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Abstract—In this paper we present the results and the as-
sessment of a statistical analysis of the wireless sensor networks
(WSN) radio channel in indoor office scenarios. The work is based
on an extensive set of received signal strength (RSS) measure-
ments collected within different typical indoor spaces and node
placement scenarios. Results are compared with corresponding
values from the log-distance model, which is the most widely used
in WSN simulators. Channel temporal stability is also analyzed.
The analysis reveals interesting regularities within the measured
data and as expected we observe a highly non-stationary behavior
of the RSS. We also propose several improvements for the channel
model of WSN simulators based on our observations. They can
be beneficial for running more accurate network simulations for
such applications as localization.

Index Terms—Channel modeling, Statistical characterization,
Received signal strength, Localization, Wireless sensor networks.

I. INTRODUCTION

CHANNEL path loss modeling plays a key role in many
wireless applications and in simulation tools. Existing

models provide a reasonable approximation for applications
in which a simplified physical layer representation does not
severely compromise the overall outcome. However, for sev-
eral emerging systems these models become a bottleneck for
achieving adequate results. This is a problem, in particular, for
indoor environments, where random factors, such as multipath
propagation, may affect the signal path loss [1].

As an example, wireless sensor networks (WSNs) actively
use received signal strength (RSS) measurements as a channel
performance indicator because it is an easily accessible metric
for off-the-shelf sensor nodes. In particular, considerable part
of localization applications for WSN are based on the RSS.
An accurate knowledge of the underlying physical channel
plays a paramount role in these systems design, calibration and
deployment. Typical WSN transceivers are able to measure
the RSS with a granularity of 1 [dBm]. At the same time,
a deviation of 1 [dBm] might result in a distance error
of ±1-1.5 [m]. Real measurement uncertainty (especially in
indoor environments) is typically higher because of various
effects affecting the signal propagation. This could result in
significantly inaccurate localization results, therefore, complex
and time-consuming system prototyping and calibration are
required. The latter are not always affordable. Therefore, to
estimate how the system would behave in a real environment
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many designers rely on simulation-based design space explo-
ration [2]. Simulation models might not capture all possible
aspects of a real scenario, however, they can still be very useful
in obtaining best- or worst-case boundaries [3]. Even this result
is often significant for making certain design decisions (e.g.,
there is no need for adding extra error correction heuristics
or data filtering for localization, if the model demonstrates
that even in the worst case the system satisfies the require-
ments). The soundness of simulation results for localization
applications highly depends on the underlying environment
representation, and in particular on the channel model. Hence,
a realistic radio channel model within a properly configured
tool is of great importance for WSN designers.

The purpose of this work is twofold. First, we perform a
statistical study of the 2.4 GHz WSN channel in indoor office
environments in order to see if the log-distance model [4],
which is currently used in most WSN simulators, provides
accurate results. Second, we aim to detect regularities and/or
anomalies within the collected data, if any.

Our study is based on a huge measurement campaign of
collecting the RSS data in different realistic indoor spaces
and node placement scenarios. We have selected several in-
door spaces, which are typical for office environments (i.e.,
corridors, halls and office rooms). Such choice is motivated
by the fact that WSNs are very frequently deployed in these
environments for various purposes, from monitoring to local-
ization [5], [6]. Also, these spaces are more accessible for
experimentation with respect to industrial environments. Based
on the experimental results we run the statistical characteriza-
tion of the 2.4 GHz WSN channel. In particular, we compare
the empirical data and model parameters derived from it with
analytical values, which simulators typically provide. Also, we
analyze the channel temporal stability. Finally, we study the
distributions of RSS deviations and the distributions of several
model parameters using the maximum likelihood method.

Our contribution includes the proposed WSN channel model
improvements, which are based on our observations. The
first is related to using different path loss exponent values
for different mutual node placements. As a second one we
propose to model the random factors of signal propagation
more carefully by means of a numerical model. Also, although
in this work we consider only accessible office environments
without mobility, the proposed analysis methodology and
model improvements could be applicable to other environ-
ments, such as industrial, characterized by high noise level
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and presence of various mechanical obstacles. This would
require additional measurements, but would highly contribute
to achieving more accurate results in using a WSN simulator
during the design. Overall, this study can be beneficial for
improving the channel models (and using them to simulate the
designed system in different environments and conditions) as
well as for configuring a particular system within a particular
environment.

The remainder of this paper is organized as follows. In
the next section we briefly review the channel models com-
monly used in WSN simulators as well as existing statistical
studies of wireless channels. In Section III we describe our
measurement methodology and experimental setup. Section IV
provides the flow of statistical processing of the measured
data and the results. Finally, in Section V we propose several
improvements for the WSN channel model and conclude.

II. BACKGROUND AND RELATED WORK

A. Techniques for channel modeling in WSN simulators

Several wireless channel models with different levels of
accuracy, complexity and flexibility are used in wireless
systems simulators. The free space model [4] assumes ideal
propagation conditions with clear line-of-sight path between
transmitter (TX) and receiver (RX) antennas and also the far-
field conditions. An improvement to the free space model
for long distances is the two-ray ground reflection model. In
addition to the direct path, it also considers the signal reflected
by the ground [4]. The most used channel model in WSN
simulators is the log-distance path loss model [4]. It accounts
both for propagation path loss, logarithmically decreasing, and
for shadow fading effects using a probabilistic model:

PL(d) = PL(d0) + 10η log(d/d0) +Xσ (1)

where d is the distance between TX and RX antennas, PL(d0)
is the path loss at a reference distance d0, which is typically
one meter for indoor WSNs [7], η is the path loss exponent
(PLE), which is determined either empirically or from the
literature, and Xσ is a zero-mean Gaussian random variable
with standard deviation σ. The Gaussian random variable
accounts for shadow fading by adding some random error to
the propagation path loss. The mean value of the underlying
distribution is typically zero, while its standard deviation
is constant throughout the simulation process. One of our
hypotheses is that having a zero-mean and constant σ could
be a weak assumption when different distances between TX
and RX are considered in the simulation, as the behavior of
the RSS error is non-stationary. We aim to demonstrate this
with our experiments.

Real RSS data typically looks very random with respect
to the corresponding log-distance curve. Its values can be
significantly higher or lower at different distances. An example
from one of our experiments is provided on Figure 1. At the
same time the log-distance model and curve are claimed to
provide a good approximation for analyzing the real data.
Indeed, the curve is very close to a regression of the RSS data
with a polynomial. Hence, the log-distance curve can be used
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Fig. 1. Example of measured RSS data vs a corresponding log-distance curve
for Corridor2, “Combined” scenario. Parameters for the curve are estimated
from the measured data.

for analyzing the decay trend of the RSS with the increase of
the distance. In simulations, to bring the values closer to the
real data, the variable Xσ is used to account for random effects
of the channel. Of course, in order to get a good approxima-
tion, the parameters of the curve (PL(d0) and σ) should be
estimated from real data. Also, Formula 1 (without the random
component) is typically used in localization applications to
calculate the TX-RX distance from the measured RSS and
parameters PL(d0) and σ. PL(d0) is usually estimated on
site during system calibration, while the PLE (σ) is often not
estimated but taken from best practices.

The log-distance path loss model is implemented and used
in most WSN simulators, such as PASES [8], Castalia [9],
MiXiM [10] and WSNet [11]. The last three also support the
free space model, while the two-ray ground reflection model
is supported only by WSNet.

Another powerful approach is ray tracing [12], which
follows the signal propagation path in space, considering
the physical optics rules. The main drawback of ray tracing
is the required computational burden. The only tool which
incorporates a (rather simplistic) ray tracing mechanism for
WSN is Cooja [13].

Several approaches for considering small-scale fading are
present. The MiXiM simulator was designed with high fo-
cus on mobility, therefore, small-scale fading effects due
to movement are considered. The model is based on the
so-called “Jakes-likes method” [10]. The Castalia simulator
accounts for small-scale fading due to temporal variation of the
signal. It uses numerical models based on probability density
functions [14]. These models were obtained using an extensive
set of RSS measurements for a body area network (BAN) [15].

B. Statistical characterization of wireless channel

Various work has been done in investigating the statistical
properties of different wireless channels and environments
based on empirical measurements [16]–[18]. According to
them, the shadowing in the channel can be modeled as log-
normal, however, the parameters of the model, namely η and σ,
are random variables themselves and they have an underlying
distribution. Their values could differ considerably from one
case to another. Several works focus on the performance of
2.4 GHz radio links for WSN in industrial environments [19],



[20]. Such metrics as RSS, link quality indicator (LQI) and
packet reception rate (PRR) are used in these works for
studying the channel properties. A correlation between them
is also investigated. At the same time many studies of WSN
and BAN channels are focused on the RSS only [21]–[25].
In particular, results obtained by Pivato et al. suggest a non-
stationary behavior of the RSS error at different distances
between TX and RX [21]. Cotton and Scanlon determine best-
fit distributions of RSS deviations for several line-of-sight
(LOS) and no-line-of-sight (NLOS) scenarios, such as log-
normal, Rayleigh and Nakagami-m [22], [23]. Smith et al.
present a rigorous statistical characterization of the dynamic
BAN channel based on signal strength [24], [25]. The analysis
is performed over an extensive set of measurements for various
scenarios, frequencies and bandwidths. Their results also con-
firm that different scenarios are best described with different
distributions of the RSS (mostly, the Gamma distribution) with
considerably different parameters.

Overall, results reported in the literature agree that the
standard normal distribution is not the best description for
random signal propagation effects. Therefore, the log-normal
shadowing used in most WSN simulators might be an over-
simplification. In many scenarios, network developers run
simulations to investigate higher level functionality, such as
routing, for which such model could be accurate enough. How-
ever, for such applications as localization, which uses RSS-
based techniques, accurate channel modeling is of extreme
importance. Naturally, absolute accuracy cannot be achieved
with simulations in this case, because the measured RSS values
are also sensitive to various other parameters (e.g., antenna
orientation and gain, node location, type of indoor space).
But improvement of the radio channel model is mandatory for
accurate design and optimization tools. The analysis presented
in this paper could be a basis for such improvements.

III. EXPERIMENTAL SETUP

In all of the following experiments, WSNs operating in
the ISM band (2.4 GHz) were considered. The measurements
were performed in several realistic indoor spaces, moreover,
different node placement scenarios and antenna polarization
were involved. We performed two groups of experiments:

1) Baseline measurements. An un-modulated carrier was
considered to avoid the digital modulation, which can
have a significant impact on the RSS. On the receiving
side, we used a spectrum analyzer to measure the RSS
value. This setup provides the baseline values for all
experiments with WSN nodes.

2) Sensor node measurements. Here we collected the RSS
using two off-the-shelf sensor nodes: transmitter and
receiver. We made several experiment datasets in each
indoor space with different mutual placement of nodes.
For each scenario we varied the distance between the
nodes with a step of 1 [m] and collected the RSS data for
5-10 minutes. With a 5 [ms] average sampling period,
this resulted in roughly 120000 values in each dataset.

For the baseline measurements we used an RF synthesizer
from Windfreak LLC equipped with a 2-pole antenna with a
gain of 1.36 [dBi]. At the receiving side, we used a square
antenna patch with the same linear polarization of the TX
monopole with a gain of 3.57 [dBi], connected to a spectrum
analyzer, namely Signal Hound SA124B, with a bandwidth
100 kHz - 12.5 GHz. The transmitted signal is a carrier at
the frequency of 2480 MHz, which corresponds to channel 26
of the 802.15.4 standard. This channel was selected to avoid
possible interference with the existing WiFi infrastructure.
Such choice is common for a WSN in a building. Many
existing standards implement frequency hopping and its effect
on the path loss could be an interesting study as well. However,
it is out of scope of this work.

WSN measurements were taken with the Z1 off-the-shelf
platform produced by Zolertia with an MSP430 MCU and a
CC2420 low-power radio. Two identical nodes were used for
TX and for RX. Each node was enclosed in a plastic box and
equipped with a 5 dBi external RP-SMA antenna. All nodes
run TinyOS 2.1.2 with our testbed application. A gateway node
is connected to a laptop and forwards commands to the TX/RX
nodes. When the TX node receives the “start” command
from the gateway, it starts sending small packets (the payload
includes only a 1-byte sequence number) to the receiver. The
RX node processes each packet and stores the RSS value in
the log. After each experiment, logs are downloaded from the
receiver via a micro-USB cable. For communication with the
flash, we used the components from Trident, an open-source
software for in-field connectivity assessment for WSN [26].

For all experiments, TX power was set to 0 dBm (1 mW).
The period for sending packets is short (5 ms) in an attempt to
observe the effect of channel temporal variation. This value is
considered sufficient for observing the variation in a BAN [24].
Therefore, it should be enough for our WSN scenarios, which
are much more static. Experiment duration was set to 10
minutes, but later on we reduced it by half when we observed
that the channel is stable.

All measurements have been performed in the building
“Polo Ferrari” of the Department of Information Engineering
and Computer Science at the University of Trento, Italy, to
consider realistic scenarios in the following spaces:

1) A corridor (in the following, corridor1), 48 x 2.8 x
2.6 [m3], first wall - glass, second wall - gypsum
plasterboard with many adjoined offices.

2) Another corridor (in the following, corridor2), 56 x 2.42
x 2.5 [m3], both walls made from gypsum plasterboard,
with adjoined offices on both sides.

3) A hall, 19.4 x 9.8 x 2.4 [m3], side brick walls, front
and back glass walls.

4) A big office room (11.5 x 7.5 x 3 [m3]), one glass
wall, 3 other walls - gypsum plasterboard. The room
is furnished with a lot of working desks, chairs, PCs.

Our measurement scenarios aim to cover typical alternatives
of WSN nodes mutual placement. We are interested in finding
out regularities or anomalies in the RSS behavior across these
scenarios (they are illustrated on Figure 2):
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Fig. 2. WSN node mutual placement scenarios.

1) “Single wall”. In this scenario, both TX and RX nodes
were placed on the same wall at the height of 2.25 [m]
(we ran some calibration tests beforehand, placing the
nodes on the bottom, middle and top of the wall and
observed the strongest and most stable link at the top).

2) “Middle”. Both nodes were placed in the middle of the
space under study at the height of 0.8 [m] (such height
is very convenient for real case studies, like a bodyworn
node, a PDA in a hand or a robotic device).

3) “Two walls”. This scenario was run only in the corri-
dors. Nodes were located on reciprocal walls (height -
2.25 [m]). This placement scenario is typical of a WSN
deployment in a corridor.

4) “Combined”. Was run only in the corridors. The RX
node was placed on the wall (height - 2.25 [m]) and the
TX node was located in the middle (height - 0.8 [m]).

Baseline measurements were made in all 4 spaces for the
“Middle” scenario with both antennas placed at 0.8 [m] height.
We also collected measurements near walls to compare them
with the “Single wall” scenario.

Several factors are common for all scenarios. We varied
the distance with a 1 [m] step to obtain distinct experimental
datasets. This step has been chosen considering a good trade-
off between the position updates of an object (e.g., a human)
moving in a realistic scenario and the reasonable total time for
collecting the measurements. The interval that we considered
in our statistical investigation was [1 m, 15 m] in most
cases (in some of them it was different due to space/scenario
limitations). Second, we used the RSS from the minimum
distance as the PL(d0) in calculations. Third, TX and RX
antennas were in co-polarization condition. Finally, no mobile
nodes were present in our scenarios and the LOS condition
was assumed.

IV. STATISTICAL PROCESSING WORKFLOW AND RESULTS

Our results come from analyzing 16 distinct groups of data.
Four are the baseline measurements, the rest are experimental
datasets obtained with sensor nodes. Each group consists of
separate measurement sets related to a particular distance
between TX and RX. Each of the latter has roughly 60000
or 120000 values observed over a 5 min or 10 min period,
respectively. TX and RX antennas were placed with the same
polarization and their gain effects are removed from the data.

A. Comparing experimental and analytical data

As part of the analysis, we compare the empirical results
from different scenarios with corresponding analytical values,

which could be provided by a log-distance model in a WSN
simulator. The latter means that channel parameters in the tool,
i.e., PL(d0) and η, are configured with limited knowledge
of the real channel under study. That is, the designer selects
them partly or totally relying on best practices, because doing
a channel characterization for deriving them empirically could
be complex and time-consuming. As we demonstrate with
our measurements and analysis, these best-practice parameter
values in fact can be very different from those estimated from
the data. Even if PL(d0) is taken from measurements (it
can be done easily), different values of the PLE result in
considerable difference in the curves, which entails incorrect
results provided by the channel model.

For each comparison we use two curves calculated with
formula (1): analytical and empirical. For the former one we
select the values of the path loss exponent η from the literature.
Typical value of η for indoor free space is 2, while it can be
smaller for corridors (down to 1.5) and higher for furnished
rooms (up to 3) when the LOS condition is assumed [7]. In
industrial environments η could be bigger (up to 5-6) [4]. In
this work we select analytical η to be 1.6 for the corridors,
2 for the hall and 3 for the office room. For the empirical
curve we estimate η from our measurements. For doing so
we calculate the linear regression for each dataset (RSS vs
distance) and use its slope as an approximation for η. The
value of PL(d0) for both curves is estimated from the data.
For the “Combined” and “Two walls” scenarios we used
2 [m] and 3 [m], respectively, as the reference distance d0.
For all other cases 1 [m] was used. The mean RSS value
from corresponding datasets was used as PL(d0). The random
component Xσ of the model was set to zero to verify later on,
which distributions describe the deviations of real RSS values
from the log-distance curve in a best way.

For the sake of readability of the plots we do not show
the measured RSS vs distance. All our measurements follow
the pattern shown on Figure 1: the log-distance curve with
parameters estimated from the data represents the decay trend
well. The data itself is quite random, as expected. Our primary
goal instead is to explore the differences between the curve
drawn from the data and the one typically provided by a
channel model in a simulator within a particular scenario.
Random factors will be represented by a distribution, which is
studied later in the paper. However, if the random component
is calculated around the wrong curve, the simulation outcome
might be far from reality.

1) Baseline measurements: The aforementioned compar-
ison for baseline measurements clearly shows the general
tendency of measured data to have smaller PLE values than
those typically used in simulations for corresponding indoor
spaces. Some illustrations are given on Figures 3 (a,b). We also
compare the baseline empirical curves from different scenar-
ios. They have the same slope (PLE), but corridor scenarios
have smaller path loss (Figure 3c). This could happen due to
heavy wave-guiding effects in narrow spaces like corridors.

Next, we compare sensor node and baseline empirical
curves from within same scenarios. Two effects can be seen on



Figures 3 (d,e,f). First, these lines mostly have the same slope,
which confirms the consistency of the sensor node measure-
ments in relation to the baseline. Second, in all scenarios there
is a significant difference between the two curves with WSN
data always located higher than the baseline. There could be
several possible reasons, such as hardware uncertainty of RSS
measurements and/or multipath propagation effects resulting
in constructive interference. Also, effects of digital modulation
could affect the results. In the baseline case, we have used a
sinusoid carrier, while the spectrum of the modulated signal
is wider. The RSS obtained from the sensor node radio is
an integral over a particular frequency interval, which could
make the absolute value considerably higher than the baseline.
Nevertheless, this difference does not necessarily imply huge
ranging errors. The distance is estimated relatively to the
PL(d0) reference, which is different for baseline and WSN
measurements. The fact that the curves have similar slope
implies that the ranging uncertainty based on either baseline
values or measured ones would also be similar.

2) Sensor node measurements: By comparing empirical
and analytical curves for WSN a difference of 5-10 [dBm] can
be observed (Figures 4 a-f). In most cases, the empirical curve
is higher (i.e., the path loss is smaller). One exception is the
“Two walls” scenario (Figure 4f), where measured path loss,
conversely, is higher than the one predicted by the analytical
model. Comparison of scenarios reveals very high similarity
in empirical PLE values for “Single wall”, “Combined” and
“Two walls” scenarios in different spaces, i.e., the curves have
similar slopes (Figures 5 a-b), while for the “Middle” scenario
path loss from the office room has behavior different from
other spaces (Figure 5c). The office room is furnished and
also WSN nodes in this scenario were placed at a lower height
compared with others. Hence, the occurrence of reflections and
scattering has a significant impact on the path loss.

Despite being highly similar within the same node place-
ment scenario, empirical values of the PLE are, nevertheless,
considerably dissimilar across different scenarios. This is a
very important observation because it suggests that a single
value of the PLE cannot accurately describe the path loss be-
tween every TX and RX within the same space if their mutual
placement is different. Currently only one PLE value can be
set for the whole simulation in the tools that implement the
log-distance model. This might cause significant inaccuracies.

Also, one can observe from Figures 5 (a-c) the difference in
the path loss within the same placement scenario in different
spaces. As the PLE values are similar, this is due to the varying
PL(d0) parameter. For instance, on Figure 5a corridor2 has
higher values, probably, due to the wave-guiding. On Figure 5b
the path loss in corridor2 is smaller than in corridor1. This
is likely related to different materials of these spaces and,
therefore, different electromagnetic behavior of the signal.

B. Channel stability analysis

An important part of our channel characterization is the
evaluation of its temporal stability. A typical metric for this
is the channel coherence time, which can be estimated with

autocorrelation [15]. The latter, however, can give false neg-
ative results when most of the values in the dataset are very
close to each other. Instead, in this work use a metric called
channel variation factor [27] proposed by Zhang et al.:

υ =

√
var(x)

1
M

∑M−1
m=0 |xm|2

(2)

where x is the vector of the RSS measurement sequence of
length M , and var(x) is the sample variance of the vector x.
The RMS value of x stands in the denominator. The variation
factor describes the channel stability across a particular sample
of a fixed length taken from the RSS dataset. It should be
noted that 0 ≤ υ ≤ 1. A channel with υ ≤ 0.1 can
be considered temporally stable [27]. The variation factor
calculated for a particular sequence provides an instantaneous
variation. However, observing the values of υ on the whole
measurement interval can give a good picture of temporal
stability of the channel.

Figure 6 illustrates some variation factor results for the time-
varying period of 5000 ms (the period between measurements
is 5 ms, therefore, M = 1000). The reported data shows that for
all measurement sets the value of υ is typically less than 0.05
and exceeds the threshold of 0.1 in an extremely rare case. It
means that within any 5 second period the temporal variation is
very low (and, consequently, for smaller time-varying periods;
we tried smaller ones and got similar results). This is enough
to conclude that the channel that we investigate is not subject
to considerable temporal variations and, therefore, it is stable
in all measurement scenarios. This is an interesting and useful
finding because the result is similar for different indoor spaces
and scenarios. Also localization systems will be less prone to
random fading effects, at least for the static case.

C. First-order statistical modeling of the RSS distribution

This part of the analysis is related to fitting our datasets to
several different statistical models and comparing the results
in order to determine the best fit for each group. In particular,
we study the deviations of measured RSS from the values
provided by the log-distance model with empirically derived
parameters PL(d0) and η. In reality, these deviations occur
due to random fading effects such as shadowing. This would
allow us to verify if all deviations of the RSS within different
scenarios, spaces and distances can be adequately modeled
by the same distribution. This is the way of implementing
the log-distance model in WSN simulators: all random effects
are considered by adding a random variable Xσ , which is a
standard normal distribution. The value of σ is the same for all
signal evaluations within a simulation. In addition, we compare
the distributions of experimental data normalized to the root
mean square (RMS) value of each measurement set.

Fitting distributions is performed using the maximum like-
lihood (ML) method. We selected six distributions for our
analysis, following the similar processing flow presented by
Smith et al. for BAN [24]. They are Normal, Log-normal,
Gamma, Weibull, Nakagami-m and Rayleigh. It should be
noted that we convert all measurements from [dBm] to [mW]
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Fig. 4. Comparing analytical and empirical log-distance curves for WSN data. (a) Corridor1, “Single wall” scenario (b) Hall, “Single wall” scenario (c)
Corridor1, “Combined” scenario (d) Corridor2, “Middle” scenario (e) Corridor1, “Middle” scenario (f) Corridor2, “Two walls” scenario.

before running the ML because several distributions (e.g.,
Gamma) require only positive values.

To compare the fitted distributions we use the Akaike
information criterion [28], which is given by:

AICc = −2loglik + 2K (3)

where loglik is the value of the maximized log-likelihood
function and K is the number of parameters of the corre-
sponding distribution. In our case K = 1 for Rayleigh and
K = 2 for all other distributions. This criterion allows finding
a model with the minimum information loss among those
that are considered. The lowest value of AICc is the best
approximation, therefore it is of primary interest to us. In our
analysis we also observed second-best fits (models with the
lowest ∆AICc to best fits) in order to find out if several
distributions are similarly good in some scenarios. We consider

AIC a relevant metric for our study, because we are interested
not only in accurate modeling of distribution tails (i.e., high
attenuation region), but also in the values around the mean.
Even small deviations of the random variable of the log-
distance model might imply severe errors in applications, such
as localization. At the same time, attenuation, which is below
the radio sensitivity, is very unlikely for our scenarios and dis-
tances. This aspect, i.e., exploring the connected/disconnected
regions, is also important, but out of scope of this work.

1) Deviations from log-distance values: To obtain these
deviations, we normalize each dataset to a corresponding
value from the log-distance model, i.e., subtract it from each
measurement. Then we run the ML estimation. The obtained
results clearly demonstrate that best fitted distributions are
considerably different across scenarios and spaces. Another
interesting fact is that varying the distance between TX
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Fig. 6. Channel variation factor for a time-varying period of 5000 ms for several indoor spaces, scenarios and TX-RX distances. (a) Corridor2, ”Middle”,
12m (b) Office room, ”Middle”, 8m (c) Hall, ”Single wall”, 9m.

and RX within a certain scenario also highly affects these
distributions. Even if the distribution itself is the same, its
parameters differ significantly from case to case. This is a very
important observation because it provides empirical evidence
that a single standard normal distribution (log-normal for RSS
values in [mW]; this entails that values in [dBm] have normal
distribution) with fixed parameters cannot accurately describe
deviations from the log-distance model. This is, however,
the way of most WSN simulators, therefore, it is highly
doubtful that such simulations could provide adequate results
for localization applications.

In many scenarios, the Log-normal distribution is the domi-
nating one, i.e., it provides the best fit at 50-60% of distances.
In several scenarios, however, Gamma or Weibull distribution
dominate. The Normal distribution has fewer occurrences,
Nakagami-m is the best fit only for 3 measurement groups
among all scenarios, while the Rayleigh distribution is never
observed in any scenario. Due to space limitations, we do not
report the numerical results for this study.

2) Deviations from the RMS: The results from previous
analysis do not reveal evident regularities for making any
improvement in the models. Therefore, we continued our
analysis by normalizing our data by the RMS value. We then
created agglomerated datasets by joining normalized values
for each scenario (for example, 4 datasets for the “single wall”
scenario were joined into one for all TX-RX distances) and,
similarly, for each indoor space (e.g., joined the data from all
placement scenarios for “corridor1”).

From the results we observe much more similarities than
in the previous case. The overall percentage of Log-normal
distribution is higher, but still not absolutely dominating. The
following are Gamma and Normal distributions, while Weibull
and Nakagami-m are observed rarely. Rayleigh is again never
observed. Second-best fits could not be considered in the

analysis as ∆AIC has very high values (it should be no more
than 10 in order to be considered “close” to the best case [29];
our values have orders of magnitude from 102 to 104). This
also states that the obtained best fits clearly outperform their
closest counterparts. Comparing different agglomerates of the
same placement scenario shows many similar distributions at
a particular TX-RX distance, however, in many cases distri-
bution parameters differ considerably, which does not allow
the confident selection of a single distribution, representing
the data. The situation is better for the data agglomerates
within the same indoor space. Log-normal distribution is the
most common with much more similarity in parameters across
different sets. If the distributions are nevertheless different
at the same TX-RX distance, we performed an additional
check by means of simulation. Test datasets were generated
for each distribution and their means and standard deviations
were compared. This check showed that the values from these
datasets are quite close to each other (within a few dBm).

Finally, taking into account the above results, we created
a total agglomerate of all RMS-normalized data across all
indoor spaces and scenarios and estimated the best fits. We
report these results in Table I. There we can see that the
Log-normal distribution often occurs, however, with different
parameters, but there are also some TX-RX distances where
Gamma, Normal and Nakagami-m distributions provide the
best fit. These final statistical results once again support our
hypothesis that a single distribution is not able to describe
random RSS deviations well and, therefore, this might be a
potential loss of accuracy for the log-distance path loss model.

One might argue that agglomerated results could entail
substantial loss of accuracy despite the high similarity in distri-
butions describing separate datasets. Indeed, such methods as
averaging and joining data from different groups are typically
error-prone. However, our selective checks, during which we



TABLE I
MLE FOR AGGLOMERATES ACROSS ALL SPACES AND SCENARIOS

Distance Distribution ∆AIC

1m Normal (µ = 1.011, σ = 0.142) 7450
2m Lognormal (µ = 0.0025, σ = 0.259) 14757
3m Gamma (a = 27.960, b = 27.425) 5337
4m Lognormal (µ = 0.0012, σ = 0.187) 24025
5m Lognormal (µ = 0.0020, σ = 0.238) 53088
6m Lognormal (µ = 0.0027, σ = 0.284) 12483
7m Lognormal (µ = 0.0018, σ = 0.234) 80391
8m Lognormal (µ = 0.0040, σ = 0.349) 647
9m Lognormal (µ = 0.0056, σ = 0.416) 40594
10m Gamma (a = 11.802, b = 11.273) 13355
11m Gamma (a = 16.601, b = 16.070) 19764
12m Lognormal (µ = 0.0044, σ = 0.370) 58543
13m Lognormal (µ = 0.0019, σ = 0.243) 16629
14m Nakagami-m (m = 7.474, ω = 0.187) 1864
15m Lognormal (µ = 0.0019, σ = 0.255) 64069

Normal and Lognormal: µ - mean, σ - standard deviation.
Gamma: a - shape, b - rate. Nakagami-m: m - shape, ω - scale.

generated values from non-agglomerated and agglomerated
datasets and compared their means and standard deviations,
showed that in our case results are quite similar. This means
that the differences are acceptable for the radio domain. Hence,
we concluded that our agglomerations are feasible.

The similarity of distributions and their parameters allowed
us to agglomerate the RSS data from different scenarios at
each measurement distance. However, there are notable differ-
ences in distribution parameters at different distances, which
does not suggest to use a single distribution. This fact supports
our claim that standard zero-mean Normal distribution does
not describe random factors in the channel at different TX-RX
distances equally well. The difference in the mean values of
our resulting distributions can reach up to several [dBm]. By
getting inaccurate results from the channel model designers
might draw incorrect conclusions on the RSS uncertainty
and under-design (or over-design) an RSS-based localization
system in terms of accuracy.

3) Log-normal distribution parameters: We remark that
around 2/3 of best-fit distributions of RSS deviations are Log-
normal. Despite this fact, their parameters considerably differ.
We do not observe any specific relationship between their
values and scenario parameters (distance and node placement).
However, they could have a distribution. It is previously
reported that the parameters of the Log-normal distribution, µ
and σ, are random variables themselves and have underlying
models [16], [17]. It would be interesting to verify this for
our scenarios. We use the ML results for all our datasets
to extract the estimated µ and σ (even if Log-normal is
not a best-fit). Then we create sets of these parameters for
particular combinations of space and scenario (and similarly
for agglomerates) and run the ML estimation over them.

Results of the estimation show that the mean (µ) parameter
is distributed log-normally, while the standard deviation (σ) is
Rayleigh-distributed for most (80-90%) of spaces and scenar-
ios. Parameters of these distributions are mostly similar. This
allows us to create full agglomerates of µ and σ parameters
and report that the overall distribution for µ is Log-normal

(with the mean of -6.078 and standard deviation of 0.444)
and σ the distribution is Rayleigh (with the scale of 0.231).

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the 2.4 GHz wireless sensor
network channel using a statistical approach based on a huge
experimental measurement campaign performed in several
realistic indoor scenarios. Our observations allowed us to
conclude that the behavior of RSS is very non-stationary across
different scenarios as expected. We prove empirically that
the log-distance path loss model widely applied in existing
WSN simulators does not accurately describe the path loss at
different distances between TX and RX nodes. In particular,
empirically derived values of the path loss exponent are
considerably different from those commonly used in simu-
lator configurations (Figures 4 a-f). Moreover, node mutual
placement highly affects the PLE (Figures 5 a-c).

The WSN channel investigated in this work is not subject to
considerable temporal variation, as confirmed by low values
of the variation factor. Deviations of RSS values are dissimilar
at different TX-RX distances. The most frequently observed
statistical model, which describes these deviations in a best
way, is log-normal. However, it cannot be called dominating,
because its parameters may considerably vary from case to
case and also other models are present (e.g., Gamma). There
are notable similarities of distributions for the same TX-
RX distance across different spaces and placement scenarios.
This allowed us to agglomerate the normalized RSS data and
summarize the results (Table I). They clearly demonstrate that
using a single distribution with fixed parameters to model
large- and small-scale fading effects for all scenarios may
entail a potential loss of accuracy during a simulation.

On the basis of our results we propose the following
improvements to the log-distance channel model in WSN
simulators. First, different values of the path loss exponent can
be used for different placement scenarios. During a simulation
one could determine the mutual placement of nodes, for which
the path loss is evaluated, and use the corresponding PLE.
In particular, we noticed that the PLE for the “Two walls”
scenario can be 2-3 times higher than for others. Therefore,
it requires a separate PLE value to provide accurate results.
Values for other placement scenarios (in this work we tried
only 4 most typical) can also be configurable.

Second proposed improvement is related to modeling ran-
dom factors using a certain distribution. During the evaluation
of a particular path loss, one could check the distance between
TX and RX and use a distribution from a corresponding
distance interval instead of using the same standard normal
distribution in every case. Another approach is to keep the
existing Xσ random variable but allow the distribution pa-
rameters (mean µ and standard deviation σ) to be generated
every time with their corresponding distributions. For example,
for scenarios studied in this work µ and σ can be generated
with Log-normal and Rayleigh distributions, respectively, as
reported in Section IV-C3.



Currently we are working on implementing the proposed
improvements in the PASES simulator [8]. In particular, in-
stead of raising the configuration complexity by introducing
different distributions and their parameters, we provide a
numerical model for random propagation factors. We use the
algorithm for temporal variation modeling from the Castalia
simulator [14]. It can fetch the required value from a numerical
model with a very low performance overhead. In PASES we
use this approach for temporal models (same as in Castalia)
and we also introduce novel distance-dependent numerical
models for random propagation factors. The latter are gener-
ated using our numerical results from Section IV-C obtained
from our measurement campaign. This approach is extensible,
i.e., numerical models for other environments (e.g., industrial)
can be generated from datasets, which can be obtained using
our measurement and statistical characterization methodology.

Overall, our suggested improvements to the log-distance
path loss model are related to enforcing more accurate values
for both the deterministic part of Formula 1 (PL(d0) and
σ) and the stochastic part (using proper distribution and its
parameters). We believe that results and proposals from this
paper will allow to have more accurate simulations of WSN
applications with low effort.

Our future work is the evaluation of the improved PASES
simulator. Moreover, this study is a good starting point, from
which we can move our investigation to real industrial environ-
ments to draw more conclusions about the WSN radio chan-
nel and further improvements in models. Such environments
are typically characterized by high electromagnetic pollution,
usually at low frequencies. Also, NLOS conditions are to be
studied due to the presence of strong multipath effects, which
might play a dominant role in signal path loss. Furthermore,
movement scenarios are to be considered in both LOS and
NLOS. From the latter we expect lower temporal stability and
coherence time of the channel, in particular, due to Doppler
effects related to moving object or environment. This might
require additional calibration of existing models.
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