
A Tag Contract Framework for Heterogeneous Systems

Thi Thieu Hoa Le1, Roberto Passerone1, Uli Fahrenberg2, and Axel Legay2

1 DISI, University of Trento, Italy
2 INRIA/IRISA, Rennes, France

Abstract. In the distributed development of modern IT systems, contracts play a
vital role in ensuring interoperability of components and adherence to specifica-
tions. The design of embedded systems, however, is made more complex by the
heterogeneous nature of components, which are often described using different
models and interaction mechanisms. Composing such components is generally
not well-defined, making design and verification difficult. Several frameworks,
both operational and denotational, have been proposed to handle heterogeneity
using a variety of approaches. However, the application of heterogeneous opera-
tional models to contract-based design has not yet been investigated. In this work,
we adopt the operational mechanism of tag machines to represent heterogeneous
systems and construct a full contract model. We introduce heterogeneous com-
position, refinement, dominance, and compatibility between contracts, altogether
enabling a formalized and rigorous design process for heterogeneous systems.

1 Introduction

Modern computing systems are increasingly being built by composing components
which are developed concurrently by different design teams. In such a paradigm, the
distinction between what is constrained on environments, and what must be guaranteed
by a system given the constraint satisfaction, reflects the different roles and responsibil-
ities in the system design procedure. Such distinction can be captured by a component
model called contract [1]. Formally, a contract is a pair of assumptions and guaran-
tees, which intuitively are properties that must be satisfied by all inputs and outputs of a
design, respectively. The separation between assumptions and guarantees supports the
distributed development of complex systems and allows subsystems to synchronize by
relying on associated contracts.

In the particular context of embedded systems, heterogeneity is a typical charac-
teristic since these systems are usually composed from parts developed using different
methods, time models and interaction mechanisms. To deal with heterogeneity, several
modeling frameworks have been proposed oriented towards the representation and sim-
ulation of heterogeneous systems, such as the Ptolemy framework [2], or towards the
unification of their interaction paradigms, such as those based on tagged events [3]. The
latter can capture different notions of time, e.g., physical time, logical time, and relate
them by mapping tagged events over a common tag structure [4]. However, due to the
significant inherent complexity of heterogeneity, there have been only very few attempts
at addressing heterogeneity in the context of contract-based models. For instance, the



2 Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay

HRC model from the SPEEDS project3 was designed to deal with different viewpoints
(functional, time, safety, etc.) of a single component [5,6]. However, the notion of het-
erogeneity in general is much broader than that between multiple viewpoints, and must
take into account diverse interaction paradigms. Meanwhile, heterogeneous modeling
frameworks have not been related to contract-based design flows. This has motivated
us to study a methodology which allows heterogeneous systems to be modeled and
interconnected in a contract-based fashion.

Our long term objective is to develop a modeling and analysis framework for the
specification and verification of both heterogeneous components and contracts. In or-
der to support formal correctness proofs, the framework must employ an underlying (or
intermediate) semantically sound model that can be used to represent different compu-
tation and interaction paradigms uniformly. Because simulation is an essential design
activity, the model must also be executable. At the same time, the semantic model must
be able to retain the individual features of each paradigm to avoid losing their specific
properties. In particular, the framework must interact with the user through a front end
that exposes familiar models that feel native and natural. In this paper we focus on the
intermediate semantic model and defer the discussion on how specific front ends may
be constructed to our future work. To this end, we advocate the use of heterogeneous
Tag Machines (TMs) as a suitable semantic model for system specification. The expres-
sive power of TMs has been demonstrated though various concurrency models such as
asynchronous, synchronous reactive, causality [7] as well as in job-shop modeling and
specification [8]. In our previous work we have proposed and studied the compositional
properties of heterogeneous Tag Machines (TMs) for component specification [9]. Here,
we instead discuss their extension to a contract model, and define a full set of operations
and relations such as contract satisfaction, contract refinement, contract dominance and
contract compatibility. To do this, we rely on a generic meta-framework [10] that we
extend with tags and mapping between tags to define model interactions. In this paper,
we shall discuss extensively the technical difficulties in making such an extension.

The rest of the paper is organized as follows. In Sect. 3, we recall basic notions
of tag behaviors and tag machines. Section 4 presents our tag contract methodology
for heterogeneous systems built on top of TM operations such as composition, quo-
tient, conjunction and refinement. In the same section, we discuss an application of our
methodology to a simplified water control problem and model it using incrementing
TMs. Finally we conclude in Sect. 5.

2 Related Work

The notion of contract was first introduced by Bertrand Meyer in his design-by-contract
method [1], based on ideas by Dijkstra [11], Lamport [12], and others, where systems
are viewed as abstract boxes achieving their common goal by verifying specified con-
tracts. De Alfaro and Henzinger subsequently introduced interface automata [13] for
documenting components and established a more general notion of contract, where pre-
conditions and post-conditions, which originally appeared in the form of predicates, are

3 www.speeds.eu.com



A Tag Contract Framework for Heterogeneous Systems 3

generalized to behavioral interfaces. The differentiation between assumptions and guar-
antees, which is implicit in interface automata, is made explicit in the trace-based con-
tract framework of the SPEEDS HRC model [5,14]. The relationship between specifica-
tions of component behaviors and contracts is further studied by Bauer et al. [10] where
a contract framework can be built on top of any specification theory equipped with a
composition operator and a refinement relation which satisfy certain properties. The
mentioned trace-based contract theories [5,14] are also demonstrated to be instances
of such framework. We take advantage of this formalization in this work to construct
our tag contract theory. Assume-guarantee reasoning has also been applied extensively
in declarative compositional reasoning [15] to help prove properties by decomposing
the process into simpler and more manageable steps. Our objective is conceptually dif-
ferent: assumptions specify a set of legal environments and are used to prove (or dis-
prove) contract compatibility and satisfaction. In contrast, classical assume-guarantee
reasoning uses assumptions as hypotheses to establish whether a generic property holds.
Naturally, this technique can be used in contract models, as well.

Heterogeneity theory has been evolving in parallel with contract theory, to assist
designers in dealing with heterogeneous composition of components with various Mod-
els of Computation and Communication (MoCC). The idea behind these theories and
frameworks is to be able to combine well-established specification formalisms to enable
analysis and simulation across heterogeneous boundaries. This is usually accomplished
by providing some sort of common mechanism in the form of an underlying rich seman-
tic model or coordination protocol. In this paper we are mostly concerned with these
lower level aspects. One such approach is the pioneering framework of Ptolemy II [2],
where models, called domains, are combined hierarchically: each level of the hierar-
chy is homogeneous, while different interaction mechanisms are specified at different
levels in the hierarchy. In the underlying model, intended for simulation, each domain
is composed of a scheduler (the director) which exposes the same abstract interface
to a global scheduler which coordinates the execution. This approach, which has clear
advantages for simulation, has two limitations in our context. First, it does not provide
access to the components themselves but only to their schedulers, limiting our ability
to establish relations to only the models of computation, and not to the heterogeneous
contracts of the components. Secondly, the heterogeneous interaction occurs implicitly
as a consequence of the coordination mechanism, and can not be controlled by the user.
The metroII framework [16] relaxes this limitation, and allows designers to build di-
rect model adapters. However, metroII treats components mostly as black boxes using
a wrapping mechanism to guarantee flexibility in the system integration, making the
development of an underlying theory complex. These and other similar frameworks are
mainly focused on handling heterogeneity at the level of simulation.

Another body of work is instead oriented towards the formal representation, verifi-
cation and analysis of these system. The BIP framework uses the notion of connector,
on top of a state based model, to implement both synchronous and asynchronous in-
teraction patterns [17]. Their relationship, however, can not be easily altered, and the
framework lacks a native notion of time. Benveniste et al. [4] propose a heterogeneous
denotational semantics inspired by the Lee and Sangiovanni-Vincentelli formalism of
tag signal models [3], which has been long advocated as a unified modeling framework



4 Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay

capable of capturing heterogeneous MoCC. In both models, tags play an important role
in capturing various notions of time, where each tag system has its own tag structure
expressing an MoCC. Composing such system is thus done by applying mappings be-
tween different tag structures. TMs [7] are subsequently introduced as finite representa-
tions of homogeneous tag systems. We have chosen to use this formalism for our work,
as it provides an operational representation based on rigorous and proven semantics,
and extended their definition to encompass heterogeneous components [9]. TMs are
quite expressive, and ways to map traditional interaction paradigms have been reported
in the literature [7]. TMs have also been applied to model a job-shop specification [8]
where any trace of the composite tag machine from the start to the final state results in
a valid job-shop schedule. Alternatively, tag systems can be represented by functional
actors forming a Kleene algebra [18]. The approach is similar to that of Ptolemy II in
that both use actors to represent basic components.

3 Background

We consider a component to be a set of behaviors in terms of sets of events that take
place at its interface, intended as a collection of visible ports. Tags, which are associ-
ated to every event, characterize the temporal evolution of the behaviors. By changing
the structure of tags, one can choose among different notions of time. Formally, a tag
structure T is a pair (T,≤) where T is a set of tags and ≤ is a partial order on the tags.
The tag ordering is used to resolve the ordering among events at the system interface.

3.1 Tag Behaviors

Events occur at the interface of a component. A component exposes a set V of variables
(or ports) which can take values from a setD. An event is a snapshot of a variable state,
capturing the variable value at some point in time. Formally, an event e on a variable
v ∈ V is a pair (τ, d) of a tag τ ∈ T and a value d ∈ D. The simplest way of
characterizing a behavior is as a collection of events for each variable. To construct
behaviors incrementally, the events of a variable are indexed into a sequence, with the
understanding that events later in the sequence have larger tags [4]. A behavior for a
variable v is thus a function N 7→ (T × D). A behavior σ for a component assigns
a sequence of events to every variable in V , i.e. σ ∈ V 7→ (N 7→ (T × D)). Each
event of behavior σ is identified by a tuple (v, n, τ, d), capturing the n-th occurrence of
variable v as a pair of a tag τ and a value d. In the following, we denote with Σ(V, T )
the universe of all behaviors over a set of variables V and tag structure T .

Combining behaviors σ1 and σ2 on the same tag structure, or homogeneous be-
haviors, amounts to computing their intersection provided that they are consistent, or
unifiable, written σ1 ./ σ2, with each other on the shared variables, i.e. σ1|V1∩V2

=
σ2|V1∩V2

, where σ|W denotes the restriction of behavior σ to the variables in set W .
We may then construct a unified behavior σ = σ1 t σ2 on the set of variables V1 ∪ V2
where σ(v) = σ1(v) for v ∈ V1 and σ(v) = σ2(v) for v ∈ V2. When behaviors are de-
fined on different tag structures, before unifying them, the set of tags must be equalized
by mapping them onto a third tag structure that functions as a common domain. The
mappings are called tag morphisms and must preserve the order.



A Tag Contract Framework for Heterogeneous Systems 5

(a) System diagram (b) A tank (σ1) and controller (σ2) behavior

Fig. 1. Water controlling system

Definition 1 ([4]). Let T and T ′ be two tag structures. A tag morphism from T to T ′
is a total map ρ : T 7→ T ′ such that ∀τ1, τ2 ∈ T : τ1 ≤ τ2 ⇒ ρ(τ1) ≤ ρ(τ2).

Here, the tag orders must be taken on the respective domains. Using tag morphisms, we
can turn a T -behavior σ ∈ V 7→ (N 7→ (T × D)) into a T ′-behavior σ ◦ ρ ∈ V 7→
(N 7→ (T ′ ×D)) by simply replacing all tags τ in σ with the image ρ(τ). Unification
of heterogeneous behaviors can be done on the common tag structure. Let ρ1 : T1 7→ T
and ρ2 : T2 7→ T be two tag morphisms into a tag structure T . Two behaviors σ1 and
σ2 defined on T1 and T2 respectively are unifiable in the heterogeneous sense, written
σ1 ./ρ1 ρ2 σ2, if and only if (σ1 ◦ ρ1) ./ (σ2 ◦ ρ2). The unified behavior σ over T is
then σ = (σ1 ◦ ρ1) t (σ2 ◦ ρ2). It is convenient, however, to retain some information
of the original tag structures in the composition, since they are often referred to in the
heterogeneous composition, as we will see in the sequel. To do so, we construct the
behavior composition over the fibered product [4] T1 ×ρ1 ρ2 T2 = (T1 ×ρ1 ρ2 T2,≤) of the
original tag structures, extending the order component-wise: (τ1, τ2) ≤ (τ ′1, τ

′
2) ⇐⇒

τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2, where T1 ×ρ1 ρ2 T2 = {(τ1, τ2) ∈ T1 × T2 : ρ1(τ1) = ρ2(τ2)}.

Example 1. We consider a simplified version of the water controlling system proposed
by Benvenuti et al. [14]. It consists of two components: a water tank and a water level
controller, connected in a closed-loop fashion, c.f. Fig. 1. We assume that the water
level x(t) is changed linearly as follows:

x(t)
def
=

{
∆t ∗ (fi − fo) when command is Open
h−∆t ∗ fo when command is Close (1)

where fi and fo denote the constant inlet and outlet flow respectively, h denotes the
height when the tank is full of water and ∆t denotes the time elapsed since t0 at which
the tank reaches the maximum/minimum water level H, i.e.,∆t = t−t0. Let ε1 = ε2 =
−∞, the tank behaviors are naturally defined on tag structure T1 = (R+∪{ε1},≤) and
the controller behaviors on T2 = (N ∪ {ε2},≤) representing continuous and discrete
time respectively. In addition, both components contain behaviors for two system vari-
ables, namely the command variable m and the water level x, thus V1 = V2 = {m,x}.
The command values can be Open (p) or Close (l) and the water level is of positive
real type and between 0 and h, i.e., Dm = {p, l} and Dx = [0,h].

Consider the tank behavior σ1 and the controller behavior σ2 described in Fig. 1(b),
where σ(v, n) is described when the parameter setting is fi = 2, fo = 1,h = 1. These
are different behaviors whose composition is only possible under the presence of mor-
phisms such as ρi : Ti 7→ T1 given by ρ1(τ1) = τ1, ρ2(τ2) = 0.5 ∗ τ2.



6 Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay

Our interest in this system is to prove the compatibility between the contracts of
these components which will be provided later in this paper. Specifically, the tank con-
tract guarantees a linear evolution of the water level x(t) upon the reception of in-time
commands. Meanwhile, the controller contract only assumes the initial emptiness of the
tank and guarantees to send proper commands upon detecting its emptiness or fullness.

3.2 Operational Tag Machines

TMs were first introduced to represent sets of homogeneous behaviors [7] and have been
recently extended to encompass the heterogeneous context [9]. To construct behaviors,
the TM transitions must be able to increment time, i.e., to update the tags of the events.
An operation of tag concatenation on a tag structure is used to accomplish this.

Definition 2 ([7]). An algebraic tag structure is a tag structure T = (T,≤, ·) where · is
a binary operator on T called concatenation, such that:

1. (T, ·) is a monoid with identity element ı̂T
2. ∀τ1, τ ′1, τ2, τ ′2 ∈ T : τ1≤τ ′1 ∧ τ2≤τ ′2 ⇒ τ1 · τ2 ≤ τ ′1 · τ ′2
3. ∃εT ∈ T : ∀τ ∈ T : εT ≤ τ ∧ εT · τ = τ · εT = εT

Tags can be organized as tag vectors τ = (τv1 , . . . , τvn), where n is the number of
variables in V . During transition, tag vectors evolve according to a matrix µ:V ×V 7→ T

called a tag piece [7]. The new tag vector is τµ
def
= τ · µ where τviµ

def
= max(τu ·

µ(u, vi))
u∈V and the maximum is taken with respect to the tag ordering. As the order

is partial, the maximum may not exist, in which case the operation is not defined.
Intuitively, a tag piece µ represents increments in all variable tags over a transition

and provides a way to operationally renew them. To represent also changes in variable
values, µ can be labeled with a partial assignment ν : V → D, which assigns new
values to the variables. A labeled tag piece µ thus specifies events for all variables for
which ν is defined. In the following, we denote by dom(ν) the domain of ν and by
L(V, T ) the universe of all labeled tag pieces, or simply labels, over a variable set V
and tag structure T . By abuse of notation, we assume that every tag piece µ has an
associated assignment ν.

Example 2. The algebraic tag structure (N ∪ {−∞},≤,+), where + is the concatena-
tion operator, can be used to capture logical time by structuring tag pieces µ to represent
an integer increment of 1. For instance, [ 1 3 ] ·

[
0 1
−∞ 1

]
= [ 1 4 ]. The tag of the second

variable is increased by 1 while that of the first variable remains the same since the least
element −∞ = ε is used to cancel the contribution of an entry in the tag vector.

A tag machine M is a finite automaton where transitions are marked by labels.

Definition 3 ([9]). A tag machine is a tuple (V, T , S, s0, F, E) where:

– V is a set of variables,
– T is an algebraic tag structure,
– S is a finite set of states and s0 ∈ S is the initial state,
– F ⊆ S is a set of accepting states,



A Tag Contract Framework for Heterogeneous Systems 7

– E ⊆ S × L(V, T )× S is the transition relation.

A TM run r is a sequence of states and transitions r : s0
µ0→ s1

µ1→ s2 . . . sm−1
µm−1→ sm

such that sm ∈ F and for all i, 1 ≤ i ≤ m, (si−1, µi−1, si) ∈ E. Intuitively, a
TM is used to construct a behavior (as defined in Sect. 3.1) by following its labeled
transitions over a run, and concatenating the tag pieces sequentially to the initial tag
vector τ = (̂ıT , . . . , ı̂T ). A new event is added to the behavior whenever a new value is
assigned by the label function νi. Run r is valid if the concatenation is always defined
along the run and sm ∈ F . The language L(M) of tag machine M is given by the
behaviors of all its valid runs.

3.3 Tag Machine Composition

As TMs are used to represent sets of behaviors, combining TMs amounts to considering
only behaviors which are consistent with every TM. In particular, over every transition,
the TMs involved in the composition must agree on the tag increment and the value of
the shared variables, i.e., their labels are unifiable. While TMs defined on the same tag
structure, or homogeneous TMs, can always be composed, TMs on different tag struc-
tures, or heterogeneous TMs, can be composed if there exists a pair of algebraic tag
morphisms mapping the tag structures T1, T2 to a common tag structure T and preserv-
ing the concatenation operator. The homogeneous composition can thus be regarded
as a special case of the heterogeneous one when tag morphisms are identity functions
mapping a tag to itself.

Definition 4 ([9]). A tag morphism ρ :T 7→ T ′ is algebraic if ρ(̂ıT ) = ı̂T ′ and ρ(εT ) =
εT ′ and ρ(τ1 · τ2) = ρ(τ1) · ρ(τ2) for all τ1, τ2 ∈ T .

The newly-composed TM will be defined on a unified tag structure and a unified label
set. Referring to the previous notation, two labels µ1 and µ2 are unifiable under mor-
phisms ρ1 and ρ2, written µ1 ./ρ1 ρ2 µ2, whenever a) ρ1(µ1(w, v)) = ρ2(µ2(w, v)),
and b) ν1(v) = ν2(v), for all pairs (w, v) ∈ W × W where W = V1 ∩ V2. Their
unification µ = µ1 tρ1 ρ2 µ2 is defined over T1 ×ρ1 ρ2T2 and is any of the members of the
unification set of pieces given by

µ(w, v) =



(µ1(w, v), µ2(w, v)) if (w, v) ∈W ×W
(µ1(w, v), τ2) if w ∈ V1, v ∈ V1 \ V2
(µ1(w, v), τ2) if w ∈ V1 \ V2, v ∈ V1
(τ1, µ2(w, v)) if w ∈ V2 \ V1, v ∈ V2
(τ1, µ2(w, v)) if w ∈ V2, v ∈ V2 \ V1
(εT1 , εT2) otherwise

where τ2 ∈ T2 is such that ρ2(τ2) = ρ1(µ1(w, v)), and similarly τ1 ∈ T1 is such that
ρ1(τ1) = ρ2(µ2(w, v)). The unified labeling function agrees with individual functions
on the shared variables:

ν(v) =

{
ν1(v) if v ∈ V1
ν2(v) if v ∈ V2

The composition M = M1 ‖ρ1 ρ2 M2 of heterogeneous TMs can then be defined
over the unification of heterogeneous tag structures and labels.



8 Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay

Definition 5 ([9]). The composition of M1 and M2 under algebraic tag morphisms ρ1
and ρ2 is the tag machine M =M1 ‖ρ1 ρ2 M2 = (V, T1 ×ρ1 ρ2 T2, S, s0, F, E) such that

– V = V1 ∪ V2,
– S = S1 × S2, s0 = (s01, s02), F = F1 × F2,
– E = {((s1, s2), µ1 tρ1 ρ2 µ2, (s

′
1, s
′
2)) : µ1 ./ρ1 ρ2 µ2 ∧ (si, µi, s

′
i) ∈ Ei, i = 1, 2}

where µ1 tρ1 ρ2 µ2 extends to all the members of the unification set.

As homogeneous composition is a special case of the heterogeneous one with identity
morphisms, we shall omit the morphisms in the homogeneous notations in the sequel.

4 A Contract Framework for Heterogeneous Systems

Our goal is to use TMs as an operational means for modeling heterogeneous systems in
contract-based design flows. To this end, we equip TMs with essential binary operators
such as composition to combine two TMs [9] and refinement, quotient and conjunction
to relate their sets of behaviors (Sect. 4.1). Moreover, we limit TMs to their determin-
istic form where labeled tag pieces annotated on transitions going out of a state are
all different. On top of these TM operators, we propose a heterogeneous contract the-
ory for TM-based specifications with universal contract operators such as composition,
refinement and compatibility (Sect. 4.2).

4.1 Tag Machine Operators

Two TMs can be related in a refinement relation when the behavior set of one machine
is included in that of the other under the morphisms. In the operational point of view,
the refined TM can always take a transition unifiable with that taken by the refining TM.
LetMi = (Vi, Ti, Si, s0i, Fi, Ei) be TMs and ρi : Ti 7→ T be algebraic tag morphisms,
where i ∈ {1, 2}. The TM refinement is defined as follows.

Definition 6. M1 refines M2, written M1 �ρ1 ρ2 M2, if there exists a binary relation
R ⊆ S1 × S2 such that (s01, s02) ∈ R and for all (s1, s2) ∈ R and (s1, µ1, s

′
1) ∈ E1 :

∃(s2, µ2, s
′
2) ∈ E2 : µ1 ./ρ1 ρ2 µ2 ∧ (s′1, s

′
2) ∈ R ∧ (s′1 ∈ F1 ⇒ s′2 ∈ F2)

The following theorem shows that our TM theory supports (homogenous) independent
implementability: refinement is preserved when composing components.

Theorem 1. Let M ′i be TMs defined on Ti and Vi :

(M1 �M ′1) ∧ (M2 �M ′2)⇒ (M1 ‖ρ1 ρ2 M2) � (M ′1 ‖ρ1 ρ2 M
′
2).

We remark that Theorem 1 only holds for homogenous TM refinement, and note that
heterogeneous refinement in general is not preserved even by homogeneous composi-
tion. The reason is that the morphisms involved in the former are generally many-to-one
functions and can map two different tags into the same tag.

Example 3. We consider an example where:



A Tag Contract Framework for Heterogeneous Systems 9

– T1 = {τ1}, T2 = {τ2, τ ′2}
– V1 = V2 = {z}, Dz = {>}
– ρ1(τ1) = ρ2(τ2) = ρ2(τ

′
2) = τ

LetMi,M
′
i be defined on Ti and Vi where i ∈ {1, 2}. For the sake of simplicity, assume

all TMs have a single state which is both initial and accepting state. In addition, there is
only one self-loop at this state annotated with µi for machineMi and µ′i for machineM ′i
such that µ1 = µ′1 = [τ1], µ2 = [τ2], µ

′
2 = [τ ′2], ν1(z) = ν′1(z) = ν2(z) = ν′2(z) = >.

It is easy to see that M1 �ρ1 ρ2 M2 since µ1 ./ρ1 ρ2 µ2 and M ′1 �ρ1 ρ2 M ′2 since
µ′1 ./ρ1 ρ2 µ

′
2. However, (M1 ‖M ′1) �ρ1 ρ2 (M2 ‖M ′2) since the right composition is

empty while the left is not.
While the refinement operator enables us to compare two TMs in terms of sets of be-
haviors, the composition and quotient operators allow us to synthesize specifications.
The TM composition computes the most general specification that retains all unifiable
behaviors of two TMs. The dual operator to TM composition is TM quotient which
computes the maximal specification as follows.
Definition 7. The quotient M1 /ρ1 ρ2M2 is a machine M = (V, T12, S, s0, F, E), where

– V = V1 ∪ V2, T12
def
= T1 ×ρ1 ρ2 T2, s0 = (s01, s02),

– S = (S1 × S2) ∪ {u}, where u is a new universal state,
– F = ((S1×S2) \ ((S1 \F1)×F2))∪{u} = (F1×F2)∪ (S1× (S2 \F2))∪{u},
E = {((s1, s2), µ1 tρ1 ρ2µ2, (s

′
1, s
′
2)) |

(µ1 ./ρ1 ρ2 µ2) ∧ ((s1, µ1, s
′
1) ∈ E1) ∧ ((s2, µ2, s

′
2) ∈ E2)}

∪{((s1, s2), µ1 tρ1 ρ2µ2, u) |
(∀s′2 ∈ S2 : (s2, µ2, s

′
2) /∈ E2) ∧ (∃µ1 ∈ L(V1, T1) : µ1 ./ρ1 ρ2 µ2)}

∪{(u, µ, u) |µ ∈ L(V, T12)}.
We give an example of a quotient construction in Fig. 4. The dual relation between
composition and quotient is presented in the next theorem.
Theorem 2. The quotient M satisfies refinement (M2 ‖id2 proj2

M) �proj′1 id1
M1 where:

∀i ∈ {1, 2},∀τi ∈ Ti : idi(τi) = τi

∀i ∈ {1, 2},∀(τ1, τ2) ∈ T12 : proji((τ1, τ2)) = τi

∀(τ2, τ12) ∈ T2 ×id2 proj2
T12 : proj′1((τ2, τ12)) = proj1(τ12)

∀(τ1, τ12) ∈ T1 ×id1 proj1
T12 : proj′2((τ1, τ12)) = proj2(τ12)

Moreover, for M ′ defined on T12 and V : (M2 ‖id2 proj2
M ′) �proj′1 id1

M1 ⇒M ′ �M .

Thus, the quotient M is the greatest, in the (homogeneous) refinement preorder, of
all TMs M ′ defined in Theorem 2. This universal property is generally expected of
quotients [10], and it alone implies that the quotient is uniquely defined up to two-sided
homogeneous refinement [19]. As an example, Fig. 3(c) shows a homogeneous quotient
and Fig. 4(b) shows a heterogeneous quotient using the morphisms of Example 1.

Finally, the operator of heterogeneous conjunction, denoted ρ1fρ2 , is defined as the
greatest lower bound of the refinement order. Conjunction, thus, amounts to computing
the intersection of the behavior sets, in order to find the largest common refinement.
Thus, for tag machines, conjunction can be computed similarly to composition. The two
operators, however, serve very different purposes, and must not therefore be confused.



10 Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay

4.2 Tag Contracts

We use the term tag contract to mean that in our framework each contract is coupled
with an algebraic tag structure, thereby allowing the contract assumption and guarantee
to be represented as TMs.

Definition 8. A tag contract is a homogeneous pair of TMs (MA,MG) where MA -
the assumption and MG - the guarantee are TMs defined over the same tag structure T
and variable set V .

Tag contract C can also be associated with a profile π = (V i, V o) which is a partition
of its variables into inputs and outputs, i.e. V = V i ∪ V o and V i ∩ V o = ∅. When
composing contracts Ci with profiles πi, we enforce the property that each output port
should be controlled by at most one contract, i.e., V o

1 ∩V o
2 = ∅. The composite contract

profile is then π = ((V i
1 ∪ V i

2 ) \ (V o
1 ∪ V o

2 ), V
o
1 ∪ V o

2 ). As we will see in the sequel,
the notion of profile is closely connected to that of contract compatibility. Thus we will
only mention it when elaborating contract compatibility for the sake of readability, .

Example 4. We consider the simplified water controlling system in Example 1 and
present a contract for each component. To simplify the behavioral construction, we
rely on a special clock inc added to the variable set of both components. Tag pieces µ
are then structured to represent an increment of δ by always assigning δ to µ(inc, inc)
and assigning δ to all entries µ(inc, v) where v ∈ dom(µ), and the least element −∞
to other entries. The tags of x and m are thus renewed to the tag of clock inc over every
transition. To keep the figures readable we represent tag pieces as [δ]. In addition, the
clock value is always equal to its tag and thus is omitted from the labeling function.

(a) MAt (b) MGt

Fig. 2. The tank contract

Figure 2 depicts the tank contract Ct = (MAt
,MGt) which guarantees a linear

evolution of the water level x(t) (Fig. 2(b)) given the assumption satisfaction (Fig. 2(a)).
That is, the water level will evolve linearly as specified in Example 1, provided that the
controlling command is received at the right time (i.e., open when the tank is empty
and close when it is full). For the sake of simplicity, the events described by the tank
contract are timestamped periodically every 0.5 time unit.

The controller contract is shown Fig. 3, where it assumes the tank to be empty
initially (Fig. 3(a)), i.e., x = 0 and places no requirement on its output which is the
command signal. As long as such assumption is satisfied, the controller guarantees



A Tag Contract Framework for Heterogeneous Systems 11

(a) MAc (b) MGc (c) MGc/MAc

Fig. 3. The controller contract

(Fig. 3(b)) to send a proper command upon knowing of the tank emptiness or full-
ness. Intuitively, the controller behaviors ensure timely control over the water evolution
while the tank behaviors accept untimely control and allow water spillages or shortages.
While the tank system uses physical time to stamp its behaviors, the controller system
instead timestamps its events logically, which can be described by the integer tag set
N. In both figures, the initial states are marked with short arrows arriving at them and
all states are accepting states. For the sake of expressiveness, some of the labeled tag
pieces can be represented symbolically. For example, to capture any event of variable x
happening at a specific time point within an interval, we label with the tag piece expres-
sions such as x ∈ (0, 1), meaning that in such an event x can take any value between 0
and 1. Similarly, m ∈ {p, l,−} means the command value can either be open, close or
undefined. In addition, we use µt0 to denote the universe set of labels L(V1, T1) and µc0
the set of labels L(V2, T2).

Example 5. The tank and controller contracts in Example 4 are naturally associated
respectively with profiles π1 = ({x}, {cmd}) and π2 = ({cmd}, {x}). The profile of
their composition is then π1 = (∅, {x, cmd}).

The tag contract semantics is subsequently defined through the notions of contract en-
vironments and implementations. Let MI and ME be TMs defined over tag structure
T and variable set V in Def. 8. We call ME an environment of contract C when ME
refines MA. Let [[C]]e be the set of all such environments, we call MI an implementa-
tion of contract C, if it holds that ∀ME ∈ [[C]]e : MI ‖ME � MG ‖ME . The set of
implementations is similarly denoted by [[C]]p. Hence, the implementation checking is
done based on instantiating all possible environments of a contract. When the contract
is normalized, such a check can be done independently of the assumption instantiation.

Definition 9. A tag contract C = (MA,MG) is in normalized form if and only if:

∀MI :MI ∈ [[C]]p ⇔MI �MG .

The following theorem states the preservation of tag contract semantics under the nor-
malization operation: whenever a tag contract is in a normalized form, checking contract
satisfaction is reduced to finding a refinement relation between two TMs.

Theorem 3. Tag contract (MA,MG/MA) is in normalized form and has the same se-
mantics as C = (MA,MG) does.



12 Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay

Example 6. We use the tag contracts in Example 4 and perform the quotient between
the guarantees and assumptions in order to normalize them. Since the tank assumption
is the universe of all possible behaviors, i.e., Σ(V1, T1), normalizing the tank guarantee
adds no more behaviors to the guarantee, i.e., MGt/MAt

= MGt . Figure 3(c), on the
other hand, shows the normalized controller guarantee having more behaviors than the
un-normalized one. It is easy to see that the behavior σ1 in Example 1 is included in
MGt and σ2 is in MGc/MAc

.

As we will see later, working with normalized tag contracts can simplify the formaliza-
tion of contract operators (e.g. contract refinement and dominance) as well as provide
a unique representation for equivalent contracts, thus we will often assume contracts to
be in normalized form hereafter.

Tag Contract Refinement. The refinement relation between two tag contracts is sub-
ject to the tag morphisms and is determined by that between their sets of implementa-
tions and environments as follows. Let Ci = (MAi

,MGi) be tag contracts defined on Ti
and Vi and ρi : Ti 7→ T be algebraic tag morphisms where i ∈ {1, 2}

Definition 10. Contract C1 refines contract C2 under morphisms ρ1 and ρ2, written
C1 �ρ1 ρ2 C2, if the following two conditions hold:

1. ∀ME2 ∈ [[C2]]e : ∃ME1 ∈ [[C1]]e :ME2 �ρ2 ρ1 ME1
2. ∀MI1 ∈ [[C1]]p : ∃MI2 ∈ [[C2]]p :MI1 �ρ1 ρ2 MI2

The following theorem shows that for two normalized tag contracts, checking refine-
ment can be done at the syntactic level, i.e., by finding a TM refinement relation be-
tween their assumptions and guarantees.

Theorem 4. C1 �ρ1 ρ2 C2 ⇔ (MA2
�ρ2 ρ1 MA1

) ∧ (MG1 �ρ1 ρ2 MG2)

Tag Contract Composition and Dominance. In composing two heterogeneous tag
contracts, it is essential to guarantee that composing implementations of each contract
results in a new implementation of the composite contract. In addition, every environ-
ment of the composite contract should be able to work with any implementation of an
individual contract in a way that their composition does not violate the other contract as-
sumption. In fact, there exists a class of contracts, including the composite contract, able
to provide such desirable consequences. We refer to them as dominating contracts [10].

Definition 11. A contract C = (MA,MG) is said to dominate the tag contract pair
(C1, C2) under morphisms ρ1 and ρ2 if :

1. C is defined over tag structure T12
def
= T1 ×ρ1 ρ2 T2 and variable set V = V1 ∪ V2

2. ∀MI1 ∈ [[C1]]p,∀MI2 ∈ [[C2]]p :MI1 ‖ρ1 ρ2 MI2 ∈ [[C]]p

3. ∀ME ∈ [[C]]e :

{
∀MI1 ∈ [[C1]]p : (MI1 ‖id1 proj1

ME) �proj′2 id2
MA2 ∧

∀MI2 ∈ [[C2]]p : (MI2 ‖id2 proj2
ME) �proj′1 id1

MA1

where the morphisms are defined as in Theorem 2.



A Tag Contract Framework for Heterogeneous Systems 13

The composition of heterogeneous tag contracts can then be defined as follows.

Definition 12. The composition of tag contracts C1 and C2, written C1 ‖ρ1 ρ2 C2, is
another tag contract ((MA1

/ρ1 ρ2MG2)f(MA2
/ρ2 ρ1MG1)swap,MG1 ‖ρ1 ρ2 MG2) where

swap : T2 ×ρ2 ρ1 T1 7→ T1 ×ρ1 ρ2 T2 is such that swap((τ2, τ1)) = ((τ1, τ2)) and Mswap is
M where all pieces µ are replaced with µ ◦ swap.

Let C′i be normalized tag contracts defined on Ti and Vi such that C′i � Ci where
i ∈ {1, 2}. The following theorem states important results: the composition of two
normalized contracts dominates the individual contracts and is the least, in the homo-
geneous refinement order, of all contracts dominating them under the same morphisms.

Theorem 5. Let C = C1 ‖ρ1 ρ2 C2, then:

1. C dominates the contract pair (C1, C2) under morphisms ρ1 and ρ2.
2. If C′ dominates (C1, C2) under morphisms ρ1 and ρ2 then C � C′.

The next theorem is another of independent implementability: homogeneous tag con-
tract refinement is preserved under the heterogeneous contract composition.

Theorem 6. Let C = C1 ‖ρ1 ρ2 C2, then:

1. If C dominates (C1, C2) under morphisms ρ1 and ρ2 then it also dominates (C′1, C′2)
under the same morphisms.

2. (C′1 ‖ρ1 ρ2 C
′
2) � (C1 ‖ρ1 ρ2 C2).

Tag Contract Compatibility. Of particular interest is the notion of compatibility be-
tween contracts. This notion depends critically on the contract profiles. Intuitively, a
contract can only constrain its inputs provided by its environment and provide certain
guarantees on its outputs. This is visualized by enforcing the contract assumption to
be output-enabled and the contract guarantee to be input-enabled. Certain models are
not input-enabled, e.g. interface automata, because they use input refusal to represent
assumptions implicitly. We instead can afford this desirable property as assumptions
are represented separately in our framework. A tag machine is said to be input(output)-
enabled when it accepts all possible combinations of the input(output) values.

When composing different contracts, it is often desirable to ensure that there ex-
ists some environment which can discharge all assumptions made by the composition.
The contract compatibility is therefore essential in caring for such a need. Two tag con-
tracts C1 and C2 are said to be compatible if there exists a contract Ce defined over the
composite tag structure T12 = T1 ×ρ1 ρ2 T2 and variable set V = V1 ∪ V2 with profile
πe = (V o

1 ∪ V o
2 , (V

i
1 ∪ V i

2 ) \ (V o
1 ∪ V o

2 )) such that:

– MAe
≡Mu, c.f. Fig. 4(a), meaning that Ce makes no assumptions on its inputs and

accepts all possible behaviors defined on L(V, T12). In addition, the composition of
C1 ‖ρ1 ρ2 C2 = (MA,MG) = ((MA1 /ρ1 ρ2MG2)f (MA2 /ρ2 ρ1MG1)swap,MG1 ‖ρ1 ρ2
MG2) and Ce should also weaken the assumption made on its environment to the
greatest extent. That is (MAe

/MG)f (MA/MGe) ≡Mu as well.



14 Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay

– MGe is input-enabled so as to make contract Ce consistent.

In looking for such a contract, it is important to notice that MAe
≡ Mu, therefore the

condition of (MAe/MG)f (MA/MGe) ≡Mu holds when MGe is a refinement of MA.
Therefore, the compatibility check is reduced to finding a refinement of MA such that
it is input-enabled.

(a) Mu (b) MAt /ρ1 ρ2MGc (c) (MAc /ρ2 ρ1MGt)swap

Fig. 4. Quotient components of the composite assumption of C1 ‖ρ1 ρ2 C2

Example 7. We consider again the water tank controlling problem in Example 4 and
the two contracts on the tank and the controller. The composite assumption of these
two contracts is the conjunction of the two quotients shown in Fig. 4(b) and 4(c).
Since it is easy to verify that both quotients are equivalent to Mu, therefore an input-
enabled refinement of the composite assumption exists and we can take for example
(MAt

/ρ1 ρ2MGc) or (MAc
/ρ2 ρ1MGt)swap. Hence the two contracts are compatible.

5 Conclusions

We have presented a modeling methodology based on contracts for designing hetero-
geneous distributed systems. Heterogeneous systems are usually characterized by their
heterogeneity of components which can be of very different nature, e.g. real-time com-
ponent or logical control component. Without a heterogeneous mechanism, modeling
the interaction between components may not be feasible, thereby making it difficult to
do verification and analysis based on the known properties of the components. This
problem is further complicated for distributed systems where components are devel-
oped concurrently by different design teams and are synchronized by relying on their
associated contracts. To deal with such problem, we adopt the TM formalism [7,9] for
specifying components in terms of operational behaviors. We subsequently propose a
contract methodology for synchronizing heterogeneous components based on a set of
useful operations on TMs such as composition, quotient and refinement. Our next step
is to demonstrate our methodology through a prototype tool and validate it through case
studies. The development of such a tool is therefore included in our future work.



A Tag Contract Framework for Heterogeneous Systems 15

References

1. Meyer, B.: Applying “Design by contract”. Computer 25(10) (1992) 40–51
2. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,

Xiong, Y.: Taming heterogeneity - the ptolemy approach. In: Proceedings of the IEEE.
(2003) 127–144

3. Lee, E., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.
IEEE Trans. CAD of Integ. Circ. and Systems 17(12) (1998) 1217–1229

4. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L.: Com-
posing heterogeneous reactive systems. ACM Trans. Embed. Comput. Syst. 7(4) (2008)
43:1–43:36

5. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Multiple
viewpoint contract-based specification and design. In: Formal Methods for Components and
Objects, 6th International Symposium, Amsterdam. LNCS. Springer (2008) 200–225

6. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-based com-
ponent specifications for virtual integration testing and architecture design. In: Proceedings
of the conference on Design, Automation and Test in Europe, Grenoble, France (2011)

7. Benveniste, A., Caillaud, B., Carloni, L.P., Sangiovanni-Vincentelli, A.: Tag machines. In:
Proceedings of the International Conference On Embedded Software, ACM (2005) 255–263

8. Dey, S., Sarkar, D., Basu, A.: A tag machine based performance evaluation method for
job-shop schedules. IEEE Trans. CAD of Integ. Circ. and Systems 29(7) (2010) 1028–1041

9. Le, T.T.H., Passerone, R., Fahrenberg, U., Legay, A.: Tag machines for modeling hetero-
geneous systems. In: Proceedings of the 13th International Conference on Application of
Concurrency to System Design. ACSD13, Barcelona, Spain (July 8–10, 2013)

10. Bauer, S.S., David, A., Hennicker, R., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.:
Moving from specifications to contracts in component-based design. In: FASE. Volume
7212., Springer (2012) 43–58

11. Dijkstra, E.W.: Guarded commands, non-determinancy and a calculus for the derivation of
programs. In: Language Hierarchies and Interfaces, Springer (1975) 111–124

12. Lamport, L.: win and sin: Predicate transformers for concurrency. ACM Trans. Program.
Lang. Syst. 12(3) (1990) 396–428

13. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26 (2001)
109–120

14. Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A contract-
based formalism for the specification of heterogeneous systems. In: Proceedings of the Fo-
rum on Specification, Verification and Design Languages, Stuttgart (2008) 142–147

15. de Roever, W.P.: The quest for compositionality—a survey of assertion-based proof systems
for concurrent programs, part i: Concurrency based on shared variables. In: Proc. of the IFIP
Working Conference “The role of abstract models in computer science”. (1985)

16. Davare, A., Densmore, D., Guo, L., Passerone, R., Sangiovanni-Vincentelli, A.L., Simalatsar,
A., Zhu, Q.: METROII: A design environment for cyber-physical systems. ACM Transactions
on Embedded Computing Systems 12(1s) (March 2013) 49:1–49:31

17. Bliudze, S., Sifakis, J.: The algebra of connectors: Structuring interaction in BIP. IEEE
Transactions on Computers 57(10) (2008) 1315–1330

18. Dey, S., Sarkar, D., Basu, A.: A Kleene algebra of tagged system actors. Embedded Systems
Letters, IEEE 3(1) (2011) 28 –31

19. Fahrenberg, U., Legay, A., Wasowski, A.: Make a difference! (semantically). In: Proceedings
of the 14th International Conference on Model Driven Engineering Languages and Systems,
Wellington, New Zealand, Springer (2011) 490–500


	A Tag Contract Framework for Heterogeneous Systems

