
Int J Softw Tools Technol Transfer (2013) 15:211–228
DOI 10.1007/s10009-012-0245-y

EUROSYS

Timed-automata based schedulability analysis for distributed
firm real-time systems: a case study

Thi Thieu Hoa Le · Luigi Palopoli ·
Roberto Passerone · Yusi Ramadian

Published online: 6 July 2012
© Springer-Verlag 2012

Abstract The growing level of complexity of modern
embedded systems, which are increasingly distributed and
heterogeneous, calls for new design approaches able to rec-
oncile mathematical rigour with flexibility, user-friendliness
and scalability. In the last few years, Timed Automata (TA)
have emerged as a very promising formalism for the availabil-
ity of very effective verification tools. However, their adop-
tion in the industrial community is still slow. The reluctance
of industrial practitioners is partly motivated by persistent
concerns on the ease of use of this formalism, on the sca-
lability of the verification process and on the quality of the
feedback that the designer receives. In this paper, we discuss
these issues by showing the application of the TA formalism
on a case study of industrial complexity. We expose the gen-
erality of the approach, the efficiency of state of the art tools,
but also the limitations in the semantics and in dealing with
free design parameters.

Keywords Embedded systems · Timed automata ·
Real-time scheduling

1 Introduction

In recent years, the complexity of embedded systems (ES) has
risen to unexpected levels. The once elementary and strictly
dedicated machines have now evolved into flexible and net-
worked systems, made of a large set of heterogeneous com-
ponents. In this context, the adjective “heterogeneous” spans
a wide range of possible meanings. Modern embedded sys-
tems are heterogeneous in the way they process data and react

T. T. H. Le · L. Palopoli (B) · R. Passerone · Y. Ramadian
DISI, University of Trento, Trento, Italy
e-mail: palopoli@disi.unitn.it

to events (synchronously or asynchronously), in the different
network protocols that they use, in the different scheduling
policies they share resources by and in the different degrees
of criticality of their timing requirements (soft, hard, firm).
The different combinations of these features create a variety
of design issues that are currently addressed by a variety of
different methods. While no silver bullet yet exists to manage
the complexity of ES design, researchers and industrial prac-
titioners aim for approaches that can claim a sufficient level
of generality to be applicable in most contexts of practical
relevance.

The real-time scheduling analysis (RTSA) [1] has gained
an undisputed popularity in the past few years for the effi-
ciency and the intuitiveness of the techniques it proposes.
However, it suffers from important limitations. First, it is
strongly focused on particular families of scheduling algo-
rithms (priority based) and of computation models (periodic
activations). Second, it only addresses temporal properties
of the tasks, which are simply modelled as activities requir-
ing computation or communication time. Unfortunately, the
correctness of ES encompasses both functional and non-
functional aspects, and the two are not always easy to separate
out. Third, the RTSA is necessarily based on worst case sce-
narios that are not necessarily likely to occur. This often leads
to over-provisioning resource allocations, hardly an accept-
able choice in many cases.

Very different in nature are the approaches based on timed
automata [2]. By using these abstractions, designers can
create descriptions of the different components at varying
levels of detail. What is more, they can investigate proper-
ties of different kind (functional, non-functional and com-
binations thereof) using such advanced verification tools as
UPPAAL [3]. As promising as they may seem, the approaches
based on timed automata have so far encountered a lukewarm
reception among designers. Some of their most important

123

212 T. T. H. Le et al.

concerns are on the ability of the TA formalism to express a
complex system, on their user friendliness, on the scalabili-
ty of verification and synthesis methods, and on the quality
of the feedback that the designer receives. The first concern
includes two different points: (1) is the TA semantics power-
ful enough to capture systems of industrial complexity? (2)
is the TA formalism offered by modelling tools user friendly
enough to be used by non specialists? The second concern
comes from the bad reputation of formal methods when they
are applied to large systems (the curse of dimensionality).
The third one is on the richness of the information that are
received from the tool across the different design iterations.
An ES is often associated with different parameters whose
value is unknown (or partially known) upfront. Some of them
correspond to design choices and are under the control of the
designer (e.g., the bit-rate of a channel, or the complexity of
an algorithm), some others model an uncertain knowledge of
the system and of its environment (e.g., the inter-arrival time
between two user requests). The information of the range of
parameters that correspond to feasible design choices (where
“feasible” means “complying with some required proper-
ties”) is in this setting a very valuable one for the designer.
Indeed, it can guide him/her in the selection of the design
parameters that attain the desired project trade-offs and/or to
evaluate the robustness of a candidate design.

In this paper, we explore these issues taking inspiration
from an industrial case-study. The complexity of the case-
study is sufficient for it to qualify as a realistic design sce-
nario. The system is distributed, and the different activities
(tasks) share resources of different kind. The scheduling solu-
tions adopted for the different resources are different (FIFO
for some, priority based for others). The properties the sys-
tem is required to respect regard both its correct functional-
ity (fill level of buffers) and its temporal behaviour (viola-
tion of deadlines). Interestingly, the temporal properties are
linked with the functional behaviour of the system. The tem-
poral properties refer to a global notion of time, whilst their
enforcement depends on a local clock. So a synchronisation
procedure has to be executed by the system, and the com-
pliance with the real-time constraints depends on its correct
execution. Finally, the correct execution of the systems cru-
cially depends on some design parameters. These features
could make our system a very hard match for standard real-
time analysis. The purpose of this paper is to show how the
system can instead be modelled using timed automata and
analysed with a state of the art tool for TA verification (UP-
PAAL). We aim at exposing the difficulty of the process, the
pitfalls of the TA semantics, the scalability and the quality of
the feedback to the designer.

The paper is organised as follows. In Sect. 2 we offer
a description of the problem, highlighting the properties of
interest and the design parameters. In Sect. 3, we discuss how
to model the system, using a high level variant of the TA for-

Fig. 1 Heterogeneous communication system (HCS)

malism. The model is cast into the TA formalism used by
the UPPAAL verification tool in Sect. 4. In Sect. 5, we show
the execution of different verification tasks, recording their
timing performance and discussing the role of design param-
eters. In Sect. 6 we discuss the related work and in Sect. 7,
we state our conclusions and discuss future work directions.

2 Problem description

The Heterogeneous Communication System (HCS) is used in
commercial aircrafts to distribute music and audio announce-
ments to the main cabin. This is done by streaming a flow of
audio packets from a server to a set of terminal devices, each
one serving a passenger. Therefore, the HCS consists of a
server, a network and a number of devices. The architecture
of the HCS is described in detail in a technical report [4]. For
the purposes of this paper, it is useful to provide a quick over-
view. The scheme of the architecture is depicted in Fig. 1. The
different components (which are in the order of hundreds) are
interconnected through a set of homogeneous networks and
exchange a large number of packets for communication, con-
trol and monitoring. The gateway and routing functionalities
are implemented by special purpose components, defined
Network Access Controllers (NACs), which are arranged in
a daisy chain topology.

2.1 Applications running in the HCS

The primary purpose of the HCS is to stream audio packets
from the server to the devices. The audio streaming applica-
tion requires a periodic packet delivery every Pa time units
(tus) from the server to the devices. Every packet has to be
played back at a time instant tplay, which is recorded in the
packet upon its creation. An excessive delay accumulated
along the path from server to device results in the impos-
sibility to comply with this constraint (as detailed below).
Besides, the devices are required to reproduce the packets

123

Schedulability analysis for distributed RTS 213

Fig. 2 PTP messages exchanged between master and slave clock to achieve time synchronisation (Courtesy IEEE Standard 1588)

at the same instant, to avoid echoing effects along the cabin.
For these reasons an accurate synchronisation between server
and devices, and between each device is an imperative
requirement.

This is obtained by applying the Precision Time Proto-
col (PTP) [5]. The task implementing the PTP protocol is
itself periodic with period Ps. Figure 2 depicts the message
sequence required to synchronise the device (slave) clock
with the server (master) clock using PTP. We will illus-
trate the idea of PTP under the assumption that the rela-
tion between the clocks of Master and slaves are given by
TSlave = TMaster + O , where O is an unknown offset. The
synchronisation procedure is executed iteratively. At the start
of each iteration, the Master sends aSync packet and records
the exact time Tm1 when the packet is transmitted. This infor-
mation is recorded and sent to the slave in a subsequentFol-
low_Up packet. The slave receives this information at time

Ts1 = Tm1 + O + D, (1)

where D is the transmission delay. The slave replies by send-
ing a Delay_Req packet at time Ts2. The master receives
this packet at time

Tm2 = Ts2 − O + D, (2)

which is recorded and sent back to the slave in a
Delay_Resp packet. The slave may therefore compute D
and O by the simple formula:

D = Tm2 − Tm1 + Ts1 − Ts2

2
(3)

O = Ts1 − Tm1 − D = Ts1 − Tm1 − Tm2 + Ts2

2
(4)

This iteration has to be repeated to control the drift between
the clocks, which can change in time due to changes in the
environment. This description applies to the case of Mas-
ter and Slave being connected to the same network. In this
case, the delay D relates only to the “physical” transmission
and can easily be assumed to be the same in both directions.

123

214 T. T. H. Le et al.

Fig. 3 Block diagram of the end-to-end information flow between server and device in the HCS

(a)

(b)

Fig. 4 Time-line of the end-to-end delays incurred by a packet. a Server to device communication, b device to server communication

In our topology (see Fig. 1), there are sub-networks con-
nected through the NACs. The scheduling delays incurred
by a packet along its travel make the delays accumulated
in the two directions very different. This problem has to be
managed at the scheduling level, as discussed next.

2.2 Scheduling

A more detailed scheme of the HCS representing the end-to-
end information flow between the server and one device is
reported in Fig. 3.

Consider a packet sent by the sever to a device. The time-
line reporting the different delays incurred along the way is
reported in the top half of Fig. 4. After the send request, the
packet is inserted into an output buffer, and it waits until it
is scheduled for transmission. The position in the buffer is
related to the packet priority. When the packet reaches the
top of the buffer, it can be scheduled for transmission on
the medium, which is itself managed by a scheduler. The
scheduling discipline used for the medium is priority based
and non-preemptive: on-going packet transmissions are not
interrupted regardless of the priority of the packet being trans-
mitted. Therefore, the scheduling delay accumulated by the
packet awaiting transmission is related to the presence of
higher priority transmission requests from other devices, and

to possible ongoing transmissions. When the packet wins
the competition for the medium, it can be transmitted and it
incurs a transmission delay Lm. For the sake of simplicity we
will consider this transmission time to be the same for all the
packets. After the transmission, the packet is placed into the
input buffer of the NAC, which is managed using a FIFO pol-
icy. When the packet reaches the top position of the buffer, it
can be processed by the NAC. This phase introduces an addi-
tional scheduling delay due to the fact that the NAC manages
several input and output buffers. Also in this case, the pol-
icy is priority based and non-preemptive. After the packet
gains control of the NAC, the processing time required is Ln

(assumed equal for all packets). This sequence of actions is
repeated as many times as required to traverse the chain until
the packet reaches the NAC connected to the device. Similar
considerations apply to the inverse direction (bottom half of
the Fig. 4).

As mentioned earlier, the network is used for two different
packet streams: the PTP and the audio stream. Both streams
are triggered by periodic activations (with period Ps and Pa

respectively). As far as the scheduling priority is concerned,
the packets used by the PTP have, in our setting, a higher
priority than the ones used for the audio stream. The rea-
sons for this choice are twofold. First, the presence of a drift
between the clocks can, at least to a first approximation, be

123

Schedulability analysis for distributed RTS 215

neglected if the difference between Tm1, Tm2, Ts1 and Ts2

remains moderate. This translates into a requirement that the
transmissions of the different packet in the PTP execution
remain close to each other. The second and more important
reason is that the use of high priority packets for the PTP
allows us to keep in check the scheduling delays. This way
the transmission delays in the two directions (Eqs. (1) and
(2)) are likely to be very similar to each other.

To summarise, the transmission priorities of PTP packets
including Sync (S), Follow_Up (F), Delay_Req (DQ)
and Delay_Resp (DP) are assumed to be higher than that
of audio packets (A) as follows:

PRS > PRF > PRDP > PRDQ > PRA,

where PRX denotes the data priority of packet X.

2.3 Temporal properties

A prominent role in the HCS is played by the buffers, which
are located in different parts of the system, as shown in Fig. 3.
For example, the server has an output buffer where outgo-
ing packets await transmission while the medium is busy.
The NACs have two buffers to contain incoming or outgo-
ing packets. All these buffers have finite length. Therefore, a
first property of interest is whether or not any of such buffers
overruns during the operation of the HCS.

To simplify the model, we have assumed that the server
responds in a negligible time to a Delay_Req packet.
Therefore, we will not consider the overrun property for the
input buffer of the server. The property will be verified for
the buffers located on the NAC and for the output buffer of
the server.

The second property that we will verify is on the correct
delivery of the audio packet. If the kth audio packet is gen-
erated at time t (k), it has to be played back at time t (k)

play. The

end-to-end response time R = t (k)
play − t (k) is fixed at design

time. This requirement corresponds to setting a deadline for
the chain of computation initiated by the creation of a new
audio sample: in order for the packet to be processed and
the sound sample to be played back, the sum of all the delay
component detailed in Sect. 2.2 has to be smaller than R.
If this temporal constraint is violated the sample is dropped.
The existence of a scheduling solution that makes for the sat-
isfaction a deadline is said schedulability. We will consider
two possible flavours of the schedulability property: hard-
real time schedulability and firm real-time schedulability. A
system is said hard real-time schedulable if all deadlines are
always met. In contrast a firm real-time system is one for
which deadlines can occasionally be missed. In particular, we
will apply the notion of (m, k)-firm constraints [6]: the task
is permitted to miss m deadlines in every group of k. Con-
sidering firm real-time constraints allows us to reduce the

degree of conservativeness of the analysis: we trade occa-
sional and controlled anomalies for a better utilisation of
the system resource, a very frequent choice in multimedia
systems.

In the systems outlined above, two quantities can be con-
sidered as design parameters: the latencies Lm and Ln. Such
quantities are related to the packet size and to the channel
bit-rate. Hence two types of system verification are possible:

– Verification with ground parameters,
– parametric verification.

By verification with ground parameters, we mean that, for a
given choice of parameters Lm and Ln, we want to know if
the system respects the schedulability properties (either hard
or firm) and if the buffers do not overrun. By parametric ver-
ification, we mean that we look for all possible choices of
Lm and Ln such that the above properties are satisfied.

3 System model

We present in this section our complete model following the
modelling conventions given below.

3.1 Modelling conventions

In the following, we will make use of the notation of timed
automata [2]. Similarly to a regular automaton, a timed
automaton has a finite set of states or locations L linked
by transitions or edges. The automaton also includes a set of
clocks Xc and a set of state variables Xs. Transitions are char-
acterised by an action label, a guard and an update expression,
while states are characterised by an invariant. A transition
can be taken in response to the presence of a synchronising
label of the same name in another automaton of the system,
when the guard evaluates to true, and, in that case, the value
of the variables are updated according to the update expres-
sion. ν! is used to denote a sending action and ν? a receiving
action. Together (ν!, ν?) is a synchronisation between two
automata. An edge is usually referred to as a synchronising
transition if there is a synchronising label on it or an inter-
nal transition (denoted by τ) if there is no such label. Urgent
locations are marked with a U letter, meaning that time elapse
is not allowed when the automaton is staying in one of these
locations. A transition must be taken if the invariant of the
state becomes false. The semantics of a timed automaton is
regulated by a global notion of continuous time. While the
automaton resides in a state, the value of the clock variables
grows linearly with time, and can be reset only upon the exe-
cution of an update expression on a transition. The value of
state variables can instead be changed only as a result of an
update expression when a transition is taken. The updated

123

216 T. T. H. Le et al.

c<=P_sc<=P_s

c<=P_s

c==O_s

synch!

c<=O_s

followUp!

syncRls!

syncRls!
ready_s=true,
c=0

pkt_f.t=clk_s−e_s*Lm,
ready_s=false

ready_s=true,
c=0

c==P_s

(a)

pkt.type==4

delayRsp!

dpRls!

pktFrMdm?

ready_dp=true

ready_dp=false

pkt_dp.ID=pkt.ID,
pkt_dp.t=clk_s

(b)

Fig. 5 PTP implementation on server

values for clocks and variables are effective after the transi-
tion is taken.

A run (or trace) of a timed automaton is a sequence of
states and transitions compatible with the structure of the
automaton. When taking the composition of two automata,
their transitions must synchronise on the labels and the vari-
ables according to rules that depend on the specific timed
automata model. Synchronisations are classified into regular
and broadcast synchronisations and are discussed in more
details in Sect. 3.6.

Our model is composed of 12 timed automata described
below.

3.2 Server

The server runs various applications including the PTP
implementation and audio generation. The PTP is performed
periodically on the server by broadcasting S- and F-mes-
sages to end devices every Ps with a possible non-zero off-
set Os (shown in Fig. 5a), and by replying to a DQ from a
device with a DP (shown in Fig. 5b). Variables c and clks

are periodic clocks (reset after every Ps) and server clock
(never reset) whose drifting rate w.r.t. the real time is es (i.e.,
c = clks = es × creal). In the sequel sections, c will always
denote a clock.

The readiness of a packet X is indicated by setting a bool-
ean variable readyx to true upon an X-release or false upon
its delivery to the medium. Similarly, a composite variable
pktx denotes the content of a packet X. Such a variable
has three members: (i) t ype = 1/2/3/4/5 to indicate that

audRls!

c=0

c=0

c==O_a

c==P_a
audRls!

c<=O_a c<=P_a

(a)

size>bufLen

Erroraudio!

audRls?

audPop()

audPush()

(b)

Fig. 6 Periodic audio generation and buffering. a Audio generation, b
audio buffering

X = S/F/DP/DQ/A respectively, (ii) t to denote the time
at which A must be played by devices (i.e., pkta .t), or S is
sent (i.e., pkt f .t),1 or DQ is received (i.e., pktdp.t), (iii) I D
to record the device identity in case the packet is a DQ or
DP. Only some assignments of these members are shown in
the figure, others are omitted for the sake of brevity (e.g.,
pkt f .t ype = 2).

The periodic audio release and buffering2 are shown
respectively in Fig. 6a and b where aud Push() and aud Pop()

represent respectively the buffer push and pop operations of
audio messages. The audio stream is characterised by the
offset Oa for the first release (transition from initial state to
the second state), and is then periodic afterwards (self tran-
sition on the second state). Each A-packet is time-stamped
with the time it has to be played at devices and are placed in
a waiting-for-transmission buffer. The interval between two
consecutive audio times to play is assumed to be Pa.

The buffer push3 and pop operations are shown in Pro-
cedure 1 and 2, respectively. When a buffer over-run occurs
(si ze > bu f Len), the buffer automaton goes to the Error
state.

Procedure 1 : audPush()
1: buffer[tail] = tplay
2: tplay = tplay + Pa
3: tail = next(tail)
4: size = size+1
5: pkta .t = buffer[head]

6: readya
def= (size > 0)

3.3 Devices

To model the PTP implementation on a device, two automata
are devoted to observing the PTP stream and recording the
sending/arriving time of S in t1/t2 (Fig. 7a) and DQ in t3/t4

1 The delivery of an S-packet is confirmed at the end of the transmis-
sion, hence the delivery time is clks − es × Lm.
2 We consider bounded First-In-First-Out buffers with finite storage
memory and implement them as circular buffers.
3 Initially, tplay = Oa + Drel where Drel is the audio relative deadline.

123

Schedulability analysis for distributed RTS 217

Procedure 2 : audPop()
1: if size > 0 then
2: head = next(head)
3: size = size-1
4: pkta .t = buffer[head]
5: end if
6: readya

def= (size > 0)

pkt.type==1

pkt.type==2
pktToDv?

pktToDv?

t1=pkt.t

t2=clk_d

(a)

pkt.type==2

pkt.type==3 &&
pkt.ID==dvID

dqRls!

delayReq!

pktToDv?

pktToDv?

t4=pkt.t,
off=t2+t3−t1−pkt.t

n_dq+=1

t3=clk_d−e_d*Ln,
pkt_dq.ID=dvID,
n_dq−=1

(b)

t_play>=clk_d−off/2
Error

t_play<clk_d−off/2
pkt.type==5
pktToDv?
t_play=pkt.t

(c)

t_play>=clk_d−off/2

!dlmissed &&
t_play<clk_d−off/2

Error

dlmissed &&
t_play<clk_d−off/2

pkt.type==5
pktToDv?

dlmissed=false

dlmissed=true

t_play=pkt.t

(d)

Fig. 7 PTP implementation and audio deadline verifier on end devices

(Fig. 7b) for the offset calculation between server and device
clocks as shown in Procedure 3. The device clock clkd is also
a drifting clock with rate ed and t2, t3 are measured w.r.t. this
clock clkd.

Every device has its own identity denoted by a positive
dvID which is used to indicate the source of a DQ. As illus-
trated in Fig. 1, a NAC can be associated to many devices.
Thus, there can be many DQs available simultaneously and
ndq, which is a shared variable between the NAC and all of
its associated devices, is used to record the presence of these
DQs. For simplicity, the NAC is assumed to resolve the con-
tention by selecting randomly a DQ. The device that sends
its DQ successfully to the NAC can then switch to waiting
the corresponding DP from the server.

Procedure 3 : Offset calculation
1: clkd = clks + of fd
2: delay = (t2 − of fd) − t1
3: delay = t4 − (t3 − of fd)

4: 2of fd = t2 + t3 − t1 − t4
5: of f = t2 + t3 − t1 − t4, where of f = 2of fd
6:
7: of f0 = 0
8: clk0 = clkd − of f0/2
9:
10: of f ′

1 = (t2 − of f0/2) + (t3 − of f0/2) − t1 − t4
11: of f1 = of f0 + of f ′

1 = t2 + t3 − t1 − t4
12: clk1 = clk0 − of f ′

1/2 = clkd − of f1/2
13: ...

14: of fn = of f0 +
n∑

1
of f ′

i = t2 + t3 − t1 − t4

15: clkn = clkn−1 − of f ′
n/2 = clkd − of fn/2

Figure 7c describes the activities of an audio-hard-dead-
line checker implemented on a device. Upon receiving an
audio packet, its time-to-play tplay parameter is retrieved and
checked with the current time of the device clock. If the clock
has already passed this tplay, the automaton goes to the Error
state. For soft-deadline constraints, the automaton can be
modified to tolerate some deadline misses. For example, in
case two consecutive audio deadline misses are allowed, an
additional boolean variable dlmissed can be used to indicate
whether the previous deadline was missed as in Fig. 7d.

3.4 Network medium

The network medium is responsible for data transmission into
subnets which must take place whenever any data is available,
unless the medium is currently busy. In this heterogeneous
system, the data priority (PR) is assumed as follows:

PRS > PRF > PRDP > PRDQ > PRA

The data of highest priority (denoted by token in Fig. 8)
is transmitted first and others have to back-off and wait for
their turn. The network transmission is done after Lm (tus)
and the data is forwarded to the NACs which then pass it onto
subnets.

Variables pktx and readyx (X �= DQ) are shared between
the medium and server components of the model. Particu-
larly, pkta and readya, denoting the head and positive size of
the audio buffer, are updated in Procedures 1 and 2. Likewise,
variables pktdq and readydq, shared between the medium and
associated DQ-sources, denote the winning DQ and positive

number of DQs waiting for a transmission (i.e., readydq
def=

(ndq > 0)).

3.5 Network access controllers (NACs)

NACs are responsible for data routing from the server into
subnets and vice versa as shown in Fig. 9c. In addition,

123

218 T. T. H. Le et al.

Fig. 8 Network medium

c==0 &&
token>3

c==0 &&
token>4

c==Lm && token==2

c==0

c==Lm && token==1

c<=Lm

ready_s

!ready_s && !ready_f && !ready_dp && !ready_dq && !ready_a

c==Lm && token==3

c==Lm && token==5

c==Lm && token==4

!ready_s && ready_f

dpRls?

dqRls?

audRls?

synch?syncRls?

audio?

delayRsp?

delayReq?

syncRls?

dpRls?

followUp?

dqRls?

pktFrMdm!

pkt=pkt_f,
ready_f=false, c=0

pkt=pkt_dp, c=0

pkt=pkt_dq, c=0

token=1

token=4

token=3

token=5,c=0

token=4

token=5

pkt=pkt_a, c=0

token=1

token=3

token=2

!ready_s && !ready_f && ready_dp

token=1,c=0 token=0pkt=pkt_s, ready_f=true, c=0

token=3,c=0

token=4,c=0

!ready_s && !ready_f && !ready_dp && !ready_dq && ready_a

!ready_s && !ready_f && !ready_dp && ready_dq

size>bufLen

Error

pkt_in.type!=4

pktFrBuf!

pktToBuf?

pktPop()

pktPush()

(a)

size>bufLen

pkt.type==4

size>0
delayReq!

dqRls!

dqToBuf?
n_dq+=1,
dpPush()

pkt_dq.ID=headEle,
n_dq−=1,
dpPop()

Error

(b)

c==0 &&
pkt_in.type!=4

c==0 &&
token>4

c==Ln && token!=4pkt_in.type!=4

!ready_in && !ready_out

c==Ln && token==4

ready_in && head_ib.type<4

ready_in && !ready_out && head_ib.type>4

pktFrBuf?

dqRls?

pktToNAC?

c<=Ln

delayReq?

pktToNAC?

dqRls?

pktFrNAC!

token=4

pkt=pkt_dq, c=0

tkUpdate()

token=4,c=0

token=4

token=head_ib.type

token=head_ib.type

ready_out && (!ready_in || head_ib.type>4)

token=0tkUpdate(),
c=0

pkt=head_ib, c=0

(c)

Fig. 9 Input buffer, output buffer and NAC

NACs can perform data encoding/decoding on the data pass-
ing through it which takes Ln (tus). Because only one packet
can be processed at a time, NACs must be capable of buffer-
ing data. In this model, NACs are assumed to have two types

of buffer: input buffer for data from the server to devices
(i.e., S, F, DP, A) and output buffers for DQ from devices to
the server. These buffers are depicted in Fig. 9a and b. The
definitions of the push and pop operations for these buffers
are similar to those given for the audio buffer in Sect. 3.2.

As the network medium (or NAC) can be associated to
many NACs, there are also many NAC output buffers con-
tending for a DQ-transmission. The contention is resolved in
a manner similar to that presented in Sect. 3.3. Here, head Ele
stands for the head element of the output buffer and pkt
denotes the packet currently processed by its associated NAC.

Also similar to the transmission mechanism of the med-
ium, a NAC always processes the data of highest priority.
Deciding which data to process is based on the availability
of data from the server and DQs from devices. Such informa-
tion is available from variables headib and readyin, which
denote the head and positive size of its input buffer and vari-
ables pktdq, readyout (shared between a NAC and its associ-
ated DQ-sources) which denote the winning DQ and positive

number of DQs still queuing for their turn (i.e., readyout
def=

(ndq > 0)).

3.6 Synchronisation and transmission modelling
mechanism

A synchronisation can be either regular or broadcast.
Regular synchronisations require both sending and receiving

123

Schedulability analysis for distributed RTS 219

actions to happen simultaneously while the sending action
can always happen (provided that the guard is satisfied) in a
broadcast synchronisation, no matter if any receiving actions
are enabled. The receiving actions that are enabled will syn-
chronise.

The transmission mechanism is modelled by shared vari-
ables and broadcast synchronisations. The transmission
arbiters implemented inside the transmitters (e.g., network
medium, NACs) must have the ability to select the data of
highest priority among available data for transmission at two
points of time as follows.

– When a transmitter is idle (i.e., staying in the initial
location and no data is available as readyi = f alse
where i ∈ {s, f, dp, dq, a, in, out}), it waits for any
broadcast sending actions (syncRls!, dpRls!, dq Rls!,
aud Rls!) to happen and synchronises with those enabled
at the same time in a random sequential order with no
time elapse in between. For example, let Os = Oa = 0
so initially two broadcast sending actions are enabled:
syncRls!, aud Rls! and two packets S and A waiting to be
transmitted through the network medium. The synchron-
ising order can be either: aud Rls, syncRls or syncRls,
aud Rls. No matter what order is chosen, the arbiter guar-
antees to transmit the highest priority data first, which in
this example is S. This is because the value of token is
set to 1 in either synchronising orders.

– When a transmitter has just finished its current transmis-
sion (i.e., after pkt Fr Mdm? or pkt Fr N AC? is taken), it
waits for the arbiter decision on the next transmission and
takes an internal transition accordingly. The transmission
decision is based on the information given by variables
readyi and the data priority in .t ype. All broadcast send-
ing actions to the transmitter happening before an inter-
nal transition is taken can change variables readyi and
.t ype, thereby possibly affecting the arbiter transmission
decision. Otherwise, the transmitter will synchronise with
them in a random sequential order as described above.

It is possible to model the arbiter transmission decision by
using interleaving semantics, which requires the number of
internal transitions and synchronisations executed in parallel
to be at most 1. So, transitions which are enabled at the same
time are taken sequentially without time elapse in between.
In the modelling environment where interleaving semantics
is not supported, the model requires minor modification. That
is, all broadcast synchronisations are made regular by add-
ing dummy receiving actions to ensure that the transmitter
can always synchronise with a broadcast sending source in
whatever state. As the transmitter cannot do multiple syn-
chronisations simultaneously, they will have to be taken in
a random sequential order as desired. Figure 10 shows an
example of adding dummy receiving actions to the medium

c<=Lm

c>0
syncRls? syncRls?syncRls?

Fig. 10 Add dummy transitions to make syncRls a regular synchro-
nisation

Fig. 11 Packet streams in simple HCS

Table 1 System instantiation
for a simple example Name Template

P1S 5a

P2S 5b

aSdr 6a

aBu f 6b

P1d1 7a

P2d1 7b

a Recvd1 7c

mdm 8

i Bu fn1 9a

oBu fn1 9b

n1 9c

automaton in Fig. 8 to make syncRls a regular synchronisa-
tion.

3.7 Example

Consider a simple system that consists of a server, a network
medium, a NAC, a device and whose flows of PTP and audio
messages are depicted in Fig. 11. To represent such a system,
11 automata whose templates are described in Figs. 5, 6, 7,
8, 9c are needed. For the sake of convenience in explana-
tion and reasoning, these automata are named as shown in
Table 1.

Table 2 summarises all the synchronisations (regular and
broadcast) between the automata. An action is denoted by
Automaton.Label, for example P1s .synch! indicates the
S-sending action of the automaton in Fig. 5a. Table 3 provides
a summary of all the variables shared between the automata

123

220 T. T. H. Le et al.

Table 2 Synchronisations between automata

Type Name Sending action Receiving action(s)

Regular synch P1s .synch! mdm.synch?

Regular followUp P1s .followUp! mdm.followUp?

Regular delayRsp P2s .delayRsp! mdm.delayRsp?

Regular dqToMdm oBu fn1.delayReq! mdm.delayReq?

Regular dqToN1 P2d1.delayReq! n1.delayReq?

Regular audio aBu f .audio! mdm.audio?

Regular pktFrIBufN1 i Bu fn1.pktFrBuf! n1.pktFrBuf?

Broadcast syncRls P1s .syncRls! mdm.syncRls?

Broadcast dpRls P2s .dpRls! mdm.dpRls?

Broadcast dqRlsToN1 P2d1.dqRls! n1.dqRls?

Broadcast dqRlsToMdm oBu fn1.dqRls! mdm.dqRls?

Broadcast audRls aSdr .audRls! aBu f .audRls?

mdm.audRls?

Broadcast pktFrMdm mdm.pktFrMdm! P2s .pktFrMdm?

i Bu fn1.pktToBuf?

n1.pktToNAC?

Broadcast pktFrN1 n1.pktFrNAC! P1d1.pktToDv?

P2d1.pktToDv?

a Recvd1.pktToDv?

oBu fn1.dqToBuf?

Table 3 Shared variables between automata

Global name Corresponding local names

t1d1 P1d1.t1, P2d1.t1

t2d1 P1d1.t2, P2d1.t2

Ln P2d1.Ln, n1.Ln

Lm P1s .Lm , mdm.Lm

n_dqn1 P2d1.ndq , n1.ndq

n_dqm oBu fn1.ndq , mdm.ndq

of fd1 P2d1.of f, a Recvd1.of f

pkts P1s .pkts , mdm.pkts

pkta aBu f.pkta, mdm.pkta

pktm mdm.pkt, P2s .pkt

i Bu fn1.pkt_in, n1.pkt_in

pktn1 n1.pkt, P1d1.pkt, P2d1.pkt

a Recvd1.pkt, oBu fn1.pkt

pktdp P2s .pktdp, mdm.pktdp

pkt_dqm oBu fn1.pktdq , mdm.pktdq

pkt_dqn1 P2d1.pktdq , n1.pktdq

head_ibn1 i Bu fn1.head_ib, n1.head_ib

readys P1s .readys , mdm.readys

readya aBu f.readya, mdm.readya

readydp P2s .readydp, mdm.readydp

readydq oBu fn1.readydq , mdm.readydq

ready_inn1 i Bu fn1.ready_in, n1.ready_in

ready_outn1 P2d1.ready_out, n1.ready_out

Table 4 Packets sent with synchronisations

Global name Synchronisations

pkts P1s .synch!,mdm.synch?

pkta aBu f .audio!, mdm.audio?

pktm mdm.pktFrMdm!, P2s .pktFrMdm?

i Bu fn1.pktToBuf?, n1.pktToNAC?

pktn1 n1.pktFrNAC!, P1d1.pktToDv?, P2d1.pktToDv?

a Recvd1.pktToDv?, oBu fn1.dqToBuf

pktdp P2s .delayRsp!, mdm.delayRsp?

pkt_dqm oBu fn1.delayReq!, mdm.delayReq?

pkt_dqn1 P2d1.delayReq!, n1.delayReq?

head_ibn1 i Bu fn1.pktFrBuf!, n1.pktFrBuf?

and Table 4 shows which packet is sent in which synchroni-
sation. For each of the automata that share a variable, it has
a copy and a local name for that variable. The semantics for
a shared variable with local copies is that whenever a local
copy is changed, it is immediately effective on the global
variable, i.e., it is also changed.

Since we accept the convention that updating clocks and
variables are only effective after the edge is taken, there seems
to exist a semantic problem in retrieving the correct infor-
mation of a DQ sent from oBu fn1 to mdm (or from P2d1

to n1). Because oBu fn1.pkt_dq (or P2d1.pkt_dq), which
represents that DQ, is updated only after the synchronisa-
tion {oBu fn1.delayReq!, mdm.delayReq? } (or {P2d1.delay-
Req!, n1.delayReq?}) happens, any read operation on the
variable during or before the synchronisation will not get
the expected value, e.g., reading and assigning this variable
to mdm.pkt in action mdm.delayReq? (or n1.pkt in action
n1.delayReq?) in the model. However, this turns out not to be
so problematic when some particular modelling construct is
exploited. For example, in UPPAAL, the update expressions
in a sending action are executed before the update expres-
sions on a corresponding receiving action, so the problem
dissolves. In another modelling languages like NuSMV [7]
which does not adopt such convention, variables are updated
by specifying their next value with the keyword next. So the
problem is also solved by specifying:

next(mdm.pkt) = next(mdm.pkt_dq)

Consider an example where Ps = 8, Pa = 2, Os = Oa =
0, Lm = Ln = 1, es = ed1 = 1 (clocks do not drift) and
audio relative deadline Drel = 2. Then the deadline of the
first A, which is 2, is violated as shown by the following
transition sequence:

α = syncRls, audRls, 1,

synch, pktFrMdm, mdm.τ, 1,

audRls, followUp, pktFrMdm, mdm.τ,

123

Schedulability analysis for distributed RTS 221

pktFrIBufN1, pktFrN1, n1.τ, 1

audio, pktFrMdm, mdm.τ,

pktFrIBufN1, pktFrN1, n1.τ, dqRlsToN1, 1

audRls, audio, pktFrMdm, mdm.τ,

dqToN1, pktFrN1, n1.τ, dqRlsToMdm, 1

dqToMdm, pktFrMdm, mdm.τ,

pktFrIBufN1, pktFrN1, a Recv.τ

3.8 Modelling requirements for HCS

To model a real-time system with clock synchronisation like
HCS, we need a modelling language that can express dif-
ferent timed requirements and allow manipulating clocks.
Other requirements including shared variables, broadcast
channels and interleaving semantics certainly ease the mod-
elling effort but are not mandatory because there are always
other modelling alternatives for them.

UPPAAL, which is a mature modelling languages, can
provide very efficient verifications and analyses on temporal
properties of a system modelled in terms of timed automata.
While it supports all the optional modelling requirements for
HCS, it does not allow direct clock manipulations. We defer
the discussion on this limitation of UPPAAL to the next sec-
tion where we describe how to model HCS in UPPAAL.
Therefore, with UPPAAL the mandatory modelling require-
ments for HCS stated earlier can only be satisfied partially.

4 UPPAAL model for HCS

Procedure 4 : Integer subtraction
Require: a time point (ti , di),

an offset to be subtracted away of f
Ensure: (t, d) is the subtraction result
1: t = ti − of f
2: d = di
3: if t < 0 then
4: t = t + Lday
5: d = 1 − d
6: else if t > Lday then
7: t = t − Lday
8: d = 1 − d
9: end if

We have modelled HCS in UPPAAL [3] because the
optimised real-time model checker integrated in the UP-
PAAL modelling environment allows the temporal proper-
ties of the system to be efficiently verified and analysed. The
pseudo model presented in Sect. 3 is translated to UPPAAL
with some modifications on modelling and capturing spe-
cific instants of time. Such modifications are not trivial as
UPPAAL generally does not support all expression involving

Procedure 5 : Delay Calculation
Require: two time points (t1, d1) and (t2, d2)

Ensure: delay is the difference between two time points
1: if d1 == d2 then
2: delay = t2 − t1
3: else
4: delay = t2 + Lday − t1
5: end if

c==u

c<=u

tick!
d_i=(t_i+1>=L_day) ^ d_i,
t_i=(t_i+1) % L_day,
c=0

Fig. 12 Integer clock

clocks. For instance, reading a clock and assigning its value
to a variable are impossible in UPPAAL since only integer
variables are supported there. Access to clocks, however, is
essential to the PTP implementation on both the server and
devices.

One approach is to try to use integer clocks and intro-
duce the variables ti whose values are the integer parts of the
clock values. The idea is to compute an upper bound u and
increase ti whenever a clock reaches u. Specifically, given
c = e × creal then u = �1/e� is the clock bound at which c
must be reset to 0 and ti is increased by 1. In addition, u can
be measured more finely by taking up to n digits after the dec-
imal point of 1/e. For example, e = 0.95 so u = �1/0.95� =
�1.052� = 1 or better u = �103/0.95� = 1, 052.

As every integer variable will finally overflow if it keeps
increasing, it is necessary to introduce the notion of date,
which we split into an odd and an even date, so that ti can be
reset to 0 whenever it reaches the duration of day, denoted
by Lday. An additional variable di , whose value is either 0
(even date) or 1 (odd date), is used to remember the current
date of the integer clock. The use of integer clocks gives rise
to additional considerations and complications:

– An additional automaton is specified to model the inte-
ger clocks. Figure 12 shows a UPPAAL template of such
automaton. Here, ^ and % denote the bitwise XOR and
modulo operator respectively. Moreover, the transition
t ick! must always happen before any reading attempt on
integer clocks, thus it must be modelled as a broadcast
channel and be given a higher priority than other transi-
tions.

– Invariants on a periodic clock c like c � Ps must be
multiplied by their upper bound u, e.g., c � u × Ps.

– Consider a subtraction involving clock c like (c −
of f). To turn this into an integer subtraction, ti , di are
introduced as described above and the integer subtrac-

123

222 T. T. H. Le et al.

tion stored in t, d as in Procedure 4. Similar expressions
involving clocks can be found in Figs. 5a and 7, e.g.,
pkt f .t = clks − es × Lm.

– An essential part of the PTP is to record precisely the
sending/arriving time of S (or DQ) in t1/t2 (or t3/t4)
respectively. Because all clocks are now integer, also the
sending/arriving date is recorded in d1/d2 (or d3/d4).
Computing the difference between the sending and arriv-
ing time is not straightforward as there is no way to know
how many days have elapsed between these two dates,
especially when the server and device clocks have differ-
ent drifting rates. For example:

es = 0.50 → us = �1/0.50� = 2

ed = 0.25 → ud = �1/0.25� = 4

Therefore when the device integer clock reaches its bound
the second/fourth/eighth time, etc., the server clock hits
its bound the fourth/eight/sixteenth time, etc. respectively
and the date variables for both clocks are 0. If the drifting
rates are constrained to be exactly the same and Lday to
be greater than the worst delay of any packet in HCS,
then the difference between (t1, d1) and (t2, d2) can be
measured as in Procedure 5.

– The verification of audio deadlines encounters a similar
problem because the deadlines are checked w.r.t. integer
device clocks. When the drifting rates are the same and
Lday is much greater than both the worst delay of any
packet in the system and the device offset of fn calcu-
lated in Procedure 3, then audio deadlines can be verified
according to Procedure 6. Let (tp, dp) denote an audio
time-to-play or deadline and (ti , di) denote the time at
which a device receives the packet without considering
the offset information. Then, (tg, dg) or the time at which
the packet was generated by the server can be calculated
by subtracting away the audio relative deadline Drel from
(tp, dp) (line 1). Likewise, the subtraction involving of fn

(line 2) computes the actual arrival time of the packet. The
deadline verification is based on comparing the receipt
time without (ti , di) and with (tarr, darr) considering the
offset information against the deadline (tp, dp). For exam-
ple, when (di == dp) ∧ (ti � tp) (line 3), it means the
actual dates are coincident and the deadline may be not
be due yet because Drel 	 Lday and the worst delay is
less than Lday. Then, a positive offset (i.e., of fn � 0)
means the actual arrival time is even earlier and so the
deadline is respected (lines 4–5). A negative offset may
not violate the deadline as long as the actual arrival time
is still earlier than the deadline (lines 4–5). Otherwise,
the deadline is violated (lines 6–8).

Procedure 6 : Audio Deadline Verification
Require: offset of fn from Procedure 3,

deadline (tp, dp),
without-offset receipt time (ti , di)

Ensure: check ∈ {violated, satisfied}
1: (tg, dg) = (tp, dp) − Drel
2: (tarr, darr) = (ti , di) − of fn/2
3: if (di == dp) ∧ (ti � tp) then
4: if (of fn � 0) ∨ (darr == dp ∧ tarr � tp) then
5: check = satisfied
6: else
7: check = violated
8: end if
9: else if (di == dp) ∧ (ti > tp) then
10: if (of fn � 0) ∨ (darr == dp ∧ tarr > tp) then
11: check = violated
12: else
13: check = satisfied
14: end if
15: else if (di ! = dp) ∧ (dp == dg) then
16: if (of fn � 0) ∨ (darr ! = dp) ∨ (tarr > tp) then
17: check = violated
18: else
19: check = satisfied
20: end if
21: else if (di ! = dp) ∧ (dp! = dg) then
22: if (of fn � 0) ∨ (darr ! = dp) ∨ (tarr � tp) then
23: check = satisfied
24: else
25: check = violated
26: end if
27: end if

5 Analysis of ground parameters

The UPPAAL model for HCS is a network of 13 timed auto-
mata of which 11 automata are described in Figs. 5, 6, 7, 8,
9c with further modifications for capturing clock values as
detailed in Sect. 4, and 2 additional automata to model the
integer server/device clock.

We have performed verification and analyses on the cor-
rect functioning of HCS (i.e., audio deadlines are satisfied
w.r.t. a hard or firm constraint and buffer overruns do not
occur) under a diverse set of parameter settings. We present
in this section the experimental results for a simple instanti-
ation of HCS whose structure and connection are depicted in
Fig. 11. We have chosen as free parameters the latency Lm

and Ln. A point (Lm, Ln) is considered feasible if it does
not drive the network of automata to any Error location. The
values of the fixed parameters are as follows:

Ps = 40, Pa = 10, Os = Oa = 0, Drel = 10,

Lday = 1000, bu flen = 10, es = ed1 = 1

As discussed in Sect. 4, to ensure the correctness of the com-
parisons between integer clocks, it is necessary to enforce
the following constraints:

123

Schedulability analysis for distributed RTS 223

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ln

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ln

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ln
LnLnLn

(a)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ln

Lm

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ln

Lm

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ln

LmLmLmLm

(b)

 0 0

 10

 20

 30

 40

 50

 10 20 30 40 50

Ln

Lm

 0

 10

 20

 30

 40

 50

 10 20 30 40 50

Ln

Lm

Ln

Lm

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50
 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50
LmLmLm

Fig. 13 Point-wise verification result on buffer-overrun (box), deadline violation (times) w.r.t hard constraint (a, c) and soft constraint (b, d),
correct functioning (plus). c Zoomed region between 0 and 5 in a. d Zoomed region between 0 and 5 in b

– drifting rates are exactly the same
– Lday > of f > −Lday

– Lday > delayworst

The first constraint is respected because in our experiment
es = ed1 = 1, meaning clocks do not drift. The satisfac-
tion of the second constraint is confirmed by the UPPAAL
checker. The last constraint can be verified by using the worst
delay for an A-packet approximated in the following formula,
since A-packets have the lowest priority:

delayA
worst � 10 × Pa + 10 × Ln + (10 × Pa/Ps + 1) × Ln.

where:

– 10 × Pa is the time period after which the packet must be
delivered, otherwise a buffer overrun occurs because the
buffer can contain at most 10 packets (bu flen = 10).

– 10 × Ln is the delay the packet might have to experience
if it is inserted at the end of the NAC input queue and so
has to wait for the other 9 packets to be processed.

– 10 × Pa/Ps + 1 is the number of S-packets released until
the packet is delivered to the network and since there is
only one device in this experiment, it is also the number
of DQ-packets that are sent upon receiving S-packets.

– (10 × Pa/Ps + 1)× Ln is the delay the packet may expe-
rience when the DQs are processed while the packet is
queuing for its turn.

Moreover, to prevent deadlock in Fig. 5a, we need to enforce
a further constraint of Ps ≥ 3× Lm. This is because the Sync
period must complete sending a pair of S and F which takes
2Lm and the S may have to wait for the network medium
to become free which takes 1Lm. We have carried the ver-
ification in a point-wise manner. The parameters of interest
(i.e., Lm and Ln) are grounded to different values between
0 and 10 (a value of 10 is chosen to respect the constraint
on deadlock prevention). Figure 13a and b show the result of
the verification.

In Fig. 13, points marked with � result in buffer over-
runs while points marked with × do not, but instead vio-
late a hard or soft deadline constraint. Feasible points which

123

224 T. T. H. Le et al.

Fig. 14 Variation of latency

can ensure the correct functioning of the system are marked
with +. A closer look at the region in Fig. 13a, b where
only a hard/soft deadline constraint is violated or satisfied
is shown in Fig. 13c/d where the square regions between
0 and 5 are zoomed in. This zooming operation essentially
means performing a finer granularity on the free parame-
ters Lm and Ln. Since UPPAAL supports only integer vari-
ables, finer granularities can be obtained by performing a
z-multiplication. That is, fixed timing parameters (includ-
ing Ps, Pa, Os, Oa, Drel, Lday) and the vertex coordinates
of the square region are multiplied by 10z where z � 1
denoting the number of digits after the decimal point of Lm

and Ln. For example, the feasibility verification on point
Lm = 5, Ln = 5 is enabled in Fig. 13c, d where the 1-multi-
plication is performed while it is not in Fig. 13a, b since Lm

and Ln cannot take on real values like 0.5. The choice of z

certainly depends on the largest integer value that UPPAAL
can represent and therefore cannot grow arbitrarily large.

In particular, Fig. 13d shows the non-monotonic behav-
iour of HCS under a soft constraint of audio deadlines. For
example, at Lm = 3, the system respects the constraint for
0.1 � Ln � 1.6. When Ln grows larger, i.e., 1.7 � Ln,
the constraint is violated until Ln goes beyond 2.0 when it is
satisfied again and remains so as long as Ln � 3.4.

Figures 15, 16, 17 explain graphically the reasons for such
non-monotonic behaviour w.r.t. the variation of Ln in the
intervals [t1, t2] equal to [0.1, 1.6] or [1.7, 2] or [2.1, 3.4].
The variation of Ln from t1 to t2 causes the latency of a
packet to vary as well, which in turn causes the variation in
the latency of the packet transmitted right after it. We use a
horizontal bar to denote a latency and depict the variation in
latency by two such bars, each of which corresponds to Ln

being at the starting/end point of the interval in which it var-
ies. The two bars may partially overlap as shown in Fig. 14a,
b) or be separate as in Fig. 14c. In Fig. 14, the starting/end
points of the two bars are t/t + t1 and t ′/t ′ + t2.

Figure 15a and b show the packet stream during the first
two audio periods for 0.1 � Ln � 1.6. S, F and A packets are
delivered to the medium at time 0, 3 and 6 respectively. They
are then forwarded to the NAC at time 3, 6 and 9 respec-
tively. As Ln changes from 0.1 to 1.6, the release time of
a DQ-packet changes from 6.1 to 7.6 upon receiving the
F-packet and the starting time of the DQ transmission
through the medium changes from 9 to 9.2. Note that the
medium was busy finishing the first A-transmission before
time 9. Upon receiving the DQ-packet, the server replies with
a DP at time ranging from 12 to 12.2 w.r.t. the variation of
Ln between 0.1 and 1.6.

(a)

(b)

Fig. 15 Packet streams in HCS during the first two audio period. a Packet transmission scheme of the NAC for Lm = 3 and 0.1 � Ln � 1.6.
b Packet transmission scheme of the NAC for Lm = 3 and 0.1 � Ln � 1.6

123

Schedulability analysis for distributed RTS 225

(a)

(b)

Fig. 16 Packet streams in HCS during the first two audio periods. a Packet transmission scheme of the medium for Lm = 3 and 1.7 � Ln � 2.0.
b Packet transmission scheme of the NAC for Lm = 3 and 1.7 � Ln � 2.0

(a)

(b)

Fig. 17 Packet streams in HCS during the first two audio periods. a Packet transmission scheme of the medium for Lm = 3 and 2.1 � Ln � 3.4.
b Packet transmission scheme of the NLC for Lm = 3 and 2.1 � Ln � 3.4

The arriving time of the first A-packet also varies with Ln,
i.e., it goes from 9.1 to 10.6. Since Drel =10, it is possible that
the first A-deadline is not respected. The second A-released
at time 10 is transmitted through the medium at time ranging
from 15 to 15.2 and so its arriving time ranges from 18 to 19.6
which is less than 20. As can be seen clearly from the fig-
ures, the delays of the S and DQ packets are the same, hence
of fn = 0 and the second A-deadline is satisfied. From time
20–40, two other A-packets are generated and transmitted
through the idle network without further delays from pack-
ets of higher priorities. Those A-deadlines are also satisfied
and this transmission scheme is repeated at time 40, 80, etc.

For 1.7 � Ln � 2.0, the transmission scheme looks simi-
larly as in Fig. 16a and b. However, since the arriving time of
the first A varies in the interval of [11.1,12] and the second
A in [20.1,21], two consecutive deadline misses certainly
happen and so the soft deadline constraint is violated.

When Ln grows larger than 2.0, i.e., 2.1 � Ln � 3.4, the
NAC processes the DQ-packet longer than previous cases.
The DQ is forwarded to the medium at time ranging from
10.2 to 13.2 and so has to wait for the second A-packet, which
was created at time 10 and took the transmission token, to
complete its transmission. In this case, the second A gets
transmitted before the DQ and arrives at the device before

123

226 T. T. H. Le et al.

Table 5 Analysis time in minutes (mins) under a hard/firm audio deadline constraint with a coarse/fine granularity

Constraint type Granularity Range Figure Verified points Total analysis Average analysis
time (min) time (min)

Hard Coarse 0–10 13a 100 445 4.5

Firm Coarse 0–10 13b 100 440 4.4

Hard Fine 0–5 13c 2,500 250 0.1

Firm Fine 0–5 13d 2,500 260 0.1

the DP between time 15.1 and 20. Since the offset initially
is zero and changed upon receiving the DP, the second DQ
deadline is satisfied (Fig. 17a, b).

Finally, as soon as Ln goes beyond 3.5, i.e., 3.5 � Ln �
5.0, the arriving time of the second A goes beyond 20 and
causes the soft deadline constraint to be violated.

Table 5 shows the total analysis time taken to analyse HCS
operating under a hard or soft constraint on audio deadline
and with a coarse or fine granularity. The analysis is per-
formed on 10×10 = 100 points in a coarse-grained param-
eter setting with the parameters ranging from 0 to 10 time
units. For the fine-grained parameter setting, the grid is made
of 50 × 50 = 2,500 points while the parameters vary in
the smaller 0–5 time units range. The fine-grained analy-
sis results in a much lower average time per point, and an
overall lower total run-time. This is because the analysis is
restricted to a region with smaller values of the latency, which
result in a smaller time for UPPAAL to converge (find an
error trace or establish the feasibility of the system). If we
spanned the whole range with fine granularity, the computa-
tion time would easily become unaffordable. A coarse gran-
ularity should therefore be used to study large variations,
while smaller regions can be analysed more finely.

Given the figures in Table 5, we can make the follow-
ing concluding remarks. First, the system seems to have an
acceptable performance when the verification is carried out
with ground parameters (a few minutes to carry out the verifi-
cation). Clearly, the performance worsens significantly when
the complexity of the system grows (e.g., by inserting more
NACs), but it remains within acceptable bounds for realistic
sizes of the problem. Second, the exploration of the param-
eter space is cost affordable for a coarse granularity, but the
non monotonic behaviour of the system could very easily
lead to wrong conclusions. Third, a more exhaustive analy-
sis (with a finer granularity) provides better guarantees and
enables the designer to gain insight in the system behaviour.
However, the cost of this analysis remains very high for a
sufficiently large span of the parameters.

6 Related work

There are several methodologies that have been developed
in the literature to address various issues in the analysis of

real-time embedded systems. In our specific case, we are
interested in determining timing properties of a complex sys-
tem over a range of different parameters and, in particular,
in computing an area of safe operation. This problem can be
approached using formal analytical exhaustive methods or
semi-formal simulation-based methods, and may take into
account worst case or average case (under a certain statis-
tics) behaviour.

One class of methodologies is based on the analytical rep-
resentation of the timing characteristics of the system through
a set of upper and lower bound functions on the rate of
activity, or on the availability of computing resources. One
example of this approach is Modular Performance Analysis
(MPA) [8,9]. In MPA, tasks and input events are character-
ised in terms of the maximum and minimum activation or
arrival rate over any interval length through a pair of func-
tions. Computing platforms are represented in a similar way
by modeling the least and largest amount of computation
that can be supported in any time interval, and by selecting
a policy for scheduling the input service requests. Analyti-
cal methods can be used through RTC-toolbox, a tool that
implements the MPA methodology, to compute the arrival
rate of output events, and the residual computation resources
available under the chosen scheduling policy. These data
can be used to determine the performance of the system,
including end-to-end delays and buffer sizes [10]. Because
of the degree of abstraction, this method is fast, but is lim-
ited by the relative expressive power of the model, which,
for instance, is unable to support computation units whose
behaviour depends on some state. To overcome this limita-
tion, a recent evolution of MPA allows state-based scheduling
policies to be modeled as timed automata, which are inte-
grated into the system by translating the arrival rate informa-
tion into generating (for the input) and observer (for the out-
put) automata [11,12]. The use of this variant has, of course,
an impact on the running time of the analysis. The method
that we present in this work stands on the automata side of
the spectrum, and offers higher accuracy in the representation
(not just lower and upper bounds) and higher flexibility. One
specific advantage of the direct use of automata is the ability
to specify any behavioural property by employing appropri-
ate error states, and is therefore more expressive than MPA.
In our case study, for instance, it was important to faithfully

123

Schedulability analysis for distributed RTS 227

model the time synchronisation algorithm, since the clock
drift directly affects the correctness of the system. In addi-
tion, the formal analysis conducted in UPPAAL is able to
provide a witness error trace when a particular choice of the
values of the parameters make the system unable to satisfy
the required property, offering a valuable tool to qualitatively
understand how to optimise the system. The downside is a
much larger execution time.

Hierarchical event streams, used in the SymTA/S tool,
are an alternative way of representing task activation pat-
terns analytically [13]. The SymTA/S tool implements a vari-
ety of schedulability analysis techniques, based on event
streams, and offers a number of scheduling algorithms to
be selected in constructing an architecture platform for the
system. The approach was successfully applied to analys-
ing systems using binary search on the parameter space [14].
The analysis is fast, and the results comparable to what can be
obtained using MPA. Likewise, the same arguments regard-
ing flexibility apply, prompting us to use the direct automata-
based specification.

Exhaustive and analytical methods are typically oriented
towards considering the worst, or sometimes best, case
behaviour of the system. An alternative approach is to con-
sider the average case, under some statistics of the input pat-
terns. A particularly interesting method is statistical model
checking, which allows the designer to determine the proba-
bility that a certain property is satisfied. The model checking
algorithm is computationally intensive, so that for large sys-
tems it is necessary to compute an abstraction. This has been
achieved on an extended version of our case study using simu-
lation-based methods [15] to analyse the behaviour of a large
deployment of devices (in the order of a hundred) to provide
a stochastic abstraction. In particular, the system has been
modeled in the BIP framework [16] as a network of simpli-
fied timed atomic components, in a way similar to our present
work (our model, in fact, derives in its simplest form from
the BIP model). The method consists in selecting a particular
pair of server and device, and simulating the entire system
while concurrently measuring the timing behaviour of the
data packets exchanged by the selected pair. These data are
collected into a statistical model which is limited to the pair,
but which accounts for the interaction with the other applica-
tions on the system and the effects of resource sharing (such
as the network links). In other words, the statistical model
depends on the context of use. Not surprisingly, the results
are highly dependent on the particular device that is paired
with the server. The statistical model checking technique is
finally used on the context-dependent model to establish the
probability that the desired properties are satisfied. While the
approach is based on formal methods, the correctness of the
results cannot be guaranteed because the model is derived
by a finite number of simulations. However, techniques have
been developed to estimate and bound the probability of mak-

ing an error. In contrast to the statistical approach, the method
presented in this work focuses on the worst-case behaviour.
The advantage is that the results are guaranteed to be cor-
rect. To relax the requirements that all deadlines are met, we
have developed alternative models, where the error state that
identifies a missed deadline is not reached unless two pack-
ets in a row are lost. Similar models can be constructed to
account for different average case behaviours, depending on
the particular application under study.

An approach similar to ours, and from which we have
taken inspiration, was proposed by Amnell et al. [17] with
the tool TIMES. In TIMES, task activation are represented as
finite automata, and appropriate schedulers can be selected to
verify the schedulability of the system according to a sched-
uling policy and a set of worst case execution times and dead-
lines. The technique uses UPPAAL as an underlying engine.
As opposed to TIMES, our approach is more generic since
we are interested in analysing more than just schedulabil-
ity in a potentially distributed settings. We therefore work
directly at the level of the UPPAAL model to achieve the
desired flexibility and expressiveness.

In our earlier work, we have shown how to analyse the
parameter space of a similar system using exhaustive tech-
niques based on bounded model checking [18]. While con-
ceptually applicable to the extended model presented in this
work, the computational complexity makes the approach
impractical. Our current research is geared towards combin-
ing the method described in this paper with bounded model
checking to achieve an efficient and exhaustive search of the
continuous parameter space.

7 Discussion and conclusions

We have presented a case study, a modelling methodology
and the analysis over a space of parameters of an industrial
heterogeneous communication system. The system is charac-
terised by complexity in terms of structure, and also in terms
of functional and non-functional constraints, which must be
carefully verified to assess the robustness of an implemen-
tation. To this end, we have studied the behaviour of the
system over changing values of the parameters, to explore
the regions of feasibility and their extension. Our approach
is semi-formal. While we exhaustively analyse the property
of the system for every point in a grid of the parameters,
we do not study the behaviour of the system between these
points. One could take a binary search-like approach to find
the boundaries where the system changes from feasible to
unfeasible. This may or may not work, depending on the
system. In our case, for instance, the observed non-mono-
tonic behaviour breaks a binary search algorithm and may
lead to conservative or, in the worst case, optimistic answers
where unfeasible points are classified as feasible. We have

123

228 T. T. H. Le et al.

also discussed alternative approaches, which can be used to
trade off faster exploration with model expressiveness.

A fully parametric approach based on formal methods is
desirable. Formal methods guarantee completeness (when
the problem is decidable). By fully parametric we mean a
method that accounts for parameters natively in their con-
tinuous space, and that understands their semantics. In our
previous work, we have proposed a technique based on a
symbolic representation of the timed automata and their
parameters using NuSMV and tools for solving Satisfiability
Modulo Theory (SMT) problems [18,19]. Instead of explor-
ing points one by one, the method would symbolically search
for an unfeasible point, and then generalise this point to a
region by taking advantage of the boolean structure of the
unfeasible trace that leads to the error state. The successive
application of this technique eventually covers the unfeasible
region. This method is not affected by non-monotonicity, and
is decidable for certain classes of systems. The downside of
the approach is a considerable computational complexity that
makes the technique impractical in all but the simplest cases.
The problem lies primarily in the search of a new unfeasi-
ble point and the trace that leads to the error state, while
the process of generalisation of the trace is typically rather
efficient. For this reason, one approach that we are experi-
menting with is to randomly search for unsatisfiable points
using UPPAAL, which is relatively fast. Once one is found,
the point is symbolically generalised to a region bounded by
a polyhedron (linear constraints) and is added to the unfeasi-
ble set. The combination of the explicit method in UPPAAL,
and the implicit method with NuSMV proves very effective,
and is able to drastically reduce the run-time. The combined
use of different tools has, however, some disadvantages. In
our case, one has to ensure that the semantics of the model is
preserved when moving from one tool to another. This is not
always simple, as in UPPAAL clock values can only be stored
in integer variables, while they can be stored in real variables
in NuSMV. Synchronisations must also be dealt with care-
fully to make sure that the semantics of composition matches.
The results that we have obtained with a simplified version
of the model presented in this paper are encouraging. A fully
automated flow is under investigation and development to
properly manage models of higher complexity. Our research
is particularly oriented towards the use of higher level lan-
guages, such as Hydi [20], to derive an equivalent representa-
tion in the different tools that matches the original semantics.

References

1. Liu, J.W.S.W.: Real-Time Systems, 1st edn. Prentice Hall,
PTR, Upper Saddle River (2000)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci 126(2), 183–235 (1994)

3. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell Int. J.
Softw. Tools Technol. Transf. 1, 134–152 (1997)

4. EADS Innovation Works: Case study on distributed heterogeneous
communication systems (hcs), Germany. http://www.combest.eu/
home/?link=Application1 (2009)

5. IEEE Standard 1588–2002: A precision clock synchronization pro-
tocol for networked measurement and control systems. November
(2002)

6. Ramanathan, P.: Overload management in real-time control appli-
cations using (m, k)-firm guarantee. Parallel Distrib. Syst. IEEE
Trans. 10(6), 549–559 (1999)

7. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: a new
symbolic model verifier. pp. 495–499. Springer, Berlin (1999)

8. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System archi-
tecture evaluation using modular performance analysis: a case
study. STTT 8(6), 649–667 (2006)

9. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for
scheduling hard real-time systems. Proc. Intl. Symposium Circ.
Syst. 4, 101–104 (2000)

10. Suppiger, U., Perathoner, S., Lampka, K., Thiele, L.: Modular per-
formance analysis of large-scale distributed embedded systems: an
industrial case study. Computer Engineering and Networks Labo-
ratory, ETH Zurich, TIK Report 330, November (2010)

11. Lampka, K., Perathoner, S., Thiele, L.: Analytic real-time analysis
and timed automata: a hybrid method for analyzing embedded real-
time systems. In: EMSOFT’09: Proceedings of the 7th ACM inter-
national conference on embedded software, pp. 107–116. ACM,
New York, NY, USA (2009)

12. Lampka, K., Perathoner, S., Thiele, L.: Analytic real-time analysis
and timed automata: A hybrid methodology for the performance
analysis of embedded real-time systems. Des. Autom. Embed.
Syst. 14(3), 193–227 (2010)

13. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K.,
Ernst, R.: System level performance analysis-the SymTA/S
approach. IEEE Proc Comput. Digit. Tech. 152(2), 148–166 (2005)

14. Racu, R., Jersak. M., Ernst, R.: Applying sensitivity analysis in
real-time distributed systems. In: RTAS ’05: Proceedings of the
11th IEEE real time on embedded technology and applications
symposium, pp. 160–169. IEEE Computer Society, Washington,
DC, USA (2005)

15. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B.,
Legay, A.: Statistical abstraction and model-checking of large het-
erogeneous systems. In: Hatcliff, J., Zucca, E. (eds.) Formal tech-
niques for distributed systems, Joint 12th IFIP WG 6.1 international
conference, FMOODS 2010 and 30th IFIP WG 6.1 international
conference, FORTE 2010, Amsterdam, The Netherlands, June 7–
9, 2010. Proceedings, ser. Lecture notes in computer science, vol.
6117, pp. 32–46. Springer, Berlin (2010)

16. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time
systems in BIP. In: SEFM06, pp. 3–12. Pune, India, September
(2006)

17. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.:
TIMES: a tool for schedulability analysis and code generation of
real-time systems. In: FORMATS, pp. 60–72 (2003)

18. Le, T.T.H., Palopoli, L., Passerone, R., Ramadian, Y., Cimatti, A.:
Parametric analysis of distributed firm real-time systems: a case
study. In: Proceedings of the 15th IEEE international conference
on emerging technologies and factory automation (ETFA10), pp.
1–8. Bilbao, Spain, September 13–16 (2010)

19. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of
schedulability regions using parametric timed automata. In: Real-
Time Systems Symposium, pp. 80–89. Dec 3 (2008)

20. Cimatti, A., Mover, S., Tonetta, S.: Hydi: A language for symbolic
hybrid systems with discrete interaction. In: EUROMICRO-SEAA,
pp. 275–278 (2011)

123

http://www.combest.eu/home/?link=Application1
http://www.combest.eu/home/?link=Application1

	Timed-automata based schedulability analysis for distributed firm real-time systems: a case study
	Abstract
	1 Introduction
	2 Problem description
	2.1 Applications running in the HCS
	2.2 Scheduling
	2.3 Temporal properties

	3 System model
	3.1 Modelling conventions
	3.2 Server
	3.3 Devices
	3.4 Network medium
	3.5 Network access controllers (NACs)
	3.6 Synchronisation and transmission modelling mechanism
	3.7 Example
	3.8 Modelling requirements for HCS

	4 UPPAAL model for HCS
	5 Analysis of ground parameters
	6 Related work
	7 Discussion and conclusions
	References

