
Power-Aware Architectural Exploration of the

CORDIC Algorithm

Jennifer Manica, Roberto Passerone and Luca Rizzon

Dipartimento di Ingegneria e Scienza dell’Informazione – Università degli Studi di Trento

Povo di Trento, Italy 38123

Abstract—Mobile applications require the use of specialized
design techniques to reduce power consumption and maximize
battery life. New implementation technologies are able to reduce
energy at the device level. At the same time, architectural choices
can lead to significantly different power consumption profiles for
equivalent implementations of the same function. In this paper we
focus on the architectural level, and analyze various implementa-
tion alternatives for the CORDIC function. Our results provide
insight into the trade-offs between area, performance and power
consumption, and give designers directions for their architectural
choices.

I. INTRODUCTION

In the last decade, the widespread adoption of battery-
powered mobile devices has made power consumption become
one of the most critical performance metric in the design of
digital electronic systems. In addition to the obvious lifetime
improvement, reducing power consumption simplifies prob-
lems related to thermal management and battery size, which
significantly affect the reliability and cost of a device [1]. At
the same time, constraints on area and performance limit the
range of optimal implementations, which must be searched
through a careful balance of conflicting requirements.

Several factors influence the power consumption of a de-
sign. The implementation technology, for instance, determines
the overall characteristics of the devices and their power
profile. At the design level, techniques such as dynamic voltage
and frequency scaling are used to selectively activate and
modulate the performance of the computational blocks to
adapt to the varying requirements of the applications [2], [1].
Likewise, different implementation alternatives for the core
functions of the system exhibit wildly different performance
characteristics which are not always easy to predict using
intuition and back-of-the-envelope calculations.

In this work, we focus on this last aspect and analyze
the performance of the CORDIC algorithm [3], [4], whose
flexibility and simplicity make it ideal in diverse applications
such as direct frequency synthesis, digital modulation and
coding or direct and inverse kinematic computation for robot
manipulation [4]. We chose three different implementation
architectures, which we have compared on the basis of area,
throughput and power consumption. The results, based on an
FPGA technology, demonstrate how the specifics of each archi-
tecture contribute to the determination of the final performance
metrics, and can be used to quickly choose a solution given
the system constraints.

A. Related work

We target an FPGA CORDIC implementation, and take
as reference the architectures reviewed by Andraka [3]. Other
studies have targeted low power implementations of CORDIC.
Sarrigeorgidis and Rabaey study methods to reduce the number
of iterations and make use of redundant number representations
to improve performance [5]. Kim et al. employ hard wired
operations and interpolation to achieve the same [6]. Our work
is orthogonal, as we wish to study the impact of different
architectural choices on the overall performance. Indeed, the
above techniques can be applied to all the architectures we
consider. Studies similar to ours have been conducted for
other algorithms in widespread use. Rhee et al. consider the
H.264/AVC encoder and use various techniques to trade-off
power consumption with compression efficiency [7]. Sherazi
et al. focus on digital filters and evaluate several structures
in the sub-VT domain [8]. Roth et al. discuss the trade-off in
LDPC decoders [9], while Lin et al. study ways to improve
the power consumption of Viterbi decoders [10]. Our results
complement the existing literature with a characterization of
the CORDIC architectures.

In the following, we first describe the principles of the
CORDIC algorithm, and describe the chosen architectural
solutions in Section II. Then, Section III discusses the results
of the architectural analysis. Section IV concludes the paper
outlining directions for future work.

II. CORDIC ALGORITHM AND ARCHITECTURES

The CORDIC algorithm is used in a variety of applications
that require the computation of trigonometric and hyperbolic
functions. CORDIC, short for Coordinate Rotation Digital
Computer, is an iterative algorithm used to efficiently compute
vector rotations. In its basic form, the algorithm computes the
rotation of a vector (x, y) by an angle ϕ into a sequence of
elementary rotations for angles whose trigonometric tangent is
a power of 2. This way, a single elementary rotation can be
computed as [3]

xi+1 = xi − yidi2
−i, yi+1 = yi + xidi2

−i

zi+1 = zi − di tan
−1(2−i).

Variable zi, initialized with the desired angle ϕ, represents
the residual rotation and is updated at each iteration with the
effective rotation. The coefficient di determines the direction of
rotation, and is equal to 1 if zi ≥ 0, and −1 otherwise. Hence,
the algorithm successively approximates the desired rotation
with incrementally smaller elementary rotations, until zi con-
verges to 0. The advantage of this formulation is that it does

978-1-4673-4581-1/13/$31.00 ©2013 IEEE

PRIME 2013, Villach, Austria Session W3B – Signal Processing 2

333

not need a multiplier, since powers of 2 can be implemented
with shifters. It requires a look-up table to compute tan−1,
which is nonetheless restricted to a small number of constant
values. This algorithm alters the length of the vector while
it rotates it by a factor that can be considered constant for a
sufficient number of iterations, and will therefore be ignored
in this study.

A. CORDIC architectures

The CORDIC iteration can be implemented using several
architectures [3]. The iterative nature of the algorithm lends
itself to an iterative implementation, as shown in Figure 1.
The intermediate values for the vector coordinates are stored

xi

>> i

±

yi zi

>> i

sign

± ±

LUT[i]

Fig. 1. Iterative CORDIC architecture

in the xi and yi registers, while the residual angle in zi.
The shifts are implemented as barrel shifters, shown in the
figure as rounded rectangles. A counter, not shown, indexes
the iterations and selects the appropriate shift value. The tan−1

operator is implemented as a look-up table (LUT) which stores
the required values, also selected by the iteration counter. The
three adders execute the main update operation. These adders
perform either an addition or a subtraction according to the
formula and the sign of zi.

The values are stored using a fixed point representation,
with one bit for the sign (in two-complement), two bits for
the integer part, and the remaining bits for the fractional part.
All angles are measured in radians. The number of iterations
n required to compute the results depends on the total number
of bits chosen for the operands. The higher the number of bits,
the higher the number of iterations required to exploit the extra
representation. In our experiments, we stop the iterations once
the tan−1 operator returns a value below the chosen precision
(i.e., zero). In particular, we have n = 6, 9, 13, 18, 21, 29
iterations for 8, 12, 16, 20, 24 and 32 bits.

The performance of the iterative architecture depends on
the clock frequency fc and on the number n of iterations. The
throughput is equal to th = fc/n, while the latency is l =
n/fc. The area increases with the number of bits, because the
registers, the shifters, the adder and the LUT become larger. It
is instead only marginally affected by the number of iterations,
since only the LUT increases in size.

An alternative architecture consists in unrolling the itera-
tion. In this case, one could either construct a feed-through
architecture, where each adder is connected directly to the
following adder, or a pipeline architecture, where the stages
are separated by registers. The pipeline is shown in Figure 2.
The number of stages equals the number of iterations. The
advantage of a pipeline is that more than one computation is
active at the same time, increasing the throughput which is

x
0

>
>

 0

±

y
0

z 0

>
>

 0

sign

±

±

LU
T

[0
]

x
1

>
>

 1

±

y
1

z 1

>
>

 1

sign

±

±

LU
T

[1
]

x
n

-1

>
>

 n
-1

±

y
n

-1
z n

-1

>
>

 n
-1

sign

±

±

LU
T

[n
-1

]

Fig. 2. Pipeline CORDIC architecture

now equal to the clock frequency. The latency, on the other
hand, is the same as the iterative solution, since the data has
to traverse the entire structure.

The maximum clock frequency of the pipeline architecture
is higher than that of the iterative solution. This is because for
each stage the amount of shift is known beforehand, so one
has simply to re-route wires, instead of using a barrel shifter.
Hence, shifting does not incur in any extra delay, and one
component is removed from the critical path. For the same
reason, the area is not n times as large as that of the iterative
architecture, because the shifters are removed.

The feed-through solution does not have pipeline registers.
In this case, the clock frequency will be significantly lower,
since the critical path now encompasses all the stages of the
architecture, but not n times lower, since the delay introduced
by the registers is removed. The throughput is equal to the
clock frequency, while the latency is equal to the clock period.

For these architectures, the area increases both with the
number of bits, as well as with the number of iterations, since
every new iteration requires an additional stage.

III. ARCHITECTURE ANALYSIS AND RESULTS

We have developed the above architectures in VHDL,
for word sizes ranging from 8 to 32 bits. The code was
synthesized for the Altera DE1 Development Board, which
employs a 90nm Cyclone II FPGA, using the Quartus tool
with default settings. Our architectural analysis is in particular
focused on analyzing the power consumption of the different
architectures. In this study, we concentrate on dynamic power
and neglect the contribution of static power (e.g., leakage)
since its contribution is not significant in the chosen FPGA
technology. In general, the dynamic power consumption P
depends on the number of times that signals switch their state,
and is proportional to several factors [1]:

P = α · fck · CL · V 2
DD

,

where fck is the clock frequency, VDD is the power supply,
CL is proportional to the total capacitance in the circuit, and α

Paper W3B2 PRIME 2013, Villach, Austria

334

is a factor that accounts for the switching activity. The various
architectures will differ in terms of their size (and thus CL),
of the frequency at which they need to run to achieve a certain
throughput, and the activity α in the internal nodes.

Determining the internal node activities may be difficult
to do in general. In our study, we have simulated the various
architectures driving them with the same test-bench requesting
the computation of the trigonometric functions for a series of
32 angles. The results are used by the Quartus tool to precisely
determine the internal activity, which is therefore averaged out
on thousands of transitions. The tool is then able to provide
us with accurate estimates of the power consumption based on
the models of the FPGA components. In this study, we have
considered the power consumed by the core logic only, and
excluded the contribution of the I/Os, which is of comparable
size and may therefore obscure the actual dependency of the
power from the architectural parameters. For the same reason,
it was not possible to compare the results to measurements,
since there is no access to the internal circuits. Nevertheless,
our estimates were obtained using detailed simulation (after
place and route) with the manufacturer provided models.

A. Circuit size

Figure 3(a) shows the dependency of the area of each
architectural solution as a function of the word size. The
iterative architecture shows a linear area increase with the
number of bits, due to the larger size of the registers, adders,
the shifters and the look-up table. The size of the look-up table
also increases, since the architecture works with more bits.

The size of the pipeline and feed-through architectures also
increases with the number of bits in a close to linear fashion.
However, the rate of increase is higher than that of the iterative
architecture, because the algorithm requires a larger number
of iterations to converge (and make use of the extra bits), and
therefore more stages. As expected, the size of the pipeline and
feed-through architectures is not n times as large as that of the
iterative solution, where n is the number of iterations. This is
because, as discussed, the shifters in these architectures can
be implemented by simply moving wires, rather than using a
barrel shifter. In addition, the iterative architecture requires a
small control circuit to keep track of the number of iterations,
which is not present in the other two.

In the FPGA implementation, the feed-through architecture
requires slightly more area than the pipeline architecture,
although it obviously uses fewer components (it does not
have intermediate pipeline registers). This result is specific to
FPGAs, whose fabric consists of logic blocks that already in-
corporate a register which is conveniently used by the pipeline
implementation, while it is essentially wasted in the feed-
through solution. The longer combinational chain also makes
it more difficult for the tool to optimize the area, resulting
in some overhead. Nonetheless, automatic design tools might
be able to reclaim these extra registered for use with the logic
required by the surrounding system. This effect would not exist
in a standard cell implementation where every function has a
dedicated component.

B. Performance

Figure 3(b) shows the maximum throughput achievable
by each architecture as a function of the number of bits for

our chosen FPGA. Throughput is computed as the number of
computations per unit time. Hence, for the pipeline and feed-
through it corresponds to the clock frequency, while for the
iterative architecture it must be scaled down to account for the
n sequential iterations.

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25 30 35

A
re

a
 (

C
L

B
)

Word size

Iterative

Pipeline

Feedth

(a) Area

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(M

O
P

/s
)

Word size

Iterative

Pipeline

Feedth

(b) Throughput

Fig. 3. CORDIC size (a) and throughput (b) for different architectures

As expected, the pipeline architecture has the largest
throughput, since it takes advantage of parallelism. The
throughput decreases linearly with increasing precision, be-
cause the larger adders incur larger delays. The feed-through
architecture performs better than the iterative, since it elimi-
nates the overhead due to intermediate registers, while at the
same time eliminates the delay penalty due to the shifters.

Notice that the decrease in maximum performance for the
feed-through and the iterative architectures is more than linear
with the number of bits. This is because not only do the
adders (and the shifters, for the iterative) become slower, but
also because the higher precision requires a higher number of
iterations for the iterative architecture, and more stages for the
feed-through architecture, increasing the length of the critical
path. Also the pipeline solution has more stages. However,
the pipeline registers break the critical cycles at every stage,
making the decrease linear.

C. Power consumption

Figure 4(a) shows the power consumption of each CORDIC
architecture as a function of the number of bits, running the
computation at its maximum throughput. Power consumption,

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35

P
o

w
e

r
(m

W
)

Word size

Iterative

Pipeline

Feedth

(a) Power

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

P
o

w
e

r
(m

W
)

Word size

Iterative

Pipeline

Feedth

(b) Power

Fig. 4. CORDIC power consumption at maximum (a) and iterative throughput
(b) for different architectures

in general, increases with the number of bits due to the larger
size of the circuit. However, higher precision also implies
lower throughput, i.e., a lower clock frequency which tends to
decrease the power consumption. For this reason, power tends
to level off with precision, and in fact eventually decreases in
the case of the iterative architecture, and to some extent for

PRIME 2013, Villach, Austria Session W3B – Signal Processing 2

335

the pipeline. The feed-through architecture is not significantly
influenced by this effect since clocked registers account for a
much lower percentage of the circuit than in the other cases.

A better comparison can be made by running all architec-
tures so that they achieve the same throughput. Figure 4(b)
shows how power consumption changes when, for each word
size, all architectures are run at the throughput of the iterative
solution. We notice how the power consumption of the pipeline
architecture is well below that of the iterative solution. This
is because the same throughput is obtained with a clock
frequency which is n times lower, while the increase in
area and activity factor is not as large. The feed-through
version, instead, shows a much more marked increase of power
consumption with the increased number of bits. This is due to
an increase in the activity factor α. This effect can be explained
as follows. The activity factor depends on the amount of
switching in the circuit. The adders update their outputs in
sequence, starting typically with the least significant bits, and
adjusting the higher bits as the carry propagates through the
carry chain. The result is that the value at the output is updated
several times during the computation. In the feed-through
architecture, these updates are immediately propagated to the
adder downstream, which compounds its own updates. This
produces an elevated amount of switching, which is reflected
by the increased power consumption. This cascading effect is
instead blocked by the pipeline registers and by the iteration
registers in the other two architectures. The graph also shows
that this effect is more pronounced as the adders become larger,
and as the number of stages increases, so that the feed-through
solution quickly becomes the worst performing architecture in
terms of power, while it is comparable to the other two for
lower precisions.

D. Architectural trade-offs

The data collected in the experiments can be used to
construct trade-off graphs where one metric is compared to
another. One example is shown in Figure 5, where power
consumption and throughput are plotted against each other,
on log scale axis, for each of the different architectures and
word size. The best solutions are those closer to the left (lower
power) and to the top (higher throughput). These plots make
the trade-off between the different objectives explicit. In par-
ticular, they show when a solution dominates another in more
than one metric, making it preferable for the implementation.
For instance, the pipelined architecture is to be preferred over
the feed-through, especially for large word size, and also over
the iterative, when area is not an issue. The plot can be
populated with additional data points, not shown here to avoid
clutter, where each of the architecture is run at intermediate
speeds to achieve different trade-offs, to construct a Pareto
front. The data is also useful for higher level design exploration
algorithms to help them choose the best implementation.

IV. CONCLUSIONS

We have presented the architectural analysis of various
CORDIC architectures. The data collected through accurate
simulation allows a designer to choose the architecture with the
best performance in terms of area, throughput and power, rela-
tive to the system requirements. There are several directions for
improving this study. One may consider the effect of lowering

 1

 10

 100

 1 10 100

T
h
ro

u
g
h
p
u
t
(M

O
P

/s
)

Power (mW)

8 bit

12 bit

16 bit

20 bit

24 bit

32 bit

Fig. 5. Power vs. throughput trade-off

the supply voltage when running at clock frequencies below
the maximum (voltage scaling is not possible in our targeted
FPGA). From an architectural point of view, one may consider
intermediate solutions where, for instance, the iteration is only
partially unrolled into a pipeline to strike the desired trade-off
between area and performance. In an orthogonal direction, one
may consider different implementations for the components
used in the architectures, such as different kinds of adders
whose carry propagation has a large influence on the feed-
through architecture. These considerations are part of our
future work.

REFERENCES

[1] J. Rabaey, Low Power Design Essentials. New York, NY, USA:
Springer, 2009.

[2] P. J. M. Havinga and G. J. M. Smit, “Design techniques for low-power
systems,” J. Syst. Archit., vol. 46, no. 1, pp. 1–21, January 2000.

[3] R. Andraka, “A survey of CORDIC algorithms for FPGA based
computers,” in Sixth International Symposium on Field Programmable

Gate Arrays, Monterey, CA, February 22-24, 1998.

[4] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50
years of CORDIC: Algorithms, architectures, and applications,” Trans.

Cir. Sys. Part I, vol. 56, no. 9, pp. 1893–1907, September 2009.

[5] K. Sarrigeorgidis and J. Rabaey, “Ultra low power CORDIC proces-
sor for wireless communication algorithms,” Journal of VLSI Signal

Processing 38, pp. 115–130, 2004.

[6] Y. B. Kim, Y.-B. Kim, and J. T. Doyle, “A low power CMOS CORDIC
processor design for wireless telecommunication,” in 50th Midwest

Symp. on Circuits and Systems, Montreal, Québec, August 5-8, 2007.

[7] H. Kim, C. E. Rhee, J.-S. Kim, S. Kim, and H.-J. Lee, “Power-aware
design with various low-power algorithms for an H.264/AVC encoder,”
in IEEE International Symposium on Circuits and Systems (ISCAS11),
Rio de Janerio, Brazil, May 15-18, 2011, pp. 571–574.

[8] S. Sherazi, J. Rodrigues, O. Akgun, H. Sjöland, and P. Nilsson, “Ultra
low energy vs throughput design exploration of 65 nm sub-VT CMOS
digital filters,” in NORCHIP, Tampere, Finland, November 15-16, 2010.

[9] C. Roth, A. Cevrero, C. Studer, Y. Leblebici, and A. Burg, “Area,
throughput, and energy-efficiency trade-offs in the VLSI implementa-
tion of LDPC decoders,” in IEEE International Symposium on Circuits

and Systems (ISCAS11), Rio de Janerio, Brazil, May 15-18, 2011.

[10] Y.-M. Lin, W.-C. Liu, L.-Y. Chang, C.-Y. Lien, P.-Y. Chen, and S.-
C. Chen, “A low-power IP design of Viterbi decoder with dynamic
threshold setting,” in IEEE International Symposium on Circuits and

Systems (ISCAS10), Paris, France, May 30-June 2, 2010, pp. 585–588.

Paper W3B2 PRIME 2013, Villach, Austria

336

