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Abstract—In distributed development of modern systems, con-
tracts play a vital role in ensuring interoperability of components
and adherence to specifications. It is therefore often desirable to
verify the satisfaction of an overall property represented as a con-
tract, given the satisfaction of smaller properties also represented
as contracts. When the verification result is negative, designers
must face the issue of refining the sub-properties and components.
This is an instance of the classical synthesis problems: “can we
construct a model that satisfies some given specification?”. In this
work, we propose a strategy enabling designers to synthesize or
refine a set of contracts so that their composition satisfies a given
contract. We develop a generic algebraic method, and show how
it can be applied in different contract models to support top-down
component-based development of distributed systems.

I. INTRODUCTION

Modern computing systems are increasingly being built by
composing components which are developed concurrently by
different design teams. In such a paradigm, the distinction
between what is constrained on environments, and what must
be guaranteed by a system given the constraint satisfaction,
reflects the different roles and responsibilities in the system
design procedure. Component-based and contract-based design
have been shown to be a rigorous and effective approach for
designing this kind of concurrent systems [1], [2], [3], [4].
Different components of the same system can be developed
by different teams in an independent and concurrent manner
provided that their associated contracts can synchronize and
satisfy predefined properties. Formally, a contract is a pair of
assumptions and guarantees, which intuitively are properties
that must be satisfied by all inputs and outputs of a design,
respectively. Such separation between assumptions and guaran-
tees allows an efficient reuse of already-designed components,
thereby supporting the distributed development of complex
systems effectively.

Components can be formed by a bottom-up composition
of simpler predefined components. They can alternatively be
formed by a top-down decomposition into sub-components
defined by a set of sub-contracts, as long as the composition
of the sub-contracts satisfies or refines the contract of the
system as a whole. This approach is most appropriate when
a design needs to be distributed among several design teams
or contractors, since it clearly establishes the responsibilities
and decomposes the issue of correctness into smaller local ver-
ification subproblems which can be addressed before system
integration [5]. The main hurdle with this method is however
how to budget the system specification across the different
components, by strengthening and weakening their respective

assumptions and guarantees, while at the same time achieving
overall correctness with respect to the system contract. When
this condition is not satisfied, i.e., the sub-contract composition
does not refine the overall contract, designers must refine the
sub-contract specifications until the system is proved correct.
This is an instance of the classical synthesis problems: “Can we
construct a model that satisfies some given specification?”. In
this paper, we deal with the problem of checking if a contract
C can be decomposed into a set of contracts {C1, . . . , Cn} and
that of synthesizing the contract set in order to make their
composition refine C when necessary. In particular, we study
decomposing conditions under which the contract decomposi-
tion can be verified, and thereby propose a generic synthesis
strategy for fixing wrong decompositions. Our conditions and
synthesis strategy can be applied to generic contract frame-
works equipped with specification operators (e.g., composition,
refinement) including popular frameworks like trace-based or
modal contract frameworks.

The rest of the paper is organized as follows. In Sect. III,
we recall basic notions of contracts and how a generic contract
can be derived from a specification theory equipped with
composition, quotient, refinement, and conjunction. Based on
the decomposition into a set of two contracts [2], we propose
decomposing conditions for a set of n contracts in Sect. IV and
a general strategy for synthesizing those contracts in order to
make their composition satisfy a predefined contract in Sect. V.
We then demonstrate our strategy for synthesizing trace-based
contracts in Sect. VI and modal contracts in Sect. VII. Finally
we conclude in Sect. VIII.

II. RELATED WORK

Contracts were first introduced in Bertrand Meyer’s design-
by-contract method [3], based on ideas by Dijkstra [6], Lam-
port [7], and others, where systems are viewed as abstract
boxes achieving their common goal by verifying specified
contracts. Such technique guarantees that methods of a class
provide some post-conditions at their termination, as long
as the pre-conditions under which they operate are satisfied.
De Alfaro and Henzinger subsequently introduced interface
automata [4] for documenting components, thereby enabling
them to be reused effectively. This formalism establishes a
more general notion of contract, where pre-conditions and
post-conditions, which originally appeared in the form of
predicates, are generalized to behavioral interfaces. The central
issues when introducing the formalism of interface automata
are compatibility, composition and refinement. Separating as-
sumptions from guarantees, which was somewhat implicit in
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interface automata, has then been made explicit in the contract
framework of the SPEEDS HRC model [8], [9]. A separation
between specifying assumptions on expected behaviors and
guarantees to achieve them at run time has recently been
applied to the handling of synchronization requirements to
improve the component-based development of real-time high-
integrity systems [10].

The relationship between specifications of component be-
haviors and contracts is further studied by Bauer et al. [2]
where a contract framework can be built on top of any
specification theory equipped with a composition operator and
a refinement relation which satisfy certain properties. Trace-
based [8] and modal contract [11] theories are also demon-
strated to be instances of such a framework. This formalization
enables verifying if a contract can be decomposed into two
other contracts by checking if that contract can dominate the
others. In this work, we take advantage of such a dominating
notion and generalize it to a set of n contracts and construct
generic decomposing conditions for the contract set.

A number of methods have been reported in the liter-
ature for checking contract refinement. Quinton et al. have
developed a hierarchical approach that deals with the prob-
lem of checking contract refinement by decomposing a large
verification task into smaller problems that involve a limited
number of assumptions and guarantees, and then relying on
compositional methods and circular reasoning to deduce the
global result [12]. The tool is part of the BIP framework
and uses a model based on modal transition systems. Later,
Raclet et al. have developed a theory of contracts based on
modal specifications implemented in the InterSMV toolset,
dedicated to checking dominance and refinement between
contracts [11]. Contract-based specification methods were ex-
tended to timed models by David et al. [13], using Timed
I/O Automata and constructs for refinement and consistency
checking. The theory is implemented on top of the Uppaal-
tiga engine for timed games. Benvenuti et al. extend refinement
checking to hybrid automata, to account for continuous time
components, supported by the Ariadne tool [14]. To improve
scalability, Iannapollo et al. propose a library-based approach
to refinement checking of contracts expressed in LTL [15]. Our
approach is complementary. In fact, while these methods may
be effective in determining when refinement holds, they do
not provide guidance as to how the decomposition needs to be
changed when this is not the case. The verification problem of
decomposing a contract into a set of contracts was also studied
by Cimatti et al. [16] and was addressed by property-based
proof systems with SMT-based model checking techniques,
and supported by the OCRA tool. The contract specifications
allowed in such systems, however, are trace-based only. Our
decomposing conditions can instead deal with generic contract
specifications including both trace-based and modal ones.

Assume-Guarantee Reasoning (AGR) has also been applied
extensively in declarative compositional reasoning [17] to help
prove properties by decomposing them into simpler and more
manageable steps. The classical AGR uses assumptions as
hypotheses to establish whether a generic property holds. Nat-
urally, this technique can be used in contract models as well,
with possibly non-trivial transformation and formalization. In
case of unsuccessful termination, AGR can also provide a
counterexample showing how the property can be violated.

Such a counterexample can then be used to synthesize the
model so as to satisfy a given property [18]. However, this
synthesis strategy is only applicable for systems with trace-
based semantics. Viewing the same assume-guarantee synthe-
sis problem as a game, Chatterjee et al. solve it by finding
a winning strategy on the global system state graph, but the
method does not guarantee the inclusion of all traces satisfying
the specification [19]. The synthesized model was shown
to be a subset of that synthesized by counterexample-based
synthesis [18]. Unlike these concrete notions of synthesis, ours
is more generic since it is not tied to the system semantics.
Moreover, while the application of our synthesis strategy to
generic contract-based systems is direct and straightforward,
the generalization of the previous approaches has not been
studied and would require a conversion process from normal-
ized contracts to un-normalized ones.

III. BACKGROUND: SPECIFICATION AND CONTRACT
THEORIES

A. Specification Theory

For our formalization we follow the notation introduced by
Bauer et al. [2] which is built on top of a specification theory
equipped with a refinement (≤) and a composition (‖) operator.
Note that these operators are meta-theoretical or uninterpreted
operators, meaning that we do not need to know their exact
semantics as long as they satisfy certain properties [20]. In
particular, monotonicity:

(S′ ≤ S) ∧ (T ′ ≤ T )⇒ (S′ ‖ T ′) ≤ (S ‖ T ).

In addition, composition is commutative and associative while
refinement is reflexive and transitive. Two other operators that
can be defined on top of composition and refinement are
quotient (/) and conjunction (f).

While the refinement operator can relate concrete and
abstract specifications, the composition and quotient, which
are dual to each other, can combine specifications to create
new ones. Intuitively, the quotient between specifications T
and S is a specification R such that its composition with S
can concretize or refine T , i.e.

S ‖ R ≤ T.

As there may exist many such specifications, the quotient is
defined to be the maximal specification in the refinement order
of all such R:

((S ‖ (T/S)) ≤ T ) ∧ ((S ‖ R) ≤ T ⇒ R ≤ T/S)

Likewise, the conjunction operator computes the greatest lower
bound in the refinement order of the original specification:

((S f T ) ≤ S)∧
((S f T ) ≤ T )∧

(R ≤ S ∧R ≤ T ⇒ R ≤ (S f T ))

B. Contract Theory

Assuming the existence of such underlying specification
theory, a contract of a component can be defined formally as
a pair of specifications, i.e., assumptions and guarantees:

C = (A,G).
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The specification A expresses what is constrained on the envi-
ronments of the component and the specification G describes
what the component can guarantee given the assumption
satisfaction. An implementation of the component satisfies its
contract whenever it satisfies the contract guarantee, subject to
the contract assumption. The contract semantics is therefore
defined through the notions of such environments and imple-
mentations.

An environment E satisfies contract C whenever E ≤ A.
Let [[C]]e be the set of environments of C, an implementation
I satisfies contract C if

∀E ∈ [[C]]e : I ‖ E ≤ G ‖ E

holds. We denote the set of all possible implementation simi-
larly by [[C]]p. Two contracts C1 and C2 have identical semantics
and are equivalent if they possess the same set of environments
and implementations, i.e.

([[C1]]e = [[C2]]e) ∧ ([[C1]]p = [[C2]]p).

The implementation semantics of a contract, namely its
sets of implementations [[C]]p in general depends on both
the assumption A and the guarantee G. Without loss of
generality [2], we assume that for every contract C = (A,G),
there exists contract Cn = (A,Gn) which is equivalent to C
and where the implementation semantics is independent of the
assumption presence. This happens when there is a way to
incorporate the original assumption and guarantee into the new
guarantee Gn. We call Cn the normalized form of C and derive
Gn using the normalization operator � which can be defined
on top of the basic operators ≤, ‖, /, f:

Gn = G �A.

Definition 1. A contract C = (A,G) is in normalized form if
and only if:

I ∈ [[C]]p ⇔ I ≤ G.

A refinement relation between contracts can then be es-
tablished based on that between their environment sets and
implementation sets.

Definition 2. Contract C is said to refine C′, written C ≺ C′,
when it can accept more environments and fewer implemen-
tations than contract C′:

[[C′]]e ⊆ [[C]]e ∧ [[C]]p ⊆ [[C′]]p.

IV. CONTRACT COMPOSITION AND DECOMPOSITION

Composing contracts is formalized so that the composi-
tionality between their implementations can be respected, i.e.,
composing such implementations results in an implementation
of the composite contract. In addition, every environment
of the composite contract should be able to work with any
implementation of an individual contract in a way that their
composition does not violate the other contract assumption. In
fact, there exists a class of contracts, including the composite
contract, able to provide such desirable consequences. These
are referred to as dominating contracts [2] and the composite
contract is the least in the refinement order of all dominating
contracts, as we shall see in Section IV-A.

This notion of dominance thus enables the compositional-
ity of the implementation relation, an important principle in
reusing components and decomposing systems into existing
components. Before studying contract decomposition (Sec-
tion IV-B), we first generalize the notion of dominance and
composition from two contracts [2] to a set of n contracts.

A. Contract Composition

Definition 3. A contract C = (A,G) dominates the contract
set {C1, . . . , Cn} if:

i) ∀I1 ∈ [[C1]]p, . . . ,∀In ∈ [[Cn]]p :
f

1≤i≤n
Ii ∈ [[C]]p,

ii) ∀E ∈ [[C]]e,∀I1 ∈ [[C1]]p, . . . ,∀In ∈ [[Cn]]p,∀1 ≤ i ≤ n :

E ‖
n

1≤j 6=i≤n

Ij ≤ Ai.

The following theorem reduces checking the two conditions
in Definition 3 to checking simpler formulas.

Theorem 1. Condition (i) is equivalent to
n

1≤i≤n

Gni ∈ [[C]]p.

Condition (ii) is equivalent to

∀1 ≤ i ≤ n : A ‖
n

1≤j 6=i≤n

Gnj ≤ Ai.

Proof:

i) ⇒: Consider Ii = Gni .
⇐: Ii ≤ Gni implies

∀E ∈ [[C]]e : (E ‖
n

1≤i≤n

Ii) ≤ (E ‖
n

1≤i≤n

Gni )

which in turn implies
n

1≤i≤n

Ii ∈ [[C]]p.

ii) ⇒: Consider E = A, Ij = Gnj .
⇐: (E ‖

f

1≤j 6=i≤n
Ij) ≤ (A ‖

f

1≤j 6=i≤n
Gnj ) ≤ Ai.

The composition of a set of contracts can then be defined
as follows.

Definition 4. The composition of a set of contracts
{C1, . . . , Cn}, written

⊙
1≤i≤n

Ci, is the contract

C = (A,G) = (
k

1≤i≤n

(Ai/
n

1≤k 6=i≤n

Gnk ),
n

1≤j≤n

Gnj ).

Let contracts Ci, C′i be such that C′i ≺ Ci. The following
theorem generalizes the following important results which
were established for n = 2 [2]:

• The composition of a set of contracts dominates the
individual contracts (Theorem 2 (i)) and is the least, in
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the refinement order, of all contracts dominating them
(Theorem 2 (ii)).
• Dominance is preserved under the refinement operation

of contracts (Theorem 2 (iiia)).
• Contract refinement is preserved under contract composi-

tion (Theorem 2 (iiib)).

As a result, we can derive a generic contract theory with
an n−ary structural composition for contracts, lifting the
compositional design to a set of n components.

Theorem 2. Let C be the composition of {C1, . . . , Cn}, then:

i) C dominates the contract set {C1, . . . , Cn}.

ii) ∀C′ : C′ dominates {C1, . . . , Cn} ⇔ C ≺ C′.

iii) If C′ dominates {C1, . . . , Cn} then:

a) it dominates also {C′1, . . . , C′n} where C′i ≺ Ci,

b) (
⊙

1≤i≤n
C′i) ≺ (

⊙
1≤i≤n

Ci).

Proof: Let A/h be defined as follows:

A/h
def
= Ah/

n

1≤k 6=h≤n

Gnk ,

then A =
c

1≤h≤n
A/h and it follows that A ≤ A/h.

i) C dominates {C1, . . . , Cn} because:
a)

f

1≤i≤n
Ii ∈ [[C]]p, by Theorem 1 and G ∈ [[C]]p.

b) By Theorem 1 and by the quotient property:

A ‖
n

1≤j 6=i≤n

Gnj ≤ A
/
i ‖

n

1≤j 6=i≤n

Gnj

≤ (Ai/
n

1≤k 6=i≤n

Gnk ) ‖
n

1≤j 6=i≤n

Gnj

≤ Ai.

ii) • ⇒: By the dominance of C′ over {C1, . . . , Cn} and by
Theorem 1, we have:

A′ ‖
n

1≤j 6=i≤n

Gnj ≤ Ai ⇒ A′ ≤ Ai/
n

1≤j 6=i≤n

Gnj

⇒ A′ ≤
k

1≤i≤n

(Ai/
n

1≤j 6=i≤n

Gnj )

⇒ A′ ≤
k

1≤i≤n

A/i .

This means A′ ≤ A and implies [[C′]]e ⊆ [[C]]e which
in turn implies:

∀E ′ ∈ [[C′]]e : E ′ ∈ [[C]]e

We also have I ∈ [[C]]p which means:

∀E ∈ [[C]]e : I ‖ E ≤ G ‖ E

By the dominance of C′ over {C1, . . . , Cn}, the follow-
ing is true:

G ∈ [[C′]]p ⇒ ∀E ′ ∈ [[C′]]e : G ‖ E ′ ≤ G′ ‖ E ′

Combining all of the above together, we have:

∀E ∈ [[C]]e : I ‖ E ≤ G ‖ E
⇒ ∀E ′ ∈ [[C′]]e : I ‖ E ′ ≤ G ‖ E ′

⇒ ∀E ′ ∈ [[C′]]e : I ‖ E ′ ≤ G′ ‖ E ′

⇒ I ∈ [[C′]]p.

This implies [[C]]p ⊆ [[C′]]p and therefore C ≺ C′.
• ⇐: The refinement relation C ≺ C′ means

([[C]]p ⊆ [[C′]]p) ∧ ([[C′]]e ⊆ [[C]]e).

Since G ∈ [[C]]p and [[C]]p ⊆ [[C′]]p, we then have:
n

1≤i≤n

Gni ∈ [[C′]]p.

In addition,

[[C′]]e ⊆ [[C]]e ⇒ A′ ≤ A
⇒ A′ ≤ A/i
⇒ A′ ≤ Ai/

n

1≤k 6=i≤n

Gnk

⇒ (A′ ‖
n

1≤k 6=i≤n

Gnk ) ≤ Ai.

By Theorem 1, C′ then dominates {C1, . . . , Cn} .
iii) a) First,

C′i ≺ Ci ⇒ [[C′i]]p ⊆ [[Ci]]p
⇒ I ′i ∈ [[Ci]]p
⇒

n

1≤i≤n

I ′i ∈ [[C′]]p

(the last implication is because of the dominance of C′
over {C1, . . . , Cn}). Second,

C′i ≺ Ci ⇒ G′ni ≤ Gni
⇒ A′ ‖

n

1≤j 6=i≤n

G′nj ≤ A′ ‖
n

1≤j 6=i≤n

Gnj

⇒ A′ ‖
n

1≤j 6=i≤n

G′nj ≤ Ai ≤ A′i.

(the last implication is because of C′i ≺ Ci).
By Theorem 1, C′ thus dominates {C′1, . . . , C′n}.

b) A direct consequence of items (i), (ii), (iiia) of Theo-
rem 2.

B. Contract Decomposition

As a direct consequence of Theorem 2 (ii), a contract C re-
fined by the composition of a set of contracts {C1, . . . , Cn} will
dominate that contract set and provide desirable compositional
consequences formalized in items (i) and (ii) of Definition 3.
This contract set is then considered to be a decomposition of
C, allowing the components associated with the contract set
or their refinements to be plugged into a system satisfying
contract C without breaking the contract satisfaction.

Verifying if C can be decomposed into {C1, . . . , Cn} is
therefore equivalent to checking the dominance of C over
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{C1, . . . , Cn} which, by Theorem 1, corresponds to the two
decomposing conditions (DCs):

DC-1)
n

1≤i≤n

Gni ∈ [[C]]p, or equivalently
n

1≤i≤n

Gni ≤ Gn

DC-2) ∀1 ≤ i ≤ n : A ‖
n

1≤j 6=i≤n

Gnj ≤ Ai.

Moreover, our extension on the dominance notion is more
generic than that of Cimatti et al. [16] and can support the
construction of property-based proof systems such as that
proposed by the same authors. In fact, we built our system
in a generic way using a set of meta-theoretical operators
including composition, refinement, quotient and conjunction.
Our extension can therefore be applied to build proof sys-
tems of different contract frameworks where these operators
are explicitly instantiated. For example, trace-based contract
system development [16] can be derived by instantiating the
composition and refinement between specifications as the
intersection and set inclusion as follows:

i)
⋂

1≤i≤n
Gni ∈ [[C]]p, or equivalently

⋂
1≤i≤n

Gni ⊆ Gn

ii) ∀1 ≤ i ≤ n : A ∩
⋂

1≤j 6=i≤n
Gnj ⊆ Ai.

Likewise, modal contract system development can be based on
the modal alternating refinement ≤m and the modal composi-
tion ‖m on shared actions [2].

V. CONTRACT SYNTHESIS

When a set of contracts does not satisfy the decompos-
ing conditions established in Section IV-B, we must adjust
the specification of some of them. We propose a synthesis
strategy based on the following condition which says that the
conjunction operator can be distributed over the normalizing
operator � as follows:

(G �A) fX = (G fX) � (A�X) (1)

Although this condition poses certain limitations on contract
systems, it is a desirable property because it shows that the
semantics of a model is invariant when commuting (appropri-
ately) normalization � and conjunction f. Better flexibility in
the design process can also be gained when these operators are
commutative. Since conjunction and normalization amount to
strengthening and weakening operations respectively, strength-
ening X causes a semantic reduction in the two sides of
equation (1). Thus, when this property does not hold, we can
keep strengthening X until we reach a fixed point in semantic
equivalence as we shall see later in Section VII.

Contract synthesis consists of finding suitable refinements
for the individual contracts. Our synthesis strategy is based on
strengthening the normalized guarantees, which can be reduced
to strengthening the un-normalized guarantees and weakening
the corresponding assumptions. Because such operations either
strengthen the left sides or weaken the right sides of the
decomposing conditions, their refinement relation are either
maintained or changed from false to true.

A. Synthesis of Decomposing Conditions

To satisfy DC-1, we randomly select a guarantee Gnk to
be strengthened where Gnk can be any of the guarantees Gni
composing DC-1. By taking advantage of the quotient, we
can find the least specification

X = Gn/(
n

1≤i6=k≤n

Gni )

which ensures the satisfaction of DC-1. The newly strength-
ened normalized guarantee Ḡnk is then:

Ḡnk = Gnk fX = (Gk �Ak) fX = (Gk fX) � (Ak �X)
(2)

Since conjunction and normalization amount to strengthening
and weakening operations respectively, the above equation
shows that strengthening a normalized guarantee amounts
to strengthening its un-normalized version and weakening
its coupled assumption. Overall, it amounts to refining the
contract Ck. It is also important to notice that strengthening
Gnk as above either maintains the refining property established
in DC-2 or may change it from false to true, but not vice-versa
because:

Ak ≤ Ak �X, for i = k,

A ‖ Ḡnk ‖
n

1≤j 6=k,i≤n

Gnj ≤ A ‖
n

1≤j 6=i≤n

Gnj , for i 6= k.

In order to satisfy the i-th clause of DC-2, we randomly select
a guarantee Gnki to be strengthened where Gnki can be any of the
guarantees Gnj composing the i-th clause of DC-2 and ki 6= i.
We then can find the least specification

Yi = Ai/(A ‖
n

1≤j 6=i,ki≤n

Gnj )

which ensures the satisfaction of the i-th clause. As done for
condition 1, Gnki is strengthened to Ḡnki

def
= Gnki f Yi:

Ḡnki = Gnki f Yi = (Gki �Aki) f Yi = (Gki f Yi) � (Aki � Yi)
(3)

B. Synthesis Strategy

Based on equation (1) and the above analysis, we propose
a strategy for synthesizing {C1, . . . , Cn} in order to make it a
decomposition of C as follows:

1) If DC-1 is not satisfied, randomly select a contract Ck to
be refined and apply (2).

2) While DC-2 is not satisfied:
a) Let i be the index of an unsatisfied clause, randomly

select contract Cki to be refined and apply (3).
b) Repeat step (2a) until DC-2 is satisfied.

We next demonstrate our strategy in synthesizing trace-based
and modal contract sets.

VI. TRACE-BASED CONTRACT SYNTHESIS

In trace-based contract systems, assumptions and guaran-
tees are considered as sets of traces (or behaviors) defined
over a set of system ports (or variables). Every trace assign a
history of values to ports. In this setting, refinement is defined
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as set inclusion, composition and conjunction is intersection
and normalization, which is identical to quotient, is defined as

G �A = G/A = G ∪ ¬A,

it is easy to verify that equation (1) is satisfied:

(G ∪ ¬A) ∩X = (G ∩X) ∪ ¬(A ∪ ¬X).

Therefore, we can apply the synthesis strategy proposed above
directly. It is also interesting to notice that for trace-based
models, to satisfy the i-th clause of DC-2, an alternative is
to weaken Ai to Āi:

Āi
def
= Ai ∪ Zi

where A ∩
⋂

1≤j 6=i≤n
Gnj ⊆ Zi. This operation has a nice

consequence in strengthening the corresponding normalized
guarantee which is

Ḡni = Gi ∪ ¬(Ai ∪ Zi) = Gi ∪ (¬Ai ∩ ¬Zi)

since (¬Ai ∩ ¬Zi) ⊆ ¬Ai ⇒ Ḡni ⊆ Gni .

Example 1. We consider a variant of the contract model of
the Brake System Control Unit (BSCU) described in [21] and
shown in Figure 1(a). The BSCU takes as inputs the positions
of the two brake pedals Pedal_Pos1 and Pedal_Pos2 and
outputs two control signals Valid and CMD_AS to control
the braking process of a wheel-brake system.

The BSCU component is further decomposed into a
Select_Switch and two smaller control units: a pri-
mary BSCU1 and a backup BSCU2. When BSCU1 fails,
the Select_Switch puts the backup signal from BSCU2

through. The signal failure in a control unit BSCUi is indicated
by its signal Validi going down and is caused by a basic
fault which is either a monitor fault fault_Monitori or a
command fault fault_Commandi with i ∈ {1, 2}.

A safety requirement on the BSCU is to ensure that
Valid1 ∨ Valid2 is always true when at most one of
the basic faults fault_Monitori or fault_Commandi
can occur [16]. This is specified as contract C = (A,G) in
Fig. 1(b). The safety contracts specification [16] on BSCUi
make no assumptions and guarantees that signal Validi
remains true when neither of its basic faults occurs. In this
example, we strengthen the assumption of the original safety
contracts on BSCUi and present them as contract Ci = (Ai,Gi)
in Fig. 1(b)

The contracts can be specified in symbolic logic [16]
where sets of traces are represented by logical formulas. Thus
checking the two DCs amounts to checking the following
formulas in symbolic logic:

i)
∧

1≤i≤n
Gni ⇒ Gn

ii) ∀1 ≤ i ≤ n : A ∧
∧

1≤j 6=i≤n
Gnj ⇒ Ai.

where Gn = G ∨ ¬A and Gni = Gi ∨ ¬Ai.

In order to reuse the contract specification of the subcom-
ponents BSCU1 and BSCU2, we verify if C can be decomposed
into C1 and C2 which amounts to verifying the satisfaction of

the two DCs. While C can be decomposed into the subcom-
ponents’ original contracts [16], it cannot be decomposed into
C1 and C2 without refining Ci as we shall show below.

It is obvious that the contracts Ci are in normal form, thus
Gni ≡ Gi. We observe that DC-1 is satisfied because G1∧G2 ⇒
Gn is true. However DC-2 is not satisfied becauseA∧G1 ⇒ A2

is not true. Applying step (2a) of our synthesis strategy, we
refine C1 w.r.t. Y2 into C′1 = (A′1,G′1) where:

Y2 = (A2/A) = (A2 ∪ ¬A) = (A ⇒ A2),

A′1 = (A1 � Y2) = (A1/Y2) = (A1 ∪ ¬Y2),

G′1 = (G1 f Y2) = (G1 ∩ Y2).

DC-2 is still not satisfied after the first synthesis because A∧
G2 ⇒ A′1 is not true. Applying step (2a) once again, we refine
C2 w.r.t. Y1 into C′2 = (A′2,G′2) where:

Y1 = (A′1/A) = (A1 ∪ ¬Y2) ∪ ¬A = ((A ∧A2)⇒ A1),

A′2 = (A2 � Y1) = (A2/Y1) = (A2 ∪ ¬Y1),

G′2 = (G2 f Y1) = (G2 ∩ Y1).

Alternatively, we can weaken Ai w.r.t. any Zi such that

(A ∧ G3−i)⇒ Zi

is correct. The simplest option could be Zi = TRUE and this
derives the original safety contracts [16]. Our approach there-
fore provides a wider set of options which allows designers to
explore the refinement space.

VII. MODAL CONTRACT SYNTHESIS

Modal contracts are defined over modal transition systems
(MTS) where transitions are annotated with action labels and
with may or must modalities modeling behaviors which can
be (optionally) or must be (compulsorily) implemented respec-
tively. Formally, an MTS is a tuple M = (S, s0,Σ, 99K,→)
where S is the set of states, s0 ∈ S is the initial state, Σ is
the set of actions and 99K,→⊆ S × Σ × S are the may,must
transition relation respectively such that →⊆99K [2].

For the sake of comprehension, we use our notations with
m−subscripts when referring to modal operators. The modal
operators for combining modal transitions are described in
Table I where u© denotes a new state in which there is a
looping may transition for every action. This state is referred
to as the universal state. Let may(si) and must(si) denote
the set of may actions and must actions allowed respectively
at state si. State si is consistent when must(si) ⊆ may(si).
Combining modal systems using operators presented in Table I
may introduce inconsistent states. A pruning procedure [11] is
therefore required to remedy such a problem. For the sake of
completeness, we shall recall briefly this procedure.

Let M = (S, s0,Σ, 99K,→) be the newly combined system
containing inconsistent states. Let M0 = (S, s0,Σ, 99K0,→0)
be a copy of M , i.e. 99K0≡99K and →0≡→ and let k = 0,
we obtain the pruning of M through the following steps:

1) Let Mk+1 = (S, s0,Σ, 99Kk+1,→k+1) be a copy of Mk.
2) For each run r = s0

σ0
99K s1 . . .

σn−1

99K sn from the initial
state s0 to state sn in Mk where mustk(sn) * mayk(sn):

i) set mayk+1(sn) = Σ and mustk+1(sn) = ∅,
ii) set mayk+1(sn−1) = mayk(sn−1) \ {σn−1}.

139



(a) High-level view of BSCU (b) Contract specification of BSCU and BSCUi

Fig. 1: Structure and contract models of BSCU

TABLE I: Rules for combining modal specifications S1 and S2 using modal operators �m, ‖m, /m,fm

S1 �m S2 s2
α
99K s′2 s2

α
99K′

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2)

α
99K u©

s1
α
99K s′1 (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K u©

s1
α
99K′ (s1, s2)

α
99K u©

S1 ‖m S2 s2
α→ s′2 s2

α
99K s′2

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2)

α
99K (s′1, s

′
2)

s1
α
99K s′1 (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K (s′1, s

′
2)

S1/m S2 s2
α→ s′2 s2

α
99K s′2 s2

α
99K′

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2) is inconsistent (s1, s2) is inconsistent

s1
α
99K s′1 (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K u©

s1
α
99K′ (s1, s2)

α
99K u©

S1 fm S2 s2
α→ s′2 s2

α
99K s′2 s2

α
99K′

s1
α→ s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2)

α→ (s′1, s
′
2) (s1, s2) is inconsistent

s1
α
99K s′1 (s1, s2)

α→ (s′1, s
′
2) (s1, s2)

α
99K (s′1, s

′
2)

s1
α
99K′ (s1, s2) is inconsistent

3) Set k = k+1. If Mk still contains inconsistent states, repeat
the above steps. Otherwise the procedure terminates.

The modal refinement is defined as follows [2]. An MTS
M1 = (S1, s01,Σ1, 99K1,→1) refines another MTS M2 =
(S2, s02,Σ2, 99K2,→2), written M1 ≤m M2, if there exists
a relation R ⊆ S1 × S2 such that (s01, s02) ∈ R and for all
(s1, s2) ∈ R and α ∈ Σ:

((s1, α, s
′
1) ∈ 99K1 ⇒ ∃(s2, α, s

′
2) ∈ 99K2: (s′1, s

′
2) ∈ R) ∧

((s2, α, s
′
2) ∈ →2 ⇒ ∃(s1, α, s

′
1) ∈ →1: (s′1, s

′
2) ∈ R).

Consider a simple modal contract C = (A,G) specified in
Fig. 2(a) and Fig. 2(b) and a specification X in Fig. 2(d) where
the initial states are marked by bold circles. Equation (1) is
shown to be violated as demonstrated in Fig. 2(g) and Fig. 2(h).
The reason is that normalization may introduce a universal
state with a looping may transition for every action. Whereas,
during conjunction, such universal state could be pruned away.
To avoid such inconsistency, A�m X should contain all may

transitions appearing in X and we observe that it can be
obtained by tightening X to

X̄
def
= X fm A

as shown in Fig. 2(l) and Fig. 2(m).

The following theorem affirms our above observation and
provides a way to synthesizing modal contracts. Note that as
mentioned previously, a pruning procedure is invoked after
every combining operation, e.g. it is invoked two times on the
left side and three times on the right side of the theorem.

Theorem 3. (G �m A) fm X̄ = (G fm X̄) �m (A�m X̄).

Proof: To prove the satisfaction of Equation (1), we show
that every path in (G�mA)fm X̄ can be simulated by (Gfm
X̄) �m (A�m X̄) and vice versa.

• Let pl be a path in (G �m A) fm X̄:

pl : ((g0, a0), x̄0)
α0
99K ((g1, a1), x̄1) . . .

αn
99K ((gn, an), x̄n).
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0

(a) A

0 1

(b) G

0 u

1

(c) G �m A

0 1

(d) X

0 1

(e) G fm X

0 1 u

(f) A�m X

0

1

2

(g) (G�mA)fmX

0 u

1

(h) (G fm X) �m (A�m X)

0 1

(i) X̄ = X fm A

0 1

(j) G fm X̄

0 u

1

(k) A�m X̄

0 1

(l) (G �m A) fm X̄

0 1

(m) (G fm X̄) �m (A�m X̄)

Fig. 2: A modal contract over the set of action Σ = {α, β}

Then by definition of fm, there exist pga in (G �m A),
px̄ in X̄ and pa in A:

pga : (g0, a0)
α0
99K (g1, a1) . . .

αn
99K (gn, an)

px̄ : x̄0
α0
99K x̄1 . . .

αn
99K x̄n

pa : a0
α0
99K a1 . . .

αn
99K an.

By definition of �m, the existence of pga and pa implies
that of path pg in G:

pg : g0
α0
99K g1 . . .

αn
99K gn.

Next pg, px̄ and pa implies the existence of path pr in
(G fm X̄) �m (A�m X̄):

pr : ((g0, x̄0), (a0, x̄0))
α0
99K . . .

αn
99K ((gn, x̄n), (an, x̄n)).

In addition, assume there is a must transition

((gi, ai), x̄i)
αi→ ((gi+1, ai+1), x̄i+1)

somewhere in pl. By definition of fm, either

(gi, ai)
αi→ (gi+1, ai+1) holds, or

x̄i
αi→ x̄i+1 holds,

and implies (gi, x̄i)
αi→ (gi+1, x̄i+1). Thus there is also

the following must transition in pr:

((gi, x̄i), (ai, x̄i))
αi→ ((gi+1, x̄i+1), (ai+1, x̄i+1))

• Let pr be a path in (G fm X̄) �m (A�m X̄):

pr : ((g0, x̄0), (a0, x̄
′
0))

α0
99K. . .

αn
99K((gn, x̄n), (an, x̄

′
n))

By induction, we prove that:

∀0 ≤ i ≤ n :

((gi, x̄i), (ai, x̄
′
i)) is not universal, and x̄i ≡ x̄′i.

◦ Base case i = 0: trivial.
◦ Step case: assume the induction holds up to the i-th

state of pr. By contraposition, assume the (i + 1)-
th state, i.e., ((gi+1, x̄i+1), (ai+1, x̄

′
i+1)), is universal.

Then by definition of �m, the following must hold:

(ai, x̄i)
αi

99K′

which implies ai
αi

99K′ and x̄i
αi
99K x̄i+1.

As X̄ = XfmA, the latter then implies ai
αi
99K ai+1 by

definition of fm, contradicting with the former. Thus
the (i+1)-th state of pr is not universal and this implies,
by definition of �m, that

(ai, x̄i)
αi
99K (ai+1, x̄

′
i+1)

(gi, x̄i)
αi
99K (gi+1, x̄i+1)

which then implies (ai, x̄i)
αi
99K (ai+1, x̄i+1). Hence,

x̄i+1 ≡ x̄′i+1 by the deterministic assumption on modal
automata.

The induction also infers the existence of pg in G, px̄ in
X̄ , pa in A:

pg : g0
α0
99K . . .

αn
99K gn

px̄ : x̄0
α0
99K . . .

αn
99K x̄n

pa : a0
α0
99K . . .

αn
99K an

which together implies that of pl in (G �m A) fm X̄:

pl : ((g0, a0), x̄0)
α0
99K . . .

αn
99K ((gn, an), x̄n).
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In addition, if there is a must transition somewhere in pr:

((gi, x̄i), (ai, x̄i))
αi→ ((gi+1, x̄i+1), (ai+1, x̄i+1)),

then by definition of �m, there must be

(gi, x̄i)
αi→ (gi+1, x̄i+1).

Thus either gi
αi→ gi+1 or x̄i

αi→ x̄i+1 holds and implies

((gi, ai), x̄i)
αi→ ((gi+1, ai+1), x̄i+1)

in pl.

With this theorem, our synthesis strategy for modal con-
tracts needs only a minor modification. That is, we compute
and use X̄ and Ȳi instead of X and Yi where

X̄
def
= X fm Ak,

Ȳi
def
= Yi fm Aki .

in applying equations (2) and (3).

Example 2. We consider the simple message system System
studied by Bauer et al. [2]. The system consists of two
components: component Server and component User.
Their contracts are defined over the action set Σ =
{msg, secret msg, auth, send} and are shown in Fig. 3(a)-
Fig. 3(h), where may transitions underlying must transitions
are not drawn for simplicity.

The contract CServer = (AServer,GServer) models a simple
protocol of sending (send) a message (msg) or secret message
(secret_msg) from the Server to the User. In addition,
the Server waits for an authentication code (auth) from the
User before sending a secret message to it. The authentication
code, however, is not required for sending a normal message.
The contract CUser = (AUser,GUser) then guarantees that the
messages can always be received but does not ensure that
authentication codes can be sent. The contracts described in
this example are almost identical to those provided by Bauer
et al. [2] except that of component Server, where we make a
minor modification to the assumption. That is, authentication
codes can only be received before messages are sent to the
User while they are also allowed after such message sending
in the original contract. Therefore, our modified assumptions
is stronger than the original one. Decomposing the message
system into these two components is then only possible when
the system contract CSystem = (ASystem,GSystem) can also be
decomposed into the component contracts CServer and CUser.

To verify the decomposition, we first normalize all the
guarantees as in Fig. 3(c), Fig. 3(e) and Fig. 3(h). We next
observe that the composition of the Server and User
normalized guarantees, i.e., GnServer ‖m GnUser does not refine
GnSystem since the authentication code reception is allowed
by the former and not allowed by the latter. In fact, the
modification that we made to the contract assumption of
component Server is the main reason for the failure of this
decomposition. Thereby decomposing the message system into
the two components would not be possible without performing
some corrective synthesis.

We then apply our synthesis strategy in Sect. V to synthe-
size the Server contract w.r.t. X̄:

X̄ = (GnSystem /m GnUser) fm AServer

which is shown in Fig. 3(i). The newly-synthesized Server
contract provides the same guarantee under a more general
assumption (Fig. 3(j)). This new assumption corrects our
wrong modification and allows authentication codes to always
be received. We can now verify easily that the composition of
the new Server contract and the User contract refines the
overall System contract. As a result, the message system can
be obtained by composing components Server and User.

VIII. CONCLUSIONS

In contract-based design, the top-down decomposition of
a system into subcomponents is possible when the system
general requirement C can be decomposed into requirements
{C1, . . . , Cn} of the subcomponents. To support this top-down
design procedure, we have presented a set of decomposing
conditions for verifying the decomposition of a contract into
a set of contracts. The conditions are defined on top of
specifications operators such as normalization, composition
and refinement and work for any generic contract framework
equipped with such operators. To provide for a complete design
methodology, we have also proposed a synthesis strategy which
can correct wrong contracts causing the condition failure. Our
synthesis strategy can be applied to contract frameworks under
the assumption of commutative normalization and conjunction.
Although such assumption appears to be a limitation, it is
a desirable property for flexible design methodologies as it
comes with a synthesis strategy for fixing wrong decomposi-
tions. The assumption can be made satisfied by continuously
strengthening the core operand.

Our future work includes the implementation of our de-
composition and synthesis strategy and the evaluation on
verification performance. In particular, one essential step will
be the integration of our strategy with several of the contract
refinement checking methods that have been proposed in the
literature.
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