

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38100 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

Modeling a distributed Heterogeneous
Communication System using Parametric Timed
Automata

Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone and Yusi Ramadian

April 2010

Technical Report Number: DISI-10-031

.

Modeling a distributed Heterogeneous Communication System
using Parametric Timed Automata

Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, Yusi Ramadian
Department of Information Engineering and Computer Science

University of Trento, Italy
hoa.le@studenti.unitn.it

April 20, 2010

Abstract

In this report, we study the application of the Para-
metric Timed Automata(PTA) tool to a concrete case
of a distributed Heterogeneous Communication System
(HCS). The description and requirements of HCS are
presented and the system modeling is explained care-
fully. The system models are developed in UPPAAL
and validated by different test cases. Part of the sys-
tem models are then converted into parametric timed
automata and the schedulability checking is run to pro-
duce the schedulability regions.

1 Introduction

Symbolically computing the region in the parameters
space that guarantees a feasible schedule (given a set of
real-time tasks characterised by a set of parameters and
activation patterns) is a novel approach to the compu-
tation of schedulability regions[2]. This method is of
great usefulness, for example, once the feasible regions
have been identified, the system designer can choose
quickly a correct set of parameters that could make the
system works properly. Moreover, he can also be as-
sisted in optimizing the system performance while still
keeping the system schedulable.

Parametric timed automata have been approached
differently in the literature. In [7] given a real-time sys-
tem and some temporal formula which may contain pa-
rameters, and a constraint over the parameters, a model-
checking problem is to verify whether every allowed
parameter assignment could guarantee that the real-time
system satisfies the formula. Instead, in [2] sensitivity
constraints over the interested parameters are computed

and then joined together to produce the schedulability
region of the system.

Another interesting work on PTA is studied in [8]
where the authors use a prototype extension of UP-
PAAL [4] for linear parametric model checking and
show decidability results for the verification ofL/U au-
tomata. For this special class, the problem of deciding
whether there exists a parameter valuation such that a
given locations is reachable, is indeed decidable while
it is not for the full class. The idea to this emptiness
problem is then generalized in [2] in order to produce
the parameter region in which the system is unschedu-
lable.

In the context of asynchronous circuits, E. Andre et
al. [9] propose a method of synthesizing constraints
of a timed automaton, given an initial set of param-
eter values for which the system is known to behave
properly. The authors ensure that for any two valua-
tions of parameters satisfying these constraints, the be-
haviors of the timed automata are time-abstract equiva-
lent. Although the method will terminate as long as all
symbolic traces computed from a givenreference pa-
rameter valuation are either of finite length or trivially
cyclic, it has been shown to be particularly suitable in
the framework of asynchronous circuits. A. Cimatti et
al.’s solution to the synthesis of constraints [2] is also
symbolic but but differs from the former approach in
many aspects. The later aims at symbolically comput-
ing theregion of parameter space that makes the system
feasible by enumerating all possible traces that could
drive the system into an error state and identifying, for
each of them, the subsets of the parameter space that
are compatible with the trace. In addition, the method
does not make use of reference parameter valuations

1

and it is proved to converge for periodic task systems
with bounded offsets.

In fact, the method in [2] can be applied widely in
real-time systems adopting a fixed priority mechanism
and in an effort to help with the development of the PTA
prototype tool, we have tried to apply the tool to an in-
dustrial embedded application. The application is first
modeled in UPPAAL and validated by different ground
sets of parameters. Part of the system models are then
converted into parametric timed automata which are
then analyzed by the PTA tool in order to produce the
feasible region.

This report is organized as follows. Section 2 de-
scribes the application and its requirements. In sec-
tion 3, the UPPAAL models for the application are ex-
plained in detail. These models are then validated by
verifying different sets of parameters in section 4. Next,
section 5 presents the parametric analysis after running
the PTA tool. Finally, section 6 concludes the report
and suggests future work.

2 HCS and Parametric Timed Au-
tomata

 Sensor

 SERVER CONTROL SCREEN

 NAC

 WAP

 Sensor

 NAC NAC

 DEVICE DEVICE

 DEVICE DEVICE

 DEVICE DEVICE DEVICE

Figure 1: Heterogeneous Communication Sys-
tem(HCS)

The distributed Heterogeneous Communication
System (HCS) contains various devices, wired and
wireless communication networks and a common

server. The HCS provide control, monitoring and data
processing of various subcomponents through heteroge-
neous networks. The server is connected to different de-
vices such as sensors and actuators via wired and wire-
less protocols. The various devices are connected to
the server through Network Access Controllers (NAC).
The architecture of the HCS is described in more detail
in [1].

HCS provides two important applications that can be
deployed on end devices. One is to transmit audio data
periodically to end devices every audPeriod ms from the
server. The other application is to synchronize clocks
using the Precision Time Protocol (PTP, IEEE1588[5]).

A general HCS is depicted in figure 1, based on wired
and wireless components. The HCS system consists of
the following components: SERVER, DEVICE, NACs,
wired and wireless networks. The HCS server is con-
nected to all NACs in a daisy-chain topology. The
NACs perform the gateway function between the back-
bone and the end devices. Wireless devices are accessed
via wireless access point (WAPs), and WAPs are con-
nected directly to NACs. Functions of the WAPs are
similar to the NACs functions, in particular synchro-
nization with the network and server, data routing be-
tween NACs and wireless network.

 SERVER

 MEDIUM

 DEVICE

packet_out packet_in

play

Figure 2: General schema of audio streaming over a
network

Figure 2 illustrates a common design approach for
audio streaming. More detail can be found in [1]. Such
a stream of the HCS has a number of noticeable charac-
teristics as follows:

• The communication between the server and device
is asynchronous.

• The server sends an audio packet every
audPeriod ms.

• An audio packet is characterized by two parame-
ters: a sequence numberi and a timestampti de-
noting the time the packet has to be played at the
device.

2

• Packets arrive at the device (except they get lost)
with a minimal latencyLmdm = Lmin and a
maximal latencyLmdm = Lmax

• The NACs simply forward the incoming packets
to the devices. And packets passing through the
NACs have to experience a further delay ofLnac
ms during which they are preprocessed by the
NACs.

• When a packet is received by the device, it needs
τ ms to process the packet after which it is ready
to receive the next packet.

• The medium is unreliable, it may lose and reorder
packets.

Figure 3: Time sequence diagram of message ex-
changed between master and slave clock to achieve time
synchronization

Figure 3 depicts the clock synchronization of the
slave clock with the master clock based on PTP. Ev-
ery component of HCS has a local clock and PTP runs
in the server, devices and NACs. Various timing delays
are to be guaranteed, for example, in a scenario where
two devices are connected to the server both wired and
wireless, it should be guaranteed that both devices are
synchronized within an error of 0.1ms (synchronization
precision).

The ideal objective is to identify the parameter space-
the largest region in which the correct functioning of au-
dio streaming and clock synchronization can be guaran-
teed by using the novel method proposed in [2]. One re-
quirement regarding the correct functioning of the audio

application, for instance, could be the maximal time dif-
ference between sending an audio packet and playback
of the audio packet at the devices is less than 0.1ms.
Another synchronization requirement could be to en-
sure the synchronization precision is bounded by 0.1ms,
given different timings on wired and wireless network.

However, HCS is too complex to be parametrically-
modeled completely. Therefore, before applying the
parametric timed automata (PTA) approach, we need
to relax some of the above requirements. The simpli-
fied system would contain only one server and many
NACs and devices where one NAC may be associated
to at most one device and one other NAC. Also, for
the time being we would just focus on modelling the
PTP part on the server and devices. Additionally, ev-
ery audio packet will have to experience a maximal de-
lay when traversing through the medium (Lmdm =
Lmax). Furthermore, the last two characteristics of
the HCS audio streaming and the timing PTP delay
are temporarily not considered and would be in the fu-
ture as the next modelling step. Lastly, assuming that
the transmission priority of the packets is as follows:
PriorSync > PriorFollow Up > PriorDelay Res >
PriorDelay Req > PriorAudio. The system high level
description can be viewed logically as in figure 4(a) or
figure 4(b).

(a)

(b)

Figure 4: Logical model of HCS

3

3 UPPAAL Models

The models of HCS are first developed in
UPPAAL[4] because UPPAAL allows graphically-
modeling ability which assists model-developers in de-
bugging and testing their models.

3.1 Integer clock

In UPPAAL, HCS is modeled as a network of ex-
tended timed automata with global real-valued clocks
and integer variables. Since the clock value is neces-
sary in the PTP protocol, we need to retrieve the clock
value which is impossible in UPPAAL as it does not
support real variables as well as clock value retrieval.
And integer clocks are invented to overcome this hur-
dle. In fact, an integer clock is an integer variable re-
turning the integer part of a real-valued clock. This ap-
plies to real clocks which have no clock drift. How-
ever, since the local clocks in the server and devices
usually drift compared to the actual time, we need to
adjust the operation of integer clocks in order to re-
trieve the clock value within a certain precision. As-
suming we have a clock drifte (0 < e), a real clock
c and an integer clockci. Actually, e should be a real
variable but as this is not allowed in UPPAAL,e has
to be integerized. That is, if we want to take care of
up to n digits after the decimal point, we multiplye
and10n together. For example withn = 2, e = 95
means the drift of 0.95 andc = 0.95 ∗ t wheret is
not a drifting clock. Thus,ci increases by 1 when
t = 100/e = 100/95 = 1.052631579. Again, UP-
PAAL does not allow comparisons of clocks with real
values, so we have to integerize100/e and make it even
more precise by multiplying it by some precisionprec.
With a three-digit precisionprec = 1000, for instance,
ci increases whent = 1000 ∗ 100/95 = 1052, that is
we are scaling the bound at which the integer clock is
changed. Henceci is more precise. Furthermore, every
integer variable will finally overflow if it keeps increas-
ing, therefore to ensure the correctness of the whole sys-
tem, it is necessary to reset integer clocks to 0 whenever
they reach a predefined clock limitclkLimit.

3.2 Server

The server is modeled as a network of five timed au-
tomata, one of which models the server integer clock,
two of which model the PTP protocol running in the

server and the others model the audio sending and
buffering operations of the server.

Wait_for_server_bound
c<=svrb

c==svrb
server_clock_tick!
c=0,
svrDate=(tsvr+1>=clkLimit)^svrDate,
tsvr=(tsvr+1)%clkLimit

Figure 5: The server integer clock

The timed automaton modeling the server integer
clock is shown in figure 5. At the beginning the clock
bound of the server issvrb = prec ∗ 100/esvr where
prec is the digit precision andesvr is the server clock
drift. When clockc reaches the bound, the server in-
teger clocktsvr will increase by 1 andc is reset to
0. As said above, to prevent the overflow situation,
when tsvr reaches the clock limitclkLimit, it will
be reset to 0. Because the server integer clock is re-
set everyclkLimit time units and so is the device inte-
ger clock, it is crucial to distinguish the states of two
clocks, that is whether they have been reset or not.
Given that the difference of the two clocks can never
exceedclkLimit, we invent the notion of ”odd date”
and ”even date”. The clocks at the beginning show
the time in ”even date” and when they reach the clock
limit, the displayed dates are changed to ”odd date” and
vice versa. The server date is encoded in the variable
svrDate which results from the binary operation XOR:
svrDate = (tsvr +1 >= clkLimit) XOR svrDate.

The PTP timed automata are depicted in figure 6.
Figure 6(a) illustrates the first two steps of the synchro-
nization procedure shown in figure 3 and figure 6(b) de-
scribes the last step. In the figures, all edges are nor-
mal channels used to synchronize two timed automata
exceptsync released and delayRsp released - two
broadcast channels that can always fire (provided that
the guard is satisfied), no matter if any receiving edges
are enabled. But those receiving edges, which are en-
abled, will synchronize.

In figure 6(a), the sync-release task has the pe-
riod of syncPeriod and may have some initial offset
syncOff . After the sync-release event is activated,
the Sync message must be delivered to the medium
within halfDelta∗svrb time units. The time when the
Sync has been transmitted completely onto the medium
should be recorded so that it will be added to the Fol-

4

Wait_for_period
c<=syncPeriod*svrb

Wait_to_send_followUp
c1<=deltaT*svrb

Wait_to_send_sync
c1<=halfDeltaT*svrb

Wait_for_offset
c<=syncOff*svrb

c==syncPeriod*svrb
sync_released!
c=0, c1=0,
syncReady=true

followUp_to_mdm!

sync_to_mdm!
c1=0,
tsync=tsvr+svrDate*clkLimit,
syncReady=false

c==syncOff*svrb
sync_released!
c=0, c1=0,
syncReady=true

(a)

Wait_to_send_delayRsp
c<=halfDeltaT*svrb

Release_delayRsp
c<=0

Wait_for_delayReq

delayRsp_not_deliver_yet?
drsReady=true

delayRsp_to_mdm!
drsReady=false

delayRsp_released!
drsReady=true

delayReq_to_svr?
c=0,
drsPkt.pType=3,
drsPkt.ID=mPkt.ID,
drsPkt.time=tsvr+svrDate*clkLimit

(b)

Figure 6: The PTP protocol running in server

low Up message and sent to the devices:tsync =
tsvr+svrDate∗clkLimit. Here we encode the server
date and time information into the Sync sending time.
Similarly, after at mostdeltaT ∗ svrb time units since
the Sync transmission, the FollowUp message has to
be delivered to the medium,halfDeltaT anddeltaT
are defined in the PTP protocol[5].

In figure 6(b), the timed automaton initially waits for
Delay Req messages from the devices. When one such
message arrives, it prepares a DelayRes message to
send back to the device:

• drsPkt.pT ype = 3 : the message is DelayRes.

• drsPkt.ID = mPkt.ID: the destination is the
source of the DelayReq message andmPkt is the
packet the server received from the medium.

• drsPkt.time = tsvr+svrDate∗clkLimit : en-
coding the server date and time information.

Again, the DelayRes must be delivered to the
medium withinhalfDeltaT time units after the recep-
tion of the DelayReq message. However, if higher pri-
ority messages are available at its delivery time, the De-
lay Res will backoff (delayRsp not deliver yet) and
retry after a short time.

Figure 7(a) describes the audio sending operation of
the server assuming that audio packets are periodically
generated and played. The audio-release task has the

period ofaudPeriod and probably some initial offset
audOff and also a relative deadlinerelD at which
it must be played. When the task is activated, an au-
dio packet will be either delivered to the medium or
pushed into a buffer depending on whether the medium
is busy or not. The audio packet will contain the time
the packet has to be played at the devicesti. The pro-
cedureaudPkt helps with this preparation.

Procedure 1 audPkt(int deadline, int &ti, int &aud-
Date)

1: audDate=(deadline>=clkLimit) XOR audDate;
2: ti=deadline % clkLimit;

Figure 7(b) describes the audio buffering operation
of the server. The timed automaton will buffer or
remove an audio packet by taking theaudio to buf
or audio from buf transition respectively. When a
buffer over-run occurs, the automaton goes to the Er-
ror state. Moreover, two auxiliary procedures are used
to simplify the automata. TheaudPush procedure
helps to encode the date and time information into the
audio sending time and push waiting packets into a
buffer. TheaudPop procedure helps to remove a packet
from a buffer. It is also noticeable thatlookAhead al-
ways points to the first element of the buffer when it
is not empty. In addition,audio to buf is modeled as
a broadcast channel so that audio packets are buffered
when the medium is busy.

Wait_for_period
c<=audPeriod*svrbWait_for_offset

c<=audOff*svrb

c==audPeriod*svrb
audio_to_buf!
c=0,
audPkt(ti+audPeriod,ti,audDate)

c==audOff*svrb
audio_to_buf!
c=0,
audPkt(audOff+relD,ti,audDate)

(a)

ErrorWait_for_audPkt
size>BUFLEN

audio_from_buf?
audPop(buf,head,tail,lookAhead,size)

audio_to_buf?
audPush(ti,audDate,buf,head,tail,lookAhead,size)

(b)

Figure 7: The audio sender and buffer of server

5

3.3 Medium

The medium is responsible for data transmission,
so whenever there is available data waiting to be
transmitted, the transmission must take place unless
the medium is currently busy. In a heterogeneous
system, the transmission decision is more complex as
different packets have different priorities. Only the
packet with the highest priority would be selected to
be transmitted, others will have to backoff and wait for
their turn. Figure 8(a) shows a simplified timed automa-
ton modeling the transmission decision when many
packets are available at the same time. In this figure,
sync released, delayRsp released, audio to buf,
delayReq to NACOutBuf, pkt to NACInBuf
are modeled as broadcast channels, or more precisely,
receiving edges which will synchronize with the send-
ing edges whose name is exactly the same. Initially,
the automaton can choose nondeterministically one
receiving edge to take.

• If sync released was selected, the medium would
not have to care about other packets as Sync has
the highest priority.

• If delayRsp released was selected, the medium
would look for any sign of sync-release. If there is
not, it would allow the DelayRes to be delivered
to the medium. However, if the sync-release hap-
pens before it could actually start the transmission
(c = 0), the DelayRes will backoff and give way
to the Sync transmission.

• If delayReq to NACOutBuf was selected,
again the medium would look for signs of pack-
ets with higher priorities. The DelayReq would
backoff and give way to any such packet if ready.

• The similar situation happens whenaudio to buf
was selected.

When the transmission decision has already been de-
cided, the medium transmits the packet forLmdm ∗

mdmb time units wheremdmb = prec is the clock
bound of the medium, and depending on the packet type
the medium can take different actions upon completing
its transmission:

• pType = 1 (Sync): the medium puts the packet
into the NAC input buffer and starts transmitting
the FollowUp because it has the second highest
priority.

Transmit_delayReq
c<=Lmdm*mdmb

DelayRsp_isReleased
c<=0

Sync_isReleased
c<=0

AudPkt_to_NAC
c<=Lmdm*mdmb

Transmit_followUp
c<=Lmdm*mdmb

Transmit_audPkt
c<=Lmdm*mdmb

Deliver_delayReq_to_server
c<=0

Transmit_delayRsp
c<=Lmdm*mdmb

Select_nextPkt
c<=0

Wait_for_followUp
c<=Lmdm*mdmb

Transmit_sync
c<=Lmdm*mdmb

Wait_for_packet

c==0
sync_released?

c==0
delayRsp_released?

c==0
delayReq_to_NACOutBuf?

c==0
sync_released?

c==0
delayRsp_released?

c==0
sync_released?
drsPreempted=true

drsPreempted
delayRsp_not_deliver_yet!
drsPreempted=false

!syncReady &&
!drsReady && nobSize>0

delayReq_to_svr!

c==Lmdm*mdmb
delayReq_from_buf!
mPkt.pType=4,
mPkt.ID=nobLA, c=0delayReq_to_NACOutBuf?

c=0

sync_released?

delayRsp_to_mdm?
mPkt=drsPkt

delayRsp_released?
c=0

syncReady
sync_to_mdm?
mPkt.pType=1

!drsPreempted
sync_to_mdm?
mPkt.pType=1

sync_released?
c=0

c==Lmdm*mdmb
pkt_to_NACInBuf!
c=0

c==Lmdm*mdmb
audio_from_buf!
mPkt.pType=5, mPkt.time=audbLA

c==Lmdm*mdmb
pkt_to_NACInBuf!
c=0

c==Lmdm*mdmb
pkt_to_NACInBuf!
c=0

followUp_to_mdm?
c=0,
mPkt.pType=2,
mPkt.time=tsync

audio_to_buf?
c=0

c==Lmdm*mdmb
pkt_to_NACInBuf!

(a)

Wait_for_packet

Transmit_audPktTransmit_delayReq

Select_nextPktDelayRsp_isReleased

Transmit_sync

!syncReady && !drsReady &&
nobSize==0 && audbSize==0

!syncReady && !drsReady &&
nobSize==0 && audbSize>0

!syncReady &&
!drsReady && nobSize>0

!syncReady &&
drsReady

syncReady

(b)

Figure 8: A simplified automaton of the medium

• pType = 3 (Delay Res): the medium puts the
packet to the NAC input buffer.

• pType = 4 (Delay Req): the medium confirms its
transmission so that the packet is safely removed
from the NAC output buffer and delivered to the
server.

• pType = 5 (Audio): likewise, the audio packet
is removed from the audio buffer and put into the
NAC input buffer.

The NAC input and output buffer will be discussed
later. For every buffer, there is a look ahead variable
that always points at the first element of the buffer when
it is not empty, such asnobLA andaudbLA - the look

6

Check_timeZero
c1<=0

Transmit_delayReq
c<=Lmdm*mdmb

DelayRsp_isReleased
c<=0

Sync_isReleased
c<=0

AudPkt_to_NAC
c<=Lmdm*mdmb

Transmit_followUp
c<=Lmdm*mdmb

Transmit_audPkt
c<=Lmdm*mdmb

Deliver_delayReq_to_server
c<=0

Transmit_delayRsp
c<=Lmdm*mdmb

Select_nextPkt
c<=0

Wait_for_followUp
c<=Lmdm*mdmb

Transmit_sync
c<=Lmdm*mdmb

Wait_for_packet

c==0 && to==11

c>0 && from==13
drsPreempted=false

c==0 && to==13

c>0 && from==15

c==0 && to==14

c>0 && from==14

delayRsp_released?
fr=to/13,
to=fr*13+(1-fr)*to

sync_released?
fr=to/11,
to=fr*11+(1-fr)*to

sync_released?
c1=0, from=13, to=11,
drsPreempted=true

delayRsp_released?
c1=0, from=14, to=13

sync_released?
c1=0, from=14, to=11

delayRsp_released?
c1=0, from=15, to=13

sync_released?
c1=0, from=15, to=11

delayReq_to_NACOutBuf?
c1=0, from=15, to=14

drsPreempted
delayRsp_not_deliver_yet!
drsPreempted=false

!syncReady &&
!drsReady && nobSize>0

delayReq_to_svr!

c==Lmdm*mdmb
delayReq_from_buf!
mPkt.pType=4,
mPkt.ID=nobLA, c=0delayReq_to_NACOutBuf?

c=0

!syncReady &&
drsReady

sync_released?

delayRsp_to_mdm?
mPkt=drsPkt

delayRsp_released?
c=0

syncReady
sync_to_mdm?
mPkt.pType=1

!drsPreempted
sync_to_mdm?
mPkt.pType=1

sync_released?
c=0

!syncReady && !drsReady && nobSize==0 && audbSize==0
c1=0

!syncReady && !drsReady &&
nobSize==0 && audbSize>0

c==Lmdm*mdmb
pkt_to_NACInBuf!
c=0

c==Lmdm*mdmb
audio_from_buf!
mPkt.pType=5, mPkt.time=audbLA

c==Lmdm*mdmb
pkt_to_NACInBuf!
c=0

c==Lmdm*mdmb
pkt_to_NACInBuf!
c=0

followUp_to_mdm?
c=0,
mPkt.pType=2,
mPkt.time=tsync

audio_to_buf?
c=0

c==Lmdm*mdmb
pkt_to_NACInBuf!

Figure 9: A complete automaton of the medium

ahead variables of the NAC output buffer and the audio
buffer respectively.

Now that the automaton is selecting the next packet
to transmit, if:

• syncReady (Sync is ready): the medium starts the
Sync transmission.

• !syncReady && drsReady (Delay Res is ready):
the medium starts the DelayRes transmission.

• !syncReady && !drsReady && (nobSize>0)
(Sync and DelayRes not ready and the NAC out-
put buffer not empty): the medium starts the De-
lay Req transmission.

• !syncReady && !drsReady && (nobSize==0) &&
(audbSize>0) (only audio packets are ready): the
medium starts the Audio transmission.

• !syncReady && !drsReady && (nobSize==0)
&& (audbSize==0) (no packet is available): the
medium goes back to the initial state.

Figure 8(b) depicts these next packet selections. The
complete medium automaton would be obtained by
joining the states and edges in figure 8(a) and fig-
ure 8(b). However, since UPPAAL does not allow clock

guards on receiving edges of broadcast channels, we
have to add one more state to check the time at which
the preemption happens. Figure 9 shows the complete
medium automaton.

3.4 Network Access Controllers (NACs)

The NACs is responsible for data routing from the
server into subnet(s) and vice versa. Also, the NACs
can perform data encryption/decryptionon every packet
passing through it. Because only one packet can be pro-
cessed at a time, NACs are assumed to have two buffers
to contain incoming or outgoing packets. The NAC
input buffer contains packets coming only from the
medium and the NAC output buffer contains only De-
lay Req packets going from the devices to the medium.
These buffers are depicted in figure 10.

The input automaton will add or remove a packet by
taking thepacket to buf or packet from buf tran-
sition respectively. Similarly, the output automaton
will add or remove a DelayReq message by taking
thedelayReq to buf or delayReq from buf respec-
tively. In this figure,pkt denotes the incoming packet
and ID the identity of the device sending the De-
lay Req. When a buffer over-run occurs, the corre-

7

ErrorWait_for_packet
size>BUFLEN

pkt_from_buf?
pktPop(buf,head,tail,lookAhead,size)

pkt_to_buf?
pktPush(pkt,buf,head,tail,lookAhead,size)

(a)

ErrorWait_for_delayReq
size>BUFLEN

delayReq_from_buf?
drqPop(buf,head,tail,lookAhead,size)

delayReq_to_buf?
drqPush(ID,buf,head,tail,lookAhead,size)

(b)

Figure 10: The NAC input and output buffer

sponding automaton goes to the Error state.
Similar to the medium case, the NACs always

transmit packets of the highest priority among the
ready packets. Figure 11 shows a simplified timed au-
tomaton modeling the activities of a NAC. In this figure,
pkt to buf, delayReq released, delayReq to extBuf
are receiving edges of broadcast channels while
delayReq to buf, pkt to subnet are emitting edges of
broadcast channels. Initially, the automaton can choose
nondeterministically one receiving edge to take.

• If pkt to buf was selected, the NAC looks further
at the packet type. If it was either a Sync, Fol-
low Up or DelayRes message (pType <= 3),
the NAC ignores other packets and goes on pro-
cessing the current packet. In case the DelayReq
from the device is preempted by the current
packet, the NAC tells its attached device to back-
off the DelayReq by synchronizing on the chan-
nel delayReq stayin device. On the contrary, if
it was an Audio packet then the NAC would still
ignore other packets as long as no DelayReq from
the attached device is ready (drqReady==true) or
preempted (drqSrc==1) and no DelayReq from
external NACs is ready (nextbSize==0). Assum-
ing that the DelayReq from the attached device
has a higher priority than that from external NACs,
so when they are ready at the same time the former
preempts the latter.

• If delayReq released was selected, the NAC

Process_extDrq
c<=Lnac*nb

Process_intDrq
c<=Lnac*nb

Process_audPkt
c<=Lnac*nb

IntDrq_isReceived
c<=0

Process_svrPTPpkt
c<=Lnac*nb

Select_nextPkt
c<=0

Deliver_svrPkt
c<=0

SvrPkt_isReceived
c<=0

Wait_for_packet

c==0
pkt_to_buf?

c==0
pkt_to_buf?

c==0
delayReq_released?

c==0
delayReq_released?

c==0
delayReq_to_extBuf?
drqSrc=2

c==Lnac*nb
delayReq_from_extBuf!
ID=nextbLA

c==Lnac*nb
delayReq_to_buf!
c=0, drqSrc=0

nibLA.pType==5 && !drqReady &&
drqSrc!=1 && nextbSize>0
drqSrc=2

nibLA.pType==5 &&
drqSrc==1

nibLA.pType==5 &&
drqReady

delayReq_to_extBuf?
c=0, drqSrc=2

pkt_to_buf?

c==0
delayReq_from_device?
ID=dvID, drqSrc=1

delayReq_released?
c=0

c==Lnac*nb
pkt_from_buf!
c=0

nibSize>0

nibLA.pType<=3 &&
drqSrc==1
delayReq_stayin_device!
nPkt=nibLA,drqSrc=0

nibLA.pType==5 &&
!drqReady &&
nextbSize==0 &&
drqSrc==0
nPkt=nibLA

c==Lnac*nb
pkt_from_buf!
c=0

nibLA.pType<=3 &&
drqSrc !=1
nPkt=nibLA

pkt_to_subnet!

pkt_to_buf?
c=0

(a)

Process_extDrqIntDrq_isReceived

Select_nextPktSvrPkt_isReceived

Wait_for_packet

nibSize==0 &&
!drqReady &&
nextbSize>0

nibSize==0 &&
drqReady

nibSize>0

nibSize==0 &&
!drqReady &&
nextbSize==0

(b)

Figure 11: A simplified automaton of the NACs

would look for any sign of incoming packets. If
there is not, it would process the DelayReq from
its attached device. Otherwise, only when the in-
coming packet has a higher priority will the De-
lay Req backoff.

• If delayReq to extBuf was selected (another
Delay Req is coming from an external NAC out-
put buffer), again the NAC would look for signs
of packets with higher priorities. The DelayReq
would backoff and give way to any such packet if
it is available.

When the NAC has made its decision, it will process
the packet forLnac ∗ nb time units wherenb = prec

8

is the clock bound of the NAC. After that, the NAC can
take different actions upon completing processing, de-
pending on whether the packet is incoming or outgoing:

• For incoming packets: the NAC confirms its in-
put buffer that the packet has been processed suc-
cessfully so that the packet can be safely removed
from the input buffer by synchronizing on the
pkt from buf channel. The packet is then for-
warded to the subnets (including external NACs
and devices).

• For outgoing packets: if it was an external De-
lay Req from an external source, the NAC needs
to confirm the external buffer from which the De-
lay Req is safely removed. After that, the De-
lay Req is put into the NAC output buffer and
waiting for the medium to take it. In addition, the
identity of the device (dvID) should be included
inside the DelayReq message so that when it is
received, the server could send back a DelayRes.

The look ahead variables for the NAC internal in-
put, internal output and external output buffer are
nibLA, nobLA andnextbLA respectively.

Now that the automaton is selecting the next packet
to process, if:

• nibSize>0 (the NAC input buffer is not empty): the
NAC tries processing incoming packets.

• (nibSize==0) && drqReady (the NAC input buffer
is empty but a DelayReq from its attached device
is ready): the NAC takes the DelayReq in.

• (nibSize==0) && !drqReady && nextbSize>0
(only DelayReq from external NAC output buffer
is ready): the medium tries processing the external
Delay Req.

• (nibSize==0) && !drqReady && (nextbSize==0)
(nothing to process): the NAC goes back to its idle
state and waits for new packets.

Figure 11(b) depicts these selections. The complete
NAC automaton would be obtained by joining the states
and edges in figure 11(a) and figure 11(b). However,
as in the medium case, since UPPAAL does not al-
low clock guards on receiving edges of broadcast chan-
nels, we have to add one more state to check the time
at which the preemption happens. Figure 12 shows the
complete NAC automaton.

Check_timeZero
c1<=0

Process_extDrq
c<=Lnac*nb

Process_intDrq
c<=Lnac*nb

Process_audPkt
c<=Lnac*nb

IntDrq_isReceived
c<=0

Process_svrPTPpkt
c<=Lnac*nb

Select_nextPkt
c<=0

Deliver_svrPkt
c<=0

SvrPkt_isReceived
c<=0

Wait_for_packet

c==Lnac*nb
delayReq_from_extBuf!
ID=nextbLA

c==Lnac*nb
delayReq_to_buf!
c=0, drqSrc=0

c==0 && to==12

c>0 && from==14

c==0 && to==13

c>0 && from==13

c>0 && from==12

c==0 &&
to==11

pkt_to_buf?
fr=to/11,
to=fr*11+(1-fr)*to

delayReq_released?
fr=to/12,
to=fr*12+(1-fr)*to

delayReq_to_extBuf?
c1=0, from=14, to=13

delayReq_released?
c1=0, from=14, to=12

pkt_to_buf?
c1=0, from=12, to=11

delayReq_released?
c1=0, from=13, to=12
pkt_to_buf?
c1=0, from=13, to=11

nibSize==0 &&
!drqReady && nextbSize>0
drqSrc=2

nibSize==0 &&
drqReady

nibLA.pType==5 && !drqReady &&
drqSrc!=1 && nextbSize>0
drqSrc=2

nibLA.pType==5 &&
drqSrc==1

nibLA.pType==5 &&
drqReady

delayReq_to_extBuf?
c=0, drqSrc=2

pkt_to_buf?

c==0
delayReq_from_device?
ID=dvID, drqSrc=1

delayReq_released?
c=0

c==Lnac*nb
pkt_from_buf!
c=0

nibSize>0

nibLA.pType<=3 &&
drqSrc==1
delayReq_stayin_device!
nPkt=nibLA,drqSrc=0

nibLA.pType==5 &&
!drqReady &&
nextbSize==0 &&
drqSrc==0
nPkt=nibLA

nibSize==0 && !drqReady && nextbSize==0
c1=0

c==Lnac*nb
pkt_from_buf!
c=0

nibLA.pType<=3 &&
drqSrc !=1
nPkt=nibLA

pkt_to_subnet!

pkt_to_buf?
c=0

Figure 12: A complete automaton of the NACs

3.5 Device

The device is modeled as a network of four timed
automata, one of which models the device integer clock,
two of which model the PTP protocol running in the
device and the other models the audio receiver.

Wait_for_device_bound
c<=dvb

c==dvb
device_clock_tick!
c=0,
dvDate=(tdv+1>=clkLimit)^dvDate,
tdv=(tdv+1)%clkLimit,
timer+=1

Figure 13: The integer clock of devices

The timed automaton modeling the device integer
clock is shown in figure 13. At the beginning the clock
bound of the device isdvb = prec ∗ 100/edv where
prec is the digit precision andedv is the device clock
drift. When clockc reaches the bound, the device in-
teger clocktdv will increase by 1 andc is reset to
0. As done for the server integer clock, whentdv

9

Check_pType
c1<=0

Find_negativeX
c1<=0

Find_positiveX
c1<=0

Adjust_clock
c1<=0

Wait_for_followUpWait_for_sync

c>=(off-2*x)*prec*50/edv
clock_adjusted!
fastClock(edv,off,tdv,timer,dvb,dvDate,st,sd,x)

c<(2+2*x+off)*prec*50/edv
clock_adjusted!
slowClock(edv,off,tdv,timer,dvb,dvDate,st,sd,x)

pType>1

pType==1
t=tdv,
d=dvDate

pkt_to_subnet?
c1=0,
pType=nPkt.pType

c>=(2+2*x+off)*prec*50/edv
x+=1

adjust &&
(c>=(2+off)*prec*50/edv)
clock_adjusted!
x=0

c<(off-2*x)*prec*50/edv
x+=1

adjust &&
(c<off*prec*50/edv)
clock_adjusted!
x=0

adjust &&
(c>=off*prec*50/edv) &&
(c<(2+off)*prec*50/edv)
clock_adjusted!
dvb=(2+off)*prec*50/edv

!adjust

pkt_to_subnet?
updateT12(t1,t2,t3,t4,nPkt.time,t,d,off,adjust),
c1=0

Figure 14: The first two steps of the PTP protocol run-
ning in devices

reaches the clock limitclkLimit, it will be reset to
0. Also the device date is encoded in the variable
dvDate which results from the binary operation XOR:
dvDate = (tdv + 1 >= clkLimit) XOR dvDate. In
addition, there is atimer keeps increasing in the figure.
We will see later how this variable is used.

The first two steps of the PTP protocol running in the
device are depicted in figure 14. The device waits un-
til a Sync message arrives and records the arrival date
and time of the Sync. Then when a FollowUp comes,
it checks whether the Sync sending and receiving ac-
tions happen in a same day (this is a constraint added
to simplify the modeling of PTP). If it is the case, the
device further checks whether the slave-to-server delay
is available (t4 > 0). Then if such delay is not avail-
able, the device goes back to its initial state. Otherwise,
it proceeds with the clock adjustment. The auxiliary
proceduresupdateT12 helps the device in making its
adjustment decision.

The current scaled time point istdv ∗ prec + edv ∗

c/100 (tdv and c are two shared variables of the in-
teger clock timed automaton), after clock adjusting it
becomestdv ∗ prec + edv ∗ c/100 − off ∗ prec/2 =

Check_timer
c1<=0 Wait_for_period

(timer<drqPeriod) ||
(timer==drqPeriod && c<=0)

Check_pType_ID
c1<=0

Wait_for_delayRsp

(timer<drqPeriod) ||
(timer==drqPeriod && c<=0)

Wait_to_send_delayReq

(timer<deltaT) ||
(timer==deltaT && c<=0)

Wait_for_offset
(timer<drqOff) ||
(timer==drqOff && c<=0)

(timer>deltaT) || (timer==deltaT && c>0)
drqReady=false, timer=timer%drqPeriod

(from==3) && (timer>=0) &&
((timer<drqPeriod) || (timer==drqPeriod && c<=0))

timer<0
drqReady=false

(from==1) && (timer>=0) && ((timer<deltaT) || (timer==deltaT && c<=0))

clock_adjusted?
from=1, c1=0

clock_adjusted?

from=2, c1=0

(from==2) && (timer>=0) && ((timer<drqPeriod) || (timer==drqPeriod && c<=0))

(timer>drqPeriod) || (timer==drqPeriod && c>0)
timer=timer%drqPeriod

clock_adjusted?
from=3, c1=0

delayReq_stayin_device?
drqReady=true

c<=0 &&
timer==drqPeriod
delayReq_released!
drqReady=true,
timer=0,st=0,sd=0

pkt.pType==3 && pkt.ID==dvID
updateT34(t3,t4,st,sd,pkt.time)

pkt.pType!=3 ||
pkt.ID!=dvID

pkt_to_subnet?
c1=0,
pkt=nPkt

delayReq_from_device!
dvID=1, drqReady=false,
st=tdv, sd=dvDate

c<=0 &&
timer==drqOff
delayReq_released!
timer=0, drqReady=true

Figure 15: The last two steps of the PTP protocol run-
ning in devices

Procedure 2 updateT12(int &t1, int &t2, int &t3, int
&t4, int &tsend, int &trecv, int &recvDate, int &off,
bool &adjust)

1: int sendDate=(tsend>=clkLimit);
2: adjust=false;
3: if sendDate==recvDatethen
4: t1=tsend-sendDate*clkLimit;
5: t2=trecv;
6: if t4>0 then
7: adjust = true;
8: end if
9: if adjustthen

10: off+=t2+t3-t1-t4;
11: end if
12: end if
13: trecv=0;
14: recvDate=0;

tdvnew∗prec+delta where0 <= delta < prec. There
are three possibilities:

• 0 <= (edv ∗ c/100 − off ∗ prec/2) < prec or
(off ∗ prec ∗ 50/edv) <= c < [(2 + off) ∗

prec ∗ 50/edv] ⇒ tdvnew = tdv anddvbnew =
[(2 + off) ∗ prec ∗ 50/edv].

10

• (edv ∗ c/100− off ∗ prec/2) < 0 or c < (off ∗

prec∗50/edv)⇒ the device clock is running faster
than the server clock and so there existsx > 0
such that0 <= tdv ∗ prec + edv ∗ c/100− off ∗

prec/2 + x ∗ prec < prec andtdvnew = tdv − x
anddvbnew = [(2− 2 ∗x+ off) ∗ prec ∗ 50/edv]

• (edv ∗ c/100 − off ∗ prec/2) >= prec or c >=
[(2 + off) ∗ prec ∗ 50/edv] ⇒ the device clock is
running slower than the server clock and so there
existsx > 0 such that0 <= tdv ∗ prec + edv ∗

c/100 − off ∗ prec/2 − x ∗ prec < prec and
tdvnew = tdv + x anddvbnew = [(2 + 2 ∗ x +
off) ∗ prec ∗ 50/edv]

Moreover, the delayReq-release task has the pe-
riod of drqPeriod and may have some initial offset
drqOff . After the delayReq-release event is acti-
vated, the DelayReq message must be delivered to the
medium withindeltaT ∗dvb time units. The time when
the DelayReq has been taken in by the NAC should be
recorded so that it will be used later in the PTP protocol.

Figure 15 shows the last two steps of the synchro-
nization procedure in the devices. In this figure, all
edges are normal channels exceptdelayReq released
andclock adjusted - two broadcast channels.

After at mostdrqPeriod ∗ dvb time units since the
Delay Req delivery, the DelayRes message has to be
received by the device according to the PTP protocol.
These timing constraints are enabled by using a timer.
This is because the device clock bound is changed pe-
riodically and not static as the server clock bound. Ad-
ditionally, the timer is put forward or backward the
same amount of time as the local clock is. So after
the clock adjustment, if the timer does not respect the
invariants any longer, the automaton will abort the ac-
tivity it was taking before the clock adjustment took
place. For example, if(timer<0) or (timer>deltaT) or
((timer==deltaT) && (c>0)) (c is a shared variable of
the integer clock timed automaton), it cancels the cur-
rent delivery and waits to start a new DelayReq de-
livery. If no invariant violations is committed, the au-
tomaton executes its normal cycle, that is sending a De-
lay Req to the server, receiving the corresponding De-
lay Res and updating the slave-to-master delay infor-
mation. The auxiliary procedureupdateT34 helps with
the last step in the cycle, assuming that the DelayReq
sending and DelayRes receiving actions should hap-
pen in a same day (this is another constraint added to
simplify the modeling of PTP).

Procedure 3 updateT34(int &t3, int &t4, int &tsend,
int &sendDate, int &trecv)

1: int recvDate=(trecv>=clkLimit);
2: if sendDate==recvDatethen
3: t3=tsend;
4: t4=trecv-recvDate*clkLimit;
5: end if

Lastly, figure 16 describes the audio receiving opera-
tion of the device. The date and time information of the
audio packet is retrieved and checked with the current
date and time of the device local clock. If the clock has
passed the time at which the packet must be played, the
automaton will go to the Error state.

Check_pType
c<=0

ErrorCheck_deadline
c<=0

Wait_for_audPkt

pkt.pType<5

pkt.pType==5
audDate=(pkt.time>=clkLimit),
pkt.time-=clkLimit*audDate

pkt_to_subnet?
c=0,
pkt=nPkt

dvDate!=audDate ||
pkt.time>=tdv
audDate=0,pkt.pType=0,
pkt.ID=0,pkt.time=0

dvDate==audDate &&
pkt.time<tdv

Figure 16: The audio receiver of devices

4 Ground Verification

The above models have been validated by UPPAAL,
a model-checker for timed-automata [4]. In the pre-
vious section, all of the models were constructed in
the syntax of UPPAAL. Thus, it is trivial to feed them
directly to UPPAAL so that their properties can be
checked by the verifier of the tool. UPPAAL uses
a timed Computation Tree Logic (CTL) language for
specifying properties which we want to verify. To ver-
ify that the system is schedulable, we must show that the
four error states are never reachable. Using the timed
CTL language, the schedulability properties are speci-
fied as follows:

• A[]!SVR AudBuf.Error

• A[]!NACInBuf.Error

• A[]!NACOutBuf.Error

• A[]!DV AudRecvr.Error

11

Only if these schedulability properties are satisfied,
can we be sure that the system is schedulable. If just
one property is violated, the system is not guaranteed
to work properly because it may encounter the dead-
lock state where none of the timed automata can move.
Several test cases are performed to illustrate this point.
In the first test case, the schedulability of the system is
guaranteed because all properties are satisfied while it
is not in the second case due to the violation of the last
property. The last test case points out the possibility
of deadlock when the second property is not satisfied.
In all test cases, the system consists of one server, one
medium, one NAC and one device.

4.1 Test case 1

In this test case, the Sync interval and the period of
the DelayReq message are equal to 20ms while that
of the Audio packets is 40ms. The offset parameters
are 0 for the sync and audio packets and 10ms for the
Delay Req message. Moreover, the latency parameters
of the medium and the NACs are assumed to be 1ms,
the clock drifts for the server and its device to be 0.99
and 0.95 correspondingly. Other parameters are also
given fixed values such asdeltaT=10ms, relD=10ms,
BUFLEN=5 (elements),prec=10 (hence the digit pre-
cision is 1),clkLimit=100. Because of the small preci-
sion, at the beginning, the clock bound is the same in all
environments. That is,svrb=dvb=mdmb=nb=10.

In figure 17 and figure 18, we show the task execu-
tion scheme of the system. The Sync, FollowUp and
Audio packets are delivered to the medium at time 0,
1 and 2 respectively. They are then forwarded to the
NAC at time 1, 2 and 3 respectively by the medium.
At time 10 a DelayReq message is released by the de-
vice and since the NAC is currently free, the message is
processed immediately and transmitted to the medium
at time 11. After receiving the DelayReq, the server
sends out the DelayRes message at time 12 and the de-
vice receives the message at time 14. This execution
scheme is repeated at time 20, 40, 60, etc.

In the first cycle, since the Sync and FollowUp mes-
sages arrived when no DelayReq had been sent by the
device, its local time is not adjusted. In the next cycle,
when the Sync and FollowUp messages arrive once
again, the offset can now be computed as all parameters
needed for clock synchronization are available. In this
special case, the master-to-slave and slave-to-master de-
lays are equal to 2, thereby zeroing the offset and letting
the device clock remain unchanged.

Figure 17: Task execution scheme of the medium(test1)

Figure 18: Task execution scheme of the NAC(test 1)

The first audio packet arrived at the device at time 4
which perfectly respects its deadline at time 10. The
next audio packets would arrive at time 44, 84, etc.
which will also respect their deadline of 50, 90, etc. In
addition, the sizes of the audio buffer, the NAC input
buffer and output buffer never exceed 1. Thus, all the
schedulability properties are verified and the schedula-
bility of the system can be guaranteed.

4.2 Test case 2

In this test case, the Audio packets are generated
more frequently and its period is 5ms while the Sync
interval and the DelayReq period are 20ms and 40ms
respectively. All these packets have offset 0 and the
audio relative deadline is 15. Moreover, the medium
latency (which is 2ms) is a little longer than the NAC
latency (which is 1ms). Other parameters take the same
values as in the previous test case.

Before bumping into the Error state of the
DV AudRecvr timed automaton, two clock adjust-
ments had happened as shown in table 1.

At time 0, the clock bound is the same in all envi-
ronments, namelysvrb=dvb=mdmb=nb=10 due to the
1-digit-precision as in the previous case. The Sync is
sent at time 0 by the server and received at time 3 by the
device. Since the slave-to-master delay is not available
yet, the first clock adjustment does not actually happen.

12

1st 2nd 3rd
svrb 10 10 10
dvb 10 10 5
mdmb 10 10 10
nb 10 10 10
t1 0 20 na
t2 3 23 na
t3 0 0 40
t4 0 6 35
off = t2 + t3 − t1 − t4 0 -3 -1

Table 1: The clock adjustments happen before the au-
tomaton goes to the Error state

Audio sending 0 5 10 15 20 25 30 35
Audio receiving 11 13 15 18 27 34 44 56
Time to play 15 20 25 30 35 40 45 50
Deadline violation No No No No No No No Yes

Table 2: Deadline violation of audio packets

It is noticeable that the DelayReq was released at time
0 and got out of the NAC at time 1, but because of its
low priority compared to the Sync and FollowUp mes-
sages, it has to wait until the higher priority messages
pass through the medium. Thereby adding a delay to its
arrival at the server which is finally 6.

At time 20, the Sync is released once again and since
it has the highest priority, it arrives at the device at time
23. Now that the master-to-slave and slave-to-master
delays are available, we can perform the offset calcula-
tion. In fact, the device clock is 1.5 ms behind. How-
ever, since UPPAAL does not support the real type, the
offset is integerize advancing the device clock from 25
to 26 and changing the device bound from 10 to 5 as
a result. After that, an audio-deadline violation takes
place at time 56 before the third adjustment has hap-
pened.

Table 2 summarizes the times at which the audio
packets are released, received and played. It is impor-
tant to notice that the device clock has been adjusted at
time 25 and elapsing two times faster than the server
clock since then. And before it could be adjusted to
elapse at the slower speed, it has caused one audio
packet to violate its deadline.

4.3 Test case 3

In this test case, the medium latency (which is 2ms)
is a much shorter than the NAC latency (which is 6ms).
Other parameters take the same values as in the previous
test case.

Figure 19: Task execution scheme of the medium(test3)

Figure 20: Task execution scheme of the NAC (test 3)

In figure 19 and figure 20 we show the task execution
scheme of the system. The Sync, FollowUp and the
first Audio are delivered to the medium at time 0, 2 and
4 respectively. Also at time 0, a DelayReq message is
released by the device and since the NAC is currently
free, the message is processed immediately. At time 6,
the DelayReq enters the medium while the Sync enters
the NAC. After receiving the DelayReq at time 8, the
server sends out the DelayRes message immediately.
At time 10 and 12, two other Audio packets which were
released at time 5 and 10 are transmitted by the medium
to the NAC. Also at time 12, the NAC finishes process-
ing the Sync and starts processing the FollowUp. At
time 15, another Audio packet is released and it arrives
at the NAC at time 17 by which the NAC input buffer
has overflowed because it is currently contains one Fol-
low Up, one DelayRes and three other Audios. As a
result, the system will soon encounter the deadlock state
because when the medium has other Audio packets to
forward to the NAC, it could not synchronize with the
NAC input buffer automaton as the automaton is cur-
rently staying in the Error state.

13

Wait_for_period
c<=ptpPeriod

Wait_for_offset
c<=ptpOff

c==ptpPeriod
Release_PTP!
c=0

c==ptpOff
Release_PTP!
c=0

(a)

Wait_for_period
c<=audPeriod

Wait_for_offset
c<=audOff

c==audPeriod
Release_Audio!
c=0

c==audOff
Release_Audio!
c=0

(b)

Figure 21: PTP and audio task activation automata

5 Parametric Analysis

The UPPAAL timed automata in section 3 are very
specific models which follow closely the operations of
the HCS system (including the server, the medium, the
NACs, the devices and the PTP protocol) given in sec-
tion 2. If the details of those operations are abstracted
from the system models, we will obtain abstract models
describing the system at a higher level. For instance, the
abstract model for the devices would be a periodic task
set consisting of the PTP task and the audio receiver
task. The PTP task has a higher priority than the au-
dio receiver task as specified in section 2. In addition,
the execution time of the former accounts for the total
PTP load that the devices could bear and that of the lat-
ter accounts for the total delay of traversing through the
medium and the NACs of the audio packets.

With all the UPPAAL models developed previously,
it is now easier for the system designer to verify if there
is any deadline miss with respect to the audio packets,
given a fixed set of parameters. It could even be more
helpful to the system designer if he could be provided
with the parametric analysis on the abstract models of
the system. These models gain the advantage of small
complexity in applying the PTA tool over the specific
models. In this section, the parametric analysis is car-
ried out only on the abstract models of the devices to
identify the parameter space that can guarantee to re-
spect the deadline of audio packets and PTP packets.
The analysis on the abstract models of the server could
be done similarly.

Error

Busy

Check

Idle

Release_Audio?

c==0 && task==2
Release_PTP?
r=r+C1+C1*n1-C2

c==r &&
n1==0 && n2>0
r=C2, task=2,
c=0, n2=n2-1

c==r && n1>0
r=C1, task=1,
c=0, n1=n1-1

c==0 & task==2
Release_PTP?
task=1, r=C1,
n2=n2+1

c<r && c==D1

Release_PTP?

(c<r) &&
(c>0 || task==1)
Release_PTP?
r=r+C1+C1*n1-c,
c=0

c<r
Release_Audio?
n2=n2+1

(c<r) && (c>0 || task==1)
Release_PTP?
n1=n1+1

c==r &&
n1==0 &&
n2==0

Release_PTP?
task=1,
c=0, r=C1,
n1=0, n2=0

Release_Audio?
task=2, c=0,
r=C2, n1=0, n2=0

c==r && c<=D1

Release_PTP?
c=0, r=C1

Figure 22: Schedulability checker for task PTP

5.1 Abstract Models

The activation automata for the PTP and audio receiver
tasks are shown in figure 21. The offset, period and
deadline are fixed for each task.

Based on the checkers used in [2], the schedulability
checkers for the two tasks are modified to model a non-
preemptive scheduling environment. That is, the audio
packets can not be preempted by the PTP packets if they
are currently being transmitted by the network or pro-
cessed by the NACs. The preemption can only happen
when the audio packets have just been released and not
transmitted yet. So, when many packets are ready at the
same time, the PTP would go first and the audio would
back off.

The scheduler checker for the PTP task is shown in
figure 22. In this figure,D1 is the deadline of the PTP
task which is less than or equal to the PTP period,C1
and C2 are the execution time of the PTP and audio
tasks respectively.

This checker differs from the checker in [2] in the
following details.

• Firstly, three additional variables are introduced.
The variabletask denotes the currently-executed
task,n1 andn2 record respectively the number of
PTP and audio packets released during the current
execution.

• Secondly, at locationBusy, when one task is be-
ing executed (c>0), other task instances will be
queued in the respective queues. The preemption

14

can only take place in the situation where the audio
task is about to be executed (c==0 && task==2)
when the PTP task is ready for execution.

• Thirdly, the additional self-loops at locationBusy
are taken when the current execution is completed.
If the PTP queue is not empty (n1>0), a PTP in-
stance will be removed from the queue and then
executed. Otherwise, an audio instance will be
scheduled as long asn2>0. If both queues are
empty, the transition fromBusy to Idle is taken,
indicating no tasks are ready to be executed.

• Lastly, transitions enteringCheck from Busy
are taken when a PTP instance is (non-
deterministically) chosen for checking. Again, the
preemption can happen if the transition is taken at
c==0 and the task about to be executed is the audio
task. Moreover, before any deadline verification,
the execution time of all other PTP instances in the
queue must be taken into account as they would be
scheduled before the current PTP instance, that is
r should be updated to(r+C1*n1-c) or (r+C1*n1-
C2).

Error

Busy

CheckIdle

Release_Audio?

c<r &&
c==D2-driftDelta

c>0 && c<r &&
c<D2-driftDelta
Release_PTP?

c==0
Release_PTP?
r=r+C1

c<r
Release_Audio?
r=r+C2-c,
c=0

c<r
Release_Audio?
r=r+C2

c<r
Release_PTP?
r=r+C1

c==r

Release_PTP?
c=0, r=C1

Release_Audio?
c=0, r=C2

c==r &&
c<=D2-driftDelta

Release_Audio?
c=0, r=C2

Figure 23: Schedulability checker for task Audio Re-
ceiver (hard deadline)

The scheduler checker for the audio receiver task is
shown in figure 23. Similarly, theRelease PTP transi-
tions are added to theCheck state to ensure that when
an audio transmission is going on (c>0), the PTP would
back off and if that transmission is about to happen
(c==0), the PTP can preempt it (r=r+C1). In the fig-

ure, D2 is the relative deadline of audio packets. Be-
sides, the parameterdriftDelta is introduced to account
for the offset time of the local clock compared to the
server clock. The worst case happens when the local
clock is substantially slower than the server clock and
thus when an audio packet is received, the actual dead-
line to be verified would beD2-driftDelta instead ofD2.

In fact, the requirement of no deadline miss is dif-
ficult to obtain in real-time environments. Therefore,
in order to make the analysis more practical, the re-
quirement can be relaxed by allowing an audio packet
to sometimes miss its deadline. However, there should
be no other deadline miss after one is made. In other
words, the situation of two successive deadline misses
should never happen. The checker adapted for this new
requirement is shown in figure 24.

In the figure, three new variables are introduced. One
is the boolean variabledm used to capture the fact that
one deadline miss has already happened (dm=true), the
others are the real variabler1 andr2 used to record re-
spectively the total execution time of all PTP instances
released between two consecutive audio instances and
of the latter audio instance, if it is released before a
deadline miss. This checker is also different from the

Check2

Error

Busy

Check1

Idle

c==r && c<=D2-driftDelta c<r && c==D2-driftDelta

r2>0 && !dm &&
c<r && c==D2-driftDelta
r=r+r1+r2-c, c=0

r2>0
Release_Audio?

r2>0 && c>t &&
c<r && c<D2-driftDelta
Release_PTP?

r2>0 && c==t
Release_PTP?
r1=r1+C1

r2==0 && !dm &&
c<r && c==D2-driftDelta
dm=true, r=r+r1

r2==0 && c<r &&
c<D2-driftDelta
Release_Audio?
r2=C2, t=c

dm && c<r &&
c==D2-driftDelta

r2==0 &&
c>0 && c<r &&
c<D2-driftDelta
Release_PTP?
r1=r1+C1

c==0
Release_PTP?
r=r+C1

c<r
Release_Audio?
r=r+C2-c,
c=0, r1=0, r2=0

c<r
Release_Audio?
r=r+C2,
dm=false

c<r
Release_PTP?
r=r+C1

c==r

Release_PTP?
c=0, r=C1

Release_Audio?
c=0, r=C2

c==r && c<=D2-driftDelta
dm=false

Release_Audio?
c=0, r=C2, r1=0, r2=0

Figure 24: Schedulability checker for task Audio Re-
ceiver (soft deadline)

checker in [2] due to the above variables, the additional

15

Experiment 1 Experiment 2
ptpOff 0 5
ptpPeriod 40 40
D1 10 10
audOff 0 0
audPeriod 10 10
D2 10 10

Table 3: Fixed parameter values in two experiments

transitions fromCheck1 to other locations and the in-
troduction of the new locationCheck2.

Transitions enteringCheck1 from Idle or Busy are
taken when an audio instance is (non-deterministically)
chosen for checking. And if another PTP instance
is also ready before this audio instance is executed
(c==0), it would be preempted (r=r+C1). Then the
execution time of all other PTP instances would be ac-
cumulated until another audio instance is released or it
misses its deadline.

When the current audio instance finally violates its
deadline:

• If one deadline miss had happened before
(dm=true), the locationError is reached because
of two successive deadline misses.

• Otherwise, if another audio instance has already
been released (r2>0), the transition fromCheck1
to Check2 is taken in order to verify if it would
miss its deadline the second time.

• If there was no deadline miss (dm=false) and no
other audio instance is released before the current
deadline miss, the variabledm is updated totrue
and the transition fromCheck1 to Busy is taken to
tolerate the first deadline miss.

5.2 Experiments

In this section, we report on the results of experi-
menting the above periodic task set on the PTA imple-
mented in [2]. The following information is used as the
initial constraints:

C1 > 0
C2 > 0
C1 <= D1
C2 <= D2
driftDelta >= 0

In both experiments, we usebounded model check-
ing with the bound of60 to find the feasibility region for

C1
C2
driftDelta

Table 4: Free parameters of the system

Experiment 1 Experiment 2
CheckerPTP 62 90
CheckerAudio 2 15

Table 5: Running time in minutes in two experiments

the system. Table 3 shows the values of all fixed param-
eters in two experiments while the free parameters are
specified in table 4. Moreover, the running time results
of the two experiments are summarized in table 5. The
computer used in the experiments has 1GB RAM and
Intel Core 2 Duo CPU T7500 2.20 GHz. It is notice-
able that the PTP checker generally runs much slower
than the Audio checker which may be because the path
leading to the error state of the former is much longer
than that of the latter. The running time also depends
on the bound used to model check the system. Using
a large bound can help to find more traces to the error
state, hence the feasibility region is more correct. How-
ever, the larger the bound is, the longer the running time
is. So in finding the schedulable region, one must trade
off between a large bound and short computation time.
Experiment 1:

For this experiment, the feasibility region in which
task PTP is guaranteed to never miss its deadline is ex-
pressed in the constraints below:

1: ![(C1 = 10) ∧ (15/2 < C2 <= 10)]∧
2: ![(2∗C1+4∗C2 > 50)∧ (C1 <= 10)∧ (C2 <=

10)]∧
3: ![(2∗C1+4∗C2 = 50)∧(0 < C1 < 10)∧(15/2 <

C2 <= 10)]∧
4: ![(4∗C1+8∗C2 > 90)∧(2∗C1+4∗C2 <= 50)∧

(C1+4∗C2 > 40)∧(C1 <= 10)∧(C2 <= 10)]∧
5: ![(6 ∗C1+12 ∗C2 > 130)∧ (3 ∗C1+8 ∗C2 <=

90)∧(C1+4∗C2 > 40)∧(C1 <= 10)∧(C2 <=
10)]

Figure 25 graphically shows the error region for each
constraint. The feasibility region of task PTP is the
square with a side length of 10 excluding the total er-
ror region, as shown in figure 26.

By joining this region together with the schedulabil-
ity region of task Audio expressed in the following con-

16

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(C1=10) and (15/2<C2<=10)

(a) Constraint 1

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(2*C1+4*C2=50)

(b) Constraint 2

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(2*C1+4*C2=50)

(c) Constraint 3

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(2*C1+4*C2=50)
(C1+4*C2=40)

(4*C1+8*C2=90)

(d) Constraint 4

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(C1+4*C2=40)
(6*C1+12*C2=130)

(3*C1+8*C2=90)

(e) Constraint 5

Figure 25: The error region for PTP constraints (experiment1)

17

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(C1=10) and (15/2<C2<=10)
(2*C1+4*C2=50)

(C1+4*C2=40)
(4*C1+8*C2=90)

(6*C1+12*C2=130)
(3*C1+8*C2=90)

Figure 26: The total error region for task PTP (experiment 1)

Figure 27: The total error region for task Audio (experiment1) (dd stands fordriftDelta)

18

straints, we would obtain the final region in which the
whole system can work properly:

1: ![(dd = 10) ∧ (C1 <= 10) ∧ (0 < C2 <= 10)]∧
2: ![(C1 + C2 + driftDelta > 10) ∧ (0 < C1 <=

10) ∧ (C2 <= 10) ∧ (driftDelta >= 0)]

Figure 27 shows the error region for task Audio
which has a volume of 5/6 of that of the cube with a
side length of 10. The remaining volume of the cube is
the feasibility region for task Audio which is a tetrahe-
dron as figure 27.

For example, whendriftDelta = 0, the feasibility re-
gion for the whole system is half of the base area of
the cube which is the right triangle area with a cathetus
length of 10. This can be easily verified by looking
at the behaviour of the system. The first PTP released
at time 0 does not miss its deadline becauseC2<=10.
Although the first Audio instance is preempted at time
0 by the first PTP instance, it also did not violate its
deadline sinceC1+C2<=10. The other three Audio in-
stances released at time 10, 20 and 30 are not preempted
as PTP instances are only released after 40 time unit.
At time 40, the task arrival pattern is repeated with one
PTP instance and one Audio instance released simul-
taneously at time 40, then three other Audio instances
arrive at time 50, 60 and 70. Thus, when there is no
clock drift, the system is guaranteed to be schedulable
as long asC1+C2<=10.

When driftDelta = 1, the feasibility region for the
whole system returned by the PTA tool is bounded by
the line C1+C2<=9. However, there are points that
should be in the feasibility region but got excluded by
the tool finally. For example, withC1 = 5 andC2 = 5,
the first Audio instance misses its deadline but the sec-
ond does not which obeys the soft deadline. And the
other two Audio instances at time 20 and 30 also do not
miss their deadlines. Similarly for(C1 = 4, C2 = 6)
or for (C1 = 3, C2 = 7) or any other pair of values for
(C1,C2) that satisfy the constraintC1+C2=10. It is no-
ticeable that these points are included in the feasibility
region for task PTP but not for task Audio. So the result
returned by the tool for task Audio seems conservative
in this case which needs to be investigated to find a bet-
ter solution.
Experiment 2:

For this experiment, similar to what was done in ex-
periment 1, the feasibility region in which task PTP is
schedulable is expressed in the following constraints:

1: ![(C1 + C2 > 15) ∧ (C1 <= 10) ∧ (5 < C2 <=
10)]∧

2: ![(5/3 < C1 <= 5) ∧ (C2 = 10)]∧
3: ![(40 < C1+4 ∗C2 <= 45)∧ (3 ∗C1+5 ∗C2 >

55) ∧ (C1 <= 10) ∧ (5 < C2 <= 10)]∧
4: ![(5 ∗ C1 + 9 ∗ C2 > 95) ∧ (2 ∗ C1 + 8 ∗ C2 <=

85) ∧ (C1 + 5 ∗ C2 = 50) ∧ (C1 + 4 ∗ C2 >
40) ∧ (0 < C1 <= 10) ∧ (5 < C2 <= 10)]∧

5: ![(1 < C1 <= 5/2) ∧ (C2 = 10)]∧
6: ![(5 ∗ C1 + 9 ∗ C2 > 95) ∧ (2 ∗ C1 + 8 ∗ C2 <=

85) ∧ (C1 + 5 ∗ C2 <= 50) ∧ (C1 + 4 ∗ C2 >
40) ∧ (C1 <= 10) ∧ (5 < C2 <= 10)]∧

7: ![(5 ∗ C1 + 9 ∗ C2 > 95) ∧ (2 ∗ C1 + 9 ∗ C2 >
85)∧(2∗C1+8∗C2 <= 85)∧(2∗C1+5∗C2 <=
60) ∧ (C1 + 5 ∗ C2 > 50) ∧ (C1 <= 10) ∧ (5 <
C2 <= 10)]

And that of task Audio is expressed as follows:

1: ![(C1 <= 10)∧(0 < C2 <= 10)∧(driftDelta =
10)]∧

2: ![(C2 + driftDelta > 10) ∧ (C1 <= 10) ∧

(C2 <= 10) ∧ (driftDelta >= 5)]∧
3: ![(C2 + driftDelta > 10) ∧ (C1 <= 10) ∧ (5 <

C2 <= 10) ∧ (0 <= driftDelta < 5)]∧
4: ![(C1 + 2 ∗ C2 + driftDelta > 20) ∧ (C1 +

C2 > 10) ∧ (C1 <= 10) ∧ (5 < C2 <=
10) ∧ (driftDelta >= 0)]∧

5: ![(C1 + driftDelta > 10) ∧ (5 < C1 <= 10) ∧
(0 <= driftDelta <= 5)]∧

6: ![(C1 + C2 + driftDelta > 15) ∧ (C2 +
driftDelta <= 10)∧(5 < C1 <= 10)∧(C2 <=
5) ∧ (driftDelta >= 0)]

In this experiment, with a nonzero offsetptpOff =
5, the result becomes much more complicated because
now the first PTP instance will have to experience some
delay as it arrives after the first Audio instance. Thus,
the trace leading to the error state will be more compli-
cated and not as simple as in experiment 1.

6 Conclusions

In this report, the application of the PTA tool in [2] is
studied by applying the tool to a distributed Heteroge-
neous Communication System(HCS). The reports starts
with describing the system and its requirements. Next,
a complete set of UPPAAL models that we have built

19

for the system are explained fully and clearly. These
models are then validated by the ground verifications.
Finally, part of the system models are converted into
parametric timed automata which are run to produce the
schedulability regions.

In the future, we plan to extend the models to depict
fully the system, such as modeling the PTP protocol in
the NAC, ensuring that the audio data is played back
at end devices synchronously with a given maximal jit-
ter (e.g. 0.1ms), etc. The parametric timed automata
would then be designed in order to capture the new re-
quirements.

7 Acknowledgments

The authors would like to thank Marius Bozga for help
with modeling the system, and EADS for providing the
case study.

References

[1] IST STREP 215543 COMBEST, Case Study De-
scription and Requirements.

[2] A. Cimatti and L. Palopoli and Y. Ramadian, Sym-
bolic Computation of Schedulability Regions Us-
ing Parametric Timed Automata, Real-Time Sys-
tems Symposium, Nov.30 2008-Dec.3 2008.

[3] H. Bowman, G. Faconti and M. Massink. Specifi-
cation and Verification of Media Constraints using
UPPAAL. 5th Eurographics Workshop on the De-
sign, Specification and Verification of Interactive
Systems, DSV-IS 98, Springer Verlag, 1998.

[4] K. G. Larsen, P. Patterson, and Y. Wang. UP-
PAAL in a nutshell. Springer International Jour-
nal of Software Tools for Technology Transfer, 1,
1997.

[5] A Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems.
IEEE Standard 1588-2002, November 2002.

[6] R. Alur and D. L. Dill. A theory of timed
automata. Theor. Comput. Sci., 126(2):183235,
1994.

[7] D. Zhang and R. Cleaveland. Fast on-the-fly para-
metric real-time model checking. In RTSS05,

Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[8] T. Hune, J. Romijn, M. Stoelinga, and F. W.
Vaandrager. Linear parametric model checking of
timed automata. In TACAS 01, Springer-Verlag,
2001.

[9] Etienne Andre, Thomas Chatain, Emmanuelle En-
crenaz, and Laurent Fribourg. An inverse method
for parametric timed automata. Electronic Notes
in Theoretical Computer Science 223 (2008).

20

