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ABSTRACT

We address the design space exploration of wireless networks to
jointly select topology and component sizing. We formulate the
exploration problem as an optimized mapping problem, where net-
work elements are associated with components from pre-de�ned
libraries to minimize a cost function under correctness guarantees.
We express a rich set of system requirements as mixed integer linear
constraints over path variables, denoting the presence or absence
of paths between network nodes, and propose an algorithm for
e�cient, compact encoding of feasible paths that can reduce by or-
ders of magnitude the complexity of the optimization problem. We
incorporate our methods in a system-level design space exploration
toolbox and evaluate their e�ectiveness on design examples from
data collection and localization networks.

1 INTRODUCTION

The ubiquitous deployment of devices in today’s Internet of Things
(IoT) relies on wireless networks to guarantee functionality and
connectivity. Designing dependable networked systems is, however,
challenging; the realization of di�erent system components, and
the network itself, is heavily a�ected by decisions that are made in
the early stages of the design process, when it is hard to foresee the
impact on the �nal implementation. A major bottleneck is the lack
of comprehensive frameworks for scalable, multi-dimensional de-
sign space exploration under heterogeneous network requirements,
such as routing, latency, and lifetime. Design exploration based on
simulations or testbeds is often time-consuming and limited in the
number of con�gurations that can be evaluated. Methodologies and
tools that enable e�cient co-design and provide correctness guar-
antees for a set of system concerns are, therefore, highly desirable.

In this paper, we build on our previous results in the context of
cyber-physical system architecture exploration [4, 8, 10, 13, 14] to
address the above challenges. We propose an optimization-based
methodology for the exploration of wireless network architectures
that allows jointly selecting the components, their physical place-
ment, and the network routes, while satisfying a set of system re-
quirements and minimizing a cost function. We show that a variety
of network requirements, such as link quality, energy consump-
tion, and localization, can be expressed as mixed integer linear

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196086

constraints over network paths, so that an optimal design can be
found by solving a mixed integer linear program (MILP). The prob-
lem size becomes, however, soon intractable in realistic scenarios.
We then provide an e�cient method to prune feasible network
paths and generate a compact, approximate encoding of the path
constraints which results in optimization problems of much lower
complexity, while providing solutions that are comparable with the
exact ones. Our contributions can be summarized as follows:

• We provide a mathematical formulation of the exploration
problem as a mapping problem that allows simultaneously
selecting optimal network topologies (node placement and
routing) and components to meet a rich set of requirements.

• We propose an algorithm to decrease the complexity of ex-
haustive enumeration of network paths between pairs of
source and destination nodes, which relies on the Yen’s K-
shortest path routine to generate a smaller number of promis-
ing candidate paths. Limiting the scope of the formulation
to these candidates results in a more compact and e�ective
encoding of path constraints that signi�cantly lowers the
problem complexity and increases the scalability of our ap-
proach. In our formulation, the size of the search space can
be tuned to trade the execution time with the quality of
the solution. Moreover, our pruning method is general and
does not depend on the speci�c problem formalization and
application domain.

• We incorporate the proposed formulation and encoding algo-
rithm inA���E� [10], an open-source framework for system-
level architecture exploration, and evaluate their e�ective-
ness on two design examples: a data collection network and
a localization network. In A���E�, compact and human-
readable speci�cations can be compiled using a pattern-
based formal language, while the optimization constraints
are generated automatically, thus enhancing the usability
and maintainability of our formulation. By leveraging the
approximate path encoding, we can achieve orders of magni-
tude reduction in problem complexity and optimization time
with respect to formulations based on the full enumeration
of network paths.

Related Work. State-of-the-art approaches for optimizing device
placement and connectivity in wireless networks include dynamic
programming [9], evolutionary algorithms [6], and MILP based
techniques [15, 16]. With respect to these approaches, our mapping
constraints allow for component sizing in addition to topology se-
lection. Many parameters that were �xed in previous formulations
(e.g., transmit power, antenna gain, current consumption) can now
be selected based on a library of components. While previous for-
mulations were mostly focused on speci�c design objectives and
metrics (e.g., lifetime [9], coverage [6], or installation cost [15]),
A���E� can capture di�erent design objectives as well as a richer



set of requirements, such as resiliency to network faults, and di�er-
ent link quality metrics. Finally, we address problems of larger size
(in terms of number of network nodes) with respect to previous
works [6, 9, 16].

This work di�ers from e�orts aiming at polynomial-time approx-
imate algorithms to solve the NP-hard exploration problem [5, 20],
since it rather focuses on more compact approximate encodings
that can still leverage the empirical advances of state-of-the-art
MILP solvers. Previous work [16] applies Dijkstra’s shortest path
algorithm to devise a heuristic approach for the synthesis of large
networks (>50 nodes) that cannot be handled by exact MILP-based
formulations. Instead, we use Yen’s algorithm [19], which is a gener-
alization of Dijkstra’s algorithm, within a MILP-based formulation,
to symbolically generate compact mixed integer linear path con-
straints for networks that can scale to hundreds of nodes.

Satis�ability modulo theory (SMT) based techniques have also
been proposed to �nd feasible solutions of wireless network sched-
uling problems [7], and more recently extended to solve optimiza-
tion problems [11]. While we adopt a MILP-based formulation, the
method for approximate encoding of path constraints proposed
in this paper can also be used to lower the complexity of SMT-
based formulations. Finally, our approach is complementary and
can be combined with simulation-based design exploration tech-
niques [3, 8, 13], as it provides system-level bounds that can be used
to reduce the number of simulations needed for the exploration.

2 PROBLEM FORMULATION
We adopt the notion of architecture and the notation �rst intro-
duced in the context of the A���E� framework [4, 10]. We model
a network architecture as a directed graph (V ,E), where V is a set
of components while each edge ei j 2 E represents a wireless link.
Edges are also interpreted as binary variables, which evaluate to
one if the corresponding links are active, i.e., used in the network,
and zero otherwise. A template T is a graph with �xed nodes but
con�gurable links (edges). An assignment over the variables in E
denotes a con�guration, i.e., an instance of T , marking the subset of
nodes and edges of T that are used in the physical topology of the
network. An edge is used if the corresponding variable evaluates
to one; a node is used if it is connected. Every node �i 2 V is also
labeled with its coordinate vector �i (in an appropriate system)
expressing its location. The set of locations for the nodes used in a
con�guration de�nes the node placement.

A network path (route) � (�0 ! �n ) is a sequence of distinct
nodes {�0, . . . ,�n } such that e�i�i+1 2 E for all i = 0, . . . ,n� 1. We
write |� | to denote the length of � . For a pair of nodes q = (�s ,�d ),
where �s and �d are, respectively, source and destination nodes,
we de�ne �q := � (�s ! �d ). We also denote by �q the set of
required paths between the nodes in q. Depending on the routing
requirements, we have |�q | = 0 if no paths are required for q, and
|�q | > 0 if one or more routes are needed. Each edge ei j 2 E can
be labeled with a binary variable ��i j , which evaluates to one if ei j
connects the nodes (�i ,�j ) in � , and zero otherwise. Therefore,
every path � is characterized by a vector �� , with |�� | = |E |,
marking the edges that are part of path � . Finally, we group the
vectors ��q into a set R = {��q |�q 2 �q ,q 2 Q}, Q being the
subset of pairs of nodes inV for which at least one path is required.
A routing is an assignment over the variables in R.

A library L is a collection of components (devices) and con-
nection elements (wireless links), each having a set of attributes
capturing functional and extra-functional properties. Nodes and

edges of T are labeled with types and attributes corresponding to
those inL. We de�ne as component sizing the map between “virtual”
components (nodes) and connections (edges) in T and “real” de-
vices and links in L. Sizing is encoded by binary variablesmi j 2 M ,
wheremi j is one if and only if component�j 2 V is associated with
device li 2 L. A similar encoding is used for connections.

Problem statement. Given a template T with candidate node lo-
cations and a library L, we aim to �nd a network topology (E⇤,R⇤),
i.e., node placement and routing, and a component sizing mapM⇤
that minimize a cost function. The result is an assignment over
a decision variable set D = E [ R [ M , i.e., an optimal network
architecture that satis�es a set of requirements, such as routing,
link quality, energy consumption, localization, expressed as MILP
constraints, while minimizing a cost. In previous work, we dis-
cussed the conversion of interconnection and mapping constraints
into mixed integer linear constraints [10]. We then focus on the
constraints that are speci�c to wireless networks.

Routing constraints.We use linear arithmetic constraints to re-
quire a number of paths (routes) between nodes of the wireless
network, as declared by the user. Given a setQ of source-destination
pairs to be routed and a desired number of path replicas for each pair
in Q , we use the following expressions to de�ne network routes:

(1a) c(�� )T = z� ,

(1b) ��i j  ei j , 8 i, j 2 N : 1  i, j  |V |,

(1c)
Õ |V |
j=1 �

�
i j  1,

Õ |V |
j=1 �

�
ji  1, 8 i 2 N : 1  i  |V |,

(1d) ��1i j + �
�2
i j  1, 8 i, j 2 N : 1  i, j  |V |,

(1e)
Õ
i
Õ
j �

�
i j  (�,=) N ⇤hops .

Constraints (1a)-(1c) are formulated for every required path. Con-
straint (1a) is a balance equation, which ensures that source and
sink of � are connected by a path. The incidence matrix c is de�ned
by considering all the possible edges in T , while z� is a column vec-
tor of length |V |, with z�s = 1, z�d = �1, and zero otherwise, s and d
being indices denoting, respectively, the source and destination of � .
Constraints (1b) relate the variables ��i j with the edge variables ei j
in E: if ��i j is true, then there must be an edge between nodes i and
j . Constraints (1c) forbid loops in a path: every node in � must have
at most one predecessor and at most one successor. The remaining
constraints capture additional routing concerns. Constraints (1d)
require two paths �1 and �2 to be disjoint, while constraint (1e)
is used to set the maximum (minimum, exact) length of path � in
terms of number of hops.

Link quality constraints. Many quality-of-service metrics of a
wireless network, such as latency, packet loss, and energy consump-
tion, depend on the link quality (LQ). It is then important to specify
a bound on the quality of every link of a route. We can express an
LQ constraint as a bound on the received signal strength (RSS) of a
link as follows:

(2a) RSSi j = PLi j + txi + �i + �j , 1  i, j  |V |,

(2b) RSSi j��i j � RSS⇤, 1  i, j  |V |.

RSS values for every link ei j between a transmitter (TX) �i and
receiver (RX) �j are real-valued decision variables. Constraint (2a)
computes RSSi j as a sum of the link path loss PLi j , TX and RX



antenna gains �i and �j , and TX power txi . The value of PLi j can
either be analytically estimated using a channel model or obtained
from measurements; the other parameters come from the compo-
nent attributes in L. For example, let �L be the vector of antenna
gains for the components in L andmi j be the element of the map-
ping matrixm associated with node�j and component li 2 L; then,
we have �j =

Õ |L |
i=1mi j�

L
i . Constraint (2b) places a lower bound

RSS⇤ on all links belonging to path � using the variables �� . The
products in (2b) can be turned into linear terms using standard
encoding techniques which we omit for brevity.

In addition to the RSS, A���E� also supports other link quality
metrics, such as bit error rate (BER) and signal-to-noise ratio (SNR),
for which encodings are provided using linear or piecewise-linear
functions. Because some of the metrics depend on the communica-
tion frequency and modulation, these are both part of the speci�-
cation. Furthermore, to characterize the channel and compute the
path loss values PLi j for every link ei j A���E� supports several
models with di�erent complexity. In this work, we use the multi-
wall model, an extension of the classical log-distance model, which
also accounts for the attenuation in walls and other obstacles.

Energy consumption constraints. Every component in V can
be labeled with the current drawn by its hardware (e.g., radio,
CPU, sensors) in di�erent operating modes. In this example, we
distinguish between the radio TX and RX current cTX and cRX ,
while the remaining current values for active and sleep modes
are cumulatively denoted by cacti�e and csleep , respectively. We
also assume a collision-free TDMA protocol, in which the nodes
wake up only within a few dedicated time slots for sending and
receiving packets. There are n slots in a superframe, each with
duration tslot , so the superframe duration is tSF = ntslot . The
following expressions can be written for each node �i :

(3a)
Bi

�radioi + �acti�ei + �
sleep
i

· tSF � L⇤

(3b) �TXi j = ETXi j · cTXi j · µ
bi j

, 8 j 2 N : 1  j  |V |.

The left-hand side of constraint (3a) is the lifetime of �i , which
is required to be greater than L⇤. Bi is the node battery capacity,
while the denominator is the total energy consumed within a super-
frame. The term �radioi is the energy required for transmitting and
receiving all packets for all routes in which �i is involved. It can be
expressed as �radioi = �TXi +�RXi =

Õ
�
� Õ

j �
TX
i j ��i j +

Õ
j �

RX
ji ��ji

�
,

where �TXi j and �RXji are real-valued decision variables denoting
the energy values of TX/RX links from/to node �i . The remain-
ing terms can be computed as �acti�ei = cacti�ei · tslot · k and
�
sleep
i = c

sleep
i · tslot · (n � k), where k is the number of slots in

which �i must either transmit or receive, under the assumption
that each TX and RX requires a separate slot.

Constraints (3b) compute the energy �TXi j , where µ is the packet
length, bi j is the bit rate associated with link ei j , and ETX is the
number of expected transmissions of a packet necessary for it to
be received without error at its destination. ETX depends on the
path loss and interference. In this work, we neglect the e�ect of
packet collisions and model the interference with the background
noise �i j associated with every link. ETXi j is then computed from
the corresponding signal-to-noise value (SNRi j ), which is equal
to RSSi j � �i j . The mathematical expression of the constraints

is omitted for brevity. Nonlinear terms in (3a) and (3b) can all
be expressed in linear form using standard techniques. Similar
constraints can be used to compute �RXji , as well as the required
energy for contention-based protocols.

Localization constraints.We focus on range-based localization
systems that estimate distances between anchor nodes and a target
node by using the received signal strength, time of arrival, or other
metrics. Evaluation of such systems is typically performed using
a set of locations in the network deployment area, in which the
quality of localization (e.g., accuracy, precision) is estimated [18].
This set of “evaluation locations” can be seen as possible locations
of a mobile device. Let �e�al be the array of these locations, while
�T is the array of locations of nodes in T , so that |�T | = |V |. Also,
let ri j be the entries of the reachability matrix r. We impose the
following constraints:

(4a) ri j = (RSSi j � RSS⇤)^�i , 1  i  |�T |, 1  j  |�e�al |,

(4b)
Õ |�T |
i=1 ri j � N , 8 j 2 N : 1  j  |�e�al |,

where �i is a binary variable equal to one if the component �i is
used and zero otherwise. Constraint (4a) forces the value of ri j to
be true if the mobile node located at �e�alj 2 �e�al is reachable
by �i , i.e., it is able to receive the signal from a node �i located
at �Ti 2 �T with signal strength of at least RSS⇤. The values of
RSSi j can be computed similarly to (2a) and other LQ metrics can
also be used instead of RSS. Constraint (4b) requires that every
location from �e�al be reachable by at least N nodes fromV . It can
be used to ensure, for example, that at least 3 distances to the target
node are computed, which allows to calculate its 2D position using
trilateration. This requirement does not depend on the ranging
technique and can guarantee a reliable coverage of the area.

Cost function.We associate every node and every edge in T with
a cost value. This value can be related to any attribute or their
combination, e.g., monetary cost, weight, energy, or lifetime. We
then consider objective functions combining di�erent concerns as
weighted sums, where the weights are set by the user.

3 APPROXIMATE ENCODING OF PATHS
Any path � can be encoded using n2 variables from the set �� , n
being equal to |V |, which correspond to all the edges of T . This en-
coding allows exhaustive exploration of network topologies, since
any node and any edge may be a member of � , but becomes inef-
�cient when either the size of T or the number of required paths
increase. For every path � at least n2 + 3n constraints (formulas
(1a)-(1c)) are added to the problem formulation. Variables from ��

are further used in other network constraints (e.g., LQ or energy
constraints), often multiplied by other decision variables. Each prod-
uct of binary variables must be translated into a linear constraint
by introducing auxiliary variables and constraints to the original
non-linear formulation. All of these steps may result in a signi�cant
growth in problem size and solver time.

We propose to trade generality with complexity by implement-
ing a more compact, yet approximate, encoding of network paths.
The main idea behind our method is to direct the search toward
a smaller number of candidate paths. We use the estimated link
path loss as a weight for the edges and execute Yen’s K-shortest
path algorithm [19] to select a number K⇤ of path candidates that
minimize the overall path loss for every network route speci�ed in



Algorithm 1: Approximate path encoding
Given: Network template T = (V , E)
Input: Set Q of pairs (s, d ), path loss matrix PL, # candidate paths K ⇤
Output: Set R = {�q |q 2 Q } of path variables, set Cons of path

constraints
1 Cons  ;
2 Q+  F���R�������(Q )
3 forall q 2 Q+ do
4 (K, Nrep) B����D���(K ⇤)
5 (�q1 , . . . , �

q
|E | ) 0; PL0  PL; NewCons  false

6 for n = 1 to Nrep do
7 (p1, . . . , pK ) �S�������(PL0, sq, dq, K )
8 for k = 1 to K do
9 �  G��V��������(pk )

10 �q  A��V��������(�)
11 NewCons  NewCons _”|� |

i=1 �i
12 PL0  D���������M��D�������P���(PL0, (p1, . . . , pK ))
13 R  R [ �q
14 Cons  Cons [ NewCons
15 return (R, Cons)

the requirements. We then symbolically encode the proposed paths
using a smaller number of edge variables to obtain the �nal path
constraint, as summarized in Algorithm 1.

The function F���R�������(Q) extends the input set Q to a set
Q+ with a number of copies of each source-destination pair (s,d)
corresponding to the required amount of path replicas, i.e., redun-
dant paths, required for this pair by the designer. By analyzing
the routing requirements for a pair q 2 Q+, the function B�����
D���(K⇤) splits the required number of candidate paths K⇤ into
Nrep , the required number of disjoint replicas for q, and K , the
required number of candidate paths for each replica, such that
Nrep ·K � K⇤ (line 4). Then, q is associated with a vector �q , where
|�q | = |E |, and K⇤ candidate paths are generated for q as follows
(lines 6-13). �S������� runs Yen’s K-shortest path routine to gen-
erate the K “best” paths p1 . . .pK in non-decreasing order of cost
(line 7), by using the link path loss matrix PL to assign weights to
the edges. Every generated path pk is then processed and a binary
variable is assigned to every edge between the nodes of pk (line 9).
The vector � of these variables is added to �q (line 10). The path
constraint NewCons is also updated (line 11) to require that one of
the proposed paths be selected in the �nal topology. The path gener-
ation procedure above is repeated Nrep times. At each iteration, the
function D���������M��D�������P��� identi�es a path that has
the largest number of edges in common with other paths, i.e., it is
“minimally disjoint” from others. This path is disconnected from the
graph, so that the following iteration will generate at least one new
candidate path that is completely independent from the previous
ones. In this way, we guarantee that at leastNrep of theK⇤ proposed
paths will be disjoint, as per the routing requirement. In practice,
since the edges that occur in most of the previously generated paths
cannot be used anymore, the number of resulting disjoint paths is
larger than Nrep , which results in multiple feasible solutions. As
we execute the shortest path routine, we can disconnect a path by
appropriately setting the weights of corresponding edges. Similarly,
we can disregard links with path loss below a certain threshold to
ensure that the all the candidate paths meet the LQ requirements.
The process is repeated for every q until all the candidate paths and
the corresponding constraints are generated.

By Algorithm 1, the worst case number of path variables ��
needed for every required route is K⇤(n � 1), rather than n2, assum-
ing that every new path consists of n = |V | nodes and all the K⇤
paths are disjoint. However, the situation is much better in practice,
since the actual paths typically contain only few hops and share
multiple links. The complexity of many optimization constraints
(e.g., LQ and energy) is then reduced, since they only need to be
de�ned for the nodes and the edges in the candidate paths. Further,
the routing constraints (1a)-(1c) can be omitted, since the validity
of the generated paths is guaranteed by the shortest path routine.
K⇤ can be adjusted, as discussed in Sec. 4.3, to trade optimality with
execution time. Finally, the proposed path pruning algorithm is
general and can be applied to any architecture that can be mod-
eled as a weighted directed graph, independently of the speci�c
application domain.

4 IMPLEMENTATION AND EVALUATION
A���E� is implemented inM����� by leveraging CPLEX [1] for
solving MILPs, and Y����� [12] for facilitating the problem formu-
lation. The tool accepts as inputs a problem description, a library
of components and a �oor plan. The �rst two are text �les, while
the latter is an SVG �le, which stores information about space di-
mensions, obstacles (e.g., walls, doors, windows) and locations of
network devices. The problem description includes system require-
ments as well as the parameters of the channel model, the protocol,
and the battery. Below we demonstrate the e�ectiveness of our
approach on two classical wireless sensor network (WSN) design
problems that are central to many IoT applications, namely, data
collection and localization. All experiments were performed on an
Intel Core i7 3.4-GHz processor with 8-GB RAM.

4.1 Data Collection Network

We �rst consider an indoor WSN for periodic data collection. This
network consists of end devices (sensors), which measure or detect
some physical environment phenomena, one or more base stations,
which collect and process the sensor data, and routing devices, or
relays, that forward the messages towards the base station. The
�oor plan of the building is shown in Fig. 1a. There are 35 sensors
(in green) and one base station (in red) whose positions are �xed.
The remaining nodes represent candidate locations for relays. The
total number of nodes in the template T is 136.

Our reference library L includes the following components: Sen-
sor, Relay, and Sink. Each element is labeled with its cost, TX power,
antenna gain, and current consumptions for the radio and other
hardware components, as explained in Section 2. The character-
istics are based on commercial WSN transceivers and integrated
circuits [2]. In this example, we assume a bit rate of 250 kbps and a
noise level of -100 dBm for all links, as well as a 2.4-GHz frequency
and a QPSK modulation. Further, our network uses a TDMA proto-
col with a slot duration of 1 ms and 16 slots in a superframe, and a
packet length of 50 bytes. Sensors transmit a packet every 30 s and
have zero cost. We assume that the power is constrained by two
1.5-V AA batteries, each of 1500 mAh.

Every sensor in a data collection network must have a path to the
base station. We also improve the network resiliency to faults by
adding some redundancy. To do this, we require two disjoint routes
for every sensor to the base station by using the patterns name
= has_path(A,B) and disjoint_links(name1,name2), where
name, A, and B refer, respectively, to a path, a source, and a sink.



Table 1: Final number of nodes, dollar cost, average node lifetime
(in years), and solver time for a data collection WSN optimized for
di�erent objectives.

Objective # Nodes $ cost Lifetime (y) Time (s)
$ cost 61 1022 7.33 45
Energy 63 1480 12.24 260

$ + Energy 61 1241 9.69 66

We require 70 routes in total, 2 for each of 35 sensors. The pat-
tern min_signal_to_noise is imposed to specify a minimum SNR
of 20 dB for every link. Finally, with the min_network_lifetime
pattern we require the node batteries to last for at least 5 years.

Table 1 shows the solver time and the synthesis results obtained
while optimizing for di�erent objectives: dollar cost, network en-
ergy consumption, and an equally weighted combination. Fig. 1b
shows the result of mapping the requirements to an aggregation of
library devices minimizing the overall dollar cost. The selected com-
ponents have di�erent TX power, while some of them also have
an external antenna to satisfy the LQ constraints. On the other
hand, minimizing for energy consumption results in a network
with a much higher dollar cost. In fact, power consumption can be
reduced by decreasing the TX power. However, for certain links,
this would result in the violation of LQ constraints, unless more
expensive low-power components are selected, for example, with
smaller radio TX and RX currents or smaller CPU standby current.
The tradeo� between dollar cost and energy consumption can be
explored when optimizing for a combination of objectives.

For each experiment we obtained MILP formulations of around
1.5⇥105 constraints and 4.5⇥104 variables. The number of candidate
paths K⇤ generated by Algorithm 1 for every required connection
was set to 10. Exhaustive path enumeration led to problems with
over 107 constraints and 1.5⇥ 106 variables, which required several
hours just for problem encoding, to be contrasted with the few min-
utes required by our approach. The execution time with exhaustive
path enumeration always exceeded the 8-h timeout. Overall, our
path encoding algorithm reduced the problem size by two orders
of magnitude. In A���E�, the constraints were automatically gen-
erated from a pattern-based speci�cation including only 150 lines
of code, and resulted in designs that favorably compare with the
ones in the literature [5, 6, 9, 15, 16] in terms of size, number of
supported requirements, and dimensionality of the design space,
including the sizing of the network components.

4.2 Localization Network
We specify 150 candidate node positions and 135 evaluation (mo-
bile node) locations for the same building �oor. Our localization
system has a star topology, where anchor nodes that have to be
allocated by the tool communicate directly with the mobile device.
The latter estimates its position using a set of distance measure-
ments obtained from the anchors. The min_reachable_devices
pattern implements the localization constraints (4a)-(4b), and we
apply it to require that, at every test point, the mobile node must be
able to receive signals from at least 3 distinct anchors. Furthermore,
with the same pattern, we request that only reliable links with
a minimum RSS of -80 dBm be selected. This also contributes to
decreasing the ranging error, which rapidly grows for larger path
losses and unstable signals.

We solve the problem for two di�erent cost functions: dollar
cost (result in Fig. 1c) and di�erence of sum of distances (DSOD)

Table 2: Final number of nodes, dollar cost, average number of
reachable anchors by the mobile node, and solver time for a local-
ization network optimized for di�erent objectives.

Objective # Nodes $ cost Reachable Time (s)
$ cost 28 1050 3.1 115
DSOD 24 1310 3.6 121

$ + DSOD 24 1180 3.03 144

between network nodes and test points. The latter was proposed
in the literature [17] as a linear version of the Cramer Rao lower
bound – a metric used in the accuracy evaluation of localization
systems. To set up the reachability matrix r and the localization
constraints, we use Algorithm 1 with K⇤ = 20 candidate anchors
for every test point.

Results in Table 2 show that optimizing for the DSOD objective
produces a placement with smaller number of more expensive
nodes equipped with antennas, i.e., their signal can reach more test
locations. This system also has smaller power consumption. In all
experiments, the number of variables and constraints counts up to,
respectively, 3⇥104 and 3.5⇥104. A full enumeration of all test points
reachable by all anchors would lead to several millions variables
and constraints, making the design exploration intractable.

4.3 Impact of Approximate Path Encoding

We test the scalability of our techniques on data collection network
architectures with an increasing number of total nodes and end de-
vices (sensors) in the template T , and with K⇤ = 10, as reported in
Table 3. The dramatic reduction in problem complexity and execu-
tion time shows the advantage of using the approximate encoding
of network paths in Algorithm 1. We also provide the measured (or
estimated, for larger instances) number of constraints in the case
of full path enumeration, which are several orders of magnitude
larger. Execution times of the order of days are expected to solve
these large problem instances, since only a few smaller networks
were synthesized within an 8-h timeout.

The e�ect of di�erent values for K⇤ is illustrated in Table 4 when
the objective is the dollar cost, but similar trends were also observed
for other objectives. Comparison with the optimal solution obtained
without approximation is only possible for the small WSN template,
since exhaustive exploration becomes soon intractable. Increasing
K⇤ leads to higher quality results in terms of cost; when K⇤ ! 1
all possible paths are enumerated, leading to the global optimum.
However, large values ofK⇤ also result in a substantial growth in ex-
ecution time; a small decrement in cost for K⇤ > 10 comes at a very
large price in terms of performance. On the other hand, for small
values of K⇤, slightly increasing K⇤ signi�cantly improves the cost
function while incurring a reasonable time overhead. When K⇤ = 1
only one candidate path is proposed for every required route, i.e.,
the routing is �xed. In this case, the performance is comparable to
the one achieved by heuristic algorithms previously proposed in the
literature [16], but we additionally guarantee optimal component
sizing for the selected topology.

For a given problem, K⇤ can be systematically selected by a
search algorithm that generates multiple topologies for di�erent
values ofK⇤ and terminates once the execution time becomes higher
than a prede�ned threshold or there is no further improvement
in the objective. In fact, as K⇤ increases, we obtain solutions that
are at least as good as, if not better than, the previous ones. For
example, for network sizes in the range of our examples, a guideline
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Figure 1: (a) Template for the data collection WSN (sensors, base station and candidate locations of relays); (b) Generated
topology of the data collection WSN; (c) Evaluation points and generated anchor placement for the localization network.

Table 3: Number of constraints and solver time for di�erent net-
work architecture sizes generated by using the approximate path en-
coding algorithm (K ⇤ = 10) compared to full enumeration of paths.

#Nodes #End devices #Constraints, ⇥103 Time (s)
(total in T) (to be routed) (full / approx) (full / approx)

50 20 862 / 24 8233 / 12
100 20 1743 / 54 TO / 28
100 50 ⇠ 3800 / 125 TO / 55
100 75 ⇠ 4800 / 150 TO / 93
250 50 ⇠ 3500 / 108 TO / 340
250 100 ⇠ 5700 / 175 TO / 1175
250 200 ⇠ 10000 / 310 TO / 1708
500 50 ⇠ 7400 / 230 TO / 818
500 100 ⇠ 11000 / 346 TO / 5330
500 200 ⇠ 21000 / 655 TO / 8354

Table 4: Costs and solver times for data collection networks with
a small template T1 (20 end devices, 50 nodes total) and a larger tem-
plate T2 (200 end devices, 250 nodes total) synthesized using di�er-
ent values of K ⇤, compared with the optimal solution (only for T1).

Result K⇤ = 1 K⇤ = 3 K⇤ = 5 K⇤ = 10 K⇤ = 20 opt

T1
Cost ($) 920 861 805 642 619 579
Time (s) 3 7 10 12 442 8233

T2
Cost ($) 2594 2280 2083 1909 1842 -
Time (s) 8 85 358 1708 15334 TO

would be to select K⇤ between 3 and 10, since values outside of
this interval provided marginal advantages in terms of cost versus
execution time.

5 CONCLUSION

We presented an optimization-based methodology for wireless net-
work architecture exploration, where network components, place-
ment, and routes are jointly selected to minimize an objective under
correctness guarantees. We proposed an approximate encoding of
the path constraints that makes the formulation and the solution
of large problems tractable. We validated the proposed techniques,
implemented as a part of the A���E� toolbox, on network designs
of realistic size. Future work includes investigating the combination
of our methods with simulation, and using them to explore design

tradeo�s across the HW/SW boundary (e.g., including communica-
tion protocol parameters).
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