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Abstract—The most effective solutions for indoor positioning
of mobile agents typically rely on multi-sensor data fusion. In
particular, good trade-offs in terms of accuracy, scalability and
availability can be achieved by combining dead reckoning tech-
niques (e.g. based on odometry) and measurements of distance
and attitude with respect to suitable landmarks with a known
position and/or orientation within a given reference frame. A cru-
cial problem of this kind of techniques is landmark deployment,
which should keep into account not only the limited detection
range of the adopted sensors and the non-null probability of
missing a landmark, even if it actually lies within the sensor
detection area (SDA). This paper focuses on minimum landmark
placement taking into account possible environment contextual
information. This solution relies on a greedy placement algorithm
that optimally solves the problem while keeping positioning
uncertainty below a given limit. The correctness of the proposed
approach is verified through multiple simulations in the context of
the EU project ACANTO, which requires to localise one or more
smart robotic walkers in large, public and potentially crowded
environments such as shopping malls or airports.

Keywords—Indoor localisation, position tracking, landmark
placement, optimisation.

I. INTRODUCTION

Indoor positioning is a fundamental enabler for Ambient
Assisted Living (AAL) applications, human centred service
robotics and customer guidance in public spaces. Indoor locali-
sation and position tracking suffer from some critical problems,
which can be shortly summarised below [1]. First, the signals
of Global Navigation Satellite Systems (GNSS) are usually too
weak to be detected indoors. Second, an accuracy in the order
of a few tens of cm or less is required by most applications,
e.g., to avoid obstacles detected with limited sensing systems.
Third, possible scalability issues arise when a large number of
targets (e.g., multiple customers) need to be localised in the
same environment at the same time. At the moment, a one-size-
fit-all solution for indoor localisation and positioning still does
not exist [2]. A good trade-off addressing most of the issues
listed above can be achieved through multi-sensor data fusion
algorithms [3], [4], [5], particularly those combining ego-
motion relative (e.g., dead reckoning) techniques with distance
and heading values measured with respect to “anchor nodes”,
“tags”, “markers” or “landmarks” having known coordinates in
a given “absolute” reference frame. In this respect, a crucial
problem is where to place such landmarks in the environment
considered.

A key requirement for indoor localisation is to keep po-
sitioning uncertainty below given target boundaries [6]. Of

course, the minimum uncertainty is certainly achieved when
a landmark is detected at any time [7]. However, since the
sensors (e.g. cameras) detecting the landmarks have always a
limited detection area, the data about absolute position and
orientation are intrinsically intermittent. In such conditions
a robot can track its own position just using dead reckon-
ing. Of course, in this case positioning uncertainty grows
until a new landmark is detected. Therefore, landmarks are
needed to keep uncertainty bounded, but their number should
be properly minimised. This is a subclass of the landmark
selection problem addressed in robotics using online [8], [9]
or offline [10] approaches. As pointed out in [11], the offline
approach corresponds to the landmark deployment problem
considered in this paper. Possible solutions to this problem
rely on heuristic common-sense criteria (e.g. using strips of
RFID tags so that at least one of them is within the detection
range of the on-board reader [12]) or on cost function to
minimise. The solutions that do not require any knowledge
of the target trajectories give effective guarantees, but may
be excessively conservative in real scenarios [10], [7]. On the
other hand, the a-priori knowledge of possible trajectories may
be stochastic [13] or deterministic [14], like in the case consid-
ered in this paper. Unfortunately, taking into consideration the
accuracy and the detection area of the sensors employed, the
trajectories of the target to be tracked and the geometry of the
environment make the problem NP-complete [11]. Moreover,
if the target uncertainty is included in the problem [4], the
solution becomes even more challenging.

This paper extends the nearly-optimal greedy landmark
placement strategy proposed in [15] (e.g. assuming to deploy
Aruco codes on the floor [16]) by considering additional
features that can be directly detected, such as the presence of
walls, thus further reducing the need for artificial landmarks.
Moreover, we explicitly consider a non-negligible probability
of missed landmark detection, turning the deterministic target
uncertainty boundary in a stochastic limit. To the best of our
knowledge, this is the first solution that explicitly considers the
possibility to rely on context information in order to deploy
landmarks when necessary.

The rest of the paper is structured as follows. Section II
provides an overview of system and measurement models and
formalises the optimisation problem. Section III is focused on
the landmark placement algorithm. Section IV reports some
meaningful simulation results. Finally, Section V concludes
the paper and outlines future work.
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Fig. 1. The FriWalk schematic representation and SDA.

II. MODELS AND PROBLEM FORMULATION

This section presents the reference model adopted for lo-
calisation, the available measurements, the metric adopted for
the uncertainty and the formalisation of the optimal problem.
Even though the presented approach can be applied to a generic
platform moving indoors on a horizontal plane using ego-
motion data for dead reckoning (e.g. odometers or inertial
measurement units), measurements of environmental quantities
(e.g. cameras detecting obstacles) as well as landmark detec-
tion (e.g. Quick Response (QR) codes, Aruco codes or RFID
tags) [4], [16], without loss of generality we will make explicit
reference to the FriWalk (Fig. 1), a service robot developed in
the European project ACANTO [17], which is provided with
cognitive [18], [19] and guidance functionalities [20], [21],
[22].

A. Platform Model

The FriWalk is based on a standard commercial Trionic
Walker 12er. The FriWalk is modelled as a unicycle-like
vehicle [18]. If ts denotes the sampling period of the onboard
sensors, the position of the walker at time kts is represented
by the coordinates (xk, yk) of the mid-point of the rear
wheels axle expressed in the fixed right-handed reference
frame 〈W 〉 = {Ow, Xw, Yw, Zw} (Fig. 1). The orientation
of the FriWalk is instead given by the angle θk between the
forward vehicle direction and the axis Xw. The robot state
can be define as p = [x, y, θ, v, ω]T where [x, y, θ]T are the
generalised coordinates of the system, v is the forward velocity
and ω is the angular speed. The discrete-time kinematic model
of the FriWalk is then given by:
xk+1

yk+1

θk+1

vk+1

ωk+1

 =


xk + vk cos(θk)ts − vk sin(θk)ωkt

2
s

2

yk + vk sin(θk)ts +
vk sin(θk)ωkt

2
s

2
θk + ωkts

vk
ωk

+ g(pk)εk,

(1)
which is a constant velocity model generating a random walk if
the input vector εk = [εvk , εωk ] modelling the unknown time-
varying accelerations is a random noise. In such a case, the
noise input matrix g(pk) is given by:

g(pk) =

[
t2s
2 cos(θk)

t2s
2 sin(θk) 0 ts 0

0 0
t2s
2 0 ts

]T
The acceleration noises are supposed to be distributed accord-
ing to a stationary zero-mean white Gaussian process with a

2× 2 diagonal covariance matrix E whose diagonal elements
are σ2

a and σ2
α.

From (1), the overall system model can be more compactly
rewritten as {

pk+1 = f(pk) + g(pk)εk
zk = h(pk) + ηk

(2)

where h(pk) is the nonlinear output function representing the
available sensors and ηk is the vector of the uncertainties
affecting the sensor measurement data available at time kts.

B. Measurements

The FriWalk is equipped with heterogeneous sensors that
are: a) a pair of encoders installed on the rear wheels for
dead reckoning; b) an embedded vision system able to detect
Aruco codes placed on the floor and associated with known
coordinates in 〈W 〉 and to measure the relative pose between
the walker and the detected Aruco code; c) a frontal RGB-
D camera (namely a Astra Orbbec1) to detect environmental
features, such as walls.

Encoders: The encoders measure the angular displacements
zek = [δkr , δ

k
l ]T of the right and left wheel, respectively,

between the (k−1)ts and kts time instants. As a consequence,
the right (or left) wheel linear displacements in one sampling
period are given by dR

2 δ
r
k (or dl

2 δ
l
k), where dr and dl are the

wheel diameters. Due to the linear relationship between the
vehicle velocities vk and ωk and the wheels angular velocities,
we have

zek =

[
0 0 0 2ts

dr
bts
dr

0 0 0 2ts
dl

− btsdl

]
pk + ηek,

where b is the vehicle interaxle length (see Figure 1). The
encoder measurements are affected by uncertainty ηek, which
is a bivariate zero-mean normally distributed random vector
with covariance matrix Ne = diag(σ2

r , σ
2
l ).

Embedded vision system: The sensor detection area (SDA) of
the vision system (shortly denoted as s(pk) for a given position
pk) is assumed to be a trapezoid, as depicted in Fig. 1. The
measurement data vector

zck =

R(θc)

(
R(θk)

[
xqi − xk
yqi − yk

]
−
[
xc
yc

])
θk + θc − θqi

+ ηck, (3)

where (xqi , yqi) and θqi are the known position and orientation
of the i-th Aruco code in 〈W 〉, respectively, R(θ) is the
rotation on the plane of angle θ, i.e.

R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

and (xc, yc) and θc represent the position and orientation of
the camera with respect to the reference point of coordinates
(xk, yk). The measurement data are supposed to be affected
by a zero-mean and normally distributed uncertainty vector ηck
with covariance matrix N c = diag(σ2

xc , σ
2
yc , σ

2
θc

).

RGB-D camera: The front Astra Orbbec detects and measures
the distance from possible fixed obstacles, e.g. walls, when
they are within its own SDA, which can be also modelled

1https://orbbec3d.com/product-astra/



Fig. 2. Example of uncertainty reduction due to the fusion of encoder
and RGB-D measurement data. As the amount of information increases, the
positioning uncertainty tends to decrease.

as a trapezoid. The map of the indoor environment, including
the walls, is assumed to be given. When the Orbbec detects a
wall, a segment parallel to the plane of motion and delimited
by points A and B can be measured, as shown in Figure 1. If
(xa, ya) and (xb, yb) are the coordinates of A and B in the ref-
erence frame of the Orbbec, the angle and the distance between
the Orbbec and point A are given by θa = arctan (ya/xa),
and ρa =

√
x2a + y2a, respectively. As a consequence, the

function modelling the measurements performed by the Orbbec
is zrk = [ρk, θabk ] + ηrk, where

ρk =

√
[xp − xk − xr cos(θk)− yr sin(θk)]

2
+

[yp − yk − xr sin(θk)− yr cos(θk)]
2
,

θabk =θk + θr,

(4)

(xr, yr) is the position of the Orbbec camera with respect to
(xk, yk), θr is orientation of the Orbbec, (xp, yp) is one generic
point belonging to the detected wall and available in the
map M of the environment, and ηrk denotes the measurement
uncertainty vector. Again, this is a bivariate and normally-
distributed random vector, with zero mean and covariance
matrix Nr = diag(σ2

ρr , σ
2
θr

).

To clarify the role of the Orbbec camera, consider the
qualitative straight path shown in Figure 2. Let us assume that
the initial standard uncertainty of the FriWalk along axes Xw

and Yw is σx = σy = 0.8 m. If the position of the FriWalk
were estimated only through dead-reckoning (i.e. using just
encoder data), the initial positioning uncertainty would grow
unboundedly. If instead the RGB-D camera detects the walls
of the corridor, the distance and orientation measurements
given by (4) can be used to reduce σy , e.g. by using an
Extended Kalman Filter (EKF) based on model (2) [4], [16].
Moreover, as the FriWalk keeps on moving along the corridor,
the localisation uncertainty can be further reduced along both
Xw and Yw, due to the larger amount of measurement data
used to update the estimated state of (2).

Of course, the general approach above can be extended
by including the measurements given by (3) when an Aruco
code is detected. In this case, with reference to (2), a full
vector of measurement data zk = [zek, z

c
k, z

r
k]T is collected

at time kts and the corresponding overall measurement un-
certainty vector ηk = [ηek, η

c
k, η

r
k]T has covariance matrix

N = diag(Ne, N c, Nr), since the measurements performed by

different sensors can be reasonably assumed to be uncorrelated.
Of course, the presence of zck and zrk in zk as well as of ηck and
ηrk in ηk is inherently intermittent, as it depends on whether
an Aruco code and/or a wall is detected at time kts.

C. Uncertainty Evaluation

One crucial issue for the formalisation of the placement
optimisation problem is the definition of a scalar function able
to provide a trustworthy expression of positioning uncertainty.
In this paper, such a function is

f(Pk) = max
√

Eig (P x,yk ), (5)

where operator Eig(M) returns the eigenvalues of matrix M
and P x,yk ∈ R2×2 is the upper diagonal block of the covariance
matrix Pk ∈ R5×5 associated with state vector pk. The
rationale underlying the choice of (5) is twofold. First, the
elements of the main diagonal of P x,yk are the squared standard
uncertainties associated with the FriWalk planar coordinates in
〈W 〉. Second, by selecting the larger eigenvalue of P x,yk , the
ellipse representing geometrically the positioning uncertainty
around point (xk, yk) is approximated by the circumscribing
circle. This is a conservative, but reasonable choice for the
problem at hand [14], since the uncertainty has to be kept
below a given limit. In particular, the condition

g(N c) ≤ f(Pk) ≤ ξ(pk), (6)

must hold. The lower uncertainty bound g(N c) is achieved
as soon as an Aruco code is detected and depends on the
metrological characteristics of the embedded vision system.
On the contrary, the upper uncertainty bound ξ(pk) depends
on the specifications of the overall localisation system. Quite
intuitively, if ξ(pk) decreases, then the number of landmarks
to be deployed grows.

D. Problem Formulation

Let Q ⊆ R2×[0, 2π) be the space reachable by the FriWalk
inside the environment (i.e. pk ∈ Q ∀k) and

D =
{

(x, y) ∈ R2 | ∃pk ∈ Q, (x, y) ∈ s(pk)
}
,

be the points lying in the SDA of the vision system from at
least one position pk. If Lp ⊆ D denotes the area in which it
is possible to place landmarks, then

Lf ∩ s(pk) 6= ∅,∀pk ∈ Q, (7)

represents a subset of points of Lp with a minimal cardinality,
where the Aruco codes can be initially placed so that at least
one of them is always in the SDA of the vision system [7].

If we assume to know the possible paths of the FriWalk,
then at least one landmark should be placed along each path
to avoid unbounded uncertainty growth due to dead reckoning.
This may require a preliminary observation of the target’s
trajectories in the indoor environment considered. In the case
at hand, the set of available trajectories, dubbed T , can be
conveniently represented using the set Lf . Indeed, due to (7),
Si,k , s(pk) ∩ Lf 6= ∅ can be regarded as the set of possible
locations where the Aruco codes could be detected at time kts
along the i–th trajectory Ti ∈ T . Notice that Si,k may contain
more than one element of Lf . This way, the i-th path, even if



continuous, can be approximately represented as a quantised
and finite sequence of points Si,k. Ultimately, the optimisation
problem can be formulated as follows, i.e.

Problem 1: Given Lf , the sets of Si, the map M and
ξ(pk) ≥ g(N c), ∀pk ∈ T , find:

L = arg min
Lx
|Lx| s.t.

Lx ⊆ ∪iSi and f(Pk) ≤ ξ(pk), pk ∈ T ,∀k.

Observe that, in the worst-case, L = Lf can be a solution to
the problem considered.

III. OPTIMAL LANDMARK PLACEMENT

This section first shows how to cast Problem 1 into a
binary programming problem [15], assuming to include the
measurements based on the RGB-D camera as well. Then, Sec-
tion III-B describes the greedy placement algorithm. Section
III-C considers the probability of missing a visual landmark.

A. Boolean Representation

Each possible Aruco code location li ∈ Lf can be
associated with a Boolean variable ai, which is set to 1
if the landmark is placed in li or 0 otherwise. It follows
that the minimum number of landmarks is deployed if the
number of boolean variables set to 1 is minimised as well.
To determine where Aruco codes must be placed to meet the
wanted uncertainty limit ξ(pk), we start from a generic position
pq ∈ Ti at time qts, assuming that f(Pq) = g(N c). The motion
of the vehicle along each path can be simulated to compute
the evolution of the covariance matrix Pq+1, Pq+2, . . . along
Ti fusing the measurement data from both encoders and vision
systems. While the robot motion is simulated along Ti, we
keep track of the landmark positions Si,j in view. If at time
k + 1 > q, f(Pk+1) > ξ(pk+1), then we have a violation. To
avoid it, at least one landmark must be present in one of the
positions Si,j in view. To increase the robustness of the system
at the expense of the number of landmarks to be deployed, we
can solve this problem adding the constraint that each clause
is covered by at least n landmarks. When n is equal to 1 we
have the minimum number of landmarks in the environment,
but robustness to missing data is undermined. This condition
can be expressed as follows:

λi,q = aiq ∨ aiq+1
· · · ∨ aik .

This analysis can be repeated for all starting positions and for
all trajectories. The corresponding clauses can be collected in
a set Λ. For the problem to be solved, it is necessary and
sufficient that all the generated clauses evaluate to true. A
compact representation of Λ is given by a coverage matrix C
whose columns are the possible landmarks locations li ∈ Lf
while the rows are the clauses λi,q . A generic matrix entry
indexed by (r, c) is set to 1 if the r-th clause is fulfilled by
the c-th landmark, or 0 otherwise. An example is shown in
Table I.

B. Greedy Placement

As shown in [15], the greedy algorithm for landmark
placement leads to a good approximation of the optimal solu-
tion within a reasonable computation time. We start with the

TABLE I. COVERAGE MATRIX EXPRESSING THE CLAUSE AS
DISJUNCTION OF BOOLEAN VARIABLES: λ2,3 = a1 ∨ a2 ∨ a8 ∨ a9 ;

λ4,1 = a2 ∨ a3 ∨ a6 ; λ3,2 = a2 ∨ a4 ; λ3,4 = a1 ∨ a3 ∨ a5 ∨ a7 ∨ a10 ;
λ3,5 = a3 ∨ a5 ∨ a7 ∨ a10 .

1 2 3 4 5 6 7 8 9 10
λ2,3 1 1 0 0 0 0 0 1 1 0
λ4,1 0 1 1 0 0 1 0 0 0 0
λ3,2 0 1 0 1 0 0 0 0 0 0
λ3,4 1 0 1 0 1 0 1 0 0 1
λ3,5 0 0 1 0 1 0 1 0 0 1

coverage matrix C, computed as described previously, where
the columns are sorted with a decreasing number of elements
equal to 1. With reference to Table I, the first column will be
l2, then l3 and so on. Initially, no landmarks are placed. Since
the clauses are not covered by any landmark, the cover counter
is set to 0. Afterwards, a landmark is placed in the position
corresponding to the first column, i.e., the one satisfying the
greatest number of clauses. As a result, the first column is
removed. Then, the cover counter of the satisfied clauses (the
matrix rows) is incremented by one (e.g. the counters of λ2,3,
λ4,1 and λ3,2 of Table I). If the cover counter of the row is
equal to the desired cover factor of clause (n), the row can be
removed and the matrix can be reordered.

C. Probability of Missed Aruco Code Detection

Let γf be the non-zero probability of not detecting an
Aruco code. In such conditions, constraint (6) can then be
guaranteed only in a stochastic sense, that is with a probability
greater than νd. Being n the number of landmarks for each
clause, the constraint (6) is then violated if the sensor misses
a number of visual landmarks greater than or equal to n. Let
mi be the number of landmarks along the i–th trajectory Ti,
the probability of missing n consecutive landmarks is given
by the following recursive formula:

ζ(mi, n)=

{
0 if n> mi

γnf +
∑ni
j=1(1−γf )γj−1f ζ(mi−j, n) otherwise.

Of course, such a probability increases with mi and decreases
if n grows. Since, the uncertainty associated with Ti depends
on the possibility to measure contextual information along
a given path (hence increasing mi), ζ(mi, n) is computed
contextually with the greedy solution, while checking if the
probability constraint νd is met. In other words, the greedy
algorithm searches for the smallest n such that

1− ζ(mi, n) > νd (8)

is satisfied for all the trajectories Ti.

IV. SIMULATION RESULTS

This section presents the simulation results of two different
scenarios based on model (2) with the parameters reported
in Table II. Some of these values derive from a preliminary
characterisation of the FriWalk sensors, e.g. front camera and
encoders. For the sake of brevity, only the results with a
constant target uncertainty are reported, i.e., ξ(pk) is the same
∀pk.



TABLE II. PARAMETER VALUES BASED USED FOR SIMULATIONS.

dr 0.30 m dl 0.30 m σr 0.1 mrad σl 0.1 mrad
b 0.8 m σxc 2 cm σyc 6 cm σθc 0.03 rad
σρr 50 mm σθr 0.17 rad R 2.5 m r 0.8 m
β π/3 rad γf 0.4 νd 0.95 ξ(pk) 0.8 m
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Fig. 3. Landmark placement in a corridor with straight paths and with (red
dots) or without (green dots) the RGB-D camera for (a) n = 1 and (b) n = 5.

A. Demo scenarios

The first scenario is conceived to highlight the features
of the proposed greedy placement and consists of a 4 × 70
m corridor. Globally, 100 straight paths in both directions
and uniformly spaced have been generated in the corridor.
The possible landmark locations are 430 and result from the
solution of [7] using the values of R, r and β reported in
Table II. Figure 3 shows the results of landmark placement
with (red dots) and without (green dots) using the front RGB-
D camera for n = 1 (a) and 5 (b). Notice how the use of
contextual information (namely the detection of walls) drives
the algorithm to place the landmarks in the centre of the cor-
ridor, where the RGB-D camera cannot collect data. Another
interesting result is shown in Figure 4, which represents the
box-and-whiskers diagrams, computed over all the generated
paths, of the probabilities ζ(mi, n) of not detecting an Aruco
code for different values of n with (a) and without (b) using the
front RGB-D camera. The larger variability when the RGB-D
camera is used (see Figure 4-a) (especially if n = 1) depends
on the particular path of the agent. When the agent moves in
the middle of the corridor the walls are not detected. Hence the
uncertainty constraint ξ(pk) is more likely to be violated. This
is not the case for the paths detecting the walls. Of course,
this phenomenon does not occur if the RGB-D camera is not
used, as shown in Figure 4-b. Notice that, in both cases, to
meet the desired stochastic threshold of νd = 0.95, than at
least n = 5 landmarks are needed. However, from Table III it
is evident that the number of landmarks to be placed is almost
three times larger.

B. Realistic Environment

The realistic environment chosen for simulation purposes
is the Department of Information Engineering and Computer
Science (DISI) of the University of Trento. In this case, 1000
random trajectories have been generated starting and ending
in different rooms. The paths are quite regular, as can be
expected in a highly constrained indoor environment. The
dots in Figure 5(a) represent the 7363 possible landmark
positions obtained using the geometric approach described
in [7]. Assuming that the initial positions are known with
minimal uncertainty and that the Aruco codes are always
detected (i.e. γf = 0), the result of the placement based on
the greedy algorithm is shown in Figure 5(b) for n = 1.

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 4. Box-and-whiskers plots of the probabilities ζ(mi, n) of not detecting
a landmark along the corridor shown in Figure 3 with (a) and without (b) using
the front RGB-D camera.

TABLE III. NUMBER OF LANDMARKS PLACED IN THE CORRIDOR
SHOWN IN FIGURE 3 WITH AND WITHOUT USING THE FRONT RGB-D

CAMERA.

Cover Counter n
1 2 3 4 5 6 7

no RGB-D 12 24 36 45 57 66 78
RGB-D 4 9 14 18 22 27 32

Again, red and green dots are obtained including or excluding
the data from the RGB-D camera, respectively. If γf = 0.4
and νd = 0.95, at least n = 5 landmarks per clause are
needed to satisfy (8) for all the trajectories, resulting in the
deployment shown in Figure 5(c). Notice that the landmarks
are placed mainly along the corridors, since the density of
possible paths is higher than in the rooms. Moreover, when
the RGB-D camera is used, the number of landmark clusters
as well as their size are smaller. This is confirmed by the
results in Table IV, which reports the amount of landmarks
actually deployed. The results on the probability of failure
ζ(mi, n) are not reported because they are similar to those
shown in Figure 4. As a final comment, it is worth emphasising
that, even if the number of trajectories and potential landmark
locations is quite large, the computation time of the greedy
placement algorithm implemented in Matlab and running on a
3.50 GHz Intel Core i7 with 8 GB of RAM is about 45 minutes.

V. CONCLUSIONS

This paper presents a greedy algorithm solving the problem
of minimal landmark placement for indoor localisation based
on the combination of dead-reckoning, visual landmark detec-
tion and contextual information. The problem is constrained
by the desired location-dependent target uncertainty and by
is affected by the probability of missing a landmark. The
effectiveness of the proposed approach is demonstrated with
simulations in a realistic environment. Future developments
will focus on actual experiments on the FriWalk, on classifi-
cation of the trajectories (core and optional trajectories, with
probabilities) and on the usage of heterogeneous landmarks,
e.g. visual Aruco codes and RFID tags.
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Fig. 5. Simulation results in a realistic scenario. In (a) the FriWalk trajectories
generated by a path planner are shown on the DISI map. In (b) and (c) the
results of landmark placement with (red dots) and without (green dots) using
the RGB-D camera are plotted for n = 1 with γf = 0 and n = 5 with
γf = 0.4, respectively.

TABLE IV. NUMBER OF LANDMARKS PLACED WITH AND WITHOUT
USING THE RGB-D CAMERA IN THE REALISTIC CASE SHOWN IN FIG. 5.

Cover Counter n
1 2 3 4 5 6 7

no RGB-D 53 100 155 203 256 310 360
RGB-D 33 67 98 129 158 188 216
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