
Journal of Systems Architecture 59 (2013) 626–642
Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
PASES: An energy-aware design space exploration framework
for wireless sensor networks
1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.05.020

⇑ Corresponding author. Tel.: +39 0461 283971.
E-mail address: roberto.passerone@unitn.it (R. Passerone).
Ivan Minakov, Roberto Passerone ⇑
Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, via Sommarive 5, Povo di Trento, TN, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 December 2012
Available online 6 June 2013

Keywords:
Embedded systems
Design space exploration
Wireless sensor networks
Platform based design
Energy aware
Energy consumption is one of the most constraining requirements for the development and implemen-
tation of wireless sensor networks. Many design aspects affect energy consumption, ranging from the
hardware components, operations of the sensors, the communication protocols, the application algo-
rithms, and the application duty cycle. A full design space exploration solution is therefore required to
estimate the contribution to energy consumption of all of these factors, and significantly decrease the
effort and time spent to choose the right architecture that fits best to a particular application. In this
paper we present a flexible and extensible simulation and design space exploration framework called
‘‘PASES’’ for accurate power consumption analysis of wireless sensor networks. PASES performs both per-
formance and energy analysis, including the application, the communication and the platform layers,
providing an extensible and customizable environment. The framework assists the designers in the selec-
tion of an optimal hardware solution and software implementation for the specific project of interest
ranging from standalone to large scale networked systems. Experimental and simulation results demon-
strate the framework accuracy and utility.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The design of networked embedded systems and wireless sen-
sor networks (WSN), in particular, faces unique challenges which
are specific to their application domains. These are rendered diffi-
cult to approach due to the tight system requirements. Among the
existing issues, power consumption and energy efficiency are con-
sidered to be one of the most constraining factors that limit func-
tionality and mass production of WSN systems. Sensor nodes are
commonly resource-constrained, battery-powered embedded de-
vices. Replacing the batteries is, however, at best inconvenient,
and sometimes downright impossible after the network deploy-
ment. Hence WSN nodes must utilize power efficient hardware
and software technologies to increase their lifetime.

The study of power optimization can be approached at several
levels. From a technology and hardware point of view, techniques
can be applied to dynamically scale the voltage of the circuits or
regulate the frequency of operation according to the computation
needs. While these techniques may provide substantial savings,
the choice of the application algorithms, operating systems, proto-
col implementations, scheduling policies and program style may
have a considerable impact on energy consumption. Additionally,
collaborative network behavior, topology, MAC and routing proto-
col functionalities often have dominant influence on the network
lifetime. Evaluating the effects of different design choices in each
of the mentioned domains is therefore a critical step in the design
of the applications and in the sensor network development pro-
cess. Reliable and accurate energy evaluation can be achieved only
by capturing all relevant low-level details and operating states of
the studied hardware platform along with proper modeling of
application functionality, communication behavior, network and
sensing environments.

The most common approaches for the evaluation of WSN sys-
tems include modeling (simulation) and prototyping. Prototyping
is a widely used method which provides an efficient and highly
valuable evaluation of the tested systems. However, despite its
obvious benefits, prototyping has a number of crucial disadvan-
tages that have to do with the high cost and time required to build,
run and debug experimental systems. Among the modeling ap-
proaches, simulation is currently the most widely used technique
to explore and evaluate the design of WSN applications. A vast
number of tools for WSN simulation have been introduced to per-
form power consumption evaluation from the network point of
view [1–3]. In these environments, the system is modeled as a
set of communicating concurrent processes, where each process
represents the activity of a single node. Existing simulators
[1,4,2,5–14] provide various degrees of support for the analysis
of communication, application logic and energy consumption.
Many tools are focused either primarily on the network or software

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sysarc.2013.05.020&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.05.020
mailto:roberto.passerone@unitn.it
http://dx.doi.org/10.1016/j.sysarc.2013.05.020
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 627
simulation, without proper care for the underlying hardware plat-
form details. These tools perform energy consumption estimation
based on simple assumptions and energy models that account only
for basic operating states (e.g., On/Off) of the Radio-Frequency (RF)
transceiver and the processor. Other tools exploit a cycle-accurate
simulation strategy to examine operations with fine grained details
but for a specific hardware architecture only, without the possibil-
ity to extend them. While these tools provide very accurate power
estimation, their strong focus on a particular hardware architec-
ture limits their applicability in design space exploration. Only
quite few of the available tools provide enough flexibility to eval-
uate energy usage for a wide range of hardware WSN platforms or-
ganized into a network.

In this paper we present a flexible and extensible SystemC-based
framework called Power Aware Simulator for Embedded Systems
(PASES) that combines an event-driven simulation engine with a
hardware, application and network models composer. The main
motivation behind PASES is to enable accurate energy estimation
for a wide range of WSN hardware platforms and fill up the gap be-
tween purely network oriented WSN tools and architecture spe-
cific simulation environments. This is especially important when
evaluating the trade off between computation and communication.
This tool allows a designer to construct models of any target HW/SW
platform, organize them into a heterogeneous network and
estimate the power consumption of every individual node and
get an energy-timing load profile for each HW component of
interest. It also supports the design, optimization and analysis of
collaborative network behavior, communication protocols,
application algorithms and enables one to study their effects on
the network throughput, delivery latency, energy efficiency and
other metrics. PASES is based on a methodology which supports
the Platform Based Design (PBD) paradigm [15,16], providing
power analysis for various heterogeneous sensor platforms orga-
nized in a network by defining separate abstraction layers for
application, communication, hardware, power supply modules
and sensing environment (stimulus).

This paper is structured as follows. We first review the state of
the art on WSN simulation tools in Section 2. In Section 3 we dis-
cuss the underlying methodology of our framework. Section 4 pro-
vides the implementation details of the presented framework and
describes the ways in which a system model can be constructed.
Finally, we demonstrate a case study application in Section 5 and
evaluate the framework.
2. Related work

Design space exploration of wireless sensor networks is gener-
ally accomplished through modeling and simulation tools. We
roughly classify existing simulation tools into general purpose (gen-
eric) network simulators, network oriented and node oriented
frameworks. Generic network simulators are designed to model
and evaluate conventional networks, such as wired LAN TCP/IP or
IEEE 802.11 WiFi systems. A number of frameworks, such as the
open source NS2 [1], NS3 [4] and OMNet++ [2] and the commercial
OPNet [5] and QualNet [6], have become popular in this domain.
The other two classes of tools are more specific to our target appli-
cation domain, and provide different degrees of design space
exploration capabilities. Network oriented simulation tools focus
on the network aspects of the WSN systems and typically offer
highly realistic and accurate models of the communication infra-
structure. Node oriented simulators, referred in literature either
as sensor node simulators or emulators, target internal operations
of sensor nodes while still providing simple lightweight communi-
cation models. Our aim is to provide a balanced framework, that
can be customized to trade off the accuracy of the model with
the performance of the simulation. For this reason, PASES supports
both networked node simulation and platform modeling, including
models of the energy source to support lifetime estimation. In the
rest of the section we briefly highlight the recent state-of-the-art
with respect to WSN exploration tools. A full survey and compari-
son of the PASES framework with several of these tools is under
preparation and subject of a separate publication.Network Oriented
WSN Simulators

A number of tools are based and extend the OMNet++ frame-
work to provide specific analysis capabilities for WSNs. Castalia
[7] and MiXiM [8] are excellent WSN simulators which provide a
first-order analysis of algorithms and protocols before their actual
implementation on a specific node platform. These tools provide
detailed radio and communication modeling, including a highly
customizable and accurate radio PHY model with dynamic calcula-
tion of radio signal strength, interference and noise ratio depend-
ing on the modulation type. Additionally, Castalia includes
customizable models of the most popular MAC and routing proto-
cols for WSN applications. However, these tools provide power
aware modeling and power consumption reporting for the radio
component only, and do not include power models for hardware
peripherals typical of a node platform (Timers, ADC, etc.). Addition-
ally, they do not provide any battery model and hence they do not
support lifetime estimation. Another disadvantage of Castalia and
MiXiM is their lack of an efficient post processing tool with GUI
support.

Also based on OMNet++, PAWiS [9] is a simulator focused on
power analysis for a wide range of WSN applications. It provides
facilities to simulate a whole sensor network along with accurate
modeling of the internal activity for every single node in the net-
work. Its architecture provides an extensible and flexible simula-
tion infrastructure, where users can customize and add new
simulation modules and components. Hardware components rep-
resent hardware models of the sensor node, including the CPU,
timers, ADC and the radio transceiver. The tasks that simulate
the work of the dedicated hardware are used to report the power
consumption to the power supply module. The biggest disadvan-
tage of PAWiS is its poor documentation and lack of clear design
examples, which makes it quite difficult to use and get started
with. Additionally, PAWiS is no longer supported, the latter release
was issued in 2009.

WSNet [10] is a standalone simulation tool written in C++ for
Linux. WSNet offers a wide range of radio medium models from
basic ideal physical layers to complex and accurate ones that in-
clude fading, frequency correlation and different antenna radiation
patterns. The simulated nodes in WSNet are built as a composition
of blocks which represent either a hardware component or a
software component of the node. Additionally, WSNet provides
an option to simulate dynamic physical phenomena (e.g., a fire)
and physical measures (e.g., temperature, humidity). This feature
allows sensor-driven applications to be simulated and analyzed.
The lack of a GUI environment for interpreting the simulation
results is a disadvantage of the WSNet tool-kit.

DANSE [11] is a recent standalone Windows simulator with rich
GUI support. This tool was originally designed for teaching pur-
poses and hence it is optimized for ease of use. It provides an excel-
lent GUI to configure various model options, run simulation and
study results. DANSE offers a relatively simple communication
channel model which however captures the most relevant trans-
mission aspects. Besides, this tool-kit provides a set of the most
popular MAC protocols models. Of interest, DANSE includes an
experimentally based power model for the radio PHY component
(CC2420). Despite its rich GUI features and high level of usability,
DANSE does not provide any input interface for the user to define
new applications, MAC models or specific hardware options, that in
fact limits the applicability of this tool.Sensor Node Simulators

628 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642
PowerTOSSIM [12] is a TOSSIM [17] extension that provides
power analysis for TinyOS applications. This simulator provides
code level simulation of TinyOS applications which can be run on
actual sensor network hardware. PowerTOSSIM equips the TOSSIM
hardware model with a specific module, PowerState, to keep track
of state activities for each simulated hardware component. Addi-
tionally, PowerTOSSIM provides CPU profiling support to report
the number of cycles for each execution block. By combining the
timing information with the energy model of the simulated hard-
ware platform, PowerTOSSIM computes the total energy consumed
by the node. However, PowerTOSSIM is included only in the first
version of the TinyOS framework, which is not currently supported.
Besides, simulation in TOSSIM and PowerTOSSIM are supported
only for a single platform (Micaz [18]).

AVRORA [13] is one of the most widely used WSN emulation
tool. It exploits cycle accurate instruction simulation to run the
application code. AVRORA runs actual application binaries without
the need to specially adapt them for simulation. AVRORA includes
the AEON evaluating tool [19] to estimate the power consumption
of sensor nodes. AEON exploits the cycle accurate execution model
of AVRORA for precise timing and energy measurements. However,
AVRORA and AEON support solely the AVR MCU cores [20] and do
not provide any extensions for other architectures. In addition,
AEON supports energy modeling only for the Mica2 platform [18].

The ATEMU [14] tool-kit is an emulator that targets AVR-based
WSN platforms (only the MICA2 platform is supported). This tool
exploits a cycle-by-cycle strategy to run the binary code of a target
application, and provides a set of accurate models of the peripheral
components included in the MICA2 platform. For the network sim-
ulation, a simple free space propagation model is implemented.
ATEMU also provides an efficient GUI, called XATDB, that can be
used to debug and observe the execution of the code, supporting
breakpoints and other debugging options. This tool provides the
highest level of accuracy among the available WSN emulation envi-
ronments. However, this is achieved at the cost of high processing
requirements and poor scalability. Another issue related to the
ATEMU tool is its capacity to emulate only the AVR-based nodes,
which makes it impossible to study WSN systems based on other
platforms.
3. Methodology

The complexity of developing and modeling heterogeneous
embedded and wireless sensor systems requires the use of an effi-
cient system level design methodology based on a set of appropri-
ate abstraction levels. The underlying concept of the presented
framework is inspired by the Platform Based Design (PBD) para-
digm [21,15,16], which was initially proposed for design optimiza-
tion of complex electronic systems. PBD structures the design
process as a sequence of refinement steps that leads from the ini-
tial specification toward a final system implementation. This meth-
odology is a ‘‘meet in the middle’’ approach which combines both
the top-down and bottom-up design and refinement flows. The
main principle of PBD is a clear definition of intermediate abstrac-
tion layers (platforms) for each design stage. Each layer in turn is a
set of design components (library) whose implementation details
are hidden from the higher layers. Thus, the design process on each
stage is a mapping between two adjacent layers where design
components from the lower layer are chosen in order to meet high-
er layer requirements.

The design flow supported in our methodology follows a cyclic
refinement process according to the PBD concept as depicted in
Fig. 1. The top level functional specification defines requirements
and sets constraints down to the application and communication
spaces. These in turn propagate constrains down toward the hard-
ware resources. The choice of hardware resources defines the node
architecture, i.e., an executable platform with a set of intercon-
nected hardware components which meet the application needs.
The energy-performance parameters are mapped on the node
model obtained in the previous step. The choice of power supply
module completes the system modeling and produces a complete
sensor node platform instance. Finally, the node model can be sim-
ulated and evaluated to check its correctness with respect to the
initial requirements.

Applying the PBD approach for power aware modeling of
embedded systems, we identify a set of separate levels of abstrac-
tion and corresponding specification layers to capture various de-
sign aspects and explore various solutions on each separate
stage, as shown in Fig. 1. At the highest level, the Software Level,
we introduce the Application Layer (AL) that is used by the end user
to define the application functionality. The Communication Layer
(CL) is a library of communication protocols which can be chosen
and tuned to meet network requirements such as throughput,
latency, energy efficiency and so on. At the Architecture Resource
Level (ARL), the Service Layer (SL) presents a collection of func-
tional services (API) that can be composed to specify different
applications. Their implementation makes use of the Resource
Behavioral Layer, which defines a set of hardware resources (com-
ponents) constituting the target architecture, and the Resource
Annotation Layer, which specifies their energy-performance details.
At the Energy Level, the Energy Source Layer collects energy
sources for sensor nodes.

We start the description of our methodology from the Architec-
ture Resource Level that offers a set of HW resources to be assem-
bled into a virtual platform model. Each hardware component on
this level is represented as an independent HW entity which pro-
vides functionality and specific features related to a certain kind
of peripheral (e.g., CPU, ADC, Timer, Sensors and Radio). Every
HW model on this level is split onto two layers in order to separate
the component behavior from its timing-energy details. The Re-
source Behavioral Layer is introduced to represent the HW behavior
intrinsic of certain kind of HW peripherals. The models on this
layer define the internal HW operations and data processing which
occur in the real HW. The power-performance details appear on
the Resource Annotation Layer, which defines a set of operating
states and transition rules for each separate component. Further,
each operating state and transition is annotated with numeric en-
ergy-performance values related to the target HW. These values
are obtained either from the specification or from real measure-
ments. Thus, the mapping of these two layers provides a high level
of flexibility in HW design space exploration since, in most cases, it
is enough to simply change either transition rules or annotation
numbers in order to model HW components from different ven-
dors. The details of the HW models definition and annotation are
given in Section 4, where we describe the framework
implementation.

The complete HW sensor node architecture is a set of dedicated
behavioral components annotated with energy-performance infor-
mation. In our methodology we distinguish between mandatory
and optional components in the node HW architecture. The set of
mandatory components includes the CPU and clock resource mod-
ules which always have to be present in a platform model. The CPU
module acts as a central component that manages access to other
optional peripherals, handles interrupt requests (IRQ) and executes
application tasks. The choice of optional components and their fea-
tures are left to the user to support a broad application space and
various HW platforms.

The Architecture Resource Level exposes only the available
HW functionality and hides the implementation details from the
software developers. This leads to the Service Layer (SL), which pro-
vides an application interface (API) that encompasses all possible

System Requirements:
performance, lifetime, …

System Requirements:
performance, lifetime, …

Network requirements:
latency, throughput, …

Network requirements:
latency, throughput, …

Service Layer
(HAL API middleware)

Service Layer
(HAL API middleware)

Resource Behavioral
Layer

Resource Behavioral
Layer

Resource Annotation LayerResource Annotation Layer

Sensor node instance

Energy Source Layer
(Battery, Energy harvesting)

Energy Source Layer
(Battery, Energy harvesting)

AODV, Tree;
IEEE 802.15.4,
TMAC ,…

Simulation result:
- lifetime,
- performance,
…..

SW
 L

ev
el

RunTimer,
PutCpu2Sleep,
SendRadioPkg,
GetAdcSample ,
…..

CPU, Timer, ADC,
Sensors, RF, …

Choice of battery parameters:
capacity, voltage,..

E
ne

rg
y

L
ev

el

Choice of services

Choice of energy- performance for HW

A
rc

hi
te

ct
ur

e
R

es
ou

rc
e

L
ev

el

App design
(Python/C++)

Application LayerApplication Layer
Communication Layer
MAC & Routing protocols
Communication Layer
MAC & Routing protocols

Node #N
Resource

Annotation
Layer

Node #N
Resource

Annotation
Layer

Node #2Node #2

Node #1Node #1

N
et

w
or

k
L

ev
el

Network model:
- # nodes;
- location;
- signal propagation
model

- …..

Fig. 1. Design space exploration methodology.

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 629
SW services that can be used by an application. The mapping be-
tween a dedicated HW model and a set of special services forms
a Hardware Abstract Layer API (HAL API) for a certain kind of
peripheral component. The HAL API essentially is the middle-ware
through which an application interacts with the underlying
hardware.

At the above level, the Software Level, the Application Layer ex-
ists to define an application through a set of services provided by
the Service Layer. This is an open layer, where the application
description is left to the user. We imply that every modeled appli-
cation can be described as a combination of hardware abstract ser-
vices (HAL API) and user defined algorithms. The application is
then executed on behalf of the CPU component which runs the
SW tasks sequentially. In our model, we assume that only one sin-
gle software instruction or user task can be run at a time. The exe-
cution flow may be interrupted only if an Interrupt Request (IRQ)
event generated by some of the HW component (such as Timer
or ADC) occurs. The main execution flow in this case is suspended
for the period of time needed to handle the IRQ. Processing is per-
formed inside the user defined interrupt service routine (ISR vec-
tor) associated with the IRQ. This realistic execution model
closely represents the event scheduling and handling operations
which take place in real systems. Thus, it opens the possibility to
analyze real embedded SW applications and map them onto our
virtual executable platform. The details on this process will be gi-
ven in the next section.

A library of communication protocols composes the Communi-
cation Layer (CL). This is an optional layer which includes models
of MAC and Routing protocols. We distinguish the communication
layer from the application to make it possible to refine and change
the communication part independently of the application and vice
versa. From the application perspective, this layer provides a set of
unified and dedicated services to access the functionality of the
chosen protocol. The unified network services provide abstract
communication primitives supported by each model on this layer.
These include generic operations on network transmission, receiv-
ing, retrieving address information and so on. Dedicated services
contain specific functions related to each specific protocol.

To model inter-node communication and network cooperative
behavior, we introduce the Network Level (NL) which represents
the wireless communication medium. This level processes signal
propagation and handles packet transmissions depending on the
relative positions of the nodes, signal strength, receiver sensitivity,
data packet length, etc. This level provides a set of low-level link
services which are accessible through the Radio Transceiver
component.

At the bottom of the abstraction stack, the Energy Level intro-
duces the Energy Source Layer in order to analyze the power con-
sumption and estimate lifetime of the system model. This layer
contains models of various energy sources including models of bat-
teries and super capacitors. Each hardware component consumes a
certain amount of power in each particular state, which is ac-
counted for by a power meter and eventually by the battery model.
This layer may also include harvesting components or other
sources of energy, which opens the possibility to analyze power
management techniques.

Finally, the complete platform instance is represented as a ver-
tical composition of configured components sequentially taken and

630 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642
refined on each level of abstraction described above. It provides an
efficient simulation infrastructure which allows one to capture and
analyze details on each of the layer including application, hard-
ware, energy and communication. Fig. 2 shows an example of
HW platform layers composition and top down mapping related
to an ADC peripheral. The arrows represent the refinement process
where platform specific options are selected on different layers,
e.g., available API, set of operating states, ADC resolution and tim-
ing features, current draw depending on supplied voltage, clock
frequency, etc.

4. Framework implementation

The PASES framework is designed to assists the development,
modeling and optimization of networked embedded systems and
of WSNs in particular. It provides precise per-node power and tim-
ing analysis, capturing aspects and details related to the simulated
hardware platforms at the desired level of granularity. The frame-
work is implemented as a standalone MS Windows application de-
signed in Visual Studio C++. To meet all the requirements described
in the previous section, PASES utilizes a component-based archi-
tecture consisting of a simulation kernel; a component library
(models of HW components); platform and application construc-
tors; a power tracer and power source models; communication
stack libraries; a wireless channel model; and a GUI front-end. This
section describes each of these components in details. The PASES
architecture is presented on Fig. 3.

4.1. Simulation kernel

The core element of PASES is a simulation kernel built on top of
the SystemC discrete-event simulation engine. To implement an
executable platform model composed of heterogeneous HW com-
ponents, we adopted a cycle approximate TLM abstraction para-
digm [22], which leads to an increased simulation speed and
lower design effort with respect to a cycle accurate approach.

The Architecture Resource Level introduced in our methodol-
ogy is implemented as a collection (library) of independent models
of HW components. Each component in this library is a conven-
tional SystemC module (sc_module) which represents the behavior
of the dedicated hardware (such as Timer, ADC, Radio, etc.). These
Fig. 2. Platform abs
models do not contain any information related to the timing or en-
ergy consumption features of the real hardware and they are only
able to perform abstract actions associated with the provided ser-
vices. PASES provides a basic hardware model class (hw_module)
which must be extended by each behavioral model in order to be
integrated with the simulation infrastructure. This parent compo-
nent provides a set of basic communication and functional primi-
tives for the simulation environment including system and
component tracers, IRQ controller and energy-performance mod-
els. By using the hw_module class as a parent we hide the structure
of the underlying layers and provide plain methods to control the
component power states.

Each HW model must be associated with the services
which that model provides to the application. Components are
responsible for handling command messages issued from the
Service Layer. These commands are requests to perform certain
actions, such as sending a packet, run a timer, and so on. The
hw_module class provides pure virtual method (cmdHandler) to
be implemented as a message handler in a derived class.

Our framework provides a set of pre-designed customizable
models for most HW components typically present in a WSN node
architecture. These include models of CPUs, Radios, Timers, ADCs,
Sensors, USART (SPI, I2C), Flash memory, LEDs and many others.
However, the architecture of our framework allows the user to de-
sign and easily include new custom components into the PASES
component library.

4.2. HW component annotation

The implementation of the Resource Annotation Layer for each
HW model is performed by defining a component specific Finite
State Machine (FSM) and by annotating its states and transitions
with energy-performance values related to a real world HW. The
set of specific FSMs for one kind of components with associated
values forms a library from which one or more components can
be chosen to build a specific HW platform. Each library provides
a unified export–import interface to exchange information with
the behavioral model. By doing so, different platforms can be ex-
changed by simply substituting elements from the library. This ap-
proach effectively separates the behavioral side of the modeled
hardware from its energy-performance aspects.
traction layers.

Fig. 3. PASES architecture.

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 631
The implementation of the Resource Annotation library resides
inside external Python files which in turn provide an easy way to
change the model parameters without the need of a compilation
step. The Python built-in objects (lists) and special classes are used
to hold and export values to the PASES simulation core. The com-
ponent FSM definition consists of the following basic elements:

� a table of operating states;
� a component state transition table;
� a table with performance information;
� an export–import interface.

The table of operating states contains the set of possible power
states for each HW component. Additionally, each HW component
might be supplied with a customizable state-transition table which
describes the component behavior as a series of reactions to re-
quests generated from upper layers. The component state-transi-
tion table allows the user to specify a hierarchical FSM with
macro and micro states. Along with a set of operating states (macro
states), this table may include a set of intermediate states that are
needed to describe the low level edge effects of power switches.
We refer to them as micro states, which are defined by transition
vectors. These vectors are used to perform a more accurate state
transition between two macro-operating states. Technically, a vec-
tor is a set (Python list) of power states with current consumption
and state duration information for each micro state. An example
of a vector and its power trace are shown in Fig. 4. The set of inter-
mediate states can be quite complex for some HW components and
operations, such as CPUs and radios, which may significantly in-
crease the simulation time. However, the vectors can be easily
skipped if there is no need for high simulation precision or if HW
state transitions happen instantly, so that the user can trade off
simulation performance for accuracy.

A single HW model may hold a number of different FSM defini-
tions corresponding to the different operating conditions, such as
different clock frequencies for the CPU core, different output power
for the radio and so on. The choice of these conditions may have
considerable impact on the system power consumption. PASES
provides the ability to change these parameters at run time, thus
opening the possibility to analyze different power management
techniques.

4.3. Platform construction

The actual choice of a node platform is left to the user to be de-
fined using a description written in XML. The platform instance is
created according to this XML specification where a set of periph-
eral components with associated annotation values are described.
Here the user defines the names of the components, their compo-
sition and hierarchy, parameters and links to the platform specific
FSMs definitions. The component parameters may include an ini-
tial CPU clock frequency, ADC resolution modes, etc. Furthermore,
in the node architecture we distinguish between on-chip periphe-
ral modules (e.g., Timers, ADC, USART) and external components
(e.g., Radio, LEDs, sensors, etc.), which are not part of a single
MCU chip. PASES includes an option to setup an external MCU
interface to simulate the communication of the MCU with the
off-chip components.

4.4. Sensors and environment model

The PASES HW component library contains customizable mod-
els for digital and analog sensor devices. For an accurate timing and
power analysis, we implemented models of serial interface con-
trollers to connect digital sensors and other peripherals (including
the Radio) to the CPU module. Currently we support simple func-
tional models of IIC and SPI controllers. The ADC channel is used
to connect analog sensors to the MCU. The component interfaces
and interconnections are described in the platform XML
specification.

Aside from application algorithms, results of sensing operations
may have considerable impact on an application functionality and
consequently on the system power consumption. Depending on
the application purpose, the deviation of sensed phenomena may
trigger the execution of energy consuming tasks such as network
transmission, increase rate of the application duty cycle, etc. PASES
provides an efficient interface to supply sensor devices with indi-
vidual dynamic environment models. The dynamic variation of

Fig. 4. An example of state transition vectors and associated power traces.

Fig. 5. PASES application toolchain.

632 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642
sensed quantities is implemented inside external Python scripts
that provide a flexible way to create complex environmental sce-
narios. The user can utilize any convenient method to define vari-
ations of sensed phenomena over simulation time. It may include
lookup tables, equations, combinations thereof, and reading from
external log files.

4.5. Application construction

The application is implemented on top of the Service Layer (SL),
which plays the role of an interface layer between the HW platform
and the application layers. The application determines the actual
functionality of the modeled system. It manages the workload of
the HW peripheral modules, switches the components operating
states and manages all the data transfers. The application is repre-
sented as a sequential execution of SL services and user-defined
functions. The available API services provide a comprehensive set
of functional primitives to operate with the underlying hardware
and build up any model of a target application functionality, such
as custom task scheduling, network routing, power state control,
run-time clock and voltage scaling. In addition, our framework pro-
vides an easy way to extend the predefined set of services with
user functions for each specific HW component of interest.

PASES supports application models written either in C/C++ or in
Python. Python offers more flexibility over C for a fast application
prototyping, while still providing an efficient execution
performance.

4.5.1. Embedded profiler
The PASES framework includes a profiling facility that enables

accurate timing analysis and simulation of real embedded software
code written in C. A software profiler performs timing estimation
of the target application by annotating the original C code with de-
tailed cycle accurate timing information. Fig. 5 shows a diagram of
the PASES profiler toolchain for both C and Python applications.

Along with timing analysis, PASES provides automated instru-
mentation to map native source code on a virtual HW platform in-
stance. The output of this process is PASES executable code, where
platform dependent operations are replaced with HAL API. The
mapped application is then executed within the simulator instruc-
tion by instruction, advancing the simulation clock according to
the annotated time.

Timing analysis is a multi-step process which involves a num-
ber of operations. First, we determine the number of cycles needed
to execute each individual source line on a target platform. We de-
rive this value from the debug information (listing) files generated
by the cross compiler, which allows us to perform an automated
correlation between C and assembler instructions. Using this map-
ping and a look-up table holding the number of cycles required for
each individual CPU instruction, the execution time of each source
line can be computed. Then, every line in the C file is annotated
with the corresponding number of cycles. The functional mapping
takes place on the next step, where platform specific operations

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 633
such as registers writings are changed to the PASES Service Layer
API methods. The correspondence between the API and the plat-
form specific code is defined by means of a customizable table
which declares replacement rules. While the mapping utility re-
places platform specific blocks in the original code, the rest of
the application functionality, such as tasks scheduling, network
packets processing, and computational algorithms, remain un-
changed. However, the complexity of providing reliable mapping
of simulation primitives on an arbitrary HW/SW application forced
us to limit the number of supported architectures for automatic
(semi-automatic) application mapping to only MSP430 [23] and
AVR128L [20]. Moreover, the original C application for the sup-
ported platforms has to satisfy some specific code conventions in
order to enable automatic mapping. Nevertheless, mapping can
be done manually by the user in more difficult cases.

The entire tool-chain including the grammar parser is imple-
mented in Python. The C-parser is the main part of our analysis
tool. It contains customizable grammar definitions to identify C
statements in the source code and defines places for timing anno-
tation depending on the type of statement. For instance, timing
information is placed inside the loops, before conditions and func-
tion calls, etc. Currently, PASES provides analysis for the code gen-
erated by the most popular cross-compilers including msp_gcc
[23] for the MSP430 architecture and avr_gcc [20] for the AVR
architecture.

4.6. Communication stack

The communication stack in PASES consists of three sub-layers:
PHY, MAC/Routing and Application. The lower sub-layer in the
stack is a model of the physical network interface (PHY) which is
the functional part of the transceiver model. It provides basic ac-
cess primitives to the network channel and basic network packets
operations. The functionality of the PHY layer includes packet
transmission and reception, clear channel assessment, energy
detection and radio state control mechanisms. In addition, it holds
and operates with parameters specific for certain radio chips. It in-
cludes, for instance, a receiver threshold, carrier sense level and
output power range. All parameters related to the PHY-sub-layer
are included in the Radio Chip XML specification and can be easily
changed in order to model different PHYs.

Access control to the shared communication medium is per-
formed by the MAC sub-layer. This sub-layer acts as an interface
between the Application Layer and the Radio PHY. MAC is responsi-
ble for addressing within the network, data link control, synchroni-
zation and quality of service support. Other important function for
the MAC protocol is to support and ensuring energy-efficiency and
low-level power consumption of the system.

The MAC protocols are implemented either as plug-in libraries
or as external Python modules. PASES includes a unified plug-in
interface for MAC libraries and provides a template to design and
add new MAC models to the framework. The flexibility of such
an architecture allows one to design a custom MAC protocol and
study its effect on network performance and system power con-
sumption. We implemented a number of the most popular MAC
protocols for WSN. Currently these include models of both the bea-
con-enabled and non-beacon IEEE 802.15.4 MAC [24], S-MAC [25]
and TMAC [26] protocols.

Each model of MAC protocol provides a set of common and ded-
icated services (MAC API). The common API set has to be imple-
mented in each MAC model. It includes basic operations and
services on packet transmission and reception, callback functions
registration, etc. Dedicated services provide functions specific to
each MAC protocols. An example of a dedicated service is a PAN
coordinator configuration function in the IEEE 802.15.4 MAC
model. Additionally, each MAC includes an external file which
contains values for the relevant variables related to the particular
MAC model. It may include initial values of the sync periods,
beacon intervals, number of enabled retransmissions and others.

The Routing sub-layer is an optional sub-layer logically located
on top of the MAC. This layer provides network organization,
network adaptation, path discovery and robustness to failure.
Currently we support the simple tree-routing algorithm [27] and
Ad-hoc On Demand Distance Vector (AODV) routing [28] which
is one of the basic routing algorithms in the ZigBee standard.
Similarly to the MAC sub-layer models, the routing protocols are
implemented as external plug-in modules which can be linked to
the simulation infrastructure.

4.7. Network channel model

The Network Level (NL) or network channel is an essential part
of PASES. This level represents the network communication med-
ium and provides an infrastructure for the network interactions
between a number of different nodes. The core functionality of
NL is built upon the SystemC Network Simulation Library (SCNSL)
[3]. This library provides packet-level network simulation models
and independent SystemC interfaces to connect nodes defined at
different abstraction levels. Packet forwarding in SCNSL depends
on a number of parameters such as relative distance between
nodes, transmission power and receiver threshold. This library pro-
vides high flexibility, accurate network simulation and high simu-
lation speed.

In order to provide flexible and easy-to-use network configura-
tion, PASES utilizes a network XML specification. This file contains
information on the node relative locations and network addresses,
link packets loss probability, MAC protocol library reference, and
many other parameters.

Along with simulation of static networks (nodes with fixed
locations), SCNSL provides support for dynamic network topolo-
gies. We extended SCNSL with an interface that allows one to as-
sign external mobile scenarios for each simulated node
individually. For that purpose, we utilize conventional Python
scripts where the user can define node speed, direction and coordi-
nates over simulation time. Python scripts provide a flexible way to
specify mobile trajectories at constant or varying speed defined by
any equation, look up table or both.

4.8. Power tracer and battery model

Every HW module constituting the node platform model is con-
nected to the system power meter module, which registers the
component state transitions at a certain time, calculates the energy
consumption of every hardware component at runtime and stores
power traces for post processing analysis. The total node power
consumption is the sum of the power consumed by each involved
component. The framework includes the WaveViewer tool (Fig. 6),
used to present graphically the analysis results to the user. System
statistics provide information on the relative contribution of each
component to the power consumption, as shown in Fig. 6(a). Addi-
tionally, the power meter provides precise energy-timing profiling
for each HW component individually. Simulation results are stored
in csv formatted files individually for each component and can be
displayed in the PASES GUI WaveViewer tool. Fig. 6(b) shows one
such trace. Likewise, WaveViewer can render the states breakdown
for each component involved in the operations of the selected
node, as shown in Fig. 6(c).

Another important feature of the WaveViewer is the capability
to perform battery lifetime estimation for every node as shown in
Fig. 6(d). Lifetime estimation is performed by applying the current
draw profile obtained in simulation to the battery model. The run-
time battery discharge analysis is considered as a possible task for

Fig. 6. PASES post processing GUI.

634 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642
future work. In PASES we provide two types of different analytical
models for post processing lifetime estimation. These include the
dynamic State of Charge (SOC) estimation [29] model and a more
complex model with rate-capacity and relaxation effects [30,31].
The former model is based on a non-linear equation for State of
Charge estimation for the major types of rechargeable battery
types, such as Lithium-Ion (Li-Ion), Nickel–Cadmium (NiCd) and
Nickel–Metal–Hydride (NiMH) technologies. In spite of certain
assumptions taken in this model, such as constant internal resis-
tance, independence from ambient temperature, absence of mem-
ory and self-discharge effects, it provides very accurate estimation
results.
5. Experimental results

In this chapter we demonstrate the main capabilities of the
PASES framework in power-aware design space exploration of
WSN applications. Further, we verify its power estimation accuracy
by comparing simulation results with reference values obtained on
a real test bench. For the sake of presentation, we choose simple
scenarios that do not involve a large number of nodes and use a
single-hop transmission protocol. However, the framework is
capable of supporting a large number of nodes as well as multi-
hop networks. We show that, even in the simple case, the frame-
work is able to provide useful trade-off analysis and data for the
selection of the best platform and application parameters.
5.1. Application test case

A simple WSN application scenario for ambient temperature
monitoring is selected as a reference application. The main focus
of this case study is to explore different options in HW/SW and
communication implementations, and determine the best combi-
nation that meets system requirements at the maximum possible
lifetime. The presented scenario involves five wireless nodes orga-
nized into a star topology. Four peripheral nodes are located within
the transmission range of the central node (10 m apart). The central
node acts both as a network coordinator and as a sink which re-
ceives packets from the peripheral nodes. Peripheral nodes, in turn,
periodically sample onboard sensors (once in a second), process
the obtained values, and send the results to the network sink for
data aggregation. Nodes act as Constant Bit Rate (CBR) traffic gen-
erators sending packets immediately after retrieving data from the
sensors.

In this scenario we evaluate two different HW architectures for
the network nodes, i.e., TelosB [18] and a SoC ATmega128RFA1
[20]. The TelosB platform is a popular HW platform upon which
we evaluated the PASES modeling accuracy. The second platform
is the Atmel SoC which contains an 8-bit ATmega1281 MCU and
an AT86RF231 radio transceiver inside a single chip, making this
platform very suitable for low-power applications. The energy
models for the ATmega128RF components were derived from the
device data sheet specification [20]. Table 1 summarizes the cur-
rent draw and state transition timings of the key operations on
both platforms.

By inspecting the table, there is a reasonable expectation that
the Atmel platform is more energy efficient that its counterpart,
especially with respect to the RF operations which are more energy
consuming. However, TelosB is more efficient in terms of CPU
power consumption, both in the active and sleep state. It is only
by accurately predicting the contributions of each component of
the platform that we can determine the best implementation. Even
when one platform is consistently superior to another, estimating

Table 1
TelosB and ATmega128RFA1 timing-energy models.

TelosB ATmega128RFA1

Operating states:
Radio Power Down (PwD) 0.01 mA 0.02 mA
Radio RX 19.7 mA 17.6 mA
Radio TX -6 dBm 13 mA 11 mA
CPU Active 2 mA 5 mA
CPU Sleep 0.01 mA 0.02 mA
SPI/IIC 0.1 mA/0.1 mA 0.1 mA
Timer 8 MHz 0.1 mA 0.1 mA
Timer 32 KHz 0.001 mA 0.001 mA
Sensor Active 1 mA 1 mA

State transitions:

CPU Active to Sleep 0.5 mA/400 us 0.7 ms/200 us
CPU Sleep to Active 0.5 mA/400 us 0.7 ms/200 us
Radio RX to PwD 7 mA/800 us 5 ms/900 us
Radio PwD to RX 6 mA/1920 us 4 ms/1800 us
Radio RX to TX 18 mA/200 us 15 ms/100 us
Radio TX to RX 14 mA/200 us 12 ms/100 us

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 635
the quantitative relative difference in terms of node lifetime is dif-
ficult to derive directly from the table, and requires a more detailed
analysis that can take into account the individual application char-
acteristics. PASES can readily perform this analysis.

Both platforms are very similar in the functionality they offer to
the application designers. Thus, it is possible to assemble models of
both architectures from the same set of generic HW behavioral
components, annotated with different energy-timing values. Tech-
nically, the differences in HW are reflected in the dedicated XML
platform specifications and corresponding Python annotation files.
Hence, both platforms provide the same set of HAL API services for
application modeling.

Two SW application models were implemented to be run on the
sink and sensor nodes, respectively. The software models involve
operations with the MCU, the IIC and the SPI controllers, two Tim-
ers, the on board temperature sensor (a model of the SHT11 sensor
for both platforms) and the RF transceiver component. All the
nodes run on the application duty cycle, periodically switching
the radio and the MCU components into lower power states. The
sampling rate for sensing operations on the sensor nodes is defined
by a peripheral Timer component running at 32.768 Hz. Along with
the application, system idle and active periods depend upon the
schedule of the chosen MAC protocol and its related parameters.

Along with the two HW architectures, we evaluate two different
scheduling-based MAC algorithms. We have chosen the beacon en-
abled IEEE 802.15.4 MAC [24] and TMAC [32] protocols due to their
maturity and popularity for WSN applications. Each model of the
MAC is parametrized with a set of specific variables which define
scheduling and communication properties. Typically, the available
options can be used to customize the MAC synchronization peri-
ods, the beacon and frame intervals, the contention periods, the
RX/TX buffers lengths, the maximum packet size, and to enable/
disable acknowledgments. Thus, the key purpose for this study,
along with the HW evaluation, is to find the optimal MAC param-
eters that provide the best balance between lifetime and other sys-
tem requirements. In this scenario, we define the packet delivery
latency as the most crucial requirement which has to be mini-
mized. Additionally, data delivery reliability is considered as an
important objective. Thus, in all cases each successfully delivered
packet is confirmed by an acknowledge frame from the receiver.
If a packet is not confirmed, the sender resends the data packet
again according to the specification of corresponding MAC.

After defining the exploration space in hardware and the appli-
cation and communication domains, we performed simulations for
each HW platform sequentially running each MAC protocol with
various parameters. For each simulation case we assume a homo-
geneous network where all nodes are based on the same HW archi-
tecture (either TelosB or ATmega128RF) and run the same MAC
protocol algorithm (either IEEE 802.15.4 or TMAC). Additionally,
the settings for the radio components for all the nodes are defined
as follows: transmission output power for all the nodes was set to
�6 dBm, receiver sensitivity threshold to �85 dBm, data rate to
250 Kbps and 16 symbols for Received Signal Strength Indication
(RSSI). Further, packet size for all data transmission is fixed to
32 bytes. At the energy source layer, we assume that every node
is equipped with two Alkaline AA batteries with 1.5 V nominal
voltage and 2500 mAh capacity each. The lifetime prediction is
based on the dynamic State of Charge estimation battery model
discussed in the previous section.

We present the results in terms of packet latency (throughput is
also analyzed, but not presented for brevity). Regarding power con-
sumption, we rather present the amount of current drawn by the
different components during the simulation run. We prefer this
metric over the more traditional power consumption since current
is more easily related to energy, which is the metric that matters in
the computation of the system lifetime. Because all simulations are
run for 100 s, our metric in this case is also proportional to power.
In addition, while the latency is varied, the experiments transfer
the same amount of data, making the different solutions compara-
ble. In particular, the current consumption is proportional to en-
ergy per data values.

5.1.1. Evaluation of slotted IEEE 802.15.4
In a beacon enabled network, the network (PAN) coordinator

periodically transmits beacon packets which other devices use
both for synchronization and for determining time periods for
transmission and reception of messages. The beacon packets con-
tain information on a superframe structure, which defines bound-
aries for an active and, optionally, for an inactive communication
interval. The structure of the superframe is determined by two
parameters, the Beacon Order (BO) and the Superframe Order (SO),
which define the length of the active and idle periods, respectively.
The setting of BO and SO must satisfy the relationship 0 6 SO
6 BO 6 14. The total length of the superframe (BI) and the length
of its active period (SD) are then defined as follows: BI = aBaseSu-
perframeDuration ⁄ 2BO, SD = aBaseSuperframeDuration ⁄ 2SO,
where aBaseSuperframeDuration is a constant which defines the
minimum length of the superframe (BO = 0). The standard defines
aBaseSuperframeDuration as 100 symbols or 16.3 ms at the
250 Kbps data rate. The active interval consists of two periods,
the contention access period (CAP) and the optional contention free
period (CFP). The CAP is divided into 16 equally-sized time slots,
during which frame transmissions are allowed. To access the net-
work channel during CAP, the nodes utilize a slotted CSMA-CA
algorithm. This algorithm relies on two successive CCA operations
and backoff periods, where the minimal backoff period is defined
by the constant aUnitBackoffPeriod (20 symbols). During the inac-
tive period, communication is not allowed and nodes may enter
a low-power mode to save battery energy.

We start our exploration from the analysis of the data packets
latency at various settings of beacon and superframe intervals.
The latency is accounted by the sink SW application as the mean
delay of all delivered data packets during a simulation run. For de-
lay analysis, each data frame contains a time stamp included by the
sender at the application layer. Fig. 7 presents the obtained data
delivery latency for both platforms at various BO and SO values.
Here and in the following, BO and SO values are arranged in
increasing order of superframe idle communication intervals. As
expected, the latency steadily grows along with BO value, which
defines the time period between two successive MAC beacons. At
small values of beacon interval, more communication periods

Fig. 7. IEEE 802.15.4 MAC latency for various settings of beacon and superframe intervals.

636 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642
(CAP) are available in a time unit, thus packets reach their destina-
tion with a smaller delay than at long beacon intervals.

Latency is not significantly affected by the choice of platform,
since the protocol algorithm and its parameters have a much larger
impact. Power consumption instead is different. Fig. 8 shows the
obtained current drawn by the sink and the sensor nodes for both
investigated HW architectures. In all simulations, the deviation of
power consumption between different peripheral nodes in the net-
work is negligible, thus, we assume that all sensor nodes draw an
equal amount of current. Further, due to the periodic sensing oper-
ations, peripheral nodes consume on average 0.2 mA more than the
sink, which does not do any background tasks except for the MAC
functionality. Fig. 9 presents the breakdown of the contribution to
power consumption for a TelosB peripheral sensor node for the dif-
ferent network parameters. In most cases, the Radio transceiver is
the dominant power consumer among other components. How-
Fig. 8. TelosB and ATmega128R
ever, at BO = 8 and SO = 1, the current draw of the different com-
ponents is balanced and the contribution of each is around 25%.
Finally, Fig. 10 presents the comparison of lifetime estimations
for both evaluated HW platforms. Differences are significant, and
highlight the impact of the platform on the performance of the
application.

5.1.2. Evaluation of TMAC protocol
TMAC (Timeout-MAC) is another popular synchronized MAC

protocol specially designed for low power WSN applications [32].
The radio avoids idle listening, which wastes power, by defining
an event-driven adaptive schedule with active and idle communi-
cation periods. The synchronization of the active/idle intervals be-
tween neighboring nodes is accomplished by sending a special
packet, called SYNC, which includes the duty cycle timing of the
sender, called synchronizer. Neighboring nodes, called followers,
FA1 nodes current draws.

Fig. 9. TelosB node components breakdown.

Fig. 10. TelosB and ATmega128RFA1 nodes lifetime.

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 637
accept the SYNC and synchronize with the obtained schedule, in
order to wake up and communicate at the same time. Further, each
node may accept and follow a number of different schedules, act-
ing as a connector between network clusters with different syn-
chronizers. Unicast message passing in TMAC relies on the RTS
(Request To Send) and CTS (Clear To Send) handshaking process
[32] implemented in CSMA-CA. Additionally, successfully received
data frames are optionally confirmed by the receiver with
acknowledgment packets. Thus, a typical unicast data message
consists of an RTS/CTS/DATA/ACK packet exchange sequence.

The evaluation of the TMAC protocol focuses on the same objec-
tives as above for the IEEE 802.15.4. We aim to discover the opti-
mal protocol settings including scheduler intervals (frame
intervals FI), activation timeout (TA) and set of activation events
in order to achieve the minimal level of data delivery at the max-
imum possible network lifetime. We performed a series of simula-
tions for both HW platforms with various FI and TA at a fixed set of
activation events which included all events mentioned above.
Fig. 11 presents the obtained packet latency at different intervals
of FI and TA for both architectures. The delivery delay linearly
depends on the length of the frame interval, and is essentially iden-
tical for both architectures. The obtained current draw for both the
TelosB and Atmel platforms is shown on Fig. 12. We observe that
the TMAC protocol does not provide any considerable energy sav-
ing at extended frame intervals, due to the traffic adaptive length
of the active interval. All the nodes remain active until they com-
pletely outflow all awaiting data frames, that leads to the long ac-
tive intervals where most of the energy is spent.

We can use PASES to explore alternatives and optimization
strategies. For example, in order to reduce the amount of network
transmissions and consequently scale back the length of the active
intervals, frame aware duty cycling can be applied to the SW appli-
cation of the peripheral nodes. For instance, instead of creating a
single packet for every sensing sample and buffer them locally,
data can be aggregated into a single frame during the idle interval
and sent once when the active period begins. Another optimization
approach is to reduce the sensing rate to conform with the MAC
frame interval period. Fig. 13 shows the results in terms of current
draws on TelosB nodes only, when the sensing rate is varied
according to the MAC FI.

Fig. 11. TMAC packet delivery latency.

Fig. 12. Current draw.

Fig. 13. TelosB current draw with optimized rate.

638 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642

Fig. 14. TelosB current draw with overhearing avoidance optimization.

Fig. 15. Estimated lifetime for TelosB nodes.

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 639
Another optimization can be made on the MAC algorithm itself,
by avoiding certain activation events upon which nodes prolong
their active communication intervals. Since in the presented sce-
nario only unidirectional data traffic is considered, overhearing
avoidance can be applied for the sensor nodes. This allows a node
to reduce energy waste during active periods, when the outgoing
buffer is empty while the node still overhears communication
activity of its neighbors, forcing it to keep the radio on. By applying
overhearing avoidance, each sensor node can turn off its radio and
go to the idle mode immediately after it completes transmission of
the last packet awaiting in the queue. Fig. 14 presents the current
draws of TelosB nodes at a constant sensing rate (1 Hz) using the
overhearing avoidance optimization for the peripheral nodes. In
this case sensor nodes consumes different amount of energy at
each active transmission period due to varied length of communi-
cation periods. For this reason, Fig. 14 presents mean values of
drawn current among all the sensor nodes.

Combining both optimization approaches (varied sampling rate
and overhearing avoidance) together, the network lifetime can be
increased by up to 50% (at FI equal to 8000 ms) with respect to
the initial settings, as shown on Fig. 15. It is important to note that
the applied optimization provide considerable energy saving while
not affecting packet latency delay. Finally, Fig. 16 presents a com-
parison of the estimated lifetime for TelosB and Atmel SoC plat-
forms with both optimization techniques applied.

5.1.3. Discussion
In this study we demonstrated that even a straightforward

application may have a rather wide design space and various con-
figuration options which directly affect the network performance

Fig. 16. Lifetime comparison of TelosB and Atmel SoC platforms.

640 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642
and lifetime. For both estimated MAC protocols, the mean current
draw of the Atmel platform is on average 18% less than the TelosB
under the same conditions. As a consequence, the Atmel SoC offers
a more efficient HW architecture for ultra low power applications.
The evaluation of the two different MAC models aimed to select the
optimal configuration options for each, which provide the maxi-
mum possible lifetime at minimal level of data delivery latency.
We have shown that both evaluated communication protocols
offer similar functionality and both rely on a centralized synchro-
nization mechanism. Both protocols provide very similar energy
efficiency at latency intervals below 5 s. However, at longer peri-
ods, the TMAC protocol using the proposed optimizations
Fig. 17. Current draw estim
outperforms the IEEE802.15.4 standard in terms of energy effi-
ciency. Thus, our design space exploration shows that the TMAC
algorithm, in conjunction with an ATmega128RFA1-based plat-
form, provides a more efficient solution for WSN applications
which can tolerate high latency.

5.2. Energy model verification

In order to obtain the power consumption reference values with
which simulation results can be compared to, we have set up a test
bench consisting of three TelosB nodes. Two of those act as CBR
traffic generators and one as a sink connected to a PC for data
ation vs measurement.

I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642 641
gathering. The sender nodes utilize a simple power saving technique
that controls the operating states of the MCU and RF subsystems.
Whenever the application has a packet to send, the RF component
is switched from the idle to the active state. Upon completion of
the transmission, the radio is turned back to the idle mode. Hence,
the power consumption of the nodes is essentially determined by
the transmission rate of the application that defines how often the
radio is required to be in the active state. All communications in
our experiments and simulations are based on a unslotted
IEEE802.15.4 CSMA/CA algorithm. The software applications and
the MAC algorithm for both the sink and the sender nodes were
implemented in TinyOS 2.1.1. The current load profile sensor nodes
were obtained by logging the voltage drop across resistor connected
between the board and power source. The collected voltage profile
was subsequently converted to the current values. We carried out
simulations and experiments with different transmission rates rang-
ing from one to one hundred packets per second. The obtained sim-
ulation results and measured current draw are shown on Fig. 17.

The comparison shows that PASES provides a high level of accu-
racy in current draw estimation with an average error equal to 3%.
This accuracy was achieved by using a fine grained energy model
for the peripheral components, which have been characterized
through a set of micro-benchmark experiments that isolated current
consumption and state transitions of each device on the target board.
6. Conclusion

In this paper we presented PASES, a SystemC-based framework
for design space exploration of networked embedded systems and
WSNs. PASES provides detailed modeling and precise power con-
sumption evaluation and lifetime estimation of target applica-
tions allowing the designer to explore various options and
details in SW/HW and communication domains. PASES is extensi-
ble and customizable, and allows designers to easily trade off
accuracy versus performance, with deployments that can include
tens to hundreds of nodes, communicating over multi-hop net-
works. The framework, together with a comprehensive library
of characterized components and communication protocols, and
a number of example applications (including those presented in
this paper), is available for download at http://eecs.disi.unitn.it/
pases.

References

[1] Network simulator 2, Accessed December 2012. <http://nsnam.isi.edu/nsnam/
index.php/MainPage>.

[2] Omnet++, Accessed December 2012. <http://www.omnetpp.org/>
[3] F. Fummi, D. Quaglia, and F. Stefanni, A SystemC-based framework for

modeling and simulation of networked embedded systems, in: Proceedings
of the Forum on Specification, Verification and Design Languages, FDL 2008,
Stuttgart, Germany, September 23–25, 2008, pp. 49–54.

[4] Thomas R. Henderson, Mathieu Lacage, George F. Riley, Network simulations
with the ns-3 simulator, in: Proceedings of ACM SIGCOMM08, Seattle, WA,
USA, August 17–22, 2008.

[5] OPNET network simulator, Accessed December 2012.<http://www.opnet.com/
>

[6] Qualnet, Accessed December 2012. <http://www.scalable-networks.com/
content/products/qualnet>.

[7] Athanassios Boulis, Castalia: revealing pitfalls in designing distributed
algorithms in wsn, in: Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems, SenSys’07, Sydney, Australia,
November 6–9, 2007, pp. 407–408.

[8] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P.T. Klein Haneveld, T.E.V.
Parker, O.W. Visser, H.S. Lichte, S. Valentin, Simulating wireless and mobile
networks in OMNeT++ the MiXiM vision, in: Proceedings of the 1st
international conference on Simulation tools and techniques for
communications, networks and systems & workshops, Simutools ’08,
Marseille, France, March 3–7, 2008, pp. 71:1–71:8

[9] D. Weber, J. Glaser, S. Mahlknecht, Discrete event simulation framework for
power aware wireless sensor networks, in: Proceedings of the 5th IEEE
International Conference on Industrial Informatics, Vienna, Austria, July 23–27,
2007, pp. 335–340.
[10] A. Fraboulet, G. Chelius, E. Fleury, Worldsens: development and prototyping
tools for application specific wireless sensors networks, in: Proceedings of the
6th International Symposium on Information Processing in Sensor Networks,
IPSN ’07, Cambridge, MA, USA, April 25–27, 2007, pp. 176–185.

[11] Mohammed Baz and David A.J. Pearce, An introduction to DANSE, in:
Proceedings of the 12th Annual PostGraduate Symposium on the
Convergence of Telecommunications, Networking and Broadcasting, PGNet
’11, Liverpook, UK, June 27–28, 2011.

[12] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, Ciarán Mc
Goldrick, PowerTOSSIM z: realistic energy modeling for wireless sensor
network environments, in: Proceedings of the 3rd ACM workshop on
Performance monitoring and measurement of heterogeneous wireless and
wired networks, PM2HW2N’08, Vancouver, BC, Canada, October 31, 2008, pp.
35–42.

[13] B.L. Titzer, D.K. Lee, J. Palsberg, Avrora: scalable sensor network simulation
with precise timing, in: Proceedings of the Fourth International Symposium on
Information Processing in Sensor Networks, IPSN’05, Los Angeles, CA, USA,
April 25–27, 2005, pp. 477–482.

[14] J. Polley, D. Blazakis, J. McGee, D. Rusk, J.S. Baras, ATEMU: a fine-grained sensor
network simulator, in: Proceedings of the First Annual IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and Networks,
SECON ’04, Santa Clara, CA, USA, October 4–7, 2004, pp. 145–152.

[15] Douglas Densmore, Roberto Passerone, Alberto L. Sangiovanni-Vincentelli, A
platform-based taxonomy for ESL design, IEEE Design and Test of Computers
23 (5) (2006) 359–374.

[16] Alessandro Pinto, Alvise Bonivento, Alberto L. Sangiovanni-Vincentelli, Roberto
Passerone, Marco Sgroi, System level design paradigms: Platform-based design
and communication synthesis, ACM Transactions on Design Automation of
Electronic Systems 11 (3) (2006) 537–563.

[17] Philip Levis, Nelson Lee, Matt Welsh, David Culler, TOSSIM: accurate and
scalable simulation of entire TinyOS applications, in: Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems, SenSys
’03, Los Angeles, CA, USA, November 5–7, 2003, pp. 126–137.

[18] Memsic Inc., MICAz, MICA2 - wireless measurement system, telosb mote
platform, Accessed December 2012. <http://www.memsic.com>.

[19] O. Landsiedel, K. Wehrle, S. Gotz, Accurate prediction of power consumption in
sensor networks, in: Proceedings of the Second IEEE Workshop on Embedded
Networked Sensors, EmNetS ’05, Sydney, Australia, May 30–31, 2005, pp. 37–
44.

[20] Atmel Corporation, San Jose, CA, USA, 8-bit AVR Microcontroller with Low
Power 2.4 GHz Transceiver for ZigBee and IEEE 802.15.4, 2011.

[21] Luca P. Carloni, Fernando De Bernardinis, Alberto L. Sangiovanni-Vincentelli,
Marco Sgroi. The art and science of integrated systems design, in: Proceedings
of the 28th European Solid-State Circuits Conference, ESSCIRC 2002, Firenze,
Italy, September 2002, pp. 19–30.

[22] Frank Ghenassia, Transaction Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems, Springer, 2005.

[23] Texas Instruments, MSP430x1xx Family, Users Guide, SLAU094F, 2011.
[24] Jose A. Gutierrez, Edgar H. Callaway, Raymond L. Barrett, Low-rate

wireless personal area networks: enabling wireless sensors with IEEE
802.15.4, Technical Report, Institute of Electrical & Electronics Engineers
(IEEE), 2004.

[25] Wei Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for
wireless sensor networks, in: Proceedings of the Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies,
volume 3 of INFOCOM ’02, New York, NY, USA, June 25–27, 2002, pp. 1567–
1576.

[26] Joseph Polastre, Jason Hill, David Culler, Versatile low power media access for
wireless sensor networks, in: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, SenSys ’04, Baltimore, MD, USA,
November 3–5, 2004, pp. 95–107.

[27] Mohamed F. Younis, Moustaf Youssef, Kaled A. Arisha, Energy-aware routing in
cluster-based sensor networks, in: Proceedings of the 10th International
Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOT’02, Fort Worth, TX, USA, October 11–
16, 2002, pp. 129–136.

[28] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, in:
Proceedings of the Second IEEE Workshop on Mobile Computing Systems and
Applications, WMCSA ’99, New Orleans, LA, USA, February 25–26, 1999, pp.
90–100.

[29] O. Tremblay, L.-A. Dessaint, A.-I. Dekkiche, A generic battery model for the
dynamic simulation of hybrid electric vehicles, in: Proceedings of the IEEE
Vehicle Power and Propulsion Conference, VPPC’07, Arlington, TX, USA,
September 9–12, 2007, pp. 284–289.

[30] Marijn R. Jongerden, Boudewijn R. Haverkort, Which battery model to use?, IET
Software 3 (6) (2009) 445–457

[31] Debashis Panigrahi, Sujit Dey, Ramesh Rao, Kanishka Lahiri, Carla Chiasserini,
Anand Raghunathan, Battery life estimation of mobile embedded systems, in:
Proceedings of the The 14th International Conference on VLSI Design, VLSID
’01, Bangalore, India, January 3–7, 2001.

[32] Tijs van Dam and Koen Langendoen, An adaptive energy-efficient
MAC protocol for wireless sensor networks, in: Proceedings of the
1st International Conference on Embedded Networked Sensor
Systems, SenSys’03, Los Angeles, CA, USA, November 5–7, 2003,
pp. 171–180.

http://eecs.disi.unitn.it/pases
http://eecs.disi.unitn.it/pases
http://nsnam.isi.edu/nsnam/index.php/MainPage
http://nsnam.isi.edu/nsnam/index.php/MainPage
http://www.omnetpp.org/
http://www.opnet.com/
http://www.opnet.com/
http://www.scalable-networks.com/content/products/qualnet
http://www.scalable-networks.com/content/products/qualnet
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0005
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0005
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0005
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0010
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0010
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0010
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0010
http://www.memsic.com
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0015
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0015
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0015
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0020
http://refhub.elsevier.com/S1383-7621(13)00101-X/h0020

642 I. Minakov, R. Passerone / Journal of Systems Architecture 59 (2013) 626–642
Ivan Minakov is a research scientist in the Department
of Information Engineering and Computer Science at the
University of Trento, Italy. His main research interests
focus on design methodologies, modeling and power
analysis of wireless sensor networks and embedded
systems. Minakov received a PhD in electrical engi-
neering from the University of Trento in 2012.
Roberto Passerone is Assistant Professor at the
Department of Information Engineering and Computer
Science at the University of Trento, Italy. He received his
MS and PhD degrees in Electrical Engineering and
Computer Sciences from the University of California,
Berkeley, in 1997 and 2004, respectively. Before joining
the University of Trento, he was Research Scientist at
Cadence Design Systems. Prof. Passerone has published
numerous research papers on international conferences
and journals in the area of design methods for systems
and integrated circuits, formal models and design
methodologies for embedded systems, with particular

attention to image processing and wireless sensor networks. He was track chair for
the Real-Time and Networked Embedded Systems at ETFA from 2008 to 2010, and
general and program chair for SIES 2010 and 2011. He was guest editor of the

Transactions on Industrial Informatics for numerous special issues on embedded
systems.

	PASES: An energy-aware design space exploration framework for wireless sensor networks
	1 Introduction
	2 Related work
	3 Methodology
	4 Framework implementation
	4.1 Simulation kernel
	4.2 HW component annotation
	4.3 Platform construction
	4.4 Sensors and environment model
	4.5 Application construction
	4.5.1 Embedded profiler

	4.6 Communication stack
	4.7 Network channel model
	4.8 Power tracer and battery model

	5 Experimental results
	5.1 Application test case
	5.1.1 Evaluation of slotted IEEE 802.15.4
	5.1.2 Evaluation of TMAC protocol
	5.1.3 Discussion

	5.2 Energy model verification

	6 Conclusion
	References

