UNIVERSITY
OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL'INFORMAZIONE

38100 Povo — Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

Modeling a distributed Heterogeneous
Communication System using Parametric Timed
Automata

Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone and Yusi Ramadian
April 2010

Technical Report Number: DISI-10-031

Modeling a distributed Heterogeneous Communication fyste
using Parametric Timed Automata

Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, YusnBdian
Department of Information Engineering and Computer S@enc
University of Trento, Italy
hoa.l e@tudenti.unitn.it

April 20, 2010

Abstract and then joined together to produce the schedulability
region of the system.

presented and the system modeling is explained CYStnata. For this special class, the problem of deciding

fu”é" 'I}f:je s;&stsmd.rzodels are developed in LfJPhPAA\yvhether there exists a parameter valuation such that a
and validated by different test cases. Part of the Sygvep, cations is reachable, is indeed decidable while

tem models are then converted into parametric iMgds ot for the full class. The idea to this emptiness

automata and the sghedula_tbility checking is run to P'Bfoblem is then generalized in [2] in order to produce
duce the schedulability regions. the parameter region in which the system is unschedu-
lable.

1 Introduction In the context of asynchronous circuits, E. Andre et
al. [9] propose a method of synthesizing constraints
Symbolically computing the region in the parameters a timed automaton, given an initial set of param-
space that guarantees a feasible schedule (given a setef values for which the system is known to behave
real-time tasks characterised by a set of parameters angperly. The authors ensure that for any two valua-
activation patterns) is a novel approach to the compiens of parameters satisfying these constraints, the be-
tation of schedulability regions[2]. This method is ofiaviors of the timed automata are time-abstract equiva-
great usefulness, for example, once the feasible regiterst. Although the method will terminate as long as all
have been identified, the system designer can chosgmbolic traces computed from a givegference pa-
quickly a correct set of parameters that could make themeter valuation are either of finite length or trivially
system works properly. Moreover, he can also be asclic, it has been shown to be particularly suitable in
sisted in optimizing the system performance while stilhe framework of asynchronous circuits. A. Cimatti et
keeping the system schedulable. al.’s solution to the synthesis of constraints [2] is also
Parametric timed automata have been approaclsgdhbolic but but differs from the former approach in
differently in the literature. In [7] given a real-time sysmany aspects. The later aims at symbolically comput-
tem and some temporal formula which may contain piag theregion of parameter spacethat makes the system
rameters, and a constraint over the parameters, a motlssible by enumerating all possible traces that could
checking problem is to verify whether every allowedrive the system into an error state and identifying, for
parameter assignment could guarantee that the real-temaeh of them, the subsets of the parameter space that
system satisfies the formula. Instead, in [2] sensitivigre compatible with the trace. In addition, the method
constraints over the interested parameters are computees not make use of reference parameter valuations

and it is proved to converge for periodic task systemnssrver. The HCS provide control, monitoring and data
with bounded offsets. processing of various subcomponents through heteroge-
In fact, the method in [2] can be applied widely imeous networks. The server is connected to different de-
real-time systems adopting a fixed priority mechaniswices such as sensors and actuators via wired and wire-
and in an effort to help with the development of the PTless protocols. The various devices are connected to
prototype tool, we have tried to apply the tool to an irthe server through Network Access Controllers (NAC).
dustrial embedded application. The application is firfhe architecture of the HCS is described in more detail
modeled in UPPAAL and validated by different grounah [1].
sets of parameters. Part of the system models are theHCS provides two important applications that can be
converted into parametric timed automata which adeployed on end devices. One is to transmit audio data
then analyzed by the PTA tool in order to produce thperiodically to end devices every audPeriod ms from the
feasible region. server. The other application is to synchronize clocks
This report is organized as follows. Section 2 detsing the Precision Time Protocol (PTP, IEEE1588][5]).
scribes the application and its requirements. In sec-A general HCS is depicted in figure 1, based on wired
tion 3, the UPPAAL models for the application are exand wireless components. The HCS system consists of
plained in detail. These models are then validated the following components: SERVER, DEVICE, NACs,
verifying different sets of parameters in section 4. Nextjired and wireless networks. The HCS server is con-
section 5 presents the parametric analysis after runnitegted to all NACs in a daisy-chain topology. The
the PTA tool. Finally, section 6 concludes the repoNACs perform the gateway function between the back-
and suggests future work. bone and the end devices. Wireless devices are accessed
via wireless access point (WAPs), and WAPs are con-
nected directly to NACs. Functions of the WAPs are
2 HCS and Parametric Timed Au- similar to the NACs functions, in particular synchro-
nization with the network and server, data routing be-

tomata tween NACs and wireless network.
DEVICE play
' packet_out packet_in
‘ SERVER }—{ CONTROL SCREEN ‘ ‘ MEDIUM ‘
Figure 2: General schema of audio streaming over a
‘ NAC H NAC }—{ NAC ‘ network
Figure 2 illustrates a common design approach for
audio streaming. More detail can be found in [1]. Such
a s_trgam of the HCS has a number of noticeable charac-
teristics as follows:
WAP
e The communication between the server and device
‘ - is asynchronous.
‘ DEVICE ‘ ‘ DEVICE ‘ ‘ DEVICE ‘

) o e The server sends an audio packet every
Figure 1: Heterogeneous Communication Sys- ., dPeriod ms.

tem(HCS)

e An audio packet is characterized by two parame-
The distributed Heterogeneous Communication ters: a sequence numbeand a timestampi de-
System (HCS) contains various devices, wired and noting the time the packet has to be played at the
wireless communication networks and a common device.

e Packets arrive at the device (except they get lostpplication, for instance, could be the maximal time dif-
with a minimal latencyLmdm = Lmin and a ference between sending an audio packet and playback
maximal latencyLmdm = Lmax of the audio packet at the devices is less than 0.1ms.

Another synchronization requirement could be to en-

* The NACs simply forward the incoming paCketEure the synchronization precision is bounded by 0.1ms,

to the devices. And packets passing through t & ; - ; ;
. en different timings on wired and wireless network.
NACs have to experience a further delaylotac ¢

ms during which they are preprocessed by the However, HCS is too complex to be parametrically-
NACs. modeled completely. Therefore, before applying the

parametric timed automata (PTA) approach, we need
e When a packet is received by the device, it neegtsrelax some of the above requirements. The simpli-
T ms to process the packet after which it is readjed system would contain only one server and many
to receive the next packet. NACs and devices where one NAC may be associated
to at most one device and one other NAC. Also, for
The time being we would just focus on modelling the
PTP part on the server and devices. Additionally, ev-
ery audio packet will have to experience a maximal de-
Master clock Stave clock lay when traversing through the mediuthrodm =

Sync message:

Record precise |- estimated sending time =10 Lmaz). Furthermore, the last two characteristics of
sending time of -
Syne messages \ ,,,,, Record precise the HCS audio streaming and the timing PTP delay
1 arrival time of the . . .
Follow_Up message: Synemessage= | gre temporarily not considered and would be in the fu-
precise sending time of Sync = t1 2 . .
[orestatmtair | ture as the next modelling step. Lastly, assuming that
,,,,, o i ;
the transmission priority of the packets is as follows:

Delay Reqmessage | . Delay_Req Prior > Prior > Prior >
Record precise message is sent Sync Follow_Up Delay_Res

arfval time of the out at £3 Priorpelay_req > Prior audio. The system high level

Delay Req [..
message = 4 Delay_Response message: description can be viewed logically as in figure 4(a) or
precise arrival time of Delay_Req at maste} flg ure 4(b) .

v One-way delay
,,,,, calculation

[offset calculation = 2-tL-delay = (12+t4-1143)2_|

e The medium is unreliable, it may lose and reord
packets.

NAC
‘ One-way delay calculation = [(t2-t1)+(t4-t3)]/2 ‘ y

J

DEV

pdcket_in
Figure 3: Time sequence diagram of message ex-
changed between master and slave clock to achieve time
synchronization SERVER | e NAC o o=y

Figure 3 depicts the clock synchronization of the packet out ﬁcke'i”
slave clock with the master clock based on PTP. Ev- {«D—D—[
ery component of HCS has a local clock and PTP runs
in the server, devices and NACs. Various timing delays @
are to be guaranteed, for example, in a scenario whg sync g, _syic gy, sync
two devices are connected to the server both wired a L followlp - —followUp g ——followlipg
wireless, it should be guaranteed that both devices {SERVER gdelayReq MEDIUM - delayReq | NAC | -g-delayReq | DEV
synchronized within an error of 0.1ms (synchronizatio -delayResp g, delayResp. . ~delayResp ..
precision). audo_p, audo _y, [Jaude —p-

The ideal objective is to identify the parameter space- (b)
the largest region in which the correct functioning of au-
dio streaming and clock synchronization can be guaran- Figure 4: Logical model of HCS
teed by using the novel method proposedin [2]. One re-
quirementregarding the correct functioning of the audio

3 UPPAAL Models server and the others model the audio sending and
buffering operations of the server.
The models of HCS are first developed in

UPPAAL[4] because UPPAAL allows graphically- AL
modeling ability which assists model-developersin de- c=0, '

yrDate=(tsvr+1>=clkLipaif)"svrDate,

bugging and testing their models. tsU(tsvr+1)%clkLi

Wait_for_server_bound

3.1 Integer clock c<=svrb

In UPPAAL, HCS is modeled as a network of ex- Figure 5: The server integer clock
tended timed automata with global real-valued clocks

and integer variables. Since the clock value is NeCeSra timed automaton modeling the server integer

sary in the PTP protocol, we need to retrieve the clogk) . is shown in figure5. At the beginning the clock

value which is |mp053|ble In UPPAAL as it does_ NPound of the server isurb = prec x 100/esvr where
support real variables as well as clock value retrieval,

And i lock . q his h rec is the digit precision andsvr is the server clock
nd integer clocks are invented to overcome this Mgzt \when clocke reaches the bound, the server in-

dle. In fact, an integer clock is an integer variable r?éger clocktsur will increase by 1 and: is reset to

turning the integer part of a real-valued clock. This ap- As said above, to prevent the overflow situation,

plies to real clocks which have no clock drift. HOWi/vhen tsvr reaches the clock limitlkLimit, it will

ever,”sn:jc_(; the local gIOCkE in the Ise_rver and de\gcﬁé reset to 0. Because the server integer clock is re-
usually drift compared to the actual ime, we need [g,, everylkLimit time units and so is the device inte-

adjust the operation of integer clocks in order to r%’er clock, it is crucial to distinguish the states of two

tnevg the clock value WIthII’:I a certain precision. Asélocks, that is whether they have been reset or not.
suming we have a clock dritt (0 < e),

a real clock Given that the difference of the two clocks can never

¢ andb?nl;ntegerﬁlogki. ACtlllja"y'de _shglgg::hahreal exceedclk Limit, we invent the notion of "odd date”
variable but as this Is not allowed in N3S " and "even date”. The clocks at the beginning show

to be mteg_enzed. That is, .'f we want to take care ‘ﬁ‘{e time in "even date” and when they reach the clock
up ton digits after the decimal point, we multiply

") limit, the displayed dates are changed to "odd date” and
and 10 Logedtf_}er.fFor exargple with = 2’he - 9,5 vice versa. The server date is encoded in the variable
means t. e an tof 0.95 an ~ 0.95 £ Wheret IS o, 1y te which results from the binary operation XOR:
not a drifting clock. Thusci increases by 1 when

. svrDate = (tsvr +1 >= clkLimit) XOR svrDate.
t = 100/e = 100/95 = 1.052631579. Again, UP-
PAAL does not allow comparisons of clocks with real

values, so we have to integeriz&)/e and make it even
more precise by multiplying it by some precisiprec.

The PTP timed automata are depicted in figure®6.
Figure 6(a) illustrates the first two steps of the synchro-
With a three-digit precisioprec — 1000, for instance nization procedure shown in figure 3 and figure 6(b) de-

. ' " scribes the last step. In the figures, all edges are nor-
ctIncreases when = 1000 100_/95 N 1_052’ that is mal channels used to synchronize two timed automata
we are scaling the bound at which the integer CIOCk&ceptsync_released and delay Rsp_released - two

phanged. Henca IS More precise. Eqrthermore, €Ve€T¥roadcast channels that can always fire (provided that
integer variable will finally overflow if it keeps increasy, guard is satisfied), no matter if any receiving edges
ing, therefore to ensure the correctness of the whole s '

L . ¥Pe enabled. But those receiving edges, which are en-
tem, itis necessary _to reset mtgger clocksto 0 Whene\é\%ﬁed, will synchronize.
they reach a predefined clock limaiti: Limit. In figure6(a), the sync-release task has the pe-
riod of syncPeriod and may have some initial offset
3.2 Server syncOf f. After the sync-release event is activated,
the Sync message must be delivered to the medium
The server is modeled as a network of five timed awdthin hal f Delta x svrbtime units. The time when the
tomata, one of which models the server integer clocBync has been transmitted completely onto the medium
two of which model the PTP protocol running in thehould be recorded so that it will be added to the Fol-

c<=syncOff*svrb
Wait_for_offset

c<=syncPeriod*svrb
Wait_for_period

c==syncPeriod*svrb
sync_released!
c=0, c1=0,
syncReady=true

c==syn¢Off*svrb
sync_relleased!
c=0, c1#0,
syncRepdy=true

followUp] to_mdm!

cl<=delfaT*svrb
Wait_to_send_followUp
sync_to_mdm!
cl1=0,
tsync=tsvr+svrDate*clkLimit,
syncReady=false

(@

Wait_to_send_sync
cl<=halfDeltaT*svrb

delayRsp _not_deliver_vyet?
drsReady=true

c<=0 c<=halfD¥|taT*svrb
Release_delayRsp Wait_to_sendydelayRsp
to svr? delayRsp_released!
drsReady=true

Wait_for_dglayReq

c=0,
drsPkt.pType=3,
drsPkt.ID=mPkt.ID,
drsPkt.time=tsvr+svrDate*clkLimit

delayRsp to_mdm!
drsReady=false

(b)

Figure 6: The PTP protocol running in server

low_Up message and sent to the devicésync =
tsvr+ svrDatex clk Limit. Here we encode the serve
date and time information into the Sync sending tim
Similarly, after at mostieltaT * svrb time units since

the Sync transmission, the Followp message has to

be delivered to the mediunial f DeltaT anddeltaT
are defined in the PTP protocol[5].
In figure 6(b), the timed automaton initially waits fo

Delay Req messages from the devices. When one suc

message arrives, it prepares a DeRgs message to
send back to the device:

e drsPkt.pType = 3 : the message is Deldyes.

e drsPkt.ID = mPkt.ID: the destination is the
source of the DelayReq message and Pkt is the
packet the server received from the medium.

e drsPkt.time = tsvr + svrDatex clkLimit . en-
coding the server date and time information.

Again, the DelayRes must be delivered to the

medium withinhal f DeltaT time units after the recep-
tion of the DelayReq message. However, if higher pri

ority messages are available at its delivery time, the De-

lay_Res will backoff (lelay Rsp_not_deliver_yet) and
retry after a short time.
Figure 7(a) describes the audio sending operation

the server assuming that audio packets are periodically

generated and played. The audio-release task has

[

period ofaudPeriod and probably some initial offset
audOff and also a relative deadlinelD at which

it must be played. When the task is activated, an au-
dio packet will be either delivered to the medium or
pushed into a buffer depending on whether the medium
is busy or not. The audio packet will contain the time
the packet has to be played at the devitesThe pro-
cedurenud Pkt helps with this preparation.

Procedure 1audPkt(int deadline, int &ti, int &aud-
Date)

1: audDate=(deadline=clkLimit) XOR audDate;

2: ti=deadline % clkLimit;

Figure 7(b) describes the audio buffering operation
of the server. The timed automaton will buffer or
remove an audio packet by taking thedio_to_buf
or audio_from_buf transition respectively. When a
buffer over-run occurs, the automaton goes to the Er-
ror state. Moreover, two auxiliary procedures are used
to simplify the automata. TheudPush procedure
Pelps to encode the date and time information into the
audio sending time and push waiting packets into a
Buffer. TheaudPop procedure helps to remove a packet
from a buffer. It is also noticeable thaiok Ahead al-
ways points to the first element of the buffer when it
is not empty. In additiongudio_to_bu f is modeled as
a broadcast channel so that audio packets are buffered
wlﬁen the medium is busy.

c==audPeriod*svrb
audio_to_buf!

c=0,
audPkt(ti+audPeriod,ti,audDate)

c<=audOff*svrb
Wait_for_offset

©

c==audOff*svrb
audio_to_buf!
c=0,
audPkt(audOff+relD,ti,audDate)

@)

audio to buf?
audPush(ti,audDate,buf,head,tail JogkA

audio_from_buf?
audPop(buf,head,tail,lookAhead,size)

(b)

of Figure 7: The audio sender and buffer of server

the

. drsPreempted
3.3 Medium spreempted v

tgPreempted=false

c<=Lmdm*mdmb c<=Lmdm*mdmb
idrsPreempted Transmit_sync Wait_for_followUp

sync_to_mdm?) c==Lmdm*mdmb /)
mPkt.pType=1 pkt_to_NACInBuf! S
d

Wait_for_packet

The medium is responsible for data transmission, @ sess:
so whenever there is available data waiting to be .
transmitted, the transmission must take place unless R
the medium is currently busy. In a heterogeneous | & e

followUp_to_mdm?

c=0,

mPkt.pType=32,

sync_{eleased? mPkt.time=tsync
- sync_to_mym?

mPkE.pTypeXl

. c<0 c<=Lmdm*mdmb
system, the transmission decision is more complex as| | | oelyrspisreesses Tranemit Talpwtp

different packets have different priorities. Only the |*° — T R s
packet with the highest priority would be selected to

==Lmdm*mgdmb
nBuf!

be transmitted, others will have to backoff and wait for ol _relcased? LRt
their turn. Figure 8(a) shows a simplified timed automa- \ Gtaye rom c=0

. mPkt.pType=4,
ton modeling the transmission decision when many | s o 30 mrablitiaco @y s o a

Tranfknit_delayReq Deliver_defayReq_to_server S tPkt
e

packets are available at the same time. In this figure, c<tipdm'marmb

sync_released, delayRsp_released, audio_to_buf,
delayReqto_N ACOutBuf, pkt to-N ACInBuf .

==0
delayReq_to_NACOutBuf?

c==Lmdm*mHmb
pkt_to_NACIhBuf!
c=0

0
delayRsp_released? IsyncReady &&

!drsReady && nobSize>0

are modeled as broadcast channels, or more precisely —_ R esstmamfamn
receiving edges which will synchronize with the send- =2 ———0—— i s

ing edges whose name is exactly the same. Initially, cestmdmmamb

the automaton can choose nondeterministically one @

receiving edge to take. Wall fegpacket Tb‘y

syncRepd

£

o If sync_released was selected, the medium would
not have to care about other packets as Sync has nobSizench &4 aucbS Seccs
the highest priority.

DelayRsp_isReleased
IsyncReady &&
drsReady

ct_nextPkt

o If delayRsp_released was selected, the medium
would look for any sign of sync-release. If there is ot aady & patSrze0
not, it would allow the DelayRes to be delivered
to the medium. However, if the sync-release hap-
pens before it could actually start the transmission TransmiT delayReq oS e
(c = 0), the DelayRes will backoff and give way (b)
to the Sync transmission.

IsyncReady && !drsiReady &&
nobSize==0 && aud}Size>0

o If delayReqto NACOutBuf was selected, Figure 8: A simplified automaton of the medium

again the medium would look for signs of pack-
ets with higher priorities. The DelalReq would

backoff and give way to any such packet if ready. * pType = 3 (DelayRes): the medium puts the

packet to the NAC input buffer.

e The similar situation happens whendio_to_bu f

was selected e pType = 4 (Delay.Req): the medium confirms its

transmission so that the packet is safely removed
When the transmission decision has already been de- from the NAC output buffer and delivered to the
cided, the medium transmits the packet fondm = server.
mdmb time units wherendmb = prec is the clock
bound of the medium, and depending on the packet type» pType = 5 (Audio): likewise, the audio packet

the medium can take different actions upon completing is removed from the audio buffer and put into the
its transmission: NAC input buffer.

e pType = 1 (Sync): the medium puts the packet The NAC input and output buffer will be discussed
into the NAC input buffer and starts transmittindater. For every buffer, there is a look ahead variable
the FollowUp because it has the second highestat always points at the first element of the buffer when
priority. it is not empty, such asobL A andaudbL A - the look

IsyncReady && !drsReady && nobSize==0 && audbSize==0
c1=0

drsPreempted
delayRsp not deliver vet!
sPreempted=false

c<=Lmdm*mdmb c<=Lmdm*mdmb
!drsPreempted Transmit_sync Wait_for_followU,
sync_to_mdm? c==Lmdm*mdmb
mPkt.pType=1
tReleased

=0

Waity for_packet
) sync_released?
c=0

?
>0 &8 from==13 syne_rqeased

drsPreempted=false

sync_released?
cZ=0, from=13, to=11,
rsPreempted=true

c=0

DelpyRsp_isReleased
& delayRsp to_mdm?
mPkt=drsPkt

delayRsp_released?
c=0

c==0 && t0==13

c==0 && to==14

c>0 && from==14

imb
pkt_to_NACInhBuf!

drsRea

delayRsp_released?
0 c1=0, from=14, to=13

c==Lmdm*mdmb
delayReq_from_buf!
mPkt.pType=4,
mPkt.ID=nobLA, ¢=0

sync_released?
¢1=0, from=14, to=11

()

Deliver_delayReq_to_server
c<=0

delayRe
c=0

1_to_NACOutBuf? delayReq to svr!

S

it_delayReq
c<=Lpdm*mdmb

n
c<=

c>0 && from==15

c==Lmdm*mdmb
pkt_to_NACInBuf!
c=0

delayReq_to_NACOutBuf?
c1=0, from=15, to=14

IsyncReady &&
!drsReady && nobSize>0

delayRsp_released?
¢1=0, from=15, to=13

[y && !drsReady &&
ize==0 && audbSize>0

sync released?
¢1=0, from=15, to=11

c<=Lmdm*mdmb
c==Lmdm*mdmb AudPkt_to] NAC
C

audio_from_buf!
mPkt.pType=5, mPkt.time=audbLA

audio _to buf?
c=0

TransMaudeI
c<=Lmdm*mdmb

Figure 9: A complete automaton of the medium

ahead variables of the NAC output buffer and the audimards on receiving edges of broadcast channels, we

buffer respectively. have to add one more state to check the time at which
Now that the automaton is selecting the next packée preemption happens. Figure9 shows the complete
to transmit, if: medium automaton.

e syncReady (Sync is ready): the medium starts the
Sync transmission. 3.4 Network Access Controllers (NACs)

e !syncReady && drsReady (Delay.Res is ready): The NACs is responsible for data routing from the
the medium starts the Deldyes transmission. server into subnet(s) and vice versa. Also, the NACs

e IsyncReady &8& !drsReady && (nobSize>0) can perform data encryption/decryption on every packet

(Sync and DelayRes not ready and the NAC C)utpassing through it. Because only one packet can be pro-
put buffer not empty): the medium starts the Dé:_essed at atime, NACs are assumed to have two buffers

lay_Req transmission. to contain incoming or outgoing packets. The NAC

input buffer contains packets coming only from the

e !syncReady & & !drsReady & & (nobSze==0) && medium and the NAC output buffer contains only De-

(audbSize>0) (only audio packets are ready): théay_Req packets going from the devices to the medium.
medium starts the Audio transmission. These buffers are depicted in figure 10.

e IsyncReady && !drsReady && (nobSize==0) The input automaton will add or remove a packet by

&& (audbSize==0) (no packet is available): thet"’.‘l.(Ing thep acket‘to‘bu.f orp acket_from.buf tran-
) o sition respectively. Similarly, the output automaton
medium goes back to the initial state.

will add or remove a DelayrReq message by taking
Figure 8(b) depicts these next packet selections. Tthe delayReq-to-buf or delayReq_from_buf respec-
complete medium automaton would be obtained biyely. In this figure,pkt denotes the incoming packet
joining the states and edges in figure8(a) and fignd ID the identity of the device sending the De-
ure 8(b). However, since UPPAAL does not allow cloclay_Req. When a buffer over-run occurs, the corre-

pkt_to_buf? pkt to_subnet!

e
aktPush(pkt,buf,head, tail,lookAhead,size c==Lnacnb De“"/is"”:k‘ c==Lnac'nb

pkt from buf! pkt_from_buf!
A c=0

nibLA.pType<=3 &&
qSre =1

Proce#Z

Error c<=Lnac*nb

size>BUFLEN nibLA.pType<x3 &
drgSrc==1

nPkt=nibLA,drqSrc=0

pkt_from_buf? Wait_for_packet

pktPop(buf,head,tail,lookAhead,size) @ ggjm buf?
@)
delayReq_to_buf?
tkqPush(ID,buf,head,tail,lookAhead,size
i_to_buf?
> c==(c==Lnacfnl
i for_delayReq Error e O e O
size>BUFLEN inttrq_isReceived Procesp_intDrq
=0 c<=Lnjac*nb
c==0
delayReq| released?
delayReq_from_buf? ““:0* buf? c==Lnac*nb
drgPop(buf,head,tail lookAhead,size) delayReq_from_pxtBuf!
(b) gi\od‘g?;g t(izf}xtBuf” \\ ID=nextbLA
=0, drgSre= Procefs
c==0 c<=Lnac*nty S;EE'RFL to_extBuf?.
delayReq_released? drgSre=2
Figure 10: The NAC input and output buffer BBLABType==5 &8 iraReady 2
drqSrc=2
@)
sponding automaton goes to the Error state. e
Similar to the medium case, the NACs always
transmit packets of the highest priority among the pikSizer—0 g6
ready packets. Figure 11 shows a simplified timed au- R
tomaton modeling the activities of a NAC. In this figure, et e .
nibSize>0

pkt_to_buf, delayReq_released, delayReq_to_ext Bu f

are receiving edges of broadcast channels while
delayReq_to_buf, pkt_to_subnet are emitting edges of
broadcast channels. Initially, the automaton can choose
nondeterministically one receiving edge to take.

nibSizp==0 &&

1drqRqady &&

nextbgize>0

nibSize£=0 &&
2

IntDrq_isReceived Process_extDrg

o If pkt_to_buf was selected, the NAC looks further (b)
at the packet type. If it was either a Sync, Fol-
low_Up or DelayRes messagen{'ype <= 3), Figure 11: A simplified automaton of the NACs

the NAC ignores other packets and goes on pro-

cessing the current packet. In case the Détay)

from the device is preempted by the current would look for any sign of incoming packets. If
packet, the NAC tells its attached device to back- there is not, it would process the Del&eq from

off the DelayReq by synchronizing on the chan- its attached device. Otherwise, only when the in-
nel delay Req_stayin_device. On the contrary, if coming packet has a higher priority will the De-
it was an Audio packet then the NAC would still lay_Req backoff.

ignore other packets as long as no DeReq from

the attached device is readyrgReady==true) or o If delayReq_to_extBuf was selected (another
preempted drqSrc==1) and no DelayReq from Delay.Req is coming from an external NAC out-
external NACs is readyngxtbSze==0). Assum- put buffer), again the NAC would look for signs
ing that the DelayReq from the attached device of packets with higher priorities. The Deldgeq
has a higher priority than that from external NACs, would backoff and give way to any such packet if
so when they are ready at the same time the former it is available.

preempts the latter.) S
When the NAC has made its decision, it will process

o If delayReq_released was selected, the NACthe packet forLnac * nb time units wherenb = prec

is the clock bound of the NAC. After that, the NAC can cosdlome=i

take different actions upon completing processing, de- oA —
pending on whether the packet is incoming or outgoing: c==Lnac*nb Deiv%wpm clracn)
pkt from buf! pkt_from_buf!
H H H H H Process, rPC;O ~ 0 Proc _audp!
e For incoming packets: the NAC confirms its in- c<=Lnacnb fbLA PTyPe<=3 && grtnacty
put buffer that the packet has been processed sug- nbapTypeaqas TP nba e e
cessfully so that the packet can be safely removed dolayReq_stayin vige nexiSize=-0 6
. .. nPkt=nibLA,drqSrc=0 né}leCnTl;LA
from the input buffer by synchronizing on the oo o<
R Wait_for_packet isReg€ived Select_nexgPkt
pkt_from_buf channel. The packet is then for- Lok to tu? nibSize>0 O
warded to the subnets (including external NACs | p< o e TApTypes 4k
and devices). o= LT (IR bLAPTYPe=Sg
e For outgoing packets: if it was an external De- P bu
lay_Req from an external source, the NAC needs P e olonees %@ORMOMMQ? o= nacfn

to confirm the external buffer from which the De-
lay_Req is safely removed. After that, the De-
lay_Req is put into the NAC output buffer and
waiting for the medium to take it. In addition, the
identity of the devicedwvI D) should be included

inside the Delayreq message so that when it ig
received, the server could send back a Ddkas.

yeldyE
c=0 \—/&g:dv\D, drqSrc=1 //\16:0 drg$re=0
pkt_to_buf? IntDrg NsReceived P ces/§7mlqu

¢1=0, from=12, to=11 c<=0 c<=Lnfac*np
c==0 && to==13

c>0 && from==13

nibSize==0 &&
drgReady

nibSize==0 &&
IdrqReady && nextbBize>0
drqSrc=2

delayReg released?
¢1=0, from=13, to=12
pkt to_buf?

¢1=0, from=13, to=11
delayReq_to_extBuf?
¢=0, drqSrc=2

c==Lnac*nb
delayReq from pxtBuf!
ID=nextbLA

Fﬁd:ess?exmrq
delayReq released? c<=Lnac*nb

¢1=0, from=14, to=12
delayReq_to_extBuf?
c1=0, from=14, to=13

The look ahead variables for the NAC internal in- nIDLATYRe-=5 48 rgReady 8
put, internal output and external output buffer are drgsro=2

nibL A, nobLLA andnextbL A respectively.

Now that the automaton is selecting the next packet Figure 12: A complete automaton of the NACs
to process, if:

e nibSize>0 (the NAC input buffer is not empty): the3.5 Device

NAC tries processing incoming packets. The device is modeled as a network of four timed

e (nibSize==0) && drReady (the NAC input buffer automata, one of which models the device integer clock,
is empty but a Delayreq from its attached devicetWo of which model the PTP protocol running in the
is ready): the NAC takes the Deldgeq in. device and the other models the audio receiver.

e (nibSze==0) && !drqReady && nextbSze>0 Egiﬂvebuock tick!
(only Delay.Req from external NAC output buffer ‘éé?ttgv:%gclﬁmimn dvpate,
is ready): the medium tries processing the external '

Delay Req.

tiler+=1

° (n|b52e==0) && 'dqueady && (nextb52e==0) Waitjorfevicefbound
(nothing to process): the NAC goes back to its idle e

state and waits for new packets. Figure 13: The integer clock of devices

Figure 11(b) depicts these selections. The complete
NAC automaton would be obtained by joining the states The timed automaton modeling the device integer
and edges in figure11(a) and figure 11(b). Howevetpck is shown in figure 13. At the beginning the clock
as in the medium case, since UPPAAL does not deund of the device igvb = prec * 100/edv where
low clock guards on receiving edges of broadcast chamec is the digit precision anddv is the device clock
nels, we have to add one more state to check the tiart. When clocke reaches the bound, the device in-
at which the preemption happens. Figure 12 shows tieger clockidv will increase by 1 and: is reset to
complete NAC automaton. 0. As done for the server integer clock, wheiv

(from==2) && (timer>=0) && ((timer<drgPeriod) || (timer==drgPeriod && c<=0))

adjust &&
(c>=off*prec*50/edv) &&
(c<(2+off)*prec*50/edv) (from==1) && (timer>=0) && ((timer<deltaT) || (timer==deltaT && c<=0))
clock adjusted!
B delayReq stayin_device?
drgReady=true

dvb=(2+off)*prec*50/edv

aT) (timer<drqPeriod) |
c<=0 && (timer=kdeltaT && c<=0) (timer==drqPerioy§
timer==drqOff Wait_toygend_delayReq Wait_for_de)
delayReq_released! . delayReq_from_device!
timer=0, drgReady=true

& c<=0)
yRsp

x1<=0
Chegk_pType
pT

dviD=1, drqReady=false,
st=tdv, sd=dvDate

Wait_for_follpwUp

ait_for_offset
(timer<drqOff) ||
timer==drqOff && c<=0;

d=dvDate

c<=0(&&
timerF=drqPeriod
delayReq_released!
drgRpady=true,
timerg0,st=0,sd=0

pkt_to_subnet?
updateT12(t1,t2,t3,t4,nPkt.time,t,d,off,adjust)
c1=0

clock Adjusted?

pkt.pTypel=3 ||
kt.IDi=dvjD

c<(212*x+off)*prec*50/edv

clock _adjusted!
slowClock(edv,off,tdv,timer,dvb,dvDate,st,sd,x)

(timer<dfqPeriod) ||
(timer==gdrqPeriod && c<=0)

Wait_fqr_period
) pkt.pType==3 && pkt.ID==dvID
updateT34(t3,t4,st,sd,pkt.time)

adjust &&
(c>=(2+off)*prec*50/edv)

clock_adjusted!

(M _x=0
Ah

clock_adjusted?
from=3, c1=0
Check_pType_IQ

cl<=0

|
timer<0
drgReady=false

L
Adjust]clock
from==3) && (timer>=0) &&
adjust &4 (timer<drgPeriod) || (timer==drqPe & c<=0))
(c<off*prec*50/edv)
clock_adjusted! timer>deltaT) || (timer==deltaT &k c>0)
x=0 rqReady=false, timer=timer%drqgPerio
from=2, c1=0

timer>drgPeriod) || (timer==drgPeriod §& c>0)

ingl positiveX timer=timer%drgPeriod
- clock_adjusted?
c<(off-2*x)7rec*50/edv

=t Figure 15: The last two steps of the PTP protocol run-

c>=(off-2*x)*prec*50/edv
Lclock_adjusted!
fastClock(edv,off tdv,timer,dvb,dvDate,st,sd,x)

Figure 14: The first two steps of the PTP protocol rufing in devices

ning in devices
Procedure 2updateT12(int &t1, int &t2, int &t3, int
&t4, int &tsend, int &trecv, int &recvDate, int &Ooff,

reaches the clock limitlkLimit, it will be reset to P0ol &adjust)
0. Also the device date is encoded in the variabld: int sendDate=(tseng-=clkLimit);
dvDate which results from the binary operation XOR: 2: adjust=false;
dvDate = (tdv + 1 >= clkLimit) XOR dvDate. In 3: if sendDate==recvDatben
addition, there is aimer keeps increasing in the figure. 4 t1=tsend-sendDate*clkLimit;
We will see later how this variable is used. 5 t2=trecv;
The first two steps of the PTP protocol runningin thef: if t4>0then
device are depicted in figure 14. The device waits un’’ adjust = true;
til a Sync message arrives and records the arrival dafe €nd if
and time of the Sync. Then when a Folldyp comes, 9 if adjustthen
it checks whether the Sync sending and receiving aty Oﬁ,+=t2+t3't1't4;
tions happen in a same day (this is a constraint addtd ~ €nd if
to simplify the modeling of PTP). If it is the case, the2: €nd if
device further checks whether the slave-to-server del&y r€cV=0;
is available {4 > 0). Then if such delay is not avail- 14: recvbate=0;
able, the device goes back to its initial state. Otherwise,
it proceeds with the clock adjustment. The auxiliar
proceduresipdateT12 helps the device in making its!@Vnew *prec+deltawhered <= delta < prec. There
are three possibilities:

adjustment decision.

The current scaled time pointigv prec + edv * e 0 <= (edv *¢/100 — of f * prec/2) < prec or
¢/100 (tdv andc are two shared variables of the in- (of f x prec * 50/edv) <= ¢ < [(2 + of f) *
teger clock timed automaton), after clock adjusting it prec * 50/edv] = tdvpe,, = tdv anddovbye,, =
becomesduv * prec + edv * ¢/100 — of f * prec/2 = [(2+ of f) * prec = 50/ edv].

10

o (edvxc/100 — of f x prec/2) <0orc < (of f *+ Procedure 3updateT34(int &3, int &t4, int &tsend,
precx50/edv) = the device clock is running fasterint &sendDate, int &trecv)
than the server clock and so there exigsts> 0 1. int recvDate=(trecw=clkLimit);
such thab) <= tdv * prec + edv*c/100 —of f* 2. if sendDate==recvDatben
prec/2 + x * prec < prec andtdvpe, = tdv —x 3. t3=tsend:
anddvbye, = [(2—2*x+of f)*precx50/edv] 4. t4=trecv-recvDate*clkLimit;
5. end if

e (edv /100 — of f * prec/2) >= precorc¢ >=
[(24 of f) * prec*50/edv] = the device clock is
running slower than the server clock and so there| astly, figure 16 describes the audio receiving opera-
existsz > 0 such thal) <= tdv * prec + edv * tion of the device. The date and time information of the
¢/100 — of f * prec/2 — x x prec < prec and audio packet is retrieved and checked with the current
tdvpew = tdv + x anddvbne, = [(2+ 2% 2 + date and time of the device local clock. If the clock has
of) precx 50/edv] passed the time at which the packet must be played, the

automaton will go to the Error state.
Moreover, the delayReq-release task has the pe-

riod of drqPeriod and may have some initial offset <o c<=0
drqOff. After the delayReg-release event is acti- g~ score—s e R bate==audoate as_ga"
vated, the DelayReq message must be delivered to the e corc AL
medium withindeltaT dvb time units. The time when
the DelayReq has been taken in by the NAC should bex wo_fubner
recorded so that it will be used later in the PTP protocolﬁignp t pkippybess pkttime=tdv

. audDatef0,pkt.pType=0,

Figure 15 shows the last two steps of the synchro- pktID=0Jpkt time=0
nization procedure in the devices. In this figure, all"’*" 72"
edges are normal channels excégtay Req_released
andclock_adjusted - two broadcast channels.

After at mostdrqPeriod * dvb time units since the
Delay.Req delivery, the Delajres message has to be
received by the device according to the PTP protocol.
These timing constraints are enabled by using a timgr. Ground Verification
This is because the device clock bound is changed pe-
riodically and not static as the server clock bound. Ad- The above models have been validated by UPPAAL,
ditiona”y, the timer is put forward or backward th% model-checker for timed-automata [4] In the pre-
same amount of time as the local clock is. So aftgjpoys section, all of the models were constructed in
the clock adjustment, if the timer does not respect thga syntax of UPPAAL. Thus, it is trivial to feed them
invariants any longer, the automaton will abort the agirectly to UPPAAL so that their properties can be
tivity it was taking before the clock adjustment tookhecked by the verifier of the tool. UPPAAL uses
place. For example, iftimer <0) or (timer>deltaT) or 3 timed Computation Tree Logic (CTL) language for
((timer==deltaT) && (c>0)) (c is a shared variable ofspecifying properties which we want to verify. To ver-
the integer clock timed automaton), it cancels the Cufy that the system is schedulable, we must show that the
rent delivery and waits to start a new DelRgq de- four error states are never reachable. Using the timed

livery. If no invariqnt violations is committed, t_he auCTL language, the schedulability properties are speci-
tomaton executes its normal cycle, that is sending a B as follows:

lay_Req to the server, receiving the corresponding De-

lay_Res and updating the slave-to-master delay infor-e A[!SVR _AudBuf.Error
mation. The auxiliary procedurgdateT34 helps with

the last step in the cycle, assuming that the Détay) o Al!NACInBuf.Error
send_ing and DeIaRes.re.ceiving actions sh_ould hap- o A[]'NACOutBuf.Error
pen in a same day (this is another constraint added to

simplify the modeling of PTP). e A[]'DV _AudRecvr.Error

Figure 16: The audio receiver of devices

11

Only if these schedulability properties are satisfie sy [
can we be sure that the system is schedulable. If ji

. . R Follow_Up |:|
one property is violated, the system is not guarante
to work properly because it may encounter the dee ™ =
lock state where none of the timed automata can mo ey rea]
Several test cases are performed to illustrate this PO peay res I

In the first test case, the schedulability of the system
guaranteed because all properties are satisfied while it
is not in the second case due to the violation of the 13s}re 17: Task execution scheme of the medium(test1)
property. The last test case points out the possibility

of deadlock when the second property is not satisfie

In all test cases, the system consists of one server, ™™ .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

medium, one NAC and one device. Follow._Up |
Audio -
41 TeSt case 1 Delay_Req -
In this test case, the Sync interval and the period - i
the DelayReq message are equal to 20ms while th © 1 2 3 4 5 6 7 8 9 10 U 12 1B U I5

of the Audio packets is 40ms. The offset parameters

are 0 for the sync and audio packets and 10ms for tidégure 18: Task execution scheme of the NAC(test 1)

Delay.Req message. Moreover, the latency parameters

of the medium and the NACs are assumed to be 1ms,

the clock drifts for the server and its device to be 0.99 The first audio packet arrived at the device at time 4
and 0.95 correspondingly. Other parameters are anich perfectly respects its deadline at time 10. The
given fixed values such adeltaT=10ms, relD=10ms, Next audio packets would arrive at time 44, 84, etc.
BUFLEN=5 (elements)prec=10 (hence the digit pre- whi(_:h will also_respect their dgadline of 50, 90, e'Fc. In

cision is 1),clkLimit=100. Because of the small preci-2ddition, the sizes of the audio buffer, the NAC input

sion, at the beginning, the clock bound is the same in Biffer and output buffer never exceed 1. Thus, all the
environments. That isyrb=dvb=mdmb=nb=10. schedulability properties are verified and the schedula-

In figure 17 and figure 18, we show the task execfllity of the system can be guaranteed.
tion scheme of the system. The Sync, Follbyp and
Audio packets are delivered to the medium at time @,2 Test case 2
1 and 2 respectively. They are then forwarded to the
NAC at time 1, 2 and 3 respectively by the medium. In this test case, the Audio packets are generated
At time 10 a DelayReq message is released by the derore frequently and its period is 5ms while the Sync
vice and since the NAC is currently free, the messagerigerval and the Delayreq period are 20ms and 40ms
processed immediately and transmitted to the mediuespectively. All these packets have offset 0 and the
at time 11. After receiving the DelaRReq, the server audio relative deadline is 15. Moreover, the medium
sends out the DelaRes message at time 12 and the d&tency (which is 2ms) is a little longer than the NAC
vice receives the message at time 14. This executlatency (which is 1ms). Other parameters take the same
scheme is repeated at time 20, 40, 60, etc. values as in the previous test case.

In the first cycle, since the Sync and Folldyp mes- Before bumping into the Error state of the
sages arrived when no Del&eq had been sent by theDV _AudRecvr timed automaton, two clock adjust-
device, its local time is not adjusted. In the next cyclejents had happened as shown in table 1.
when the Sync and Follawp messages arrive once At time 0, the clock bound is the same in all envi-
again, the offset can now be computed as all parametensments, namelgvrb=dvb=mdmb=nb=10 due to the
needed for clock synchronization are available. In thisdigit-precision as in the previous case. The Sync is
special case, the master-to-slave and slave-to-mastersdet at time 0 by the server and received at time 3 by the
lays are equal to 2, thereby zeroing the offset and lettidgvice. Since the slave-to-master delay is not available
the device clock remain unchanged. yet, the first clock adjustment does not actually happen.

12

1st| 2nd | 3rd syne
svrb 10 | 10 10
b 1010 |5 e ==
mdmb 10 | 10 | 10 Audiol [—
nb 10 | 10 10 Delay_Req [
ty 0 20 | na Delay_Res | —
15 3 |23 | na Audio2 [
t?’ 0 0 40 Audio3
t1 0 |6 |35 _
of f[=ta+ts—ti—t, |0 | -3 |-1 Aot =3

0 2 4 6 8 10 12 14 16 18

Table 1: The clock adjustments happen before the au-))
tomaton goes to the Error state Figure 19: Task execution scheme of the medium(test3)

Audio sending 0 5 10 |15 | 20 | 25 | 30 | 35
Audio receiving 11 | 13 | 15 |18 | 27 | 34 | 44 | 56

Time to play 15 |20 | 25 |30 | 35 |40 | 45 | 50 sync I
Deadline violation| No | No | No | No | No | No | No | Yes .

Follow_Up

Audiol

Delay_Req ||

Delay_Res

Table 2: Deadline violation of audio packets

Audio2

It is noticeable that the DelaRReq was released at time
0 and got out of the NAC at time 1, but because of i
low priority compared to the Sync and Follovdp mes-
sages, it has to wait until the higher priority messages
pass through the mediL_Jm._Th_ereby adding a delay to iﬁgure 20: Task execution scheme of the NAC (test 3)
arrival at the server which is finally 6.
At time 20, the Sync is released once again and since
it has the highest priority, it arrives at the device at time
23. Now that the master-to-slave and slave-to-master
delays are available, we can perform the offset calculadn figure 19 and figure 20 we show the task execution
tion. In fact, the device clock is 1.5 ms behind. Howscheme of the system. The Sync, Follolp and the
ever, since UPPAAL does not support the real type, tfiest Audio are delivered to the medium at time O, 2 and
offset is integerize advancing the device clock from 2brespectively. Also at time 0, a Deldyeq message is
to 26 and changing the device bound from 10 to 5 ealeased by the device and since the NAC is currently
a result. After that, an audio-deadline violation takdsee, the message is processed immediately. At time 6,
place at time 56 before the third adjustment has hape DelayReq enters the medium while the Sync enters
pened. the NAC. After receiving the DelajReq at time 8, the
Table 2 summarizes the times at which the audserver sends out the Del&es message immediately.
packets are released, received and played. It is impAttime 10 and 12, two other Audio packets which were
tant to notice that the device clock has been adjustedeieased at time 5 and 10 are transmitted by the medium
time 25 and elapsing two times faster than the senterthe NAC. Also at time 12, the NAC finishes process-
clock since then. And before it could be adjusted tog the Sync and starts processing the Folldp. At
elapse at the slower speed, it has caused one auilie 15, another Audio packet is released and it arrives

Audio3

Audio4

2 4 6 8 10 12 14 16 18

packet to violate its deadline. at the NAC at time 17 by which the NAC input buffer
has overflowed because it is currently contains one Fol-
4.3 Test case 3 low_Up, one DelayRes and three other Audios. As a

result, the system will soon encounter the deadlock state
In this test case, the medium latency (which is 2mbgcause when the medium has other Audio packets to
is a much shorter than the NAC latency (which is 6mdprward to the NAC, it could not synchronize with the
Other parameters take the same values as in the previdA€ input buffer automaton as the automaton is cur-
test case. rently staying in the Error state.

13

Release PTP?

Release Audig?

c==ptpPeriod

Release_PTP?

c==ptpOff
Release PTP!
c=0
Wait_for_offset
c<=ptpOff

Error

Wait_for_period
c<=ptpPeriod

(@

c==audPeriod
Release_Audio!

c==audOff
Release Audio!
c=0
Wait_for_offset
c<=audOff

n1==0 && n2>0
r£C2, task=2,
cF0, n2=n2-1

Wait_for_period
c<=audPeriod

(b)

task=1, =C1,
n2=n2+1

(c<r) && (c>0 || task==1)
Release_PTP?
nl=nl+1

Figure 21: PTP and audio task activation automata

Figure 22: Schedulability checker for task PTP

5 Parametric Analysis
5.1 Abstract Models

The UPPAAL timed automata in section 3 are veryhe activation automata for the PTP and audio receiver
specific models which follow closely the operations @fsks are shown in figure21. The offset, period and
the HCS system (including the server, the medium, tReadline are fixed for each task.

NACs, the devices and the PTP protocol) given in sec-Based on the checkers used in [2], the schedulability
tion 2. If the details of those Operations are abStraCt@ﬂeckerS for the two tasks are modified to model a non-
from the system models, we will obtain abstract modgi$eemptive scheduling environment. That is, the audio
describing the system at a higher level. For instance, ﬂ)’&:kets can not be preempted by the PTP packets if they
abstract model for the devices would be a periodic taglke currently being transmitted by the network or pro-
set consisting of the PTP task and the audio receiygissed by the NACs. The preemption can only happen
task. The PTP task has a higher priority than the aghen the audio packets have just been released and not
dio receiver task as specified in section 2. In additiopansmitted yet. So, when many packets are ready at the
the execution time of the former accounts for the totghme time, the PTP would go first and the audio would
PTP load that the devices could bear and that of the Igkck off.

ter accounts for the total delay of traversing through theThe scheduler checker for the PTP task is shown in
medium and the NACs of the audio packets. figure 22. In this figureD1 is the deadline of the PTP

With all the UPPAAL models developed previouslytask which is less than or equal to the PTP perfod,
it is now easier for the system designer to verify if the@nd C2 are the execution time of the PTP and audio
is any deadline miss with respect to the audio packei@sks respectively.
given a fixed set of parameters. It could even be moreThis checker differs from the checker in [2] in the
helpful to the system designer if he could be providdgllowing details.
with the parametric analysis on the abstract models of
the system. These models gain the advantage of small
complexity in applying the PTA tool over the specific

Firstly, three additional variables are introduced.
The variabletask denotes the currently-executed
task,nl andn2 record respectively the number of

models. In this section, the parametric analysis is car-
ried out only on the abstract models of the devices to
identify the parameter space that can guarantee to re-
spect the deadline of audio packets and PTP packets
The analysis on the abstract models of the server could
be done similarly.

14

PTP and audio packets released during the current
execution.

Secondly, at locatioBusy, when one task is be-
ing executed ¢>0), other task instances will be
gueued in the respective queues. The preemption

can only take place in the situation where the audime, D2 is the relative deadline of audio packets. Be-
task is about to be executeckE0 & & task==2) sides, the parametdriftDelta is introduced to account
when the PTP task is ready for execution. for the offset time of the local clock compared to the
server clock. The worst case happens when the local
e Thirdly, the additional self-loops at locatidusy clock is substantially slower than the server clock and
are taken when the current execution is completaflys when an audio packet is received, the actual dead-
If the PTP queue is not empty1>0), a PTP in- |ine to be verified would b®2-driftDeltainstead 0D2.

stance will be removed from the queue and then |, fact, the requirement of no deadline miss is dif-

executed. Otherwise, an audio instance will Byt to obtain in real-time environments. Therefore,
scheduled as long aw>0. If both queues are, order to make the analysis more practical, the re-
empty, the transition fronBusy to Idle is taken, quirement can be relaxed by allowing an audio packet
indicating no tasks are ready to be executed. 5 sometimes miss its deadline. However, there should
- . be no other deadline miss after one is made. In other

e Lastly, transitions enteringCheck from Busy S . : .

. . words, the situation of two successive deadline misses
are taken when a PTP instance is (nhon; .
o) . should never happen. The checker adapted for this new
deterministically) chosen for checking. Again, the

. . Lo requirement is shown in figure 24.
preemption can happen if the transition is taken a . . .
L . .In the figure, three new variables are introduced. One
c==0and the task about to be executed is the audio

task. Moreover, before any deadline verificatioﬁs, the boolean variablém used to capture the fact that

the execution time of all other PTP instances in th0 e deadline miss has_ already happewiea:true), the
hers are the real variablé andr2 used to record re-

gueue must be taken into account as they would B

scheduled before the current PTP instance thaﬂoectively the total execution time of all PTP instances
 should be updated {@+C1* n1-c) or(r+C1*r;1- released between two consecutive audio instances and

of the latter audio instance, if it is released before a

deadline miss. This checker is also different from the
Check2
c>0 && c<r && i - . —
c==0 c<D2-driftDelta C==1 && c<=D2-driftDelta () __c<r && c==D2-driftDelta
Release PTP? Release PTP?
r2>0 8& !dm &&
c<r &&§ c==D2-driftDelta
12220 8&& r=r+rljr2-c, c=0
c>0 && c<r &&
c<D2-driftDelta r2>0 && c>t &&
Release PTP? c<r && c<D2-driftDelta

Error

Release PTP?

Relgase_Audio?
c=0, xcC2

e_PTP?

Error

Release_Audid
r2==0 && c<r &&
c<D2-driftDelta
Release_Audio?
r2=C2, t=c

r2==0 && !dm &&

Figure 23: Schedulability checker for task Audio Rex| pe=ogglmak
ceiver (hard deadline) o dm=true, r=r+rl -

shown in figure 23. Similarly, thR®elease PTP transi- N)

tions are added to theheck state to ensure that wherf-igure 24: Schedulability checker for task Audio Re-
an audio transmission is going ce1{0), the PTP would Ceiver (soft deadline)

back off and if that transmission is about to happen

(c==0), the PTP can preempt it£r+C1). In the fig- checkerin [2] due to the above variables, the additional

15

Experiment 1| Experiment 2 C1
ptpOf f 0 5 C2
ptpPeriod 40 40 driftDelta
D1 10 10
audOff 0 0 Table 4: Free parameters of the system
audPeriod 10 10
D2 10 10
Experiment 1| Experiment 2
. . . Checkerpr 62 90
Table 3: Fixed parameter values in two experiments Chechero o > -

-) _ Table 5: Running time in minutes in two experiments
transitions fromCheckl to other locations and the in-

troduction of the new locatio@heck2.

Transitions enteringCheckl from ldle or Busy are the system. Table 3 shows the values of all fixed param-
taken when an audio instance is (non-deterministicallyders in two experiments while the free parameters are
chosen for checking. And if another PTP instancpecified in table 4. Moreover, the running time results
is also ready before this audio instance is executefithe two experiments are summarized in table 5. The
(c==0), it would be preemptedr€r+C1). Then the computer used in the experiments has 1GB RAM and
execution time of all other PTP instances would be algxtel Core 2 Duo CPU T7500 2.20 GHz. It is notice-
cumulated until another audio instance is released oaffle that the PTP checker generally runs much slower
misses its deadline. than the Audio checker which may be because the path

When the current audio instance finally violates itgading to the error state of the former is much longer
deadline: than that of the latter. The running time also depends

.) on the bound used to model check the system. Using

e If one deadline miss had happened beforg|arge bound can help to find more traces to the error

(dm=true), the locationError is reached becausesiate, hence the feasibility region is more correct. How-

of two successive deadline misses. ever, the larger the bound is, the longer the running time
is. So in finding the schedulable region, one must trade
off between a large bound and short computation time.
Experiment 1:

For this experiment, the feasibility region in which
task PTP is guaranteed to never miss its deadline is ex-
e If there was no deadline missrt=false) and no Pressed in the constraints below:

other audio instance is released before the current

deadline miss, the variablim is updated tdrue 1

and the transition fronCheckl to Busy is takento 2

e Otherwise, if another audio instance has alrea
been releasedZ>0), the transition fromCheckl
to Check2 is taken in order to verify if it would
miss its deadline the second time.

I[(C1 = 10) A (15/2 < C2 <= 10)]A
(2% C1+4%C2 > 50) A (C1 <= 10) A (C2 <=

tolerate the first deadline miss. 10)]A
3 [(2%C1+4xC2 = 50)A(0 < C1 < 10)A(15/2 <
C2 <=10)|A

5.2 Experiments 4: [(4%C1+48%C2 > 90) A(2+C1+4xC2 <= 50) A

In this section, we report on the results of experi-_ '(Cl+4*02 > 40)A(C1 <=10)A(C2 <= 10)]A
menting the above periodic task set on the PTA imple® (6 C1+12+ 02> 130) A (3% C1+ 8+ 02 <=
mented in [2]. The following information is used as the 90) A (C1+4xC2 > 40)A(C1 <= 10)A(C2 <=

initial constraints: 0)]
Cl>0
C2>0 Figure 25 graphically shows the error region for each

Cl<=D1 constraint. The feasibility region of task PTP is the
C2<=D2 square with a side length of 10 excluding the total er-
driftDelta >= 0 ror region, as shown in figure 26.

In both experiments, we usmunded model check- By joining this region together with the schedulabil-
ing with the bound 060to find the feasibility region for ity region of task Audio expressed in the following con-

16

c2

Cc2

10

10

10 e :
m‘%@%&%%%
3 8
i 6|]
N
O
4 4 L i
4 2 L i
| (C1=10) and (15/2<C2<=10) - o ‘ ‘ [(2*C1+4°C2=50) =
4 6 8 10 0 2 4 6 8 10
c1 c1
(a) Constraint 1 (b) Constraint 2
10 - — ; :
: ooomwjg&%&%%
e 9%@
L 8t i .
4 6 L i
N
O
i al]
4 2 L i
(2*C1+4*C2=50) =
(C1+4*C2=40) ©
‘ [(2*C1+4*C2=50) = 0 ‘ ‘ [(4*Cl+8*C2=90) -
4 6 8 10 0 2 4 6 8 10
c1 c1
(c) Constraint 3 (d) Constraint 4
10 1
ST
$T TP %
.. %8 g@gg
$sxx s
8L e, g‘&%g%%ﬁééss,
6 I o .o
N
O
4 + 4
oL i
(C1+4*C2=40) o
(6*C1+12+C2=130) -+
0 ‘ ‘ (3*C1+8*C2=90) =
0 2 4 6 8 10

c1
(e) Constraint 5

Figure 25: The error region for PTP constraints (experimégnt

17

¥
/
A
¥
A
¥
¥
A
¥
4

3
5
3
><>ay

3

53

3

b

S
S

><>S<><
o

X%
o
5

=10
=50
40
90
130
=90

2*C1+4*C2

(C1+4*C2
4*C1+8*C2
3C1+8*C2

(
(

(6*C1+12*C2
(

and (15/2<C2<

(C1=10)

[4e]

10

C1

Figure 26: The total error region for task PTP (experiment 1)

Figure 27: The total error region for task Audio (experiméndd stands fodriftDelta)

18

straints, we would obtain the final region in which the1: [[(C1 4+ C2 > 15) A (C1 <=10) A (5 < C2 <=
whole system can work properly: 10)]A
2: 1[(5/3 < C1 <= 5) A (C2 = 10)]A

1: [(dd = 10) A (C1 <= 10) A (0 < C2 <= 10)]A 3 (40 < C14+4%C2<=45)A(3xC1+5xC2 >
2. 1[(C1 + C2 + driftDelta > 10) A (0 < C1 <= 55) A (C1 <=10) A (5 < €2 <= 10)]A
10) A (C2 <= 10) A (driftDelta >= 0)] 4 165xC14+9%xC2>95)AN(2xC1+8xC2 <=

85) A (C1+5%C2 = 50) A (C1+4%C2 >

40)AN (0 < Cl<=10)A (5 < C2<=10)]A
Figure 27 shows the error region for task Audios: ![(1 < C'1 <= 5/2) A (C2 = 10)]A

which has a volume of 5/6 of that of the cube with a6: ![(5xC1+9*C2 > 95)A (2xC1+8x(C2 <=

side length of 10. The remaining volume of the cubeis 85) A (C1 + 5% C2 <= 50) A (C1 + 4% C2 >

the feasibility region for task Audio which is a tetrahe- 40) A (C1 <= 10) A (5 < C2 <= 10)]A

dron as figure 27. NG+« CLl+9%xC2>95)A(2xC1l+9%C2 >
For example, whedriftDelta = 0, the feasibility re- 85)A(2xC14+8%C2 <= 85)A\(2xC1+5xC2 <=

gion for the whole system is half of the base area of 60) A (C1+5%C2 > 50) A (C1 <=10)A (5 <

the cube which is the right triangle area with a cathetus C2 <= 10)]

length of 10. This can be easily verified by looking

at the behaviour of the system. The first PTP released

at time 0 does not miss its deadline becaG2=10. And that of task Audio is expressed as follows:

Although the first Audio instance is preempted at time

0 by the first PTP instance, it also did not violate its1: ![(C1 <= 10)A(0 < C2 <= 10)A(driftDelta =

deadline sinc€1+C2<=10. The other three Audio in- 10)]A

stances released at time 10, 20 and 30 are not preempted [(C2 + driftDelta > 10) A (C1 <= 10) A

as PTP instances are only released after 40 time unit. (C2 <= 10) A (driftDelta >= 5)]A

At time 40, the task arrival pattern is repeated with one: ![(C2 + driftDelta > 10) A (C1 <=10) A (5 <

PTP instance and one Audio instance released simul- C2 <= 10) A (0 <= driftDelta < 5)|A

taneously at time 40, then three other Audio instances ![(C1 + 2 « C2 + driftDelta > 20) A (C1 +

arrive at time 50, 60 and 70. Thus, when thereisno C2 > 10) A (C1 <= 10) A (b < C2 <=

clock drift, the system is guaranteed to be schedulable 10) A (driftDelta >= 0)]A

as long a1+ C2<=10. 5. [[(C1 + driftDelta > 10) A (5 < C'1 <= 10) A
When driftDelta = 1, the feasibility region for the (0 <= driftDelta <= 5)|A

whole system returned by the PTA tool is bounded by: ![(C1 + C2 + driftDelta > 15) A (C2 +

the line C1+C2<=9. However, there are points that driftDelta <= 10)A(5 < C1 <= 10)A(C2 <=

should be in the feasibility region but got excluded by 5) A (driftDelta >= 0)]

the tool finally. For example, witlel = 5andC2 = 5,

the first Audio instance misses its deadline but the secy, his experiment, with a nonzero offsptpOff =

ond does not _WhiCh obeys th_e soft deadline. And tIg,ethe result becomes much more complicated because
other two Audio instances at time 20 and 30 also do g,y the first PTP instance will have to experience some
miss their deadlines. Similarly fqC1 = 4, C2 = 6) delay as it arrives after the first Audio instance. Thus,

or for (C1 = 3, C2 = 7) or any other pair of values for g yrace leading to the error state will be more compli-
(C1,C2) that satisfy the constrai@l+C2=10. Itisno- ,aq and not as simple as in experiment 1.
ticeable that these points are included in the feasibility

region for task PTP but not for task Audio. So the result

returned by the tool for task Audio seems conservatie Conclusions

in this case which needs to be investigated to find a bet-

ter solution. In this report, the application of the PTA tool in [2] is

Experiment 2: studied by applying the tool to a distributed Heteroge-
For this experiment, similar to what was done in exxeous Communication System(HCS). The reports starts

periment 1, the feasibility region in which task PTP iwith describing the system and its requirements. Next,

schedulable is expressed in the following constraintsa complete set of UPPAAL models that we have built

19

for the system are explained fully and clearly. These
models are then validated by the ground verifications.
Finally, part of the system models are converted into
parametric timed automata which are run to produce thig]
schedulability regions.

In the future, we plan to extend the models to depict
fully the system, such as modeling the PTP protocol in
the NAC, ensuring that the audio data is played bac
at end devices synchronously with a given maximal jit-
ter (e.g. 0.1ms), etc. The parametric timed automata
would then be designed in order to capture the new re-
quirements.

7 Acknowledgments

The authors would like to thank Marius Bozga for help
with modeling the system, and EADS for providing the
case study.

References

[1] IST STREP 215543 COMBEST, Case Study De-
scription and Requirements.

[2] A.Cimattiand L. Palopoliand Y. Ramadian, Sym-
bolic Computation of Schedulability Regions Us-
ing Parametric Timed Automata, Real-Time Sys-
tems Symposium, Nov.30 2008-Dec.3 2008.

[3] H. Bowman, G. Faconti and M. Massink. Specifi-
cation and Verification of Media Constraints using
UPPAAL. 5th Eurographics Workshop on the De-
sign, Specification and Verification of Interactive

Systems, DSV-IS 98, Springer Verlag, 1998.

[4] K. G. Larsen, P. Patterson, and Y. Wang. UP-
PAAL in a nutshell. Springer International Jour-
nal of Software Tools for Technology Transfer, 1,

1997.

[5] A Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems.
IEEE Standard 1588-2002, November 2002.

[6] R. Alur and D. L. Dill. A theory of timed
automata. Theor. Comput. Sci., 126(2):183235,
1994.

[7] D. Zhang and R. Cleaveland. Fast on-the-fly para-
metric real-time model checking. In RTSS05,

20

Washington, DC, USA, 2005. IEEE Computer So-
ciety.

T. Hune, J. Romijn, M. Stoelinga, and F. W.

Vaandrager. Linear parametric model checking of
timed automata. In TACAS 01, Springer-Verlag,
2001.

Etienne Andre, Thomas Chatain, Emmanuelle En-
crenaz, and Laurent Fribourg. An inverse method
for parametric timed automata. Electronic Notes
in Theoretical Computer Science 223 (2008).

