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Abstract. Modern computing systems are increasingly being built by
assembling components that are pre-designed or developed concurrently
in a distributed manner. In this context, contracts play a vital role for
ensuring interoperability of components and adherence to specifications.
For the design of e.g. embedded systems, additional complexity is found
in heterogeneity of components: such systems are composed of compo-
nents of very different nature, e.g. mechanical or electronic.
Heterogeneity adds extra complexity to systems design, as composition
of heterogeneous components is generally not well-defined, hence making
design and verification difficult. So far, few approaches have attempted
to address heterogeneity for embedded systems, and yet none of them has
demonstrated to be really effective. Meanwhile, denotational mathemat-
ical frameworks for reasoning effectively on heterogeneous composition
have recently been made available in the literature, but their operational
application to a contract-based design flow is still missing.
In this work, we propose a heterogeneous contract theory for embedded
systems built on the tag machine formalism. We introduce heterogeneous
composition, refinement, dominance, and compatibility of contracts, al-
together enabling a formalized and rigorous design process for heteroge-
neous embedded systems.

Keywords: contract theory, heterogeneity, tag machine

1 Introduction

Modern computing systems are increasingly being built by composing compo-
nents which are developed concurrently and independently by different design
teams. In such a paradigm, the distinction between what is constrained on en-
vironments, and what must be guaranteed by a system given the constraint
satisfaction, reflects the different roles and responsibilities in the system design
procedure. Following [7], a contract is a component model that can truly capture
such distinction. Formally, a contract is a pair of assumptions and guarantees
which are properties to be satisfied by all inputs and all outputs of a design.
This separation between assumptions and guarantees in contracts supports the
distributed, concurrent development of complex systems, as different teams can
develop different parts of the overall system and synchronize by relying on the
notions of component models and their associated contracts.
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In the particular context of embedded systems, heterogeneity is a typical char-
acteristic. This stems from the fact that these systems usually are composed of
various components of different natures (e.g. mechanical, electronic) whose inter-
actions would not be allowed without a heterogeneous composition mechanism.
Such heterogeneity usually appears across different layers of abstraction in the
design flow, making the evaluation of whether certain properties passed from the
higher level of abstraction are maintained at the lower level become extremely
difficult. To deal with such heterogeneity, Benveniste et.al. [2] have proposed
a generic behavioural framework based on tagged events. The framework con-
siders a system as a set of behaviours, each of which are finite sets of tagged
events. Different notions of time, including physical time, logical time, etc., can
be captured by the proposed tagging mechanism. Given that each component
can be modelled as a tag system over some tag structure, by mapping different
tag structures to one same tag structure, heterogeneous systems can then be
constructed formally.

Due to the significant inherent complexity of heterogeneity, there have been
few attempts at addressing heterogeneity in contract-based models. One such
attempt was made by researchers from the SPEEDS project3 to deal with differ-
ent viewpoints (such as functional, time, safety, etc.) of a single component [5].
However, the notion of heterogeneity in general is much broader than that be-
tween multiple viewpoints. On the other hand, [2] proposes a foundational frame-
work for handling heterogeneity behaviourally, but this has not been related
to contract-based design flows. This has motivated us to study a methodology
which allows contract-based systems to be heterogeneous, or alternatively, which
enables heterogeneous systems to be interconnected in a contract-based fashion.

Being inspired by Benveniste et.al.’s behavioural theory, our methodology
also addresses heterogeneity by analysing the behaviours of heterogeneous sys-
tems which are modelled as tag systems. To build an operational contract frame-
work on top of our methodology, we advocate using tag machines [3] to represent
tag systems. Tag machines were first introduced as finitary generators of homo-
geneous traces. Since our methodology is to deal with heterogeneity, we have also
made a heterogeneous extension to tag machines and developed a specification
theory with basic operators (e.g. composition, refinement, quotient, conjunction)
for them. We then propose a tag contract framework for combining heteroge-
neous systems based on tag machines. Our framework enables automatic checks
on various contract operations such as satisfaction, refinement, dominance and
compatibility.

The rest of the paper is organized as follows. Section 2 describes how tag
machines are extended to represent heterogeneous systems. Section 3 presents a
specification theory for tag machines and Section 4 details our tag machine based
contract framework for heterogeneous systems. Finally the paper concludes in
Section 5.
Related Work. The notion of contract was first introduced by Bertrand Meyer
in his design-by-contract method [17], based on ideas by Dijkstra [10], Lam-

3 www.speeds.eu.com
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port [14], Jones [13] and others, where systems are viewed as abstract boxes
achieving their common goal by verifying specified contracts. Such technique
guarantees that methods of a class provide some post-conditions at their ter-
mination, as long as the pre-conditions under which they operate are satisfied.
De Alfaro and Henzinger subsequently introduced interface automata [8] for
documenting components, thereby enabling them to be reused effectively. This
formalism establishes a more general notion of contract, as pre-conditions and
post-conditions, which originally appeared in the form of predicates, are general-
ized to behavioural interfaces. The central issues when introducing the formalism
of interface automata are compatibility, composition and refinement. While the
differentiation between assumptions and guarantees is somewhat implicit in [8],
it has become explicit in [4,5,6], where component behaviours are considered as
sets of traces (or runs). The relationship between specifications of component
behaviours and contracts is further studied in [1]. Here the authors show that a
contract framework can be built on top of any specification theory equipped with
a composition operator and a refinement relation which satisfy certain proper-
ties. Traced-based contract theories such as [4,5,6] are also demonstrated to be
instances of such framework.

The heterogeneous theory has been evolving in parallel with the contract the-
ory, to assist embedded systems designers in dealing with heterogeneous compo-
sition of components with various Models of Computation and Communication
(MoCC). Handling heterogeneous MoCCs can be done strictly hierarchically in
the pioneering framework of Ptolemy II [16], meaning that each level of the hi-
erarchy is homogeneous while different interaction mechanisms are allowed to
be specified at different levels in the hierarchy. While such framework advocates
the heterogeneous semantics geared towards the representation and simulation
of heterogeneous systems, another framework based on tags [2] is instead ori-
ented towards the formal verification and analysis of those systems. The latter
was inspired by the Lee and Sangiovanni-Vincentelli framework of tag signal
models [15] which has been long advocated as a unified modelling framework
capable of capturing heterogeneous MoCCs. In both models, tags play an im-
portant role in capturing various notions of time, and each tag system has its own
tag structure that can be used to express a MoCC. By applying mappings be-
tween different tag structures, the authors define how to compose heterogeneous
systems. Tag machines [3] are subsequently introduced as finite representations
of tag systems, yet only the homogeneous composition has been defined. Tag ma-
chines have been applied to model a job-shop specification [9] where any trace
of the composite tag machine from the start to the final state results in a valid
job-shop schedule.

2 The Tag Machine Formalism

A component, a unit of design, can be modelled as a set of behaviours called tag
system [2]. Each behaviour is a set of events which are characterised by pairs of
a data value and a tag. Different notions of time, including logical time, physical
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time, causal order, precedence relation, etc., can be represented by means of
tags. The ordering among tags makes up a tag structure and is used to resolve
the ordering among events at the system interface. Formally, a tag structure is
a tuple 〈T ,6〉 where T is a set of tags and 6 is a partial order which relates
tags seen as time stamps. To distinguish the time-stamp order of tag structure
T from that of others, we refer to it as 6

T
if necessary.

Example 1. 〈N,6〉 and 〈R+,6〉 are two tag structures whose time-stamp or-
ders are total and suitable for capturing discrete and dense time behaviours,
respectively.

Let V be an underlying set of variables with domain D. A V -behaviour σ is an
element of the map σ ∈ V 7→ (N 7→ (T × D)), meaning that for each variable
v ∈ V , the n-th occurrence of v in behaviour σ has tag τ ∈ T and value d ∈ D.
An event of σ is a tuple 〈v, n, τ, d〉 ∈ V × N× T ×D such that σ(v, n) = (τ, d).
A tag system (component) is a triple P = 〈V, T , Σ〉 where V is a finite set of
variables, T is a tag structure and Σ is a set of V -behaviours. For tag systems
having identical tag structures, their composition is defined by intersection.

Definition 1 (Homogeneous Composition [2]). Consider two tag systems
P1 = 〈V1, T , Σ1〉 and P2 = 〈V2, T , Σ2〉 with identical tag structures. For σi ∈
Σi(1 ≤ i ≤ 2), define:

σ1 ./
T
σ2 ⇔ σ1|V1∩V2

= σ2|V1∩V2

σ1 t
T
σ2

def
= σ1|V1∩V2

∪ σ1|V1\V2
∪ σ2|V2\V1

Σ1 ∧Σ2
def
= {σ1 t

T
σ2|σ1 ∈ Σ1, σ2 ∈ Σ2 and σ1 ./

T
σ2}

where σ|W denotes the restriction of behaviour σ to the variables in W . Then

the homogeneous composition of P1 and P2 is: P1 ‖ P2
def
= 〈V1 ∪ V2, T , Σ1 ∧Σ2〉.

For tag systems having different tag structures, their heterogeneous composition
is defined by intersection w.r.t. a pair of tag morphisms.

Definition 2 (Tag Morphisms [2]). For T and T ′ two tag structures, a tag
morphism is a total map ρ : T 7→ T ′ which is increasing w.r.t. the time-stamp
orders 6

T
and 6

T ′
, i.e. ∀τ1, τ2 ∈ T : τ1 6

T
τ2 ⇒ ρ(τ1) 6

T ′
ρ(τ2).

For a behaviour σ ∈ V 7→ (N 7→ (T ×D)), replacing τ ∈ T by ρ(τ) in σ defines
a new behaviour denoted by σρ or σ ◦ ρ having T ′ as its tag structure.

Definition 3 (Heterogeneous Composition [2]). Consider two tag systems
P1 = 〈V1, T1, Σ1〉 and P2 = 〈V2, T2, Σ2〉 and two morphisms ρ1 : T1 7→ T and

ρ2 : T2 7→ T . Let T1 ρ1×ρ2T2
def
= {〈τ1, τ2〉 ∈ T1 ×T2 | ρ1(τ1) = ρ2(τ2)} (shortened to

T×), called the fibered product of T1 and T2. For σi ∈ Σi(1 ≤ i ≤ 2), define:
σ1 ρ1./ρ2 σ2 ⇔ (σ1 ◦ ρ1) ./

T
(σ2 ◦ ρ2)

σ1 ρ1tρ2 σ2
def
= {〈v, n, 〈τ1, τ2〉, d〉|〈τ1, τ2〉 ∈ T× ∧ 〈v, n, τ, d〉 ∈ (σ1 ◦ ρ1) t

T
(σ2 ◦ ρ2)}

Σ1 ρ1∧ρ2 Σ2
def
= {σ1 ρ1tρ2 σ2 | σ1 ρ1./ρ2 σ2}

where τ = ρ1(τ1) = ρ2(τ2). Then the heterogeneous composition of P1 and P2 is:
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(a) A water-controller (b) System diagram

Fig. 1. Water controlling system

P1 ρ1‖ρ2 P2
def
= (V1 ∪ V2, T×, Σ1 ρ1∧ρ2 Σ2)

Example 2. We consider a simplified version of the water controlling system
proposed by Benvenuti et.al. [6]. It consists of two components: a water tank and
a water level controller (Fig. 1(a)), connected in a closed-loop fashion (Fig. 1(b)).
We assume that the water level x(t) is changed linearly as follows:

x(t)
def
=

{
∆t ∗ (fi − fo), when an Open command is received
h−∆t ∗ fo, when a Close command is received

where fi and fo denote the constant inlet and outlet flow, respectively, h denotes
the height when the tank is full of water and ∆t denotes the time elapsed since t0
at which the tank reaches the maximum/minimum water level h, i.e. ∆t = t−t0.
Let P1 = 〈V1, T1, Σ1〉 and P2 = 〈V2, T2, Σ2〉 be two tag systems representing the
tank and the water controller, respectively, where T1 = 〈R,≤〉, T2 = 〈N,≤〉 and
V1 = V2 = {cmd, x}. Variable cmd denotes the command values, which can
be Open (op) or Close (cl), and variable x denotes the water level, which is of
positive real type, i.e. Dcmd = {op, cl} and Dx = R+. Assume that each system
has a single behaviour: Σ1 = {σ1}, Σ2 = {σ2}, where σ(v, n) is described as
follows when the parameter setting is fi = 2, fo = 1,h = 1:

σ1 :
cmd : 0.5;op 1.5;cl 2.5;op 3.5;cl 4.5;op . . .
x : 0;0 0.5;0 1;0.5 1.5;1 2;0.5 2.5;0 3;0.5 3.5;1 4;0.5 4.5;0 . . .

σ2 :
cmd : 1;op 3;cl 5;op 7;cl 9;op . . .
x : 0;0 1;0 2;0.5 3;1 4;0.5 5;0 6;0.5 7;1 8;0.5 9;0 . . .

These are two different behaviours whose heterogeneous composition is possible
w.r.t. morphisms such as ρ1 : T1 7→ T1 and ρ2 : T2 7→ T1:

∀τ1 ∈ T1 : ρ1(τ1) = τ1 (1)

∀τ2 ∈ T2 : ρ2(τ2) = 0.5 ∗ τ2 (2)

Tag machines (TM) [3] have been introduced as finite representations of tag
systems and a homogeneous machinery for composing homogeneous systems.
Since our aim is to develop an operational theory for heterogeneous systems, it
is necessary to extend the TM formalism to encompass the heterogeneous com-
position. In the sequel, we revisit the TM-relevant definitions, thereby proposing
a heterogeneous extension to TMs.
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Definition 4 (Algebraic Tag Structures [2]). A tag structure 〈T ,6〉 is

called algebraic, written T̂ , if T is equipped with an internal binary operator
•, called concatenation, such that:

i) 〈T , •〉 is a monoid whose identity element is denoted by ı̂T̂
ii) Operator • is compatible with 6: τ1 6 τ ′1 and τ2 6 τ ′2 ⇒ (τ1 • τ2) 6 (τ ′1 • τ ′2)

iii) There is a special tag εT̂ ∈ T̂ , called the minimum tag, for which εT̂ 6 τ
and εT̂ • τ = τ • εT̂ = εT̂ for all τ ∈ T

Example 3. The tag structure 〈N ∪ {−∞},+〉 is algebraic, because (N,+) is a
monoid with 0 being the identity element and ∀τ1, τ ′1, τ2, τ ′2 ∈ N : τ1 ≤ τ ′1 ∧ τ2 ≤
τ ′2 ⇒ τ1 + τ2 ≤ τ ′1 + τ ′2. The minimum element is −∞, given that one defines
−∞+ τ = τ + (−∞) = τ for all τ ∈ N.

Note that an algebraic tag structure as above is almost the same as a naturally
ordered semiring [11], with operations ⊕ = max6 the maximum w.r.t. the time-
stamp order and ⊕ = •. We do not, however, require max6 to be always defined;
it may well be only a partial operation.

Definition 5 (Tag Pieces [2]). Let V be an underlying set of variables with

domain D. A V -tag piece is a tuple (T̂ , V, µ) where T̂ is an algebraic tag structure

and µ is a matrix: V × V 7→ T̂ . By abusing notation, a tag piece will also be
denoted by µ. Tag pieces are applied to vectors of tags as follows. Let −→τ0 =

(τv10 , τv20 , . . .)
def
= (τv0 )v∈V be a vector of tags indexed by the set V of underlying

variables. Applying µ to −→τ0 results in another vector of tags −→τ0 ′, written −→τ0 ′
def
=

−→τ0 • µ , whose v-th coordinate is computed by:

(−→τ0 • µ)v
def
= max6(τw0 • µwv)w∈V

where µwv denotes the entry µ[w, v] in the matrix µ. The map (−→τ0 , µ) 7→ −→τ0 • µ
is partial if max6 is not always defined and total otherwise.

Following up on the semiring analogy from above, application of a tag piece to
a tag vector is the same as vector-matrix multiplication in the free semimodule
over the (partial) semiring 〈T ,max6, •〉. As an example in the tag structure
〈N ∪ {−∞},+〉, [

1 3 5
]
•

1 1 1
0 1 ε
ε 0 ε

 =
[
3 5 2

]
A tag piece µ can be labelled with a variable assignment ν : V 7→ D, which

may be a partial function, forming a labelled tag piece µ̂
def
= 〈µ, ν〉. Let Dom(ν) =

{v| ν(v) is defined} be the domain of ν. For v ∈ Dom(ν), we say that µ̂ has an

event for v. The set of all such µ̂ is denoted by L(V, T̂ ). We present below
our extended definitions of TMs and unifiable labelled tag pieces on which the
heterogeneous TM composition will be defined.
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Definition 6 (Tag Machines). A tag machine M is a finite automaton where
transitions are annotated with labelled tag pieces. Formally, tag machine M is a
tuple 〈S, s0,−→τ0 , V, T̂ , E〉, where:

– S is a finite set of states and s0 is the initial state,
– −→τ0 = (τv)v∈V is the initial tag vector where τv = ı̂T̂ ,
– V is a set of underlying variables,
– T̂ is an algebraic tag structure,
– E ⊆ S×L(V, T̂ )×S is a set of edges 〈s, µ̂, s′〉 defining the transition relation.

For 1 ≤ i ≤ 2, labelled tag pieces µ̂i ∈ L(Vi, T̂i) are unifiable w.r.t. morphisms
ρi : Ti 7→ T , written µ̂1 ρ1./ ρ2 µ̂2, if the following conditions hold (recall that
µwv denotes the [w, v]-entry of the matrix µ):

∀w, v ∈ V1 ∩ V2 : ρ1(µwv1 ) = ρ2(µwv2 ) (3)

Dom(ν1) ∩ V1 ∩ V2 = Dom(ν2) ∩ V1 ∩ V2 (4)

∀w, v ∈ Dom(ν1) ∩Dom(ν2) ∩ V1 ∩ V2 : ν1(v) = ν2(v) (5)

Unifying µ̂1 and µ̂2 results in a set of labelled tag pieces µ̂ ∈ L(V1 ∪ V2, T̂×),

written µ̂
def
= µ̂1 ρ1tρ2 µ̂2 where:

µwv =



〈µwv1 , µwv2 〉, for w, v ∈ V1 ∩ V2
〈µwv1 , τ〉, for w ∈ V1 \ V2, v ∈ V1 and ρ1(µwv1 ) = ρ2(τ)
〈µwv1 , τ〉, for w ∈ V1, v ∈ V1 \ V2 and ρ1(µwv1 ) = ρ2(τ)
〈τ, µwv2 〉, for w ∈ V2, v ∈ V2 \ V1 and ρ1(τ) = ρ2(µwv2 )
〈τ, µwv2 〉, for w ∈ V2 \ V1, v ∈ V2 and ρ1(τ) = ρ2(µwv2 )
〈εT̂1 , εT̂2〉, otherwise

ν(v) =


ν1(v) = ν2(v), for v ∈ Dom(ν1) ∩Dom(ν2) ∩ V1 ∩ V2
ν1(v), for v ∈ Dom(ν1) \ V2
ν2(v), for v ∈ Dom(ν2) \ V1
undefined, otherwise

When T̂1 = T̂2 = T̂ and ρ1, ρ2 are identity morphisms, the tag pieces are said
to be homogeneous and µwv is considered to be a singleton instead of a pair of
identical tags, ρi is thus omitted in the notations. This convention is also applied
to the other notations. We next define the language of a tag machine.

Definition 7 (Tag Machine Language). Let M
def
= 〈S, s0,−→τ0 , V, T̂ , E〉 and

rM be a run of M over a sequence of labelled tag pieces w = µ̂1µ̂2 . . . µ̂n(n ≥ 1),

i.e. rM : s0
µ̂1−→ s1

µ̂2−→ s2 . . .
µ̂n−→ sn where 〈si−1, µ̂i, si〉 ∈ E, ∀1 ≤ i ≤ n.

For such a run, let τi denote the tag vector at state si and indi(vj) denote the
number of events that have happened to variable vj ∈ V up to state si:

(τi, νi)
def
= (−−→τi−1 •

T
µi, νi)

def
= (−−→τi−1 •

T
µ̂i)

indi(vj)
def
=

{
indi−1(vj) + 1, if µ̂i has an event for vj
indi−1(vj), otherwise

ind0(vj)
def
= 0
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Let wi denote µ̂1µ̂2 . . . µ̂i (i.e. the length-i prefix of w) and ri denote the sub-run

of rM over wi. Let σw
i

denote the set of events happened to all variables in V
along the sub-run ri. The semantics of the run rM over w is the behaviour σw

n

defined recursively through σw
i

as follows:

σw
i

(vj , k)
def
=


σw

i−1

(vj , k), if k < indi(vj)

σw
i−1

(vj , k), if k = indi(vj) and µ̂i has no event for vj
(−−→τi−1 •

T
µ̂i)(vj) if k = indi(vj) and µ̂i has an event for vj

σw
0 def

= ∅

The set of behaviours accepted by M consists of all behaviours σw
n

such that
σw

n

is the semantics of some run over w in M and n is the length of w. The
T̂ -language of M contains all such w and is denoted by L(M).

As an example, the T̂ -language of the tag machine in Fig. 2(c), written as a

regular expression, is (µ̂2
4 + µ̂2

9)+.
Because each TM trace can represent a behaviour of tag systems, TMs can

be used as an operational representation for a set of behaviours of a tag system.
Therefore, the TM composition should be defined in such a way that it could also
represent the tag system composition. Two TMs Mi defined over two algebraic
tag structures T̂i (1 ≤ i ≤ 2) can be composed if there exists a pair of morphisms
preserving the concatenation operations while mapping the source tag structures
(i.e. T̂i) into another tag structure T̂ . We refer to such morphisms as algebraic
morphisms and present a definition for them below.

Definition 8 (Algebraic Morphisms). For T̂ and T̂ ′ two algebraic tag struc-

tures, a tag morphism ρ : T 7→ T ′ is said to be algebraic, written ρ : T̂ 7→ T̂ ′ if
ρ(̂ıT̂ ) = ı̂T̂ ′ and ρ(εT̂ ) = εT̂ ′ and ρ ◦ •

T
= •
T ′
◦ (ρ, ρ).

Whenever two TMs can be composed, their composition is another machine

defined on T̂× (or T̂1 ρ1×ρ2 T̂2)
def
= 〈T×, 6

T×
, •
T×
〉 where 6

T×

def
= 〈6
T1
,6
T2
〉 and •

T×

def
= 〈 •
T1
, •
T2
〉.

In order for the TM composition to represent the tag system composition, the
component machines must be interoperable. The intuition of TM interoperability
relies on the local independence of shared variables, which requires that non-
shared variables should not influence how shared ones are tagged in each system.
A set V ⊆ V is locally independent in machine M = 〈S, s0,−→τ0 , V, T̂ , E〉, written

lindVM , if the tag value of any v ∈ V evolves algebraically depending only on

those of variables in V . Let lindVµ
def
= (∀w ∈ V \ V , ∀v ∈ V : µwv = εT̂ ), then

lindVM
def
= (∀〈s, µ̂, s′〉 ∈ E : lindVµ ) . The interoperability between two tag machines

M1 and M2 w.r.t. two algebraic morphisms ρ1 and ρ2 is denoted by M1 ρ1./ρ2 M2

and is defined as follows.

Definition 9 (Interoperable Tag Machines). For two tag machines Mi de-

fined on T̂i and Vi (1 ≤ i ≤ 2):

M1 ρ1./ρ2 M2
def
= lindV1∩V2

M1
∧ lindV1∩V2

M2
∧ ∃ρ1, ρ2 : ρi : T̂i 7→ T̂
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Example 4. Consider two TMs in Fig. 2(a) and 2(c) on page 11. They are in-
teroperable w.r.t. ρ1 and ρ2 as defined in (1) and (2). This is because they are
defined on the same set of variables and so the requirement of the shared variable
tags’ algebraic evolution depending on each other is trivially satisfied.

3 Tag Machine Specification Theory

Our goal is to provide an operational framework for verification and analysis
of contract-based design of heterogeneous systems. To this end, we limit TMs
to their deterministic form where labelled tag pieces annotated on transitions
going out of a state are all different. Being inspired by the generic contract
framework proposed by Bauer et.al. [1], we also base our framework on a TM
specification theory which is a theory developed for a class of TMs acting as
specifications of tag systems. Like other specification theories, the TM specifi-
cation theory is also equipped with essential binary operators such as compo-
sition to combine two TMs and refinement to relate two TMs. Given two TMs
Mi = 〈Si, si0,−→τi0, Vi, T̂i, Ei〉 (1 ≤ i ≤ 2) s.t. M1 ρ1./ρ2 M2, the definitions below
provide operations for them.

Definition 10 (TM Composition). The composition of M1 and M2 is a tag

machine denoted by M1 ρ1‖ρ2 M2 = 〈S, s0,−→τ0×, V×, T̂×, E〉, where:

– S = {〈s1, s2〉|si ∈ Si}, s0 = 〈s10, s20〉, V× = V1 ∪ V2, T̂× = T̂1 ρ1×ρ2 T̂2
– E =

{〈
〈s1, s2〉, µ̂1 ρ1tρ2 µ̂2, 〈s′1, s′2〉

〉
|〈si, µ̂i, s′i〉 ∈ Ei ∧ µ̂1 ρ1./ρ2 µ̂2

}
Definition 11 (TM Refinement). M1 refines M2, written M1 ρ1� ρ2M2, if
there exists a binary relation R ⊆ S1 × S2 such that:

i) (s10, s20) ∈ R,
ii) ∀(s1i, µ̂1, s

′
1i) ∈ E1 :(

∃s2j ∈ S2 : (s1i, s2j) ∈ R
)
⇒
(
∃(s2j , µ̂2, s

′
2j) ∈ E2 :

(µ̂1 ρ1./ρ2 µ̂2) ∧
(s′1i, s

′
2j) ∈ R

)
The intuition of the TM composition matches the tag system composition, and
the TM refinement means that the refined TM can produce the same (possibly
even more) events to the variables as the refining TM can. When the morphisms
ρ1, ρ2 are identities, we say that the refinement is homogeneous and write M1 �
M2. The following theorem is one of independent implementability : refinement
is preserved when composing components.

Theorem 1. For 1 ≤ i ≤ 2, let Mi and M ′i be TMs defined on T̂i and Vi. If
Mi � M ′i and M1 ρ1./ρ2 M2 and M ′1 ρ1./ρ2 M

′
2 for some algebraic morphisms

ρi : T̂i 7→ T̂ , then (M1 ρ1‖ρ2 M2) � (M ′1 ρ1‖ρ2 M ′2).

Definition 12 (TM quotient). Let V = V1 ∩ V2. The quotient of M1 and M2

is a tag machine denoted by M1 ρ1/ρ2 M2 = 〈S, s0,−→τ0 , V×, T̂×, E〉, where:

– S = {〈s1, s2〉|si ∈ Si} ∪ { u○} where u○ is a new state, and s0 = 〈s10, s20〉
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– V× = V1 ∪ V2, T̂× = T̂1 ρ1×ρ2 T̂2
– E =

{〈
〈s1, s2〉, µ̂1 ρ1tρ2 µ̂2, 〈s′1, s′2〉

〉∣∣〈si, µ̂i, s′i〉 ∈ Ei ∧ µ̂1 ρ1./ρ2 µ̂2

}
∪{〈

〈s1, s2〉, µ̂1 ρ1tρ2 µ̂2, u○
〉∣∣∣ 〈s1, µ̂1, s

′
1〉 ∈ E1 ∧ 〈s2, µ̂2, s

′
2〉 /∈ E2 ∧

µ̂1 ρ1./ρ2 µ̂2 ∧ lindVµ2

}
∪{〈

〈s1, s2〉, µ̂1 ρ1tρ2 µ̂2, u○
〉∣∣∣ 〈s1, µ̂1, s

′
1〉 /∈ E1 ∧ 〈s2, µ̂2, s

′
2〉 /∈ E2 ∧

µ̂1 ρ1./ρ2 µ̂2 ∧ lindVµ1
∧ lindVµ2

}
∪{

〈 u○, µ, u○〉
∣∣µ ∈ L(V×, T̂×) ∧ lindV1

µ ∧ lindV2
µ

}
An example of a quotient is displayed in Figure 3(b) on page 13, which shows

the quotient MGtk/MAtk of the TMs of Figures 2(a) and 2(b).

Theorem 2. The quotient M1 ρ1/ρ2 M2 in Definition 12 satisfies the refinement(
M2 id‖proj (M1 ρ1/ρ2 M2)

)
proj′�id′M1, where:

∀τ2 ∈ T̂2 : id(τ2) = τ2

∀τ1 ∈ T̂1 : id′(τ1) = τ1

∀〈τ1, τ2〉 ∈ T̂× : proj(τ1, τ2) = τ2

∀
〈
τ2, 〈τ1, τ2〉

〉
∈ T̂2 id×proj T̂× : proj′(τ2, (τ1, τ2)) = τ1

Moreover, for any tag machine M defined on T̂× and V×, it holds that:

lindV1

M ∧ lindV2

M ∧
(
(M2 id‖proj M) proj′�id′M1

)
⇒M �M1 ρ1/ρ2 M2 (6)

Hence the quotient M1 ρ1/ρ2 M2 is the greatest, in the (homogeneous) refine-
ment preorder, of all tag machines M which satisfy (6). This universal property
is generally expected of quotients, cf. [1], and it alone implies that the quotient
is uniquely defined up to two-sided homogeneous refinement [12].

Finally, the operator of heterogeneous conjunction, denoted ρ1fρ2 , is defined
as the greatest lower bound of the refinement order. Conjunction, therefore,
amounts to computing the intersection of the behaviour sets, in order to find
the largest common refinement. Thus, for tag systems, conjunction can be com-
puted similarly to composition. The two operators, however, serve very different
purposes, and must not therefore be confused.

4 A Contract Framework for Tag Systems

We present in this section our contract framework for tag systems which is built
on top of the TM specification theory in the previous section. We use the term
tag contract to mean that in our framework each contract is coupled with an
algebraic tag structure and a variable set which allow the contract assumption
and guarantee to be represented by tag machines.

Definition 13 (Tag Contract). A tag contract C is a homogeneous pair of

TMs (MA,MG) defined over an algebraic tag structure T̂ and variable set V :

MA
def
= (SA, s

A
0 ,
−→τ0 , V, T̂ , EA)

MG
def
= (SG , s

G
0 ,
−→τ0 , V, T̂ , EG)
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Example 5. Consider the simplified water controlling system in Example 2. As-
sume that the algebraic tag structures of the tank and the controller are T̂1 =
(R+ ∪ {εT̂1},+) and T̂2 = (N ∪ {εT̂2},+) respectively where εT̂1 = εT̂2 = −∞.

We present in this example a contract Ctk = (MAtk ,MGtk) for the tank compo-
nent guaranteeing a linear evolution of the water level x given the assumption
satisfaction. Fig. 2(a) depicts MAtk which simply requires the water tank to
be empty initially and accepts Open/Close commands from the controller and
Fig. 2(b) describes the guarantee MGtk on the water level evolution. That is, as
long as the controlling command is received at the right time (i.e. Open when
the tank is empty and Close when it is full), the water level will evolve linearly
as specified in Example 2. For the sake of simplicity, the events described by the
tank contract are timestamped periodically every 0.5 time unit.

tk_a1tk_a0

(a) Assumption MAtk

tk_g3tk_g2

tk_g4tk_g1

tk_g5tk_g0

(b) Guarantee MGtk

ctr_a0

(c) Assumption MActr

ctr_g0

ctr_g1ctr_g2

(d) Guarantee MGctr

Fig. 2. The tank and controller contract

The controller contract is shown in the same figure, where the controller as-
sumption (Fig. 2(c)) states an admissible requirement on the water level input,
i.e. 0 <= x <= h and places no requirement on its output which is the com-
mand signal. As long as such assumption is satisfied, the controller guarantees
(Fig. 2(d)) to send an Open/Close command upon knowing of the tank empti-
ness/fullness. While the tank system uses physical time to stamp its behaviours,
the controller system instead timestamps its events logically which can be de-
scribed by the integer tag set N. For the sake of expressiveness, some of the
labelled tag pieces can be represented symbolically. For example, to capture any
event of variable x happening at a specific time point, we label with the tag piece
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capturing that time point expressions such as x ∈ Dx, meaning that in such an
event x can take any value in its domain.

Definition 14 (Tag Contract Semantics). For a tag contract C = (MA,MG),
define:

– MI �
MA

MG iff ∀ME : (ME �MA ⇒ (MI ‖ME) � (MG ‖ME))

– 〚C〛env = {ME |ME �MA} – the set of environments of C
– 〚C〛impl = {MI |MI �

MA

MG} – the set of implementations of C

When contract refinement can be checked independently of the contract assump-
tion, we say that C is in normalised form.

Definition 15 (Normalized Tag Contract). A tag contract C = (MA,MG)
is in normalised form if the following holds: ∀MI : MI ∈ 〚C〛impl ⇔MI �MG

Theorem 3. Any tag contract C = (MA,MG) can be normalised by replacing
MG with MG/MA.

Whenever a tag contract is in normalised form, checking contract satisfaction is
reduced to finding a refinement relation between two TMs. As we will see later,
working with normalised tag contracts can simplify the definition of contract
operators and relations as well as provide a unique representation for equivalent
contracts, thus we assume contracts to be in normalised form hereafter.

Example 6. Consider the tag contracts in Example 5. Let !µ̂ be the class of all la-
belled tag pieces different from µ̂, we perform the quotient of the guarantees and
assumptions to normalise the contracts. The quotients are shown in Fig. 3 where

µ̂1
00

def
=!µ̂1

0 ∪ !µ̂1
6

µ̂1
01 = µ̂1

51
def
= [(!µ̂1

0 ∪ !µ̂1
6) ∩ (!µ̂1

3 ∪ !µ̂1
8)]

µ̂1
11 = µ̂1

41
def
= [!µ̂1

1 ∩ (!µ̂1
3 ∪ !µ̂1

8)]

µ̂1
21 = µ̂1

31
def
= [(!µ̂1

2 ∪ !µ̂1
7) ∩ (!µ̂1

3 ∪ !µ̂1
8)]

and

µ̂2
00

def
= [(!µ̂2

6 ∪ !µ̂2
7) ∩ (!µ̂2

4 ∪ !µ̂2
9)]

µ̂2
10

def
= [(!µ̂2

5 ∪ !µ̂2
7) ∩ (!µ̂2

4 ∪ !µ̂2
9)]

µ̂2
20

def
= [(!µ̂2

5 ∪ !µ̂2
6) ∩ (!µ̂2

4 ∪ !µ̂2
9)]

µ̂1 def
= L(V1, T̂1), µ̂2 def

= L(V2, T̂2)

It is easy to see that the tag systems P1 and P2 in Example 2 are an imple-
mentation of Ctk and Cctr respectively, because their behaviours are included in
the behaviour set of MGtk/MAtk and MGctr/MActr .

Like other contract frameworks, our tag contract framework is also equipped
with contract refinement and dominance operators which are defined only when
the contract operands are interoperable.

Definition 16 (Interoperable Tag Contract). For two tag contracts Ci =

(MAi ,MGi) defined over T̂i and Vi (1 ≤ i ≤ 2), if V1 ∩ V2 is locally independent

in MAi and MGi and there exist two algebraic morphisms ρi : T̂i 7→ T̂ , then C1
and C2 are said to be interoperable w.r.t. ρ1 and ρ2, written C1 ρ1./ρ2 C2.
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tk_g3,a1tk_g2,a1

tk_g4,a1tk_g1,a1

tk_g5,a1tk_g0,a1tk_g0,a1

(a) MGtk/MAtk

ctr_g0,a0

ctr_g1,a0ctr_g2,a0

(b) MGctr/MActr

Fig. 3. Guarantees of normalised Ctk and Cctr

4.1 Tag Contract Refinement

The refinement relation between two interoperable contracts is determined by
that between their sets of implementations and environments.

Definition 17 (Tag Contract Refinement). Given two tag contracts Ci =
(MAi ,MGi) interoperable w.r.t. ρi for 1 ≤ i ≤ 2. Contract C1 refines contract C2
w.r.t. ρi, written C1 ρ1�ρ2C2, if the following two conditions are met:

i) ∀MI1 ∈ 〚C1〛impl : ∃MI2 ∈ 〚C2〛impl : (MI1 ρ1./ρ2 MI2) ∧ (MI1 ρ1�ρ2MI2)
ii) ∀ME2 ∈ 〚C2〛env : ∃ME1 ∈ 〚C1〛env : (ME1 ρ1./ρ2 ME2) ∧ (ME2 ρ2�ρ1ME1)

The following theorem shows that when two tag contracts are in normalised
form, checking refinement can be done at the syntactic level, i.e. by checking
TM refinement between their assumptions and guarantees.

Theorem 4. Given two normalised tag contracts Ci = (MAi ,MGi) interoperable
w.r.t. ρi (1 ≤ i ≤ 2): C1 ρ1�ρ2C2 ⇔ (MA2 ρ2�ρ1MA1

) ∧ (MG1 ρ1�ρ2MG2)

4.2 Tag Contract Dominance and Composition

Our tag contract framework also includes the tag contract composition operator,
allowing two contracts defined over different algebraic tag structures and variable
sets to be composed when possible.

Definition 18 (Tag Contract Dominance). Given two tag contracts Ci =

(MAi ,MGi) defined on T̂i and Vi and interoperable w.r.t. ρi : T̂i 7→ T for 1 ≤
i ≤ 2. A contract C = (MA,MG) dominates over the contract pair (C1, C2) w.r.t.
ρi if the following conditions are met:

i) C is defined over T̂× (or T̂1 ρ1×ρ2 T̂2) and V×
def
= V1 ∪ V2

ii) lindV1

MA
and lindV2

MA
hold.

iii) ∀MIi ∈ 〚Ci〛impl : MI1 ρ1./ρ2 MI2 ⇒ (MI1 ρ1‖ρ2 MI2) ∈ 〚C〛impl
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iv) ∀ME ∈ 〚C〛env :

{(
∀MI1 ∈ 〚C1〛impl : (MI1 idT1

‖projT1 ME) proj′T2
�idT2

MA2

)
∧(

∀MI2 ∈ 〚C2〛impl : (MI2 idT2
‖projT2 ME) proj′T1

�idT1
MA1

)
where idTi , projTi and proj′Ti are defined as follows:

∀τi ∈ T̂i : idTi(τi) = τi (7)

∀(τ1, τ2) ∈ T̂1 ρ1×ρ2 T̂2 : projTi(τ1, τ2) = τi (8)

∀
〈
τ2, 〈τ1, τ2〉

〉
∈ T̂2 idT2

×projT2 T̂× : proj′T1(τ2, (τ1, τ2)) = τ1 (9)

∀
〈
τ1, 〈τ1, τ2〉

〉
∈ T̂1 idT1

×projT1 T̂× : proj′T2(τ1, (τ1, τ2)) = τ2 (10)

The pair of contracts (C1, C2) is dominatible w.r.t. ρ1 and ρ2 if there exists a
contract C dominating over (C1, C2) w.r.t. the same morphisms. The contract
composition is then defined as follows.

Definition 19 (Tag Contract Composition). For 1 ≤ i ≤ 2, let Ci =

(MAi ,MGi) be tag contracts defined over T̂i and Vi. If C1 ρ1./ ρ2 C2, then their
composition, denoted by C1 ρ1‖ρ2 C2, is defined as follows:

C1 ρ1‖ρ2 C2
def
=
(
(MA1 ρ1/ρ2 MG′2) f (MA2 ρ2/ρ1 MG′1)−1, (MG′1 ρ1‖ρ2 MG′2)

)
, where

– MG′i is obtained from MGi by removing all µ̂-transitions for which lindV1∩V2
µ

does not hold, and

– M−1 is a machine created by swapping the tag components in machine M =
〈S, s0,−→τ0 ′, V×, T̂2 ρ2×ρ1 T̂1, E′〉. Let swap be defined s.t. ∀〈τ2, τ1〉 ∈ T̂2 ρ2×ρ1 T̂1 :

swap(τ2, τ1) = (τ1, τ2). Then M−1 = 〈S, s0,−→τ0 , V×, T̂1 ρ1×ρ2 T̂2, E〉 where E =
{〈s, µ, s′〉|(〈s, µ′, s′〉 ∈ E′) ∧ (µ = µ′ ◦ swap)}.

The following theorem show that the tag contract composition in Def. 19 indeed
dominates the contract components.

Theorem 5. For 1 ≤ i ≤ 2, let Ci = (MAi ,MGi) be tag contracts such that
C1 ρ1./ρ2 C2. Let C = C1 ρ1‖ρ2 C2, then:

i) C dominates the contract pair (C1, C2) w.r.t. ρi.

ii) For all contracts C′ which dominate (C1, C2) w.r.t. ρi: C � C′.

The next theorem show that homogeneous refinement is preserved by heteroge-
neous composition.

Theorem 6. For 1 ≤ i ≤ 2, let Ci = (MAi ,MGi) and C′i = (MA′i ,MG′i) be tag

contracts such that Ci and C′i are defined on T̂i and Vi. If C′i � Ci and C1 ρ1./ρ2 C2
and C′1 ρ1./ρ2 C′2 for some algebraic morphisms ρi : T̂1 7→ T̂ . Then:

i) If C dominates the contract pair (C1, C2) w.r.t. ρ1 and ρ2 then it also domi-
nates the contract pair (C′1, C′2) w.r.t. the same morphisms.

ii) (C′1 ρ1‖ρ2 C′2) �(C1 ρ1‖ρ2 C2).
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(a) MA1 (b) MA′1 (c) MG1 ≡MG′1 (d) MA2 ≡MA′2 (e) MG2 ≡MG′2

Fig. 4. Contract components of Example 7

Contrasting Theorem 6, we note that heterogeneous refinement in general is
not preserved even by homogeneous composition. The reason is that the former
involves two morphisms which are many-to-one functions and can map two dif-
ferent tags into the same tag; meanwhile the latter tends to not expect such
mappings. That is, if C1 ρ1� ρ2C2 and C′1 ρ1� ρ2C′2, then it is possible that
(C1 ‖ C′1) ρ1�ρ2(C2 ‖ C′2).

Example 7. Consider as an example where:

- T̂1 = {τ1, τ ′1, ε1}, T2 = {τ2, ε2}, T = {τ, ε},
- V1 = V2 = {v}, Dv = {>},
- ρ1(τ1) = ρ1(τ ′1) = ρ2(t2) = τ, ρ1(ε1) = ρ2(ε2) = ε

Fig. 4 shows contract components of Ci and C′i. Since V1 = V2, the contracts
are interoperable with each other. It is then easy to see that C1 ρ1� ρ2C2 and
C′1 ρ1� ρ2C′2 but (C1 ‖ C′1) ρ1� ρ2(C2 ‖ C′2) because the assumption of C2 ‖ C′2,
which is

(
(MA2

/MG′2) f (MA′2/MG2)
)

and equivalent to MA2
or MA′2 , cannot

heterogeneously refine w.r.t. ρ1 and ρ2 that of C1 ‖ C′1, which is
(
(MA1

/MG′1) f
(MA′1/MG1)

)
and equivalent to the empty machine with no transition.

4.3 Tag Contract Compatibility

Of particular interest is the notion of compatibility between contracts which
depends critically on the particular partition of the variables into inputs and
outputs. Intuitively, compatibility denotes the existence of a pair of interoperable
implementations whose composition can be driven by some environment to avoid
all incompatible states.

Definition 20 (Profile). A profile is a tuple π = 〈in, out, loc〉 where in/out/loc
denotes a set of input/output/internal ports, respectively. Moreover these sets
have to be disjoint, i.e. (in ∩ out) = (out ∩ loc) = (loc ∩ in) = ∅.

A tag contract defined on some variable set V has profile π = 〈V in, V out, V loc〉 if
and only if V = V in∪V out∪V loc. When composing two contracts with different
profiles Ci = (πi,MAi ,MGi), we have to enforce the property that each output
port should be controlled by at most one contract, i.e. V out

1 ∩ V out
2 = ∅. In

addition, because local ports are only visible to the underlying components, the
set of local ports of one contract must be disjoint from that of the other, i.e.
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V loc
1 ∩ V2 = V1 ∩ V loc

2 = ∅. The composite contract is defined as in Def. 19 and

with profile π = 〈V in, V out, V loc〉 where:

V in = V in
1 ∪ V in

2 \ (V out
1 ∪ V out

2 )
V out = V out

1 ∪ V out
2

V loc = V loc
1 ∪ V loc

2

.

Before establishing the definition of contract compatibility, we need to de-
fine the set of incompatible states in composing two tag machines with profile.
Intuitively, the composite machine is at an incompatible state if a component
machine does not accept some output of the other at the shared ports. This
condition is similar to that proposed by de Alfaro and Henzinger for Interface
Automata [8]. In the context of tag machines, compatibility also requires that
the outputs happen at the same “moment” as the inputs do. In other words,
their tags should agree with each other.

Definition 21 (Incompatible States). Let Mi = (Si, s
i
0,
−→τ0 i, Vi, T̂i, Ei) be a

TM with profile πi = 〈V in
i , V out

i , V loc
i 〉 (1 ≤ i ≤ 2) s.t. M1 ρ1./ρ2 M2. Let µ̂i =

〈µi, νi〉, V out1 = V out
1 ∩V in

2 , V out2 = V out
2 ∩V in

1 , V shared = V1∩V2, V = Dom(ν1)∩
Dom(ν2) ∩ (V out1 ∪ V out2). A state 〈s1, s2〉 in M1 ρ1‖ρ2 M2 is incompatible if it
is reachable from 〈s10, s20〉 and does not satisfy both following conditions:

i) ∀〈s1, µ̂1, s
′
1〉 ∈ E1 :

(
Dom(ν1)∩V out1 6= ∅

)
⇒ ∃〈s2, µ̂2, s

′
2〉 ∈ E2 :


(
Dom(ν1) ∩ V out1 ⊆ Dom(ν2)

)
∧(

Dom(ν2) ∩ V out2 ⊆ Dom(ν1)
)
∧(

∀w ∈ V : ν1(w) = ν2(w)
)(

∀w ∈ V shared,∀v ∈ V : ρ1(µwv1 ) = ρ2(µwv2 )
)

ii) ∀〈s2, µ̂2, s
′
2〉 ∈ E2 :

(
Dom(ν2)∩V out2 6= ∅

)
⇒ ∃〈s1, µ̂1, s

′
1〉 ∈ E1 :


(
Dom(ν2) ∩ V out2 ⊆ Dom(ν1)

)
∧(

Dom(ν1) ∩ V out1 ⊆ Dom(ν2)
)
∧(

∀w ∈ V : ν1(w) = ν2(w)
)(

∀w ∈ V shared,∀v ∈ V : ρ1(µwv1 ) = ρ2(µwv2 )
)

The set of incompatible states is denoted by Icmp(M1 ρ1‖ρ2 M2).

Given two interoperable tag machines MIi and their incompatible states, we
are interested in knowing whether there exists some machine that can drive the
composition M1 ρ1‖ρ2 M2 away from their incompatible states. Such a machine
should not enforce any constraint on the outputs by not accepting some of them
and is referred to as a legal environment for the composition. Let M1 ρ1‖ρ2 M2 =

〈S, s0,−→τ0×, V×, T̂×, E〉 as defined in Def. 10 and the profile of M1 ρ1‖ρ2 M2 is

π× = 〈V in
× , V

out
× , V loc

× 〉 where:

V in
× = V in

1 ∪ V in
2 \ (V out

1 ∪ V out
2 )

V out
× = V out

1 ∪ V out
2

V loc
× = V loc

1 ∪ V loc
2

.

Definition 22 (Legal Environment). A TM ME = (SE , s
E
0 ,
−→τ0×, VE , T̂×, EE)

with profile πe is a legal environment for Mc = M1 ρ1‖ρ2 M2 if the following
conditions are satisfied:

i) V in
E = V out

×
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ii) lind
VE∩V×
ME

and lind
VE∩V×
Mc

iii) Icmp(ME ‖Mc) = ∅
iv) The states in Icmp(Mc)× SE are not reachable from

〈
〈s10, s20〉, sE0

〉
.

We can now define the contract compatibility as follows.

Definition 23 (Contract Compatibility). Two tag contracts Ci with profile

defined over T̂i and Vi are compatible if the following conditions are satisfied:

i) C1 ρ1./ρ2 C2 for some algebraic morphisms ρi : T̂i 7→ T̂ (1 ≤ i ≤ 2).
ii) For 1 ≤ i ≤ 2, there exist implementations Mi ∈ 〚Ci〛impl s.t. M1 ρ1 ./

ρ2 M2 and M1 ρ1‖ρ2 M2 is driven by some legal environment to avoid its
incompatible states.

The simplest environment for Mc is the one that accepts all outputs and does not
produce any input. For two interoperable implementations with profiles where
tagging input and output ports is independent from tagging local ports, if there
exists some legal environment for their heterogeneous composition, the simplest
environment is also legal for such a composition. Thus, the contract compatibility
check can be reduced to checking the existence of the simplest environment.

Theorem 7. If ME = (SE , s
E
0 ,
−→τ0×, VE , T̂×, EE) with profile πe is a legal envi-

ronment for M1 ρ1‖ρ2 M2, then MEs = (SEs , s
Es
0 ,
−→τ0×, VEs , T̂×, EEs) with profile

πes such that:

i) SEs = {sEs0 }
ii) V in

Es = V in
E = V out

× , V out
Es = V in

× , V
loc
Es = ∅

iii) The transition relation EEs contains of all transitions 〈sEs0 , µ̂′, s
Es
0 〉 s.t.:

– There exists 〈s, µ̂, s′〉 in the transition relation of M1 ρ1‖ρ2 M2.
– µ′wv = µwv for w ∈ V in

Es ∪ V
out
Es , v ∈ V in

E and µ′wv = εT̂× otherwise

– ν′w = νw for w ∈ Dom(ν) ∩ V in
E

is also a legal environment for M1 ρ1 ‖ρ2 M2 provided that lind
V in
1 ∪V

out
1

M1
and

lind
V in
2 ∪V

out
2

M2
hold.

5 Conclusion

We have proposed a contract-based methodology for combining heterogeneous
systems built on tag machines. We aim to develop an operational framework
for tag contracts which supports verification and analysis on contract-based de-
sign of heterogeneous systems. To this end, we have introduced heterogeneous
composition, refinement, dominance, and compatibility of contracts, altogether
enabling a formalized and rigorous design process for heterogeneous systems.
Our next step is to demonstrate our methodology through a prototype tool and
validate it through case studies. The development of such a tool is therefore
included in our future work.
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Appendix

Lemma 1 (Total Order Preservation). Given two algebraic morphisms ρi :

T̂i 7→ T̂ . If T1 and T2 are total orders and one of the two morphisms is strictly
increasing, then T× is also a total order.

Proof of Lemma 1. For any two tags 〈τ1, τ2〉 and 〈τ ′1, τ ′2〉 in T×. Since T1
is a total order, we can assume that τ1 6

T1
τ ′1 without loss of generality. Then

ρ1(τ1) 6
T
ρ1(τ ′1) because ρ1 is an increasing morphism. Since T2 is another total

order, either τ2 6
T2

τ ′2 or τ ′2 6
T2

τ2 holds. Assume that the latter holds, then

ρ2(τ ′2) 6
T
ρ2(τ2) because ρ2 is also increasing. Moreover, ρ1(τ1) = ρ2(τ2) = τ

and ρ1(τ ′1) = ρ2(τ ′2) = τ ′ because 〈τ1, τ2〉 ∈ T× and 〈τ ′1, τ ′2〉 ∈ T×. All of these
facts imply τ 6

T
τ ′ and τ ′ 6

T
τ which together mean τ = τ ′ which is not possible

because either the morphisms is strictly increasing. Therefore it must be the case
that τ2 6

T2
τ ′2 holds which implies 〈τ1, τ2〉 6

T×
〈τ ′1, τ ′2〉. ut

Proof of Theorem 1. For every run rMc : sc0
µ̂c0−→ sc1

µ̂c1−→ . . . scn
µ̂cn−→ in

the composition Mc = M1 ρ1‖ρ2 M2, there exists a run rMi : si0
µ̂i0−→ si1

µ̂i1−→
. . . sin

µ̂in−→ in Mi such that µ̂ck = µ̂1k ρ1tρ2 µ̂2k for 1 ≤ k ≤ n. Because Mi �M ′i
and Mi,M

′
i are defined on the same variable set Vi, there must exist another

run rM
′
i in M ′i matching rMi on all the labels, i.e.

rM
′
i : s′i0

µ̂i0−→ s′i1
µ̂i1−→ . . . s′in

µ̂in−→

Composing the runs rM
′
1 and rM

′
2 results in a run

rM
′
c : s′c0

µ̂c0−→ s′c1
µ̂c1−→ . . . s′cn

µ̂cn−→

for which rMc is a refinement. Therefore, (M1 ρ1‖ρ2 M2) � (M ′1 ρ1‖ρ2 M ′2) holds.
ut

Proof of Theorem 2. For 1 ≤ k ≤ 2, let Mk = 〈Sk, sk0,−→τk0, Vk, T̂k, Ek〉 and
Mq = M1 ρ1/ρ2 M2. We first prove that refinement

(
M2 id ‖proj Mq

)
proj′ �

id′M1 is defined and then construct a relation R containing states of the form〈〈
s2j , 〈s1i, s2j〉

〉
, s1i

〉
∈ R to show the refinement satisfaction. Finally we prove

that the quotient is the most general tag machine satisfying the refinement, that
is for any deterministic tag machine M satisfying the same refinement will refine
Mq.

(i) By the quotient definition, V1 ∩ V2 is locally independent in Mq. For all
〈sq, µ̂q, s′q〉 in the transition relation Eq of the quotient machine, there

exists µ̂1 ∈ L(V1, T̂1) and µ̂2 ∈ L(V2, T̂2) s.t. lindV1∩V2
µ1

and lindV1∩V2
µ2

and
µ̂q = µ̂1 ρ1tρ2 µ̂2. By the unification rule for two unifiable tag pieces, for
w ∈ V1 \ V2 and v ∈ V1 ∩ V2: µwvq = 〈µwv1 , τ2〉 = 〈εT̂1 , εT̂2〉, since ρ1(µwv1 ) =
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ρ2(τ2) and lindV1∩V2

M1
holds. Likewise, for w ∈ V1 \ V2 and v ∈ V2 \ V1:

µwvq = 〈εT̂1 , εT̂2〉. Hence V2 is locally independent in Mq and M2 id‖proj Mq

is defined.
For all 〈sc, µ̂c, s′c〉 in the transition relation of the composition M2 id‖proj
Mq, there exist 〈s2, µ̂2, s

′
2〉 ∈ E2 and 〈sq, µ̂q, s′q〉 ∈ Eq s.t.sc = 〈s2, sq〉 and

s′c = 〈s′2, s′q〉 and µ̂2 id./ proj µ̂q and µ̂c = µ̂2 idtproj µ̂q. By the unification
rule for two unifiable tag pieces, for w ∈ V2 \ V1 and v ∈ V1 ∩ V2: µwvc =
〈µwv2 , µwvq 〉 =

〈
εT̂2 , 〈εT̂1 , εT̂2〉

〉
, since V1∩V2 is locally independent in Mq and

id(εT̂2) = proj(〈εT̂1 , εT̂2〉) = εT̂2 . Likewise, for w ∈ V2 \ V1 and v ∈ V1 \ V2:

µwvc = 〈τ2, µwvq 〉 =
〈
εT̂2 , 〈εT̂1 , εT̂2〉

〉
since µwvq = 〈εT̂1 , εT̂2〉 (by the quotient

definition) and id(εT̂2) = proj(〈εT̂1 , εT̂2〉) = εT̂2 . Hence V1 is also locally

independent in M2 id‖proj Mq, resulting in its refinement relation with M1

is defined in
(
M2 id‖proj Mq

)
proj′�id′M1.

(ii) Initially, R contains the state
〈〈
s20, 〈s10, s20〉

〉
, s10

〉
∈ R. For any state〈〈

s2j , 〈s1i, s2j〉
〉
, s1i

〉
∈ R, if the following holds:(

∃µ̂2 ∈ L(V2, T̂2) : s2j
µ̂2−→ s′2j

)
∧(

∃µ̂q ∈ L(V×, T̂×) : 〈s1i, s2j〉
µ̂q−→ sq

)
∧
(
µ̂2 id./proj µ̂q

)
then sq = 〈s′1i, s′2j〉 for some s′1i ∈ S1. The fact of µ̂2 id ./ proj µ̂q means

(µ̂q ◦proj)|V2
= µ̂2. By construction, the existence of s2j

µ̂2−→ s′2j in M2 and

〈s1i, s2j〉
µ̂q−→ sq in the quotient transition relation where (µ̂q ◦proj)|V2

= µ̂2

implies there must exist a transition s1i
µ̂1−→ s′1i such that µ̂1 ρ1 ./ ρ2 µ̂2.

Since M1, M2 and their quotient are deterministic machines, it must be
that µ̂q = µ̂1 ρ1tρ2 µ̂2 and sq = 〈s′1i, s′2j〉. Since it can be proved easily that
(µ̂2 idtproj µ̂q) proj′ ./ id′ µ̂1, the second refinement condition immediately

follows and so
〈〈
s′2j , 〈s′1i, s′2j〉

〉
, s′1i

〉
∈ R

(iii) Since lindV2

M and lindV1

M hold, refinement
(
M2 id‖proj M

)
proj′�id′M1 is also

defined. Assume that M does not refine Mq. So there must exist some
runs rM in M and rMq in Mq where the last transition of rM cannot be
simulated by rMq :

rM : s0
µ̂0−→ s1

µ̂1−→ . . . sn
µ̂n−→

rMq : sq0
µ̂0−→ sq1

µ̂1−→ . . . sqn
µ̂n
−�→

We look for the longest run rM2 in M2 that can synchronize with rM . There
are three cases that can happen:
a) rM2 has a shorter length than that of rM by at least 2 transitions, i.e.

its length is at most n− 2:

rM2 : s20
µ̂20−→ s21

µ̂21−→ . . . s2k
µ̂2k

−�→
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where µ̂2i id ./ proj µ̂i for 0 ≤ i < k and k < n. Thus, (µ̂i ◦ proj)|V2

= µ̂2i. Using a similar line of reasoning as done in the previous part
of the proof, we can conclude that sqi = (s1i, s2i) for 0 ≤ i ≤ k and

s1i ∈ S1. By construction, s2k
µ̂2k

−�→ drives the quotient machine to the

universal state (s1k, s2k)
µ̂k−→ u○ from which we can infer sq(k+1) =

sq(k+2) = . . . = sn = u○. Since all transitions
µ̂−→ s.t. lindV1

µ and lindV2
µ

are allowed at this universal state, sqn
µ̂n−→ must be also possible which

contradicts the hypothesis.
b) rM2 ’s length is n− 1:

rM2 : s20
µ̂20−→ s21

µ̂21−→ . . . s2n
µ̂2n

−�→

Similar to the proof of the previous case, we can infer sqn
µ̂n−→ u○ which

contradicts the hypothesis.
c) rM2 ’s length is as same as rM ’s length:

rM2 : s20
µ̂20−→ s21

µ̂21−→ . . . s2n
µ̂2n−→

where µ̂2i id./ proj µ̂i for 0 ≤ i ≤ n, which implies (µ̂i ◦ proj)|V2
= µ̂2i.

Since rM2 and rM are composable, there must exist some run rM1 in
M1:

rM1 : s10
µ̂10−→ s11

µ̂11−→ . . . s1n
µ̂1n−→

where (µ̂2i idtproj µ̂i) proj′./ id′ µ̂1i for 0 ≤ i ≤ n, which implies µ̂1i ρ1./

ρ2 µ̂2i and µ̂i = µ̂1i ρ1tρ2 µ̂2i. From the runs rM1 and rM2 , by construc-
tion, there must exist a run rMq in Mq:

rMq : sq0
µ̂′0−→ s′q1

µ̂′1−→ . . . s′qn
µ̂′n−→

where µ̂′i = µ̂1i ρ1tρ2 µ̂2i for 0 ≤ i ≤ n. Since all the machines are
deterministic, all transitions going out of some state are annotated with
unique labelled tag pieces µ̂′i which leads us to the conclusion that

µ̂i = µ̂′i and sqi = s′qi. Hence sqn
µ̂n−→ is also possible which again

contradicts the hypothesis.
Therefore, there is no run rM in M that cannot be simulated by some run
rMq in Mq where M satisfies s.t. lindV1

M and lindV2

M and
(
M2 id‖proj M

)
proj′�

id′M1. As a result, M refines Mq. ut

Proof of Theorem 3. Let MG = MG/MA, we first prove that MG/MA �MG .
Let Mq = MG/MA, by contraposition, assume that the refinement relation does

not hold. Hence, there must exist some run rMq in Mq and rMG in MG where

the last transition of rMq cannot be simulated by rMG :

rMq : sq0
µ̂0−→ sq1

µ̂1−→ . . . sqn
µ̂n−→

rMG : sG0
µ̂0−→ sG1

µ̂1−→ . . . sGn
µ̂n
−�→
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By the quotient definition for Mq and the existence of rMG , there must exist a
run rMA in MA such that:

rMA : sA0
µ̂0−→ sA1

µ̂1−→ . . . sAk
µ̂k
−�→ where 0 ≤ k ≤ n.

By the quotient definition for MG and the existence of rMA , there must exist a

run rMG in MG such that:

rMG : sG0
µ̂0−→ sG1

µ̂1−→ . . . sGk

Since all machines are deterministic, the existence of rMA and rMG together

implies that sGk+1 = sGk+2 = . . . sGn = u○. Hence sGn
µ̂n−→ must exist in MG which

contradicts the assumption that it does not. As a result, Mq refines MG or
(MG/MA) �MG .

We next show that C = (MA,MG) is in a normalized form by showing that

MI ∈ 〚C〛impl ⇔MI �MG .

i) ⇒:
MI ∈ 〚C〛impl ⇒ ∀ME ∈ 〚C〛env : (MI ‖ ME) � (MG ‖ ME). Because

(MG ‖ ME) � MG , we know that ∀ME ∈ 〚C〛env : (MI ‖ ME) � MG . By

the quotient definition, we can then infer ∀ME ∈ 〚C〛env : MI � (MG/ME)
from which it follows that: MI � ‖

∀ME∈〚C〛env

(MG/ME).

Since ‖
∀ME∈〚C〛env

(MG/ME) � (MG/MA) and (MG/MA) � MG , the refine-

ment MI �MG also follows.
ii) ⇐:

MI �MG ⇒ ∀ME ∈ 〚C〛env : (MI ‖ME) � (MG ‖ME)⇒MI ∈ 〚C〛impl.

We finally show that C and C have the same set of environments as well as imple-
mentations. The former holds since they have the same assumption. The latter
follows by the fact that (MG ‖ME) � (MG ‖ME) because MG � (MG/MA) and
(MG ‖ME) � (MG ‖ME) because the transitions that do not appear in MA but
in MG can never be synchronized by any environment ME which refines MA.

ut
Proof of Theorem 4.

(i) ⇒: Because C1 ρ1�ρ2C2 and MG1 ∈ 〚C1〛impl, there must exist some imple-
mentation MI2 ∈ 〚C2〛impl such that MG1 ρ1�ρ2MI2 (by the first condition
of Def. 17). Since MI2 � MG2 , we can infer that MG1 ρ1�ρ2MG2 . Using a
similar line of reasoning, we can also infer that MA2 ρ2�ρ1MA1

.
(ii) ⇐: For all implementations MI1 of contract C1, we have that MI1 � MG1

(since C1 is a normalized contract) which deduces the refinement MI1 ρ1�
ρ2MG2 due to the fact that MG1 ρ1�ρ2MG2 . Using a similar line of reason-
ing, we can also deduce that ME2 ρ2�ρ1MA1

for any environment ME2 of
contract C2.
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ut
Proof of Theorem 5. Note first that MG′i satisfies the following formula:

(MG′i � MGi ∧ lindV1∩V2

MG′
i

) ∧ (∀MG′′i : MG′′i � MGi ∧ lindV1∩V2

MG′′
i

⇒ MG′′i � MG′i)

where MG = MG/MA.
By Def. 19, C = (MA,MG), where:

– MA = (MA1 ρ1/ρ2 MG′2) f (MA2 ρ2/ρ1 MG′1)−1

– MG = MG′1 ρ1‖ρ2 MG′2

i) C dominates over (C1, C2) w.r.t. ρ1 and ρ2 because:

a) C is defined over T̂1 ρ1×ρ2 T̂2 and V×
def
= V1 ∪ V2, by Def. 19.

b) By the proof of Theorem 2, both V1 and V2 are locally independent in
both MA1 ρ1/ρ2 MG′2 and MA2 ρ2/ρ1 MG′1 and since M−1 does not change

this local independence of machine M , lindV1

MA
∧ lindV2

MA
hold.

c) MIi ∈ 〚Ci〛impl ⇒ MIi � MGi (by Theorem 3). If lindV1∩V2

MIi
holds then

MIi �MG′i (by definition of MG′i). Hence, (MI1 ρ1‖ρ2 MI2) � (MG′1 ρ1‖ρ2
MG′2). Therefore, (MI1 ρ1‖ρ2 MI2) �

MA

MG , or equivalently (MI1 ρ1‖ρ2
MI2) ∈ 〚C〛impl.

d) For all environments ME of contract C, it holds that ME � MA which
implies:

ME � (MA1 ρ1/ρ2 MG′2) (11)

ME � (MA2 ρ2/ρ1 MG′1)−1 (12)

By Def. 12 and the quotients (MA1 ρ1/ρ2 MG′2), (MA2 ρ2/ρ1 MG′1), we have
that: (

MG′2 id‖proj (MA1 ρ1/ρ2 MG′2)
)

proj′�id′MA1(
MG′1 id‖proj (MA2 ρ2/ρ1 MG′1)

)
proj′�id′MA2

where the morphisms are defined as follows:

∀τ2 ∈ T̂2 : id(τ2) = τ2

∀τ1 ∈ T̂1 : id′(τ1) = τ1

∀〈τ1, τ2〉 ∈ T̂1 ρ1×ρ2 T̂2 : proj(τ1, τ2) = τ2

∀
〈
τ2, 〈τ1, τ2〉

〉
∈ T̂2 id×proj(T̂1 ρ1×ρ2 T̂2) : proj′(τ2, (τ1, τ2)) = τ1

∀τ1 ∈ T̂1 : id(τ1) = τ1

∀τ2 ∈ T̂2 : id′(τ2) = τ2

∀〈τ2, τ1〉 ∈ T̂2 ρ2×ρ1 T̂1 : proj(τ2, τ1) = τ1

∀
〈
τ1, 〈τ2, τ1〉

〉
∈ T̂1 id×proj(T̂2 ρ2×ρ1 T̂1) : proj′(τ1, (τ2, τ1)) = τ2

Refinement 11 implies (MI2 id‖proj ME) �
(
MI2 id‖proj (MA1 ρ1/ρ2 MG′2)

)
for some MI2 ∈ 〚C2〛impl. Because V1 ∩ V2 is locally independent in
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(MA1 ρ1/ρ2 MG′2), we can infer that
(
MI2 id ‖proj (MA1 ρ1/ρ2 MG′2)

)
�(

MG′2 id‖proj (MA1 ρ1/ρ2 MG′2)
)
. Hence it follows that:(

MI2 id‖proj ME
)

proj′�id′MA1 (13)

Likewise, refinement 12 implies (M−1E �MA2 ρ2/ρ1 MG′1) from which we
can infer the following:(

MI1 id‖proj M
−1
E
)

proj′�id′MA2
(14)

By noticing that id ≡ id′ ≡ idT2 , id
′ ≡ id ≡ idT1 , proj ≡ projT2 , proj

′ ≡
proj′T1 where idTi , projTi and proj′Ti are defined as in formulae 7, 8, 9
and 10, refinements 13 can be rewritten as follows:

(MI2 idT2
‖projT2 ME) proj′T1

�idT1
MA1

Also by observing that proj ≡ projT1 ◦ swap, refinement 14 can be rewrit-
ten as: (

MI1 idT1
‖projT1◦ swap M

−1
E
)

proj′�idT2
MA2

from which we can safely remove the composition with swap. Because
such removal only results in commutating the second tag component of
the composite tag structure on the left hand side of the refinement and
this can be compensated by using proj′T2 in place of proj. Therefore,
refinement 14 can be equivalently rewritten as:

(MI1 idT1
‖projT1 ME) proj′T2

�idT2
MA2

ii) Since C and C′ are defined on the same algebraic tag structure and variable
set, to prove C � C′, we show that 〚C′〛env ⊆ 〚C〛env and 〚C〛impl ⊆ 〚C′〛impl.
a) 〚C′〛env ⊆ 〚C〛env :

Contract C′ = (MA′ ,MG′) dominating over the contract pair (C1, C2)
implies the satisfaction of the second condition in Definition 18, i.e. for
all environments ME of C′:(

∀MI1 ∈ 〚C1〛impl : (MI1 idT1
‖projT1 ME) proj′T2

�idT2
MA2

)
∧(

∀MI2 ∈ 〚C2〛impl : (MI2 idT2
‖projT2 ME) proj′T1

�idT1
MA1

)
Because MA′ is an environment of contract C′, MG′i is an implementation
of contract Ci, replacing ME with MA′ and MIi with MG′i in the above
formula preserves its boolean satisfiability:(

(MG′1 idT1
‖projT1 MA′) proj′T2

�idT2
MA2

)
∧(

(MG′2 idT2
‖projT2 MA′) proj′T1

�idT1
MA1

)
The second conjunct directly implies that MA′ � (MA1 ρ1/ρ2 MG′2) and
using a line of reasoning similar to the previous proof, we can infer from
the first conjunct that M−1A′ � (MA2 ρ2/ρ1 MG′1). Therefore:

MA′ �
(
(MA1 ρ1/ρ2 MG2)f(MA2 ρ2/ρ1 MG1)−1

)
, or equivalently MA′ �MA
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b) 〚C〛impl ⊆ 〚C′〛impl :

For all implementations MI of contract C, the following refinement rela-
tion holds for all possible environment of C:

∀ME ∈ 〚C〛env : (MI ‖ME) � (MG ‖ME)

Because 〚C′〛env ⊆ 〚C〛env due to the previous proof, such refinement
obviously holds for all possible environment of contract C′:

∀ME ∈ 〚C′〛env : (MI ‖ME) � (MG ‖ME) (15)

In addition, because C′ dominates over (C1, C2), the third condition of
Def. 18 must be satisfied:

∀MIi ∈ 〚Ci〛impl : MI1 ρ1./ρ2 MI2 ⇒ (MI1 ρ1‖ρ2 MI2) ∈ 〚C′〛impl

which implies (MG′1 ρ1 ‖ρ2 MG′2) ∈ 〚C′〛impl since MG′i ∈ 〚Ci〛impl and

lindV1∩V2

G′i
holds. As a result, MG is also an implementation of contract C′

which, in turn, implies a similar refinement relation:

∀ME ∈ 〚C′〛env : (MG ‖ME) � (MG′ ‖ME) (16)

Combining together two facts 15 and 16, the following refinement holds
for all implementation MI of contract C:

∀ME ∈ 〚C′〛env : (MI ‖ME) � (MG′ ‖ME)

Hence, MI is also an implementation of contract C′ or 〚C〛impl ⊆ 〚C′〛impl.
ut

Proof of Theorem 6. The first property holds because the satisfaction of two
conditions in Def. 18 can be deduced from the fact that 〚C′1〛impl ⊆ 〚C1〛impl,
〚C′2〛impl ⊆ 〚C2〛impl, MA1 � MA′1 , MA2 � MA′2 and C dominates (C1, C2) w.r.t.
ρ1 and ρ2. The second property follows directly from the first property of this
theorem and the second property of Theorem 5.

ut
Proof of Theorem 7. To prove that MEs is a legal environment for Mc =
M1 ρ1‖ρ2 M2, we show that the four conditions of Def. 22.

a) Trivial.

b) To prove that M1 ρ1‖ρ2 M2 and MEs are interoperable, we show that V× ∩
VEs = V in

× ∪V out
× = (V in

1 ∪V out
1 )∪ (V in

2 ∪V out
2 ) is locally independent in both

machines.

i) V× ∩ VEs is locally independent in M1 ρ1‖ρ2 M2:

For 1 ≤ i ≤ 2, let V inout
i = V in

i ∪V out
i . Then V1∩V2 = V inout

1 ∩V inout
2 . For

all 〈sq, µ̂c, s′q〉 in the transition relation E of the composition machine,
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there exist µ̂1 ∈ L(V1, T̂1) and µ̂2 ∈ L(V2, T̂2) s.t. lindV1∩V2
µ1

and lindV1∩V2
µ2

and µ̂c = µ̂1 ρ1tρ2 µ̂2. By the unification rule for two unifiable tag pieces:

∀w ∈ V loc
1 ,∀v ∈ V inout

1 ∩ V inout
2 : µwvc = 〈µwv1 , τ2〉 = 〈εT̂1 , εT̂2〉

∀w ∈ V loc
1 ,∀v ∈ V inout

1 : µwvc = 〈µwv1 , τ2〉 = 〈εT̂1 , εT̂2〉
∀w ∈ V loc

1 ,∀v ∈ V inout
2 \ V inout

1 : µwvc = 〈εT̂1 , εT̂2〉

since ρ1(µwv1 ) = ρ2(τ2) and lindV1∩V2

M1
and lind

V inout
1

M1
Hence:

∀w ∈ V loc
1 ,∀v ∈ V inout

1 ∪ V inout
2 : µwvc = 〈εT̂1 , εT̂2〉 (17)

Using a similar line of reasoning, we also infer:

∀w ∈ V loc
2 ,∀v ∈ V inout

1 ∪ V inout
2 : µwvc = 〈εT̂1 , εT̂2〉 (18)

From 17 and 18, we can conclude that V× ∩ VEs is locally independent
in M1 ρ1‖ρ2 M2.

ii) V× ∩ VEs is locally independent in MEs :
Let V shared = V× ∩ VE = (V in

× ∩ V in
E ) ∪ (V out

E ∩ V in
× ) ∪ (V out

× ∩ V in
E ). By

assumption V in
E = V out

× , therefore:

V shared = (V out
E ∩ V in

× ) ∪ V out
× (19)

In addition, VE ∩ VEs = (V in
E ∪ V out

E ∪ V loc
E )∩ (V in

Es ∪ V
out
Es ). Because V loc

E
only contains internal ports and V in

E = V in
Es , we can infer

VE ∩ VEs = V in
E ∪ (V out

E ∩ V out
Es ) = (V out

E ∩ V in
× ) ∪ V out

× (20)

Therefore VE∩VEs ⊆ V×∩VEs and V shared = V×∩VE = VE∩VEs (from 19
and 20). By construction, for all 〈s, µ̂′, s′〉 in EEs , for w /∈ V× ∩ VEs and
v ∈ V× ∩VEs : µ′wv = εT̂× . Therefore V× ∩VEs is also locally independent

in MEs .
c) Icmp(Mc ‖ MEs) = Icmp(Mc ‖ ME) = ∅: trivial since the simplest environ-

ment accepts all possible output and produces no input.
d) Icmp(Mc)× SEs is not reachable:

Let



µ̂i = 〈µi, νi〉, µ̂i′ = 〈µ′i, ν′i〉,
V out× = V out

× ∩ V in
E ,

V
out×
s = V out

× ∩ V in
Es ,

V outE = V out
E ∩ V in

× ,
V outE
s = V out

Es ∩ V
in
× ,

V shared = V× ∩ VE ,
V shared
s = V× ∩ VEs

Since ME is a legal environment for Mc, there exists no run leading to the
incompatible states of Mc that contains only output or local transitions. An
output/local transition is s.t. its labelled tag piece µ̂ has events only for
output/local ports. If there exists such a run called ri:

ri : s0
µ̂1
c

−→ s1 . . .
µ̂n
c

−→ sn
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where sn ∈ Icmp(Mc) and µ̂i
c has events for output/local ports only, then

there also exists a run r̄i in ME :

r̄i : sE0
µ̂1
E
−→ sE1 . . .

µ̂n
E

−→ sEn

where µ̂i
c ./ µ̂i

E for 1 ≤ i ≤ n. Indeed, since ME is a legal environment for
Mc, 〈s0, sE0 〉 must be compatible. That is if µ̂0

c
has only output and local

events then there must exist a transition 〈sE0 , µ̂1
E
, sE1 〉 ∈ EEs such that νE1 is

defined only for input and local variables:

νE1 (w) =

{
νc1(w),∀w ∈ Dom(νc1) ∩ V out×

undefined,∀w ∈ V out
E

Moreover, by condition 1 of Def. 21, we know that µc1[wv] = µE1 [wv] for w ∈
V shared and v ∈ V where V = Dom(νc1) ∩Dom(νE1 ) ∩ (V out× ∪ V outE ). Since
Dom(νE1 )∩V outE = ∅, we can infer that V = Dom(νc1)∩V out× . For variables
in V shared \V , there are no events for them in µ̂1

c
and therefore µc1[wv] = εT̂×

for w ∈ V shared and v ∈ V shared \ V . Likewise, since only variables in V have

an event in µ̂1
E
, it holds that µE1 [wv] = εT̂× . As a consequence, µ̂1

c
./ µ̂1

E

holds as well and the transition
〈
〈s0, sE0 〉, µ̂i

ct µ̂iE , 〈s1, sE1 〉
〉

is included in the

transition relation of Mc. Since ME is a legal environment for Mc, 〈s1, sE1 〉
〉

is
also a compatible state. By inductive reasoning we can similarly prove that
µ̂i
c ./ µ̂i

E for 1 < i ≤ n.
Therefore, an incompatible state of Mc can be reached which contradicts the
assumption of a legal environment for Mc and implies that no such run ri

should exists in Mc. All runs leading to an incompatible state in Mc thus
contain at least one transition where input events are expected to happen.
By definition, the simplest environment will not output the expected inputs,
thereby blocking Mc from going to any incompatible state as soon as possible.


