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Abstract—Indoor applications based on vehicular robotics
require accurate, reliable and efficient localisation. In the absence
of a GPS signal, an increasingly popular solution is based on
fusing information from a dead reckoning system that utilises
on-board sensors with absolute position data extracted from the
environment. In the application considered in this paper, the
information on absolute position is given by visual landmarks
deployed on the floor of the environment considered. This solution
is inexpensive and provably reliable as long as the landmarks
are sufficiently dense. On the other hand, a massive presence of
landmark has high deployment and maintenance costs. In this
paper, we build on the knowledge of a large number of trajectories
(collected from environment observation) and seek the optimal
placement that guarantees a localisation accuracy better than
a specified value with a minimal number of landmarks. After
formulating the problem, we analyse its complexity and describe
an efficient greedy placement algorithm. Finally, the proposed
approach is validated in realistic use cases.

Keywords—Indoor localisation, position tracking, landmark
placement, optimisation.

I. INTRODUCTION

Indoor positioning is a well-known research topic, ex-
tensively studied over the last few years, and with a wide
range of possible applications. Two important examples are
assisted living (AAL), robotics and customer guidance in
public spaces. While the research in this field is strongly
driven by the requirements of smart consumer devices, partic-
ularly using wireless techniques based on time-of-flight (ToF)
and/or radio signal strength intensity (RSSI) measurements [1].
Since Global Navigation Satellite Systems (GNSS) are clearly
impractical [2], a one-size-fit-all solution for indoor locali-
sation and positioning does not exist [3]. At the moment,
the most flexible solutions rely on multi-sensor data fusion
algorithms [4], [5], [6]; particularly those combining ego-
motion relative (e.g. dead reckoning) techniques with distance
and heading values measured with respect to “anchor nodes”,
“tags”, “markers” or “landmarks” having known coordinates
in a given “absolute” reference frame.

A common problem with this type of approaches concerns
the definition of criteria to place such landmarks in the environ-
ment, in such a way as to secure a good localisation accuracy
avoiding over-design of the infrastructure to be deployed. This
can be considered as a subclass of the landmark selection
problem addressed in the literature of robotics using online [7],
[8] or offline [9], [10] approaches. As pointed out in [11],

the offline approach corresponds to the landmark deployment
problem considered in this paper. In many research works,
the problem of landmark placement is addressed only heuris-
tically, i.e. through common-sense approaches depending on
the specific features of the experimental setup considered [12].
The problem becomes very challenging when an optimal
deployment is considered. The accuracy and the detection
area of the sensors employed, the trajectories of the target
to be tracked and the geometry of the environment makes the
problem NP-complete [11]. In spite of this, a reliable indoor
positioning system has to ensure results with an adequate level
of confidence in all conditions [5]. The minimum uncertainty
is achieved when an absolute reference, e.g. a landmark, is
detected by the sensor at any time [13]. In general, if a
target accuracy greater than the minimum achievable has to
be guaranteed, a cost index should be suitably defined, for
example, using the conditional mutual information [11], the
vehicle robot belief [14] or a function of the a-priori covariance
matrix in a Kalman filter [15], which is close to the metric
chosen in this work. Of course, since the ultimate goal is to
minimise the number of deployed landmarks detected using a
sensor with a limited detection area, the data about absolute
position and orientation are intrinsically intermittent: the robot
moves using dead reckoning until it detects a landmark.

Another important feature of optimal landmark placement
is related to the availability of the target trajectories. Solutions
that work without any knowledge of the target trajectories
give effective guarantees, but may be over-conservative in real
scenarios [9], [13]. On the other hand, the trajectory knowledge
may be stochastic [11], [16] or deterministic [15], [14], as the
case considered in this paper.

In this paper, starting from the general result reported in
[13], the optimisation problem is cast on a discrete set assum-
ing that the sensor detection area is limited and anisotropic.
In addition, the optimisation procedure takes into account
the whole set of trajectories available in the environment. In
particular, in our case, the trajectories are either generated by
robotic planners or result from direct observations. This idea
is quite different with respect to other approaches [15], [14],
and it is beneficial because it paves the way to the application
of a computationally light greedy algorithm. The results of this
algorithm are also compared with the lower bound given by the
solution of an optimal relaxed problem. The greedy solution is
remarkably effective, especially in large environments. Notice
that a greedy solution has been presented also in [11]. However
in that case a single trajectory is considered on a continuous: 978-1-5090-6299-7/17/$31.00 c© 2017 European Union



Ow Xw

Yw

(xk, yk)

θk

Xb

Yb

B l2

l4
l1

s(p
k
)

l3

Fig. 1. Mechanical platform represented as a generic rigid body B moving
on the Xw × Yw plane with an attached reference frame 〈B〉. Landmarks
l1, l2, l3 and l4 are also represented. In particular l3 is inside the SDA s(pk).

solution set, which implies a numeric approximation with
Monte Carlo methods.

The rest of the paper is structured as follows. Section II
provides an overview of background models and formalises the
problem properly. Section III describes the optimal placement
strategy. Section IV shows how the proposed approach could
be used in a specific case study: the context of the EU project
ACANTO. Section V reports some meaningful simulation
results. Finally, Section VI concludes the paper and outlines
future work.

II. MODELS AND PROBLEM FORMULATION

This section presents the reference model adopted for lo-
calisation as well as the formalisation of the optimal problem.
To let the discussion be more general, we will not make any
specific assumption on the estimation algorithm adopted for
localisation as long as it is able to estimate the uncertainty
associated with the state of the target, as it typically happens
with classic position estimation algorithms such as Extended
Kalman Filters, H∞ filters or particle filters [15], [14].

A. Platform Model

Our approach can be applied to a generic platform moving
on a horizontal plane in an indoor environment, using both
relative data for dead reckoning and landmark measures for
absolute references [5]. Examples of the two classes are wheels
encoders or IMU for endogenous relative sensing systems
and laser scanners, cameras or RFID readers for exogenous
absolute readings.

The platform localisation is defined within a fixed right-
handed world reference frame 〈W 〉 = {Ow, Xw, Yw, Zw}, as
shown in Fig. 1. The mechanical platform is regarded as a
rigid body B moving on the Xw × Yw plane. Denoting by ts
the sampling period of the onboard sensors, the generalised
coordinates at time kts are given by pk = [xk, yk, θk]T ,
where (xk, yk) are the coordinates of the origin of the frame
〈B〉 = {Ob, Xb, Yb, Zb} attached to the rigid body, while θk is
the angle between Xb and Xw, as depicted in Fig. 1. In this
paper, the general class of drift–less, input–affine mechanical

platforms are considered, which covers the majority of the
wheeled vehicles commonly in use in indoor environments.
The kinematic model can then be represented with a discrete–
time system as

{
pk+1 = pk +Gk(pk)(uk + εk)

zk = h(pk) + ηk
(1)

where uk is the piece-wise input vector of the system between
(k− 1)ts and kts, εk is the zero mean input uncertainty term,
and Gk(pk) is the generic input vector field. Furthermore, zk
is the vector of measurement data collected at time kts, h(pk)
denotes a generic nonlinear output function of the state and ηk
is the vector of the zero-mean uncertainty contributions. If the
position of the robot is estimated by integrating the endogenous
measurements only (dead reckoning), the accumulation of
the random noise εk unavoidably causes large position and
orientation uncertainty after a while.

As stated before, the platform is assumed to be equipped
with sensors detecting artificial landmarks placed at known
positions in 〈W 〉. We assume that the sensor detection area
(SDA), denoted as s(pk) for a particular position pk, is limited
in both range and angular aperture, as depicted in Fig. 1.
We denote the space reachable by the platform inside the
environment as Q ⊆ R2 × [0, 2π), assuming that pk ∈ Q
∀k. Furthermore, we denote with D the detectable area, i.e.,
the points that are in the SDA from at least one position pk:

D =
{

(x, y) ∈ R2 | ∃pk ∈ Q, (x, y) ∈ s(pk)
}
,

and with Lp ⊆ D the area in which it is possible to place
landmarks.

B. Problem Formulation

The objective of the proposed solution is to minimise the
number of artificial landmarks to be deployed in the environ-
ment of interest in order to meet a given maximum localisation
uncertainty ξ(pk). This scalar value can be a function of
the actual platform position to guarantee application-oriented
constraints. For instance, for safe navigation, positions closer
to walls need a smaller target uncertainty. If Pk ∈ R3×3 de-
notes the covariance matrix of the localisation error associated
with pk at time kts, the actual localisation uncertainty can be
regarded as a scalar function of Pk, i.e., f(Pk). We assume
that whenever a landmark is detected, the uncertainty of the
platform is set equal to the measurement uncertainty associated
with the system used for landmark detection (so no coherent
fusion is assumed, which results in a precautionary intake),
i.e. f(Pk) = g(R), where R is the covariance matrix of the
position measurements based on landmark detection and g(·) is
a scalar function homologous to f(·). Of course, if we have just
a single type of sensors for landmark detection and landmarks
are just sporadically detected then f(Pk) ≥ g(R), ∀k.

To design an effective solver and to ease the practical
deployment, we limit the positions in which it is possible to
place a landmark to a finite set Lf ⊆ Lp, where Lf should
be chosen not to artificially constrain the solution. For this
reason, the finite set Lf should be such that we can still reach
the minimum possible target uncertainty, i.e., ξ(pk) = g(R),
∀pk ∈ Q. In other words, we require that for every position



pk there is at least one possible landmark position in its SDA.
Formally,

Lf ∩ s(pk) 6= ∅,∀pk ∈ Q.
In fact, placing a landmark in each location Lf would guaran-
tee f(Pk) = ξ(pk) = g(R), ∀k. Moreover, even if not strictly
needed, the number of finite locations, i.e., the cardinality |Lf |
of Lf , should be as small as possible in order to reduce the
search space. In our previous work [13], which assumes that
the platform is equipped with a vision system, we found a
closed-form geometric solution to this minimisation problem,
expressed as follows:

Problem 1: Given Q and s(·), find

Lf = arg min
Lx
Lx s.t.

∀pk ∈ Q, Lx ∩ s(pk) 6= ∅ ∧ Lx ⊆ Lp.

To give deterministic guarantees about the target uncer-
tainty ξ(pk), some information on the platform trajectories is
needed. Trivially, at least one landmark should be detected
along each trajectory to avoid unbounded uncertainty growth
due to dead reckoning. Usually, if autonomous vehicles are
considered, the set of trajectories are finite and well defined.
However, if the mechanical platform is driven by a human
being (e.g. in the case of robotic trolleys in factory floors
or robotic walkers for seniors as in the European project
ACANTO [17], [18]), observations about the typical trajec-
tories in the indoor environment are needed. In this paper, we
will refer to T as the set of all the available trajectories, where
Ti ∈ T refers to the i–th trajectory. We are now in a position
to clearly state the problem at hand.

Problem 2: Given Q, Lf , T and ξ(pk) ≥ g(R), ∀pk ∈ Q,
find:
L = arg min

Lx
|Lx| s.t.

Lx ⊆ Lf ,
∀i Ti ∈ T ,∀k pk ∈ Ti, f(Pk) ≤ ξ(pk).

The problem is well-posed since a solution always exists by
definition, i.e. L = Lf .

The set of available trajectories T can be conveniently
represented using the set Lf . Indeed, ∀i, k, ∃pk ∈ Ti : Si,k =
s(pk)∩Lf 6= ∅. This way, the continuous trajectory Ti can be
represented with a quantised trajectory Si,k induced by Lf .
Notice that the mapping between pk ∈ Ti and Si,k is not
bijective, i.e. multiple landmarks can be potentially in view
from the same platform position pk.

III. OPTIMAL LANDMARK PLACEMENT

In this section we discuss how to solve Problem 2 by
casting it into a binary programming problem, which can be
tackled with different solution strategies.

A. CNF Problem Representation

To represent the problem, we associate to each possible
landmark location li ∈ Lf a boolean variable ai, such that

ai =

{
1, if a landmark is placed in li,
0, otherwise.

Thus, a landmark deployment corresponds to an assignment to
the boolean variables. The objective is to find a least assign-
ment, i.e., an assignment such that the minimum number of
variables is assigned the value 1, which satisfies the uncertainty
constraints. We model the constraints by identifying all the
partial assignments to the variables that lead to a violation.
Consider a position qs ∈ Ti, and assume f(Ps) = g(R),
i.e., the minimum uncertainty in our setting. We simulate the
trajectory and compute the evolution of Ps+1, Ps+2, . . . along
Ti. At the same time, we keep track of the landmark positions
Si,j in view along the simulated path. If at time k + 1 > s,
f(Pk+1) > ξ(pk+1), then we have a violation. In order to
avoid it, at least one landmark must be present in one of the
positions ∪kj=sSi,j in view. This condition can be expressed
as follows, i.e.

ωi,s =
k∨

j=s

Si,j ,

where, with a slight abuse of notation, the boolean variables
associated with the landmark positions are denoted with Si,j .
Clearly, a landmark deployment L that does not satisfy ωi,s
cannot be a solution of Problem 2, since between pk and pk+1

the uncertainty constraint would be violated. We can repeat
this analysis for all starting positions and all trajectories, and
collect the clauses in a set Ω. For the problem to be satisfied,
it is necessary and sufficient that all the generated clauses
evaluate to true. Thus, the function

ϕ(ai, . . . , an) =
∧

Ω =
∧

i,s

ωi,s

evaluates to true for all and only those assignments to the
boolean variables a1, . . . , an which correspond to a correct
deployment. Given its form, ϕ is expressed in Conjunctive
Normal Form (CNF). For example, with reference to Figure 2,
from q4 ∈ T3, the platform sees 5 landmarks before f(P13) >
ξ(q13). The set of landmarks in view is given by

∨13
j=4 S3,j =

{l1, l3, l5, l7, l10}, the corresponding clause ω3,4 is:

ω3,4 = a1 ∨ a3 ∨ a5 ∨ a7 ∨ a10.
Since the clauses represent a disjoint operation, a cardinality
reduction of the set Ω is convenient. For example, for the
following two clauses

ω3,4 = a1 ∨ a3 ∨ a5 ∨ a7 ∨ a10,
ω3,5 = a3 ∨ a5 ∨ a7 ∨ a10,

we have that ω3,5 = 1⇒ ω3,4 = 1 but ω3,4 = 1 ; ω3,5 = 1.
Thus, only ω3,5 is of relevance for the placement, while ω3,4

can be safely removed and hence reduce the complexity.

A compact representation of Ω is given by a coverage
matrix whose columns are the possible landmarks locations
li ∈ Lf and rows are the clauses ωi,s. The entry in position
(r, c) of such a matrix has 1 if the r-th clause is satisfied by
the c-th landmark, or 0 otherwise. An example is shown in
Table I.

B. Optimal Placement

As discussed, to optimise the placement we need to find the
least satisfying assignment, i.e., an assignment to the variables
a1, . . . , an such that ϕ is true and the least number of variables
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Fig. 2. Example of uncertainty growth along a sample trajectory.

TABLE I. COVERAGE MATRIX EXPRESSING THE CLAUSE AS
DISJUNCTION OF BOOLEAN VARIABLES: ω2,3 = a1 ∨ a2 ∨ a8 ∨ a9 ;

ω4,1 = a2 ∨ a3 ∨ a6 ; ω3,2 = a2 ∨ a4 ; ω3,4 = a1 ∨ a3 ∨ a5 ∨ a7 ∨ a10 ;
ω3,5 = a3 ∨ a5 ∨ a7 ∨ a10 .

1 2 3 4 5 6 7 8 9 10
ω2,3 1 1 0 0 0 0 0 1 1 0
ω4,1 0 1 1 0 0 1 0 0 0 0
ω3,2 0 1 0 1 0 0 0 0 0 0
ω3,4 1 0 1 0 1 0 1 0 0 1
ω3,5 0 0 1 0 1 0 1 0 0 1

is assigned value 1. There are several ways to formally solve
this problem. One approach is to cast it as a logic optimisation
problem, and look for a minimum term cover of ϕ. Observe
that the conjunction of the true variables of a satisfying assign-
ment is an implicant of ϕ. For instance, let I = {i1, . . . , it}
be the indices of the true variables of a satisfying assignment.
Then, the product term ai1 · ai2 · · · ait logically implies ϕ,
that is, the product term “covers” some of the ones of ϕ. A
minimal deployment (i.e., one in which no landmark can be
removed without violating the constraints) corresponds to a
prime implicant of ϕ. The minimum deployment is therefore
the largest prime implicant.

We thus use a logic optimisation program to find a mini-
mum 2-level cover of ϕ. Each term of the resulting cover cor-
responds to a minimal deployment, and we choose the one with
the least number of variables. This approach has the advantage
that it provides several alternative solutions, corresponding to
the various terms of the cover. In our experiments we have used
the SIS optimisation software [19]. While this strategy gives
us the best solution, the downside lies in its computational
complexity, which is exponential in the number of variables
and in the number of prime implicants. Our experiments show
that the method is practical only in the case of deployments
of a limited size. For instance, a layout with 37 locations and

10 constraints is solved in less than a second on a 3.2 GHz
Intel Xeon PC with 4 GB of RAM, but already results in
almost 8,000 minimal solutions, with the best ones (around
1,000 solutions) using just 4 landmarks. The extension of the
same problem to 52 locations and 15 constraints increases
the computation time to over 7 minutes, and almost 250,000
minimal solutions; 23 of them use 4 landmarks, while the
largest minimal solutions rely on 11 landmarks. Therefore, this
approach is impractical for larger deployments.

Alternatively, the problem can be rephrased as a con-
strained boolean optimisation, i.e.,

min
∑

i

ai, subject to ∀i,∀s, ωi,s > 0

Even if the computational complexity of the problem is still
exponential, one can solve the continuous relaxation of the
same problem, which is polynomial. Of course, since in this
case the variables may take any value between 0 and 1, the
solution of the problem in general will be infeasible. Despite
this, the relaxed optimal solution (that henceforth will be
denoted with Lr) provides a lower bound to the number of
landmarks which are required to satisfy the constraints. In the
following, we will use the result of this approach to evaluate
the performance of the greedy placement algorithm.

C. Greedy Placement

The greedy algorithm for landmark placement leads to a
good approximation of the optimal solution within a negligible
computation time. It is based on the greedy heuristic for sub-
modular functions described in [20]. In practice, we start with
the coverage matrix A0, computed as described previously,
where the columns are ordered with a decreasing number
of elements equal to 1. With reference to Table I, the first
column will be l2, then l3 and so on. A landmark is placed
in the position corresponding to the first column, i.e., the one
satisfying the greatest number of clauses. The corresponding
satisfied clauses (the matrix rows) are then removed from
the matrix, together with the first column, and the matrix
is reordered. With reference to Table I, l2 is added to Lg
and the first three rows are removed. A new matrix A1 is
obtained, and the procedure starts over. The procedure ends
when there are no more clauses to meet, i.e., when the matrix
is empty. For the case of Table I, the procedure may end with
Lg = {l2, l5} or with Lg = {l2, l3}, namely when at most
two landmarks are placed. As shown in Section V, despite
its simplicity, the greedy solution Lg turns out to be very
effective when compared to the (infeasible) lower bound Lr.
As a final remark, we notice that the lower the number of
boolean variables shared between clauses, the more the greedy
suboptimal solution approaches the best possible one.

IV. CASE STUDIES

This section presents the robotic platform to be localised
and the uncertainty function f(Pk) chosen to run meaningful
simulations in a realistic environment.

A. Reference Platform

The reference platform is the FriWalk (Fig. 3), a service
robot developed in the European project ACANTO [17] and
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Fig. 3. The FriWalk schematic representation and SDA.

provided with cognitive [18], [21] and guidance functions [22],
[23]. The FriWalk is based on a standard commercial walker1,
it is equipped with relative encoders on the rear wheels and has
a front monocular camera used to detect Quick Response (QR)
codes placed on the floor. The FriWalk follows a unicycle-
like dynamics [18]. The robot planar coordinates (xk, yk)
correspond to the mid-point of the rear wheels axle. This
point coincides with the origin of the body frame Ob with
the Xb axis pointing forward, as depicted in Fig. 3. With
reference to Fig. 1, the robot generalised coordinates are
pk = [xk, yk, θk]T , The camera measures the relative position
and orientation of the walker with respect to the QR codes,
i.e., the visual landmarks to be placed. The main parameters
of the SDA (which in this case coincides with the camera field
of view) are the camera range r and its aperture angle α, as
shown in Fig. 3. Once r and α are known, the set Lf can be
analytically determined [13]. By knowing the position of each
landmark in the environment, a measure of the entire state pk
is given with covariance R. Recall that in this paper we do
not consider an estimator that coherently fuses the available
measures (thus decreasing the localisation uncertainty), as for
example in [5], [15].

To model the uncertainty growth when no landmark is
detected (i.e. when just the rear encoders are used for odom-
etry), variables δrk and δlk are used to express the angular
displacements of the right and left wheels, respectively, in
the time interval [kts, (k + 1)ts]. As a consequence, the right
(or left ) wheel linear displacement in one sampling period
are given by φr

2 δ
r
k (or φl

2 δ
l
k), where φr and φl are the wheel

diameters. With respect to the general model (1) and recalling
that the vehicle is a unicycle-like vehicle, we have

Gk(pk) =



φr
4 cos θk

φl
4 cos θk

φr
4 sin θk

φl
4 sin θk

φr
2b −φl2b


 , (2)

where b is the rear inter-axle length (Fig. 3). Thus, the system
inputs can be expressed as uk = [δkr , δ

k
l ]T . The additive input

noise εk is distributed according to a stationary Gaussian
process with a 2 × 2 diagonal covariance matrix E whose
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diagonal elements σ2
r and σ2

l are the noise variances due to
the finite resolution and tick reading errors of either encoder.
The measurement function is instead h(pk) = pk + ηk, where
ηk is the zero-mean normally distributed measurement uncer-
tainty vector. If we assume that the measurement uncertainty
contributions are uncorrelated, the corresponding covariance
matrix is R = diag(σ2

x, σ
2
y, σ

2
θ).

Before modelling how the localisation error grows when no
landmarks are in the SDA, we further consider the uncertainties
affecting vehicle parameters, here collected in the vector
λ = [φR, φL, b]

T . For this constant, but possibly uncertain
parameters, we assume Gaussian uncorrelated distributions,
collected in the 3 × 3 diagonal covariance matrix C whose
entries are σ2

φr
, σ2

φl
and σ2

b . By defining qk = [pTk , λ
T ]T and

recalling (2), the final model is

qk+1 = qk +G?k(qk)(uk + εk),

where G?k(qk) = [Gk(qk)T , 0]T . The uncertainty growth

Qk+1 = E
{

(qk+1 − E {qk+1})(qk+1 − E {qk+1})T
}
,

where E {·} is the expectation operator, results from the lineari-
sation of model (2) around the estimated state, in accordance
with the so-called law of propagation of uncertainty for the
multivariate case [24]. Thus, assuming that εk is uncorrelated
from qk ∀k, it follows that

Qk+1 ≈
(
I +

∂G?k(qk)uk
∂qk

)
Qk

(
I +

∂G?k(qk)uk
∂qk

)T
+

G?k(qk)EG?k(qk)T .

Notice that Pk+1, i.e., the localisation error covariance matrix,
is the upper 3 × 3 matrix of Qk+1. So, at the beginning of
each simulation we set

Q0 =

[
R 0
0 C

]
.

B. Target Uncertainty

Since Pk ∈ R3×3 is the covariance matrix of the localisa-
tion error associated with pk at time kts, in our experiments
the actual localisation uncertainty metric is given by

f(Pk) = max Eig (P x,yk ) , (3)

where P x,yk refers to the upper 2 × 2 matrix of Pk, i.e.,
the localisation errors along Xw and Yw, respectively, and
the operator Eig(M) returns the eigenvalues of matrix M .
With this choice, a conservative assumption is made since
the ellipsoid is approximated by the circumscribing circle (as
in [15]). Finally, notice that, since the output function just
returns pk, then g(·) is the same function as f(·).

V. SIMULATION RESULTS

This section presents the simulation results in different
scenarios. Throughout this section, the model is the FriWalk
with the parameters reported in Table II. For the sake of
brevity, only the results with a constant target uncertainty are
reported, i.e., ξ(pk) is constant for all pk.



TABLE II. NUMERICAL VALUES ADOPTED IN THE SIMULATIONS,
DERIVED FROM THE FriWalk

φR 150 mm φL 150 mm b 800 mm ts 10 ms
σr 4 mrad σl 4 mrad r 4 m α π/3 rad
σx 50 mm σy 50 mm σθ

5π
180 rad σφr 5 mm

σφl 5 mm σb 10 mm ξ(pk) 0.64 m2

(a)

(b)

Fig. 4. DISI scenario for vehicle trajectories generated with the chosen
planner for robots. (a) 800 paths considered for the landmark placement. (b)
potential QR codes locations (dots), QR codes locations detected from at least
one trajectory (circled dots) and QR deployment with the greedy algorithm
(green circled dots).

A. Realistic Environment

The realistic environment chosen for simulation purposes
is the Department of Information Engineering and Computer
Science (DISI) of the University of Trento. The FriWalk
trajectories are generated using the path planner described
in [25], which is conceived for robots moving in known
structured environments. In this case, the set of trajectories is
quite repetitive and regular, and robots moving in the corridor
are likely to follow the same path, as clearly visible in Figure 4-
(a). The regularity of the paths increases the number of shared
boolean variables between the clauses, making this a very
challenging situation for the greedy algorithm. If we assume
to use a visual sensor with the values of r and α as reported
in Table II, the potential positions of QR codes determined as
described in [13] amounts to |Lf | = 2085. Such positions are
represented with blue dots in Figure 4-(b). Considering 800
different paths, randomly generated by the path planner and
depicted in Figure 4-(a), 1889 potential QR code landmarks
are observed at least once in at least one trajectory. The
positions of these landmarks are highlighted with circled dots
in Figure 4-(b). By solving the relaxed optimisation problem,

Fig. 5. Percentage of path satisfying the maximum uncertainty limit ξ(pk)
(vertical axis) against the percentage of QR landmarks randomly placed with
respect to |Lf | (horizontal axis) for the DISI scenario reported in Figure 4.
The vertical thick line corresponds to the greedy solution, while the square
on top recall that no path violates ξ(pk).

assuming ai ∈ [0, 1] ⊂ < (see Section III-B), the overall
optimal number of landmarks is mb =

∑
i ai = 92.6, which

is also a lower bound for the optimal solution. To obtain
a feasible deployment from this optimal infeasible solution,
we first arrange the values of ai in descending order. Then
we place a landmark in the positions with the highest value
(saturating ai to 1), and then we continue to add landmarks
in Lr until all the clauses are satisfied. In this way, the total
number of landmarks is Mb = |Lr| = 133, which is an upper
bound of the optimal solution. The greedy algorithm instead
leads to the selection of |Lg| = 115 QR codes, i.e. which
is included between Mb and mb bounds. Such landmarks are
represented with green circled dots in Figure 4-(b).

Notice that even if the number of trajectories and of po-
tential landmark locations is quite large, the computation time
of the greedy algorithm implemented in Matlab and running
on a 3.50 GHz Intel Core i7 with 8 GB of RAM is about
15 minutes. In addition, we compared the greedy solution
with the result of a naive approach in which different amounts
of QR codes are randomly selected from Lf . In particular,
between 5% and 35% of possible landmark positions have been
chosen repeatedly (i.e. 50 times) with the same probability.
For each random placement the percentage of paths satisfying
the maximum uncertainty limit ξ(pk) has been estimated. The
results are summarised in Figure 5. The boxes define the 25-
th and 75-th percentile, while the whiskers corresponds to
the maximum and minimum value. The thick vertical line
corresponds to the percentage of QR landmarks placed by
the greedy algorithm for which all the paths meet the given
uncertainty constraint, i.e. ξ(pk) = 0.64 m2. It is worth
noticing how the greedy solution outperforms the naive random
choice. The localisation uncertainty obtained with greedy and
random placement over 800 trajectories are summarised in
Table III, where the maximum, the average and the standard
deviation of (3) are reported. Observe that the greedy algorithm
ensures a very good accuracy, even if only 5.5% of QR codes
is used (see the thick line in Figure 5).

The results of landmark deployment for more realistic, i.e.
human-like, trajectories is reported in Figure 6. 800 human-
like trajectories in a corridor have been synthesised using
the Headed Social Force Model (HSFM) [26]. This model
emulates the motion of human beings moving in shared spaces



TABLE III. MAXIMUM, AVERAGE AND STANDARD DEVIATION OF
LOCALISATION UNCERTAINTY (3) FOR RANDOM AND THE GREEDY

PLACEMENT, RESPECTIVELY. ALL SIMULATION RESULTS REFER TO THE
REALISTIC SCENARIO SHOWN IN FIGURE 4.

Random deployment densities
5% 25% 45% 65% 85% greedy (6%)

max [m] 35 5.3 1.6 0.8 0.4 0.79
mean [m] 2.8 0.3 0.1 0.07 0.06 0.14
std [m] 4.4 0.5 0.1 0.05 0.1 0.10

(a) (b)

Fig. 6. Corridor scenario for trajectories generated with the HSFM [26].
QR codes locations (dots), QR codes locations detected from at least one
trajectory (circled dots) and QR deployment with the greedy algorithm (green
circled dots) are reported. (a) Deployment without placement constraints and
(b) deployment considering an area where the QR codes cannot be placed.

and obeys to the kinematic model that falls in the generic
representation of (1). For this case, we report in Figure 6
two different landmark deployments, both based on the results
of [13], which gives |Lf | = 48 possible landmark positions if
landmark deployment is unconstrained, reported in Figure 6-
(a) with blue dots, and instead |Lf | = 36 where there is an
area where QR codes cannot be placed, shown in Figure 6-
(b), again in blue dots. Notice that in the latter case the
landmark placement in [13] cannot be strictly satisfied in the
QR forbidden region. For the unconstrained deployment, the
upper and lower bounds to the optimal number of deployed
landmarks are Mb = 3 and mb = 3, respectively. The proposed
greedy placement algorithm returns a solution with |Lg| = 3
QR codes, i.e. green dots in Figure 6-(a). On the contrary, for
the constrained scenario, the greedy solution places |Lg| = 6
QR codes with bounds Mb = 6 and mb = 5.

For the empirical validation of both the placements of
Figure 6, we simulate 200 additional and independent paths
considering multiple persons moving simultaneously in the
corridor, hence no knowledge of the trajectory is available
upfront. In both cases, the localisation accuracy based on the
greedy placement meets the given uncertainty constraint ξ(pk)
with 99.5% probability.

B. Real trajectories

As a further validation of the proposed solution in a
context similar to the applicative scenario of the ACANTO
project [17], 360 paths captured at the entrance of the ETH
Zurich building (see Figure 7-(a)) have been used to test the

(a) (b)

(c) (d)

Fig. 7. Simulation on actual data. (a) ETH Zurich building entrance. (b)
measured paths [27]. (c) deployment of 10 QR landmarks for the greedy
algorithm. (d) deployment of 6 QR landmarks for the greedy algorithm when
the SDA range doubles.

performance of landmark greedy placement [27]. Again, the
applicability of model (1) is substantiated by [26]. Hence, we
can safely assume that each user drives a FriWalk. Figure 7-
(b) shows 288 paths extracted from the video footage. With
the SDA parameters defined in Table II, we have |Lf | = 72
possible QR locations (blue dots in Figure 7-(c)). In this case,
Mb = 10 and mb = 3.7, respectively. The greedy algorithm
selects |Lg| = 5 landmarks. Using the remaining 72 paths of
the available data set, we found the uncertainty constraint ξ(pk)
is met with 98.5% probability. Consider that the larger the
SDA, the lower |Lf | and the more |Lg| → |Lf |. For instance,
Figure 7-(d) reports the placement results when the SDA range
is two times larger than in the previous cases (i.e. r = 8 m).
In this case, |Lf | = 18, Mb = mb = 3, and the solution of the
greedy algorithm converges to |Lg| = 3, as well. Moreover, all
the remaining 72 paths meet the uncertainty constraint ξ(pk).
Similar results can be achieved if the growth rate of dead
reckoning uncertainty increases. This behaviour suggests that
the solutions of greedy and naive random placements become
closer and closer (as shown in Figure 5), depending on the
ratio between the SDA dimension and the growth rate of dead
reckoning uncertainty.

VI. CONCLUSIONS

In this paper, we have addressed the problem of the optimal
placement of a minimum number of visual landmarks while
ensuring that indoor localisation accuracy meets specified



boundaries. We have cast the problem into the framework of
logic synthesis and shown a greedy solution that delivers good
performance in realistic use cases.

There are several open points that deserve future investi-
gations. The trajectories collected from surveillance cameras
do not have the same level of importance; some of them are
frequently taken and some are not: treating the two types
of trajectories could be inefficient or could jeopardise the
system performance There are two possibilities to approach
the problem. The first one is deterministic: we can organise
the trajectories in a group of “core trajectories” that have
to be covered, while other groups of optional trajectories
can be covered on a best effort basis. The extension of the
algorithm to this case is currently under way. A different
approach is stochastic and it relies on a Markovian chain
model described in previous papers [16]. Markovian motion
models for the target are potentially more powerful in terms
of descriptive power than a mere enumeration of trajectories,
but are computationally difficult to treat. The greedy heuristic
presented in this paper could help evade the curse of dimen-
sionality of Markov models. Regarding the algorithm solving
the placement problem, we are exploring alternative encoding
schemes, which could take advantage of the monotonicity
of the boolean function, and which use satisfiability-based
methods.
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