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Abstract

A new generation of distributed real-time systems

(DRTS) is based on heterogeneous models of computation

and communication and is associated with flexible real-

time constraints. Classical design flows based on real-

time scheduling theory display important limitations re-

lated to the restrictive assumption on the system model.

On the other hand, formal verification of timed automata

is far more general, but it suffers a different limitation: it

does not provide any guide on how to choose the design

parameters, nor does it permit to gauge the robustness of

the design against unknown parameters. In this paper,

we advocate the use of formal verification of parametric

timed automata as a means to combine the best of the two

approaches. The feasibility of the idea is shown on a sig-

nificant industrial case study.

1. Introduction

A distributed real-time system (DRTS) is a collection

of applications that execute across different computing

nodes and interact through a networked communication

infrastructure. By and large, in a DRTS applications can

be decomposed in a set of computing activities (tasks),

and of communication activities. Each task is executed

on a computing node, and it typically spawns a virtually

infinite sequence of execution instances (jobs). There are

two frequent ways for activating a job: by a timer (time-

triggered activation) or by an event (event triggered acti-

vation). Time-triggered activations are typically used to

implement feedback control loops, or to process multi-

media data (e.g., in video encoder/decoder scheme). The

event triggered activation can be associated with the pres-

ence of a new input or with a specific request from another

task (via an appropriate system call). The communication

takes place exchanging elements of information (packets),

which are funneled through the network links.

The increasing complexity of the automated function-

alities requested by a large class of modern industrial sys-
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tems is propelling the development of DRTS to an un-

precedented level. The future generation of DRTS is going

to be heterogeneous in several respects. First, applications

often require the co-existence of time-triggered compo-

nents (e.g., to actuate a digital control loop) with event

triggered components (e.g., to respond to events or mode

change requests). Second, the strict compliance with ev-

ery deadline is not always required, either because the sys-

tem itself is soft real-time (e.g., a multimedia system) or

because a moderate and controlled presence of timing fail-

ures is deemed acceptable in a control system if rewarded

by a radical efficiency gain [7, 20]. Finally, the scheduling

policy to manage shared computation and communication

resources can be different for the different resources. For

instance, computing nodes are more often than not sched-

uled preemptively, whereas network links are inherently

non-preemptive. In the face of this complexity, classic de-

sign paradigms (based on very stringent assumptions) are

doomed to a quick obsolescence. Still, there is an urging

need for a design procedure guiding the choice of the free

design parameters and enabling, at the same time, the as-

sessment of the robustness margins for a candidate design.

Paper contribution. In our previous work [8], we have

laid the foundation for a novel methodology. We consid-

ered a set of real-time tasks sharing a single CPU through

a fixed priority preemptive scheduler. Moving in the track

opened by Wang Yi and co-workers [11], we modelled

task activations and the scheduler by means of paramet-

ric timed automata. The subsequent use of model check-

ing and sensitivity analysis enabled the construction of the

subset of the parameters’ space that correspond to feasible

hard real-time schedules. Our goal was to combine the

generality offered by the application of timed automata

with the exploration of the parameter space offered by the

standard real-time scheduling analysis.

In this paper, we take a step further in the direction of

proving the generality of our approach. We considered

an industrial case study, suggested by the avionic indus-

try characterized by: 1) a complex network topology that

interconnects a potentially large number of nodes, 2) the

co-existence of preemptive and non preemptive schedul-

ing algorithm (to manage different components of the sys-

tem), 3) the presence of activities characterised by soft
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real-time constraints. Our first contribution is to show a

complete model of the system based on the use of timed

automata. The model has been validated by using standard

verification tools (the UPPAAL tool-suite) by grounding

the parameters to fixed choices. The second contribution

has been the derivation of the parametric feasibility region

on a simplified yet meaningful subset of the system by

adapting the methodology and the tool that we previously

developed [8].

State of the art. Ever since the seminal work of Liu and

Layland [17], the real-time scheduling theory has identi-

fied conditions for a set of real-time task to be schedulable

(i.e., to execute within the timing constraints) on a single

processor. Such conditions are defined on the task activa-

tion periods and computation time, under specific choices

for the scheduling algorithm. A particular attention has

been placed on fixed priority preemptive schedulers, for

which the response time analysis [13] and the time de-

mand analysis [16] have proven effective tools to evaluate

the schedulability of a task set on a single CPU. An inter-

esting development of these techniques has been proposed

by Bini et al. [5], who have applied the time demand anal-

ysis to assess the sensitivity of the schedulability result

w.r.t. variations in the task parameters. A very interest-

ing point of these techniques is that they are based on an-

alytical tests and are therefore very efficient, to a point

where they are often utilized on-line to decide or deny ad-

mission of a new task in a system. The downside is that

they are usually conservative (they assume the worst case

phasing for the task activation) and, more importantly, op-

erate within a restricted assumption space: single proces-

sor, fixed priority preemptive scheduler, periodic activa-

tion and strict respect of every deadline (hard real-time

hypotheses). In recent years, commendable extensions to

the real-time scheduling theory have been made in the di-

rection of multiprocessor systems [4, 3], of relaxed tim-

ing constraints [1, 18] and of distributed real-time sys-

tems [12, 23, 9]. Despite the relaxation of some of the

hypotheses of the classic real-time task model, the appli-

cability for real-time scheduling theory remains restricted

to the adoption of specific models of computation and of

homogeneous scheduling algorithms.

A greater level of generality can be attributed to the

application of formal methods to the verification of timed

systems, pioneered by Alur et al. [2]. The adoption of the

timed automata formalism enables the specification of a

large class of real-time systems, underlied by heteroge-

neous models of computation and communication. Com-

plex timing properties can then be verified in a reason-

able time by the use of such optimized model checkers as

UPPAAL [14]. This idea has been successfully applied

to the verification of real-time schedulability for task sets

assuming both non-preemptive [19] and preemptive [11]

schedulers. Two important limitations of these approaches

are: 1) they require a complete specification of the sys-

tem, 2) they only return a positive/negative to the verifica-

tion problem without any feedback to the designer on the

adjustment to make on the parameters or on the robust-

ness margins. In other words, they do not deal properly

with the design of parametric systems. On the other hand,

complementing the application of formal methods with a

binary search on the parameter space [22] can be hardly a

scalable solution when the number of parameters is con-

siderable and it assumes a “monotonic” relation between

parameters and feasibility, which is not necessarily true in

the general case.

2. A Case Study

We have taken as a case study a simplified version of

a Heterogeneous Communication System (HCS), such as

one that could be found on board of aircrafts [10]. The

architecture of the system is shown in Figure 1. The
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Figure 1. Heterogeneous Communication

System (HCS)

HCS system contains a common server, wired and wire-

less communication networks and a number of devices.

The components of the network communicate through

Network Access Controllers (NAC), which perform gate-

way function and routing, and are connected in a daisy

chain topology. In this case study we focus on audio de-

vices, which are required to distribute music and audio

announcements to the main cabin. The audio stream is

transmitted by the server through the network. To avoid

echo effects, the devices must reproduce the audio at syn-

chronized instants. For this reason, the network, server

and devices implement also the Precision Time Protocol

(PTP) [21] to synchronize their clocks.

The communication between the server and device is

asynchronous. The server sends an audio packet every

audPeriod ms; audio packets are characterized by two

parameters: a sequence number i and a timestamp ti de-

noting the time the packet has to be played at the device.

Due to varying network conditions, packets arrive at the

device (except if they are lost) with a minimal latency

Lmin and a maximal latency Lmax. The NACs sim-

ply forward the incoming packets to the devices. Packets



passing through the NACs experience delay of Lnac dur-

ing which they are preprocessed by the NACs. The device

processing time for each audio packet is τ , after which the

device is ready to receive the next audio packet. The PTP

protocol runs on the server, the devices and NACs, and is

used to synchronize the respective clocks. Figure 2 de-

picts the message sequence of clock synchronization be-

tween a device (slave) and the master clock. Various tim-

Figure 2. Time sequence diagram of mes-

sage exchanged between master and slave
to achieve clock synchronization

ing delays are to be guaranteed, for example, in a scenario

where two devices are connected to the server, it should

be guaranteed that both devices are synchronized within

an error of 0.1 ms (synchronization precision).

Our objective is to identify the largest region of the pa-

rameter space in which the the correct functioning of au-

dio streaming and clock synchronization can be guaran-

teed. To do so, we employ parametric timed automata.

However, HCS is too complex to be parametrically-

modeled completely. Therefore, some of the above re-

quirements have to be relaxed before we attempt to para-

metrically model the system. The simplified system

would contain only one server and many NACs and de-

vices where one NAC may be associated to at most one

device and one other NAC. Also, only the PTP parts on

the server and devices are modeled. Additionally, every

packet will have to experience the maximal delay Lmax

when traversing the medium. Furthermore, we only par-

tially model the unreliability of the network. The system

high-level description can be viewed logically as in Fig-

ure 3. Lastly, the transmission priority of PTP messages

are assumed to be higher than that of audio packets, how-

ever, an ongoing transmission of an audio packet will not

be preempted by a PTP message.

A complete set of models for this simplified system

was developed in UPPAAL [14] as a network of 13 timed

automata [15]. In UPPAAL, HCS is modeled as a net-

work of extended timed automata with global real-valued

Figure 3. Logical model of HCS

clocks and integer variables. Clock value retrieval which

is essential to the PTP protocol is not supported by UP-

PAAL, hence the introduction of integer clocks. There are

four error states in the automata network, corresponding to

error conditions. One is reached when an audio packet ar-

rives after its time-to-play. Three others are reached when

buffer overruns occur in the audio buffer, the NAC input

buffer and the NAC output buffer. To verify that the sys-

tem is schedulable, we must show that these four error

states are never reachable. Three test cases have been per-

formed to test the schedulability of the system with dif-

ferent assignments to the parameters [15]. In the first, the

system is guaranteed to be schedulable because all prop-

erties are satisfied while it is not in the second case due to

the violation of the first property. The last test case points

out the possibility of deadlock when the third property is

not satisfied. Our objective in this paper is to replace this

manual exploration of the parameter space with an auto-

matic procedure.

3. Background on parametric verification of

timed systems

In our previous work [8], we proposed a methodology

for parametric analysis of real-time systems. The corner-

stones of our construction are the notion of Parametric

Timed Automata and an algorithm to infer the region of

feasible parameters. For the sake of completeness, we re-

port here a brief summary of that work, referring the in-

terested reader to the cited paper for additional details.

Parametric Timed Automata Parametric Timed

Automata (PTA) are an extension of the classical

notion of timed automata [2], defined as a tuple

〈L,L0,Σ, X, P,Γ, I, E〉, where

• L is a finite set of locations

• L0 ⊆ L is the set of initial locations

• Σ a finite set of labels

• X is a finite set of variables

• P is a finite set of parameters

• Γ ⊆ B(P ) is the parameter space

• I : L → 2C(X∪P ) is the invariant map

•E ⊆ L×Σ×C(X∪P )×2U(X)×L is the set of switches.

The meaning of location, switch, clock is the same as

in timed-automata. The PTA is characterized by two ad-

ditional sets: the parameters P and the additional state

variables Xs. The state variable of the system X are then

the disjoint union of Xc (clocks) and Xs (state variables).

Parameters and state variables are defined as set of

symbols with valuation over the rationals. In a transition



the value of the variables in X is updated according to the

function λ : X × P → X . The value of clocks can either

be updated on each transitions, or it can grow linearly in

time in each location. The value of state variables can be

changed only as a result of a reset action when a transition

is taken and clocks may have a linear polynomial in the

right hand side of the assignment. We can obtain standard

timed automata if the set of parameters and of state vari-

ables are empty, and the update constraints have the form

x := 0. If update constraints have the form x := x − c,

with c ∈ Q, we obtain the TA with subtraction [11]. PTAs

can be composed using the standard notion of product be-

tween time automata [2].

Construction of the feasibility region Once a real-time

system is modelled as a network of PTA, the violation of a

timing constraint can be associated with an error location.

The problem of identifying the feasibility regions is then

formulated as finding the assignments of parameters that

make the error location reachable.

The basic idea can be described as follows. A model

checker identifies a counter-example, i.e., an execution

trace that terminates into the error state for a given assign-

ment of parameters. A sensitivity analysis is then carried

out that identifies the subregion of the parameters validat-

ing the trace. This subregion is given by a conjunction

of linear constraint on the parameters and is subtracted

from the search space. The procedure is iterated until no

error trace can be identified. The union of all the subre-

gions found in this way identifies the set of parameters

associated to unfeasible schedules (the feasible region is

obviously found by complementation).

Algorithm 1 Iterative algorithm for PTA schedulability

region analysis

Require: PTA describing activations and scheduling of n

tasks

Ensure: Schedulability Region

1: for i = 1 to n do

2: PTA.init(ParamSchedProblemForTask(i))

3: j = 0

4: while PTA.reachable(Error) do

5: trace = PTA.get trace()

6: Unfeasible[j] = PTA.get parameter(trace)

7: PTA.add constraints( negate( Unfeasible[j]))

8: j++

9: end while

10: Feasible[i] = not(big or(0, j, Unfeasible))

11: end for

12: Return big and(0, n, Feasible)

The algorithm implementing this idea is shown in Al-

gorithm 1 and it relies on the symbolic approach for rep-

resenting and model-checking timed automata. A PTA is

described by a conjunction of formulas in the theory of

rationals, representing transitions, guards, invariants and

reset maps. The use of a model checker allows symbolic

processing of the model to identify all the possible traces,

and particularly the ones that end in the error state. This

step can be carried out by any off-the-shelves symbolic

model checkers. In our case, we have used NuSMT [6], a

system for the verification of symbolically described infi-

nite state systems. In particular, we used bounded model

checking to carry out reachability analysis. With this ap-

proach, a trace is a sequence of truth assignment for bi-

nary variables (associated to the transitions) and of lin-

ear constraints on the real variables representing the time

elapsed in each state. By uniting this information with the

symbolic model, we are able to construct a set of linear

constraints on the parameters and on the state variables

that validate the trace. The subregion of interest is then

found by a simple projection of this set on the parameter

space. To identify a termination criterion (i.e., a situa-

tion in which no new error trace can be found), we have

to complement bounded model checking with other tech-

niques such as k-induction.

4. Parametric Modeling

The system described in Section 2 has been modelled

in full detail and analyzed, for ground parameters, using

UPPAAL [15]. The next step was to carry out the paramet-

ric verification described in Section 3. Because of its con-

siderable complexity, we have worked out an abstraction

of the system to limit the state space and to concentrate

in isolation on each outstanding issue (the non preemptive

scheduler, the different criticality of the timing constraints

and so on). The parametric analysis of the complete sys-

tem is reserved for future work. Our strategy is to first an-

alyze the timing constraints of the audio stream and PTP,

under certain assumptions on the PTP synchronization ac-

curacy, and determine the acceptable clock drift relative

to other parameters. In a second step, which is part of

our future work, we will analyze the PTP operation to

ensure that the synchronization accuracy meets the con-

straints defined in the first phase.

4.1. Abstract Models

We divide the abstract model of the system into two

parts. The first corresponds the release of the packets on

the network according to a periodic pattern. The second

models the network and device, including the scheduling

policy and the real-time constraints. For the latter, we have

considered both the classic hard real-time constraints and

firm real-time constraints.

We model the release of packets as activation automata,

shown in Figure 4. Each stream of packets is characterized

by the offset for the first release (transition from initial

state to the second state), and is then periodic afterwards

(self transition on the second state). A release signal is

emitted every time a transition is taken, and is used to syn-

chronize the automaton with the rest of the system. In the

following, for consistency with our previous work, we will

refer to these automata also as “tasks”.

The remaining part of the system is modeled as a set



Wait_for_period
c<=ptpPeriod

Wait_for_offset
c<=ptpOff

c==ptpPeriod
Release_PTP!
c=0

c==ptpOff
Release_PTP!

c=0

(a)

Wait_for_period
c<=audPeriod

Wait_for_offset
c<=audOff

c==audPeriod
Release_Audio!
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c==audOff
Release_Audio!

c=0

(b)

Figure 4. PTP and audio task activation au-

tomata

of schedulability checkers [8]. Unlike our previous work,

the checkers for the two tasks are modified to model a

non-preemptive scheduling algorithm, i.e., a transmission

will not be interrupted if it has already started. The sched-

uler is also prioritized, so that when there is no ongoing

transmission and many packets are ready, the PTP packets

go first and the audio packets back off.

The scheduler checker for PTP packets is shown in Fig-

ure 5. D1 is the deadline of PTP packets, which is less

Error

Busy

Check

Idle

Release_Audio?

c==0 && task==2
Release_PTP?
r=r+C1+C1*n1-C2

c==r && 
n1==0 && n2>0
r=C2, task=2, 
c=0, n2=n2-1

c==r && n1>0
r=C1, task=1, 
c=0, n1=n1-1

c==0 & task==2
Release_PTP?
task=1, r=C1, 
n2=n2+1

c<r && c==D1

Release_PTP?

(c<r) && 
(c>0 || task==1)

Release_PTP?
r=r+C1+C1*n1-c, 
c=0

c<r
Release_Audio?
n2=n2+1

(c<r) && (c>0 || task==1)

Release_PTP?
n1=n1+1

c==r &&
n1==0 && 
n2==0

Release_PTP?
task=1,
c=0, r=C1, 
n1=0, n2=0

Release_Audio?
task=2, c=0, 
r=C2, n1=0, n2=0

c==r && c<=D1

Release_PTP?
c=0, r=C1

Figure 5. Schedulability checker for PTP

packets

than or equal to the PTP period, while C1 and C2 are the

transmission time of PTP and audio packets, respectively.

The PTP task has a higher priority than the Audio task as

specified in Section 2. In addition, the execution time of

the former accounts for the total PTP load that the devices

could bear and that of the latter accounts for the total delay

of traversing through the medium and the NACs of audio

packets. Furthermore, we introduce five additional vari-

ables. The variable task denotes the currently-executed

task (i.e., the current on-going transmission), n1 and n2

record the number of PTP and audio packets released dur-

ing the current execution, c is a clock accumulating the

time since the task queues were last idle and r is a data

variable used to sum up the time needed to complete all

tasks released since the checker was last idle. The transi-

tions of the checker are intuitively interpreted as follows:

• The transitions to Idle are taken when the task in-

stance being checked in Check or a sequence of tasks

arrived in Busy, has finished execution.

• The transitions to Busy are taken when an instance of

task PTP or Audio is released. Self-loops are taken

to queue the newly-released instances and to retrieve

them when the current execution has finished.

• The transitions to Check are taken when a PTP in-

stance is (non-deterministically) chosen for check-

ing. Before verifying the deadline, the execution

time of all other PTP instances in the queue must be

taken into account as they would be scheduled be-

fore the current instance, that is r should be updated

to r + C1 + C1 ∗ n1 − c, or r + C1 + C1 ∗ n1 −C2.

New PTP and Audio instances in Check are ignored

as they are already considered in location Busy.

• The transition to Error is taken when the currently-

executed instance misses its deadline.

The scheduler checker for audio packets is shown in

Figure 6. The Audio checker is similar to but simpler than

Error

Busy

CheckIdle

Release_Audio?

c<r && 
c==D2-driftDelta

c>0 && c<r &&
c<D2-driftDelta

Release_PTP?
c==0
Release_PTP?
r=r+C1

c<r

Release_Audio?
r=r+C2-c, 
c=0

c<r
Release_Audio?
r=r+C2

c<r
Release_PTP?
r=r+C1

c==r

Release_PTP?
c=0, r=C1

Release_Audio?
c=0, r=C2

c==r && 
c<=D2-driftDelta

Release_Audio?
c=0, r=C2

Figure 6. Schedulability checker for audio

packets (hard deadline)

the PTP checker because task audio has a lower priority.

D2 is the relative deadline of audio packets and ∆ is in-

troduced to account for the offset time of the local clock

compared to the server clock. The worst case happens

when the local clock is substantially slower than the server

clock and thus when an audio packet is received, the ac-

tual deadline to be verified would be D2 − ∆ instead of

D2.

In fact, the requirement of no deadline miss (hard

deadline) is difficult to obtain in real-time environments.



Therefore, in order to make the analysis more practical,

the requirement is relaxed by allowing an audio packet to

sometimes miss its deadline (firm real-time constraint). A

firm real-time constraint is given by a deadline and by a

couple (m, n) meaning that m deadlines can be missed

every n jobs. [18]. In our case study, a packet may miss

its deadline as long as the previous packet has not already

missed the deadline (m = 1, n = 2). The checker adapted

for this new requirement is shown in Figure 7. We intro-

Check2

Error

Busy

Check1

Idle

c==r && c<=D2-driftDelta c<r && c==D2-driftDelta

r2>0 && !dm &&
c<r && c==D2-driftDelta

r=r+r1+r2-c, c=0

r2>0
Release_Audio?

r2>0 && c>t && 
c<r && c<D2-driftDelta

Release_PTP?

r2>0 && c==t
Release_PTP?
r1=r1+C1

r2==0 && !dm &&
c<r && c==D2-driftDelta
dm=true, r=r+r1

r2==0 && c<r &&
c<D2-driftDelta

Release_Audio?
r2=C2, t=c

dm && c<r && 
c==D2-driftDelta

r2==0 && 
c>0 && c<r && 
c<D2-driftDelta
Release_PTP?
r1=r1+C1

c==0
Release_PTP?
r=r+C1

c<r

Release_Audio?
r=r+C2-c, 
c=0, r1=0, r2=0

c<r
Release_Audio?
r=r+C2, 
dm=false

c<r
Release_PTP?
r=r+C1

c==r

Release_PTP?
c=0, r=C1

Release_Audio?
c=0, r=C2, 
dm=false

c==r && c<=D2-driftDelta
dm=false

Release_Audio?
c=0, r=C2, r1=0, r2=0

Figure 7. Schedulability checker for audio
packets (firm deadline)

duce four new variables: dm is a boolean variable used

to capture the fact that one deadline miss has already hap-

pened (dm = true), r1 is a real variable used to record

the total execution time of all PTP instances released after

the currently-checked instance and before a deadline miss

or the next audio arrival, r2 marks the next audio arrival

whose time is marked in t.

Transitions entering Check1 from Idle or Busy are

taken when an audio instance is (non-deterministically)

chosen for checking. If another PTP instance is already

released, the PTP will be executed first (r = r + C1).

The self-loops in Check1 are taken to accumulate the exe-

cution time of all PTP instances released afterwards until

another audio instance is released or the current Audio in-

stance misses its deadline. If one deadline miss had hap-

pened before (dm = true), the location Error is reached

because of two successive deadline misses. Else, if an-

other audio instance has already been released (r2 > 0),

the transition from Check1 to Check2 is taken in order

to verify if the next deadline is missed again. Otherwise,

the variable dm is updated to true and the transition from

Check1 to Busy is taken to tolerate the first deadline miss.

5. Parametric Analysis

We have performed several experiments to compute the

feasibility region of the system under a diverse set of pa-

Experiment 1 Experiment 2

ptpOff 0 5

ptpPeriod 40 40

D1 10 10

audOff 0 0

audPeriod 10 10

D2 10 10

Table 1. Fixed parameter values in the two

experiments

Experiment 1 Experiment 2

CheckerPTP 726 1105

CheckerAudio 8 12

Table 2. Running time in minutes in two ex-
periments

rameters. We present here the results of two such experi-

ments, which differ in the amount of offset by which pack-

ets are issued to the network. We have chosen as free pa-

rameters the transmission times C1 and C2 and the desired

accuracy ∆ (or drift) of the clocks (∆ = 0 corresponds to

infinite accuracy), given by the application of the PTP pro-

tocol. The values of the fixed parameters for each of the

experiments are shown in Table 1. The free parameters,

on the other hand, are constrained to vary in the following

intervals:

0 < C1 ≤ D1, 0 < C2 ≤ D2

0 ≤ ∆

For reference, the running time results of the two experi-

ments are summarized in Table 2. The computer used in

the experiments has 3481MiB RAM and AMD Athlon 64

Dual Core Processor 5000+. The PTP checker generally

runs much slower than the Audio checker which may be

because the path leading to the error state of the former

is generally longer than that of the latter. The running

time also depends on the bound used to model check the

system. Using a large bound can help find more traces

to the error state, hence the feasibility region is more cor-

rect. However, the larger the bound, the longer the running

time. So in finding the schedulable region, one must trade

off between the number of bounds and computation time.

5.1. Audio feasibility and error regions

We perform experiments on both Audio hard-deadline

and firm-deadline checkers. Figure 8 and 9 graphically

show the Audio feasibility (not shaded) and error (shaded)

regions for ∆ = 0, 3, 5, 7 in two experiments. The feasi-

bility regions are expressed by set of constraints, for ex-

ample, with ∆ = 5 the feasibility region for the Audio

firm-deadline checker in Experiment 1 is expressed by a

conjunction of three constraints as shown below. A first

evident result is that the relaxation of timing constraints

produces a larger feasibility region. This rather intuitive



1: ¬[(20 < C1 +2C2)∧ (0 < C1 ≤ 10)∧ (0 < C2 ≤ 10)]∧
2: ¬[(15 < C1 + 2C2) ∧ (10 < C1 + C2) ∧ (0 < C1 ≤

10) ∧ (0 < C2 ≤ 10)]∧

3: ¬[(C1 + C2 ≤ 10) ∧ (0 < C1 ≤ 10) ∧ (5 < C2 ≤ 10)]

fact can be exactly quantified and even pictorially repre-

sented thanks to our methodology. The second insight of-

fered by this analysis is to quantify the impact of the syn-

chronization accuracy on the correctness of the system.

Indeed, the feasibility region shrinks as ∆ increases and

the temporal behaviour of the system can easily be jeop-

ardized. This result can be used as a specification for the

PTP. Finally, our analysis can be used to guide the choice

of activation offsets, an important degree of freedom to

simplify schedulability of highly loaded systems.
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Figure 8. Audio feasibility and error regions

for ∆ = 0, 3, 5, 7 in Experiment 1

5.2. PTP feasibility and error regions

The PTP feasibility region in the two experiments is

also expressed in terms of sets of constraints. Figure 10

graphically shows the PTP feasibility (not shaded) and er-

ror regions (shaded) in the two experiments. By joining

the PTP and Audio feasibility regions together, we can

obtain the final region in which the whole system is guar-

anteed to work properly. For example, the feasibility re-

gion for the whole system in Experiment 1 is actually that

for task Audio. If the device clock does not drift (∆ = 0),

point (C1 = 10, C2 = 5) is a schedulable point because
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Figure 9. Audio feasibility and error regions

for ∆ = 0, 3, 5, 7 in Experiment 2

the first PTP released at time 0 does not miss its dead-

line (C1 = D1 = 10), then the first Audio deadline miss

happens (C1 + C2 > D2) but the second Audio deadline

is respected (C1 + 2 ∗ C2 = 2 ∗ D2). Other Audio in-

stances released at time 20 and 30 are not preempted, thus

able to meet their deadlines. At time 40, the task arrival

pattern is repeated exactly the same as time 0. However,

point (C1 = 10, C2 = 5) is no longer a feasible point

when ∆ = 5. Because the first Audio instance misses its

deadline as it does when ∆ = 0 and so does the second

Audio instance. So, point (C1 = 10, C2 = 5) should be

in the error region which is verified easily by looking at

Figure 8(b).

6. Conclusions

We have shown how to apply parametric analysis tech-

niques [8] to a distributed Heterogeneous Communication

System (HCS). In this work we have extended this tech-

nique to account for non-preemptive scheduling and soft

real-time constraints. In addition, we have shown how to

use this technique in the context of a network, rather than

the more traditional processor scheduling problem. Start-

ing from the full specification, we have derived a simpli-

fied model which still exhibits the required characteristics.

The analysis identifies non-trivial feasible regions for var-

ious values of the desired synchronization accuracy.

Our future work includes a more complete paramet-
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Figure 10. The PTP feasibility and error re-

gions in two experiments

ric analysis of the system. To this end, we are working

towards improving the runtime efficiency of the tool by

employing explicit state techniques. Preliminary results

show savings in the range of two orders of magnitude,

when the parameter space is randomly explored, and then

generalized, using UPPAAL and symbolic computation.
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