maximize the area covered during the epoch.
At any time t, the set of nodes that are awake at that time
defines a covered area S(t), which is equal to the area of the
union of the sensing areas of all awake nodes.2 Our objec-
tive is therefore to maximize the integral over the epoch of
S(t).

Our method to solve the optimization problem goes
through two steps, which are described in detail in Sec-
tion 4.1 and 4.2, respectively.

1. We consider the problem of determining a finite num-
ber of regions in the target area that, without loss of
accuracy, can be used to model the topology of the
system and the area overlaps. We refer to this as the
spatial partitioning problem.

2Note that this is different from taking the sum of the areas of the awake
nodes, since overlaps would be counted multiple times.

2. We express the scheduling problem by setting up an
integer linear program, with coverage constraints for
each node and for each region found in the previous
step.

The optimization problem is then solved using standard lin-
ear programming and branch and bound techniques, and
yields as a result the optimal schedule for the given objec-
tive function and constraints. In the following sections we
discuss our solution in detail, and present experimental re-
sults for a number of different setups.

4.1. Spatial partitioning

The optimization problem can be set up as a linear pro-
gram by enforcing a certain level of coverage on the tar-
get area A, through the use of appropriate constraints (see
Section 4.2). This approach is feasible if A is discretized
into a finite number of regions, to avoid generating con-
straints for each of the infinitely many points in A. One
method is to discretize A on a regular grid. However, a reg-
ular discretization may either be inaccurate, when it is too
coarse, or inefficient, when it reaches the minimum granu-
larity to ensure correctness. To avoid these problems, we
use an adaptive, non-regular finite discretization that retains
all the information of the original topology, while achieving
the largest possible granularity.

To do that, we identify regions in the target area that are
invariant relative to node coverage. That is, we look for
regions such that for any two points in the same region, if
one is covered, then the other is covered, and vice-versa.
In this case, it is sufficient to consider only one point per
region, or equivalently consider the region as a whole. This
idea can be expressed as follows. Let r : A → 2N be
the function that for each point p ∈ A associates the set of
nodes for which p is in range. We partition the points of A
according to the following relation ∼:

p1 ∼ p2 ⇐⇒ r(p1) = r(p2).

The relation∼ is an equivalence relation since it is reflexive,
transitive and symmetric. Hence, the equivalence classes
of ∼ completely partition the area A into a set of non-
overlapping regions. By definition, every point in a region is
covered by exactly the same set of nodes, and therefore re-
gions are invariant, as required. Given that there is a one-to-
one mapping, we sometimes make no distinction between a
region ρ and the set of nodes r(ρ) that cover it. Note also
that each region need not necessarily be connected, even
when the sensing areas of the nodes are connected and con-
vex. Thus, this kind of spatial partitioning cannot be ob-
tained using a simple regular discretization.

The number of regions determined by our equivalence
relation is finite, and equal to 2|N | in the worst case. In



practice, the range of the function r, which determines the
number of equivalence classes for a given problem, may be
considerably smaller than 2|N |, depending on the geome-
try of the problem. For the case of rectangular sensing ar-
eas, that we address below, the number of regions is order
O(|N |2), as can be determined by analyzing the complex-
ity of Algorithm 1 which computes their number and areas.
Similar bounds can be derived for other geometries, such
as circles. The number of regions will be even lower when
the target area is large, and the sensing area of distant nodes
do not overlap, a situation that is common in any moderate
size deployment. However, a systematic study of the size of
the equivalence relation as a function of node density is still
part of our future work.

Determining the invariant regions may involve non-
trivial geometrical computations, especially if the sensing
area of the nodes have non-regular shapes. In this paper,
we present an algorithm for the simplified case in which
the sensing area of a node is a rectangle. This allows us
to easily compute intersections by performing only sums
and differences, and avoid dealing with higher order poly-
nomial as in the case of round areas. This model can be
trivially extended to sensing areas composed of a union of
rectangles, and can therefore be made arbitrarily accurate,
including the case of unconnected sensing areas (e.g., blind
spots). Experiments in locationing also show that, despite
its simplicity, this approach can lead to reliable results [10].

The partitioning algorithm works by scanning the tar-
get area horizontally, left to right, stopping at every vertical
boundary of a node’s range, as shown in Figure 2. At every

Figure 2. Rectangular topology with scan-
ning sequence

stop, the algorithm performs a vertical scan, from bottom
to top, that computes the regions found at that horizontal
position, and updates their area. This is sufficient, since
the computation of the optimal schedule discussed in Sec-
tion 4.2 does not require the shape of the invariant regions,
but only their area and corresponding set of covering nodes.
Each region can conveniently be identified by its set of cov-
ering nodes, as discussed above. For example, in Figure 2,
the vertical scan at x0 finds a sequence of regions corre-
sponding to the sets of nodes:

{3}, {2, 3}, {1, 2, 3}, {1, 2}, {2}. (1)

Areas are accumulated incrementally, and computed up to
the following stop in the scanning sequence.

The procedure is shown in detail in Algorithm 1. To

Algorithm 1 Spatial partitioning algorithm
1: h scan = list of vertical boundaries of the nodes or-

dered by their horizontal position
2: v scan = ∅
3: R = ∅
4: for i = h scan.begin() to h scan.end() do
5: if i is left boundary of node n then
6: Insert the horizontal boundary of n in v scan or-

dered by their vertical position
7: else // i is the right boundary of node n
8: Erase the horizontal boundary of n from v scan
9: end if

10: h extent = horizontal extent to next stop
11: node set = ∅
12: for j = v scan.begin() to v scan.end() do
13: if j is bottom boundary of node n then
14: Insert n in node set
15: else // j is the top boundary of node n
16: Remove n from node set
17: end if
18: v extent = vertical extent to next stop
19: area = h extent · v extent
20: R = R∪ {node set}
21: node set.area = node set.area + area
22: end for
23: end for

perform the horizontal scan, we first build a sequence
h scan of all the vertical boundaries of the nodes, ordered
by their horizontal position (line 1). We then loop through
this sequence (line 4) and stop at every element. To perform
the vertical scan we also build a sequence, denoted v scan,
by inserting the horizontal boundaries of the nodes that in-
tersect the scan at the current horizontal position in the or-
der of their vertical position. For efficiency, this sequence is
constructed incrementally: it is initialized to empty (line 2)
and at every step of the horizontal scan we insert or remove



Region Nodes Area Region Nodes Area
ρ0 ∅ 56 ρ4 { 1, 3 } 96
ρ1 { 1 } 144 ρ5 { 2 } 244
ρ2 { 1, 2 } 140 ρ6 { 2, 3 } 272
ρ3 { 1, 2, 3 } 160 ρ7 { 3 } 112

Table 1. Regions for topology of Figure 2

the horizontal boundaries of the node at that position, ac-
cording to whether we are entering (from the left) or exiting
(to the right) the sensing area of the node (lines 6 and 8).
In the example of Figure 2, the vertical scan at x0 would
already have the ordered entries

(3bot, 1bot, 3top, 1top).

At x0, since we are entering node 2, we add 2bot and 2top
in the correct order, to obtain

(3bot, 2bot, 1bot, 3top, 1top, 2top). (2)

The vertical scan starts with the loop at line 12. During this
phase, we keep track of the set of nodes node set for which
the current point is in range. This set is updated at every step
of the scan according to whether we are entering the node’s
range from the bottom (line 14) or exiting it from the top
(line 16). For example, scanning the sequence 2 we obtain
the regions of sequence 1. After computing the area of the
node set, we add it to the set R (line 20), which was previ-
ously initialized to empty at the beginning of the procedure
(line 3). If the region was already present in the set, we do
not add a new element but simply update its area (line 21).
Since regions can span several horizontal positions, we use
for the setR an ordered data structure that provides efficient
insertion and retrieval.

The result of applying Algorithm 1 to the topology of
Figure 2 is shown in Table 1, where each region is associ-
ated with its covering nodes and its area. Note that the area
covered by the nodes outside the target area A is ignored.

4.2. Computation of the optimal schedule

Once we have partitioned the target area into non-
overlapping regions, we compute the optimal schedule of
the wake-up times for the nodes by setting up an optimiza-
tion program. The input from the spatial partitioning is:

• the set N of nodes,

• the setR of regions to be monitored,

• a function r : R → 2N associating to each region
ρ ∈ R the subset r(ρ) of nodes that cover the region,

max
∑L−1
k=0

∑
ρ∈R Ck, ρw(ρ)

∀n ∈ N
∑L−1
k=0 xn,k = ns

∀n ∈ N
∑L−1
k=0 sn, k = 2

∀n ∈ N ∀k ∈ [0, L− 1] sn, k ≥ xn, k − xn, ((k+1)%L)

∀n ∈ N ∀k ∈ [0, L− 1] sn, k ≥ xn, ((k+1)%L) − xn, k
∀ρ ∈ R ∀k ∈ [0, L− 1]

∑
n∈r(ρ) xn, k ≥ Cρ, k

∀ρ ∈ R ∀k ∈ [0, L− 1] ∀n ∈ r(ρ) Cρ, k ≥ xn, k

Figure 3. The coverage problem: maximize
the coverage assuming that each node is ac-
tive once per epoch and for an interval equal
to ns slots.

• a function w : R → R+ that associates to each region
its area.

To manage the temporal aspect we discretize the problem
by dividing the period E into slots of length ∆. For sim-
plicity, we assume that E is an integer multiple of ∆, so
that there are exactly L = E

∆ slots in each epoch. The slots
are numbered from 0 to L− 1.

Given that each node is awake only for a fixed interval,
the output of the optimization is a schedule that defines the
slot at which the node wakes up. This schedule is computed
to maximize the total area covered by the nodes during the
epoch. The network lifetime is fixed and defined as first
node failure. Note that the ability to change the schedule
across epochs could potentially give a better solution. How-
ever, we defer an investigation on this possibility to our fu-
ture work.

As an example, let us go back to the problem in Figure 2,
whose output is in Table 1. Assume that we only have two
slots in the epoch and that each node can be active for at
most one slot. If we allocate all nodes in one slot, we cover a
total area of

∑7
i=1 w(ρi) = 1168, where w(ρi) is the area of

region ρi. We can improve on this coverage by moving one
node to the other slot. For instance, if we move node 1, the
coverage for the first slot is equal to the area of the regions
covered by nodes 2 and 3, which is

∑7
i=2 wρi = 1024. For

the second slot, it is the area of the regions covered by node
1, which is

∑4
i=1 wρi = 540, for a total of 1564. If we

move node 2, we have a total covered area of 1468, and if
we move node 3 we obtain a total of 1696. The optimal
choice is therefore to move node 3.

For the cases in which the active interval is larger than
one slot, we allow the activation interval to wrap around the
epoch. For instance, if the active interval is 2 slots and if
the number of slots per epoch is 4 (numbered from 0 to 3),
a node can be activated at slot 3 of one epoch and remain
active in slot 0 of the subsequent epoch.



4.3. The coverage problem

In this section we show how the problem can be set up
as a boolean linear program (BLP), which can be solved by
standard commercial and open source tools.

To model the schedule, we introduce a set of variables
that say if a node is active in a slot or not. Formally, this is
a binary variable

xn, k =

{
1 if node n is awake during slot k of each epoch
0 otherwise.

From the schedule we compute the coverage by introducing
a set of variables that says if a region is covered in a slot or
not. Formally, this is another binary variable

Cρ, k =

{
1 region ρ is covered during slot k
0 otherwise

(3)

Using the Cρ, k variables and the w area function, we can
compute the covered area as

S =
L−1∑
k=0

∑
ρ∈R

Ck, ρw(ρ).

The optimization problem is then expressed as

maxS
subj. to < each node is active for ns slots > (I)

< each node is activated once > (II)

These conceptual constraints must be expressed in terms of
the schedule variable xn, k. Formalizing the limit on the
number of active slots, constraint (I) can be straightfor-
wardly expressed as:

∀n ∈ N
L−1∑
k=0

xn,k = ns,

which counts and limits to ns the number of slots a node
is active. For constraint (II), we must ensure that a node’s
schedule includes only a single activation (transition from
0 to 1) and deactivation (transition from 1 to 0). The num-
ber of activations and deactivations is formally expressed by
considering adjacent slots, as in:

Wa(n) =
L−1∑
k=0

|xn, k − xn, (k+1) %L|, (4)

which uses the %, or modulo, notation to account for the
fact that the schedule repeats in subsequent epochs, and the
first slot actually follows the last. To guarantee only a sin-
gle activation and deactivation the number of transitions is
restricted to two, as in:

∀n ∈ N , Wa(n) = 2.

We linearize the activation and deactivation counting with
the binary variables sn, k ∈ {0, 1} such that ∀n ∈ N ∀k ∈
[0, L− 1]:

sn, k ≥ xn, k − xn, ((k+1) %L)

sn, k ≥ xn, ((k+1) %L) − xn, k
(5)

which together handle the absolute value computation of
Wa(n), and limit the number of transitions with:

∀n ∈ N Wa(n) =
L−1∑
k=0

sn, k = 2. (6)

By requiring these constraints we can prove that sn, k =
|xn, k−xn, (k+1) %L|. In fact, any activation or deactivation,
i.e., when |xn, k − xn, (k+1) %L| = 1, forces sn, k to 1 due
to Equation (5). On the other hand, constraint (I) forces at
least two transitions during an epoch, from off to on, and on
to off. Therefore,

∑L−1
k=0 sn, k ≥ 2. However, the constraint

in Equation (6) requires that this be equal to 2, hence it
follows that sn, k = 0 when |xn, k − xn, (k+1) %L| = 0.

Finally, we must show how to compute the coverage
variable, Cn, ρ, whose value is uniquely determined by the
schedule xn,k. This is done with the additional constraints:

∀ρ ∈ R, ∀k ∈ [0, L− 1],
∑
n∈r(ρ)

xn, k ≥ Cρ, k; (a)

∀ρ ∈ R, ∀k ∈ [0, L− 1],∀n ∈ r(ρ), Cρ, k ≥ xn, k; (b)
(7)

where (a) guarantees that a region ρ is not considered cov-
ered if none of the nodes n covering it are active during slot
k. Specifically, constraint (a) forces Cρ, k = 0. Conversely,
by constraint (b), if at least one covering node is active, the
region is considered covered, and Cρ, k = 1.

Figure 3 summarizes the optimization problem. In this
case, all the decision variables xn,k, sn,k and Cρ, k can only
take binary values.

5. Simulation results

To verify the effectiveness and the practical relevance of
our approach, we performed an extensive set of simulations
comparing the performance achieved by our optimal algo-
rithm against both randomly generated schedules as well as
those obtained by our previously published distributed scat-
tering algorithm [5]. The primary performance metric is
the covered area averaged over the epoch. Specifically, if
S(k) is the area covered during slot k, the covered area is
(1/L)

∑L−1
k=0 S(k). Our initial evaluation uses GLPK [4],

an open source linear programming kit, to compute the op-
timal schedule. Typical runs with less than 50 nodes com-
pleted in a few hours. We are currently investigating more
efficient implementations using other ILP solvers.
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Figure 4. Spatial configuration of the 10 node
scenario. The thick line delimits the target
area to be monitored. For each node a col-
ored square shows its sensing area.

Our evaluation considers two primary scenarios, outlined
in Table 2, with different sizes and amount of spatial over-
lap. In all cases, we considered square sensing areas and, for
the distributed algorithm, circular communication ranges.
The first scenario considers 10 nodes randomly deployed in
a 150×150 target area. The edge of a single sensing square
is 140 and the spatial partitioning algorithm identifies 62
unique regions. Figure 4 visualizes this scenario. The sec-
ond scenario randomly places 30 nodes in a 600× 600 tar-
get area with a sensing square edge of 212. In this case, the
number of regions is 308.

To compare against random, we generated 3000 random
initial schedules, calculating the average coverage achieved.
Because the distributed solutions requires communication
to share wake-up times among neighboring nodes, the size
of the communication radius greatly affects its ability to es-
timate overlapping sensing regions and scatter awake time
with respect to nearby nodes. Therefore, we evaluated three
communication ranges for each scenario, representing low,
medium, and high degrees of connectivity among nodes.
Additionally, the scattering protocol does not change the
wake-up order among nodes, and is affected by the initial
random wake-up configuration. Therefore, we report results
that average 10 different initializations.

Table 3 presents the results, grouping the two scenarios.

As optimal and random results do not depend on the com-
munication radius, only one value is reported for each. In-
stead, the scattering protocol’s performance relative to opti-
mal increases with larger communication ranges. The third
column reports the coverable area, or the area that could be
covered if all sensors are active throughout the entire epoch.
This is a loose upper bound, which even the optimal duty-
cycling schedule cannot attain. To allow easy comparison,
we report the random and scattered schedules as a percent-
age of the optimal solution.

When considering the random schedules, it is worth not-
ing that they are heavily affected by the spatial density of the
nodes. Indeed, if the node are distant from one another to
a point where their sensing areas do not overlap, all sched-
ules are equivalent. On the contrary, if the sensing areas
of the nodes overlap heavily, the performance of the ran-
dom schedule can be substantially lower than the optimal
(an average value around 75% of the optimum may corre-
spond to a worst case coverage far below the 50% of cover-
able area). The performance of the scattering algorithm is
consistently better than the random schedule, even in cases
with moderate connectivity. As communication increases,
its performance similarly increases, achieving up to 93% of
the optimum.

6. Extensions and future directions

The formulation proposed in Section 4.2 can be applied
to a much wider class of problems than coverage. For exam-
ple, we can easily handle the inverse problem: given a re-
quired coverage, find a schedule that maximizes the lifetime
of the network. Since we have defined lifetime as first node
failure, this goal can be achieved by minimizing the maxi-
mum energy consumed by any node in one epoch. In this
case we allow nodes to activate/deactivate multiple times.
For power consumption, we adopt a model in which a node
incurs an energy cost proportional to its active interval pay-
ing an additional price for each activation. A conceptual
formulation of the problem is the following

min max
n∈N

αI(n) + βWa(n)

subj. to < the assigned area is covered > (I)

The cost function is the element-wise maximum of a vector
of functions. Each element of the vector, αI(n) +βWa(n),
is related to a node n. In particular: α is (an estimation
of) the energy consumed by a node during a slot of its ac-
tive interval (i.e., for sensing, computation and communi-
cation), I(n) is the active interval, β is the energy spent
for activation, Wa(n) is the number of times n is acti-
vated/deactivated during the epoch.

The vector notation in the cost function can be expressed
in scalar form by introducing an additional decision variable



Number of Target Sensing Awake Number of
Nodes Area Area Interval ns Slots E

10 150× 150 140× 140 3 15
30 600× 600 212× 212 3 12

Table 2. Key parameters of our simulation scenarios

Number of Communication Coverable Coverage of the Average Coverage of Average Coverage
Nodes Range Area Optimal Schedule Random Schedule of the Scattered Schedule

(percent of optimal) (percent of optimal)
10 45 22500.02 18030.741 76.909% 84.63 %

60 84.51 %
99 93.25%

30 53 337329.98 254354.11 79.18% 80.8%
106 87.12%
130 90.58%

Table 3. Simulation results for the different scenarios. The last two columns report the ratio between
the average coverage respectively obtained by a random schedule and by the scattering algorithm
and the coverage achieved by the optimal algorithm.

µ constrained as follows:

minµ
∀n ∈ N , µ ≥ αI(n) + βWa(n)

(8)

The function I(n) is given by:

I(n) =
L−1∑
k=0

xn, k.

Function Wa can be computed as shown in Equation (4).
Once again, it is possible to linearize the constraints in
Equation (8) by introducing the binary variables sn, k. Since
we want to allow for multiple activations, which would be
inhibited by (6), we impose Equation (5) as the only con-
straint on sn, k. Even without Equation (6), when a slot has
no activation or deactivation the value of sn, k is guaranteed
to be 0 in the final solution because the optimal solution
must also be minimal.

For Constraint (I) we require that for each slot the sum
of the areas of the covered regions is greater than a given
value A0:

∀k ∈ [0, L− 1],
∑
ρ∈R

w(ρ)Cρ, k ≥ A0

where the Cρ,k variable has been introduced in Equation (3)
and computed in Equation (7). The complete formulation
for the problem is shown in Figure 5. In this case we have
both binary decision variables (xn, k and sn, k) and a real
decision variable (µ). Therefore the problem is a mixed
boolean linear program (MBLP).

minµ

∀n ∈ N µ ≥ α
“PL−1

k=0 xn, k
”

+

+β
“PL−1

k=0 sn, k
”

∀n ∈ N ∀k ∈ [0, L− 2] sn, k ≥ xn, k − xn, ((k+1)%L)

∀n ∈ N ∀k ∈ [0, L− 2] sn, k ≥ xn, ((k+1)%L) − xn, k
∀k ∈ [0, L− 1]

P
ρ∈R w(ρ)Cn, k ≥ A0

∀ρ ∈ R∀k ∈ [0, L− 1]
P
n∈r(ρ) x(n, k) ≥ Cρ, k

∀ρ ∈ R∀k ∈ [0, L− 1] ∀n ∈ r(ρ) Cρ, k ≥ xn, k

Figure 5. The lifetime problem: minimize
the maximum power consumption incurred
in one epoch requiring that an area at least
equal to A0 be always covered.



Additionally, we will explore adding constraints to man-
age latency in delivery of information to a sink node. This
is naturally expressed as additional constraints on the awake
times between parent and children nodes in a distribution
tree. Finally, we will refine the power consumption model
to realistically explore the option of multiple awake inter-
vals inside the epoch.

7. Conclusions

This paper presented evaluated a modeling framework
for scheduling node wake-up times to achieve the maxi-
mal coverage in a WSN. Our model is solvable with lin-
ear programming, and the results, in comparison to a sim-
ple, distributed solution, demonstrate that the optimal solu-
tion achieves significant improvement. Our interpretation of
this result is that additional gains can be achieved with the
distributed solution, for example by including aspects such
as signal strength to estimate the sensing overlap among
nodes. We also intend to evaluate other optimizations that
can be explored within our specification framework, for ex-
ample, calculating the maximum lifetime for a given cover-
age.
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