
ArchEx: An Extensible Framework for the Exploration of
Cyber-Physical System Architectures

Dmitrii Kirov1, Pierluigi Nuzzo2, Roberto Passerone1, Alberto Sangiovanni-Vincentelli3
1 University of Trento, Italy {dmitrii.kirov, roberto.passerone}@unitn.it

2 University of Southern California, Los Angeles, USA, nuzzo@usc.edu
3 University of California, Berkeley, USA, alberto@eecs.berkeley.edu

ABSTRACT
We present ArchEx, a framework for cyber-physical sys-
tem architecture exploration. We formulate the exploration
problem as a mapping problem, where “virtual” components
are mapped into“real”components from pre-defined libraries
to minimize an objective function while guaranteeing that
system requirements are satisfied. ArchEx leverages an ex-
tensible set of patterns to enable formal, yet flexible, require-
ment specification, a graph-based internal representation of
the system architecture, and algorithms based on mixed in-
teger linear programming to solve the mapping problem. Its
effectiveness is demonstrated on two industrial case studies:
an aircraft power distribution network and a reconfigurable
automated production line.

1. INTRODUCTION
Architecture exploration of complex cyber-physical sys-

tems (CPSs) is a major design challenge due to the lack of
abstractions able to capture heterogeneous requirements and
enable efficient co-design. CPS design would substantially
benefit from methodologies that can express different design
concerns (e.g., energy, timing, reliability) using a common
formalism. Similarly, tools that can support these method-
ologies and are able to generate efficient architectures, while
guaranteeing design correctness, are highly desirable [3, 6].

In this paper, we introduce ArchEx 2.0, an optimization-
based framework for CPS architecture exploration. We lever-
age a generic representation of an architecture as a network
of components. On this network we are able to express a va-
riety of system requirements, such as connectivity, reliability,
and timing, and find an optimized architecture that satisfies
them. We build on our seminal work on reliability-driven
optimized architecture design [3, 11], and regard architec-
ture exploration as an optimized mapping problem, where
“virtual” components satisfying a set of functional require-
ments are associated with “real” ones from a domain-specific
library of possible implementations. However, we offer a
new problem formulation that separates the component se-
lection problem, i.e., whether a “virtual” component should

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18 - 22, 2017, Austin, TX, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062204

be used in the architecture, from the mapping problem, i.e.,
which library component best implements the “virtual” one.
This separation of concerns results in a Mixed Integer Linear
Program (MILP) encoding of the mapping problem that is
more general and more efficient than the previously proposed
one [3, 11]. Moreover, we support a richer set of require-
ments, including timing constraints, and introduce specifi-
cation patterns that can significantly reduce the burden of
formulating the exploration problem. Our contributions are
summarized below:

• We develop a framework for formulating and solving
CPS architecture exploration problems, based on a
general mathematical formulation and a reusable and
extensible software infrastructure, which can be cus-
tomized to support a variety of applications.

• To lower the problem formulation effort, we provide an
extensible set of patterns to express requirements on
the architecture and allow automatic translation into
mixed integer linear constraints.

• We demonstrate the effectiveness and performance of
our framework on two industrial case studies: an air-
craft power distribution network and a reconfigurable
production line.

A large body of design space exploration techniques and
tools has appeared over the years in different domains.
Our approach is complementary and can be combined with
simulation-based methods [4–6], which have been recently
proposed for CPS design. Alternative approaches use sym-
bolic constraint satisfaction techniques based on ordered bi-
nary decision diagrams [10] or Satisfiability Modulo Theory
(SMT) solvers to rapidly search for a feasible system con-
figuration [12]. This work differs from these approaches,
since it targets optimal solutions. It also differs from re-
search efforts that propose SMT-based techniques to solve
optimization problems, such as the “symbolic optimization”
approach [8]. The focus of this effort is, instead, on facili-
tating the formulation and improving the usability of MILP-
based techniques, which have proven to be effective in vari-
ous domains, including avionic systems [11], building design
automation [13], and wireless sensor networks [14].

2. PROBLEM FORMALIZATION
We assume that a CPS architecture is represented by a

network of interconnected components, which are selected
from a library (collection) L and comply with a set of compo-
sition rules. Each component in L has a set of attributes cap-
turing its functional and extra-functional properties. Extra-
functional properties include, for instance, energy consump-

tion, processing delay, and cost. Each component has a set of
terminals parameterized with terminal variables. Input and
output terminals are used to send and receive signals or the
values of terminal variables. Composition rules define which
connections are allowed and how terminal variables may be
assigned. Components can have different types, i.e., different
roles or functions in the system [3]. We focus on networks
whose components exchange entities or quantities via flows
(e.g., message flow, power flow, product flow). Therefore,
certain components have the role of sources or sinks.

We model the system architecture as a directed graph
(V,E), where V is a set of components (nodes) while an edge
eij ∈ E represents an interconnection from vi to vj , with
i, j ∈ {1, . . . , |V |}, |V | being the cardinality of V . Edges are
interpreted as binary variables that evaluate to one (zero) to
indicate the presence (absence) of interconnections between
nodes. We also write evi,vj to denote an edge from node vi
to node vj . A template T is a reconfigurable architecture,
i.e., a graph with a fixed set of nodes V but variable set of
edges E. A configuration is an assignment over the variables
in E. Both nodes and edges in the graph are labeled with
types, terminal variables, and attributes corresponding to
those from the library L. We denote with M : V → L
the map that associates each “virtual” component (a graph
node) with a“real”one in the library. We represent this map
by assigning to each pair (vi, lj), with vi ∈ V and lj ∈ L, a
binary variable mij ∈M , which is one if vi is mapped to lj
and zero otherwise. Finally, we say that a component vi is
instantiated (or used) if at least one incoming edge variable
eij or outgoing edge variable eji evaluates to one. Edges are
directly mapped to a pre-defined set of connection elements
in the library, e.g., switches, wires, or wireless links.

We call P a partition over V , such that all components
belonging to the same subset in P have the same type. A
path π(v0 → vn) is a sequence of distinct nodes {v0, . . . , vn}
such that evivi+1 ∈ E evaluates to one for each i. We write
|π| to denote the length of π. Edges can also be labeled
with binary variables yπ, where yπij is one iff eij connects
the nodes (vi, vj) in π. Let S1 and Sn in P include, respec-
tively, all the sources and the sinks of the network. Then, a
functional link Fi is the set of all paths from any source in
S1 to a sink vi ∈ Sn. Such links are essential for a system
to operate correctly. For instance, in a power distribution
network, they represent the paths between electrical loads
and power sources. A functional flow F is an ordered se-
quence of component types (t1, . . . , tn) that are needed to
implement a link between a source and a sink.

Given a template T = (V,E) and a library L, we use op-
timization to find a configuration E∗ and a map M∗ that
satisfy a set of requirements (e.g., interconnection, reliabil-
ity, timing), while minimizing a cost function. Our decision
variable set is D = E ∪M . The final assignment over D
provides an optimal architecture, i.e., a network topology,
in which a subset of the nodes and edges in T is used, and
the mapping of nodes to components in L. Below, we for-
mulate the cost function, mapping constraints, and system
requirements in terms of mixed integer linear constraints.

Cost Function. Every node and every edge in T is asso-
ciated with a cost value. This may represent the monetary
cost as well as other cost parameters, such as idle time, en-
ergy, weight. We then consider cost functions that can be
expressed as the sum of the costs of all the instantiated com-

ponents (nodes) and connections (edges):

|V |∑
i=1

δici +

|V |∑
i=1

|V |∑
j=1

eij c̃ij , (1)

where ci is the cost of component vi, c̃ij is the cost of the
edge eij , and δi is a binary variable equal to one if the com-
ponent is instantiated and zero otherwise. We also assume
eii = 0 for all i. Depending on the specific problem, some of
the terms in (1) may be omitted. The overall cost function
is a weighted sum of different concerns, where some of the
weights can also be set to zero by the user.

Interconnection Constraints. Linear arithmetic con-
straints can be used for enforcing valid connections between
components or limiting the number of allowed connections.
Let A, B and C be sets in P . Then, interconnection con-
straints can assume the following forms:

|B|∑
j=1

eaibj ≥ (≤,=) 1 ∀i ∈ N : 1 ≤ i ≤ |A|, (2a)

|A|∨
i=1

eaibj ≤
|C|∨
k=1

ebjck ∀j ∈ N : 1 ≤ j ≤ |B|, (2b)

where eaibj is an edge from node ai to node bj (and similarly
ebjck). Constraints (2a) prescribe that there exists at least
(at most, exactly) one connection from a node in A to a node
in B. Constraints (2b) state that if node bj has a connection
to any node in A, then it must also have a connection to at
least one node in C.

Mapping Constraints. We denote as mk the mapping
matrix for type k, where mk

ij = 1 iff a virtual component

(graph node) vj ∈ Pk is implemented by component lki ∈ Lk.
Lk and Pk are the subsets of L and V including all the
elements of type k in L and V . Let e be the adjacency
matrix of T , i.e., eij = 1 if there is a connection from node vi
to node vj , and 0 otherwise. Then, the mapping constraints
for type k assume the following form:

|Lk|∨
i=1

mk
ij =

|V |∨
i=1

(eij ∨ eji) ∀j ∈ N : 1 ≤ j ≤ |Pk|, (3a)

|Lk|∑
i=1

mk
ij ≤ 1 ∀j ∈ N : 1 ≤ j ≤ |Pk|. (3b)

Constraints (3a) state that each component of type k that
is instantiated must be mapped to one of the components
in Lk. Constraints (3b) ensure that virtual components are
never mapped to more than one library component. Similar
constraints are enforced for all the types in T . The encoding
approach in this paper facilitates the exploration of differ-
ent implementation alternatives. A change in L only affects
the mapping constraints, which makes this formulation more
general than the one in [3, 11], as the mapping constraints
are not hard-coded as a part of the interconnection con-
straints. Moreover, this approach is more efficient. Let ` be
the number of library options available to implement each
component. Solving an equivalent mapping problem with
the formulation in [3,11] requires a number of decision vari-
ables that is quadratic in `. This number becomes, instead,
linear in ` by using the approach in this paper.

Flow Constraints. Each edge eij of T can be associated
with a real variable λij that expresses the flow rate through

the edge. We assume that the flow originates from a source
and propagates to a sink via connections and intermediate
components. Let node bj have an intermediate type in the
functional flow F , which is neither a source nor a sink. The

input flow rate at bj can then be expressed as
∑|V |
i=1 λibj .

Flow rates for output edges ebjk can then be assigned as
follows:

|V |∑
i=1

λibj eibj =

|V |∑
k=1

λbjkebjk, (4)

which is a balance equation at the terminals of bj . A flow
rate variable is forced to zero if the corresponding edge vari-
able is zero. Some of the constraints (3a)-(4), including
products between real and binary variables, are nonlinear,
but can be linearized using standard techniques [3].

Workload Constraints. Each node in V can be labeled
with a throughput µ, e.g., if this node represents a processor
core or an industrial machine. To avoid overloading, we can
bound the incoming workload for node vj as follows:

|V |∑
i=1

λivj ≤ µj , (5)

requiring that a valid input is processed before the next one
arrives. If mk

ij is the element of the mapping matrix mk

associated with vj and component lki in Lk and µLk is the
vector of throughputs for the components in Lk, then we

have µj =
∑|Lk|
i=1 mijµ

Lk
i .

Timing Constraints. We call cycle time the time required
for a signal or message to get from a source to a sink. We
assume that each node is labeled with a propagation delay
τ and consider a simplified delay model, where the delay of
a cascade of components is equal to the sum of the delays of
each component. Let Πab be the set of all paths from source
va to sink vb. We can ensure that the cycle time of each
path π in Πab does not exceed τ∗ by requiring

|V |∑
i=1

τiw
π
i ≤ τ∗ ∀ π ∈ Πab, (6)

where τi is the delay of node vi in T and wπi is a binary
variable which evaluates to one if vi ∈ π and zero otherwise.
Formally, wπi = 1 iff

∑|E|
j=1(yπij ∨ yπji) ≥ 1. Values for yπij

can be assigned by adding a balance equation c(yπ)T = zπ

to the list of constraints, where c is the incidence matrix
obtained by considering all the possible edges in T and zπ

is a vector of length |V |, such that zπa = 1, zπb = −1 and the
remaining values of zπ are zero. Auxiliary MILP constraints
can be added to require a certain number of distinct paths
between two nodes, as further detailed in [14].

We can finally characterize the idle rate of a component
(e.g., a processing unit) as the difference between the pro-
cessing rate and the incoming flow rate. We can then use
the following constraint to limit the total idle rate of an
architecture to be below a required value η∗:

∑
j∈Idx(PU)

µj − |V |∑
i=1

λij

 ≤ η∗, (7)

where Idx(PU) is a set of indices corresponding to the nodes
in V that are labeled as processing units.

Reliability Constraints. In safety-critical applications,
reliability requirements prescribe that a functional link

· template
· decision

variables
· cost function
· constraints

Formulation
(e.g. Yalmip)

Solver
(e.g. CPLEX)

Analysis
(e.g. reliability, timing)

Solve

Problem AlgorithmLibrary

- exactly_n_paths(A,B,2)
- no_overloads(A)
- no_self_loops(B)
- ...

Patterns ShowSave

Component

Type1: Name, c, λ, τ, ...

TypeN: Name, c, λ, τ, ...
⁞

(E,M)

Figure 1: Structure of the ArchEx 2.0 toolbox.

should be guaranteed with a certain probability for a system
to operate correctly, that is, the probability for a sink to be
disconnected from all sources should be less than a desired
threshold. To capture this class of constraints, we leverage
the MILP encoding techniques introduced in [3].

Algorithms. ArchEx suppports two methods to solve the
mapping problem detailed above [3]. The eager optimiza-
tion method solves a monolithic problem, which includes
all the optimization constraints. Since some of them may
originate from approximations (e.g., reliability constraints),
optimality is only guaranteed within the error bound due
to the approximation. Alternatively, the lazy method lever-
ages a coordination of specialized solvers. In this paradigm,
the MILP solver is called iteratively on smaller problem in-
stances including only a subset of constraints (e.g., intercon-
nection constraints) to generate candidate configurations.
The validity of these configurations is then checked against
the other constraints via exact analysis methods. If these
constraints are violated, a conflict-driven learning function
is called between iterations of the MILP solver to incremen-
tally add new constraints to the original formulation based
on the analysis of previous outcomes, prune the search space,
and rapidly progress towards a feasible solution. Solving a
small number of simpler problem instances can significantly
reduce the execution time with respect to a monolithic ap-
proach. However, global optimality is no longer guaranteed.

3. ARCHEX IMPLEMENTATION
We detail the structure of our framework and the set of

patterns used to capture design requirements.

Tool Structure. As shown in Figure 1, the software
structure directly reflects the modular, component-based ap-
proach adopted in Section 2, amenable to extensibility and
design reuse. Generic classes are used to capture and ma-
nipulate mapping problems. The class Problem provides
routines for formulating and solving an architecture explo-
ration problem, such as reading and processing input files,
specifying the component library, the decision variables, the
constraints and the cost function, visualizing and saving the
results. The Component class represents a generic compo-
nent with several attributes, e.g., type, subtype, cost. The
class Library is a collection of Component objects. It pro-
vides methods for creating a library from a text file, querying
it for different components and attributes, and defining the
mapping constraints. Reusable data structures, namely, Ad-
jacencyMatrix and LibraryMapping, store the decision vari-
ables for the architecture selection and mapping problems.

The input to the toolbox consists of two text files: prob-
lem description and library. In the former, the users spec-
ify general information about the problem (e.g., component
types, functional flows), template structure (e.g., the maxi-

mum number of components of each type), and the require-
ments in terms of patterns. The library is organized as a
list of records grouped by component types. Each record
represents a distinct component, and includes a name and
a list of attributes belonging to each type. Components in
the library can also be labeled with subtypes. For instance,
power sources can be partitioned into low- and high-voltage
sources while still being of the same type, e.g., AC or DC.
Finally, components having the same type and sub-type may
be grouped using tags based on the problem domain. For
instance, as shown in Sec. 4.1, we distinguish between left
and right AC buses, based on their location, as this poses
restrictions on the feasible connections. Types, sub-types,
and tags can all be used as parameters in the patterns.

The class Algorithm includes methods for solving MILP
problems as well as the interfaces to the solvers. To report
on the flexibility and usability of ArchEx for different ap-
plications, we use monolithic optimization in the numerical
evaluation of Section 4. However, we also provide an in-
frastructure to design generic iterative schemes, including
interfaces to analysis and conflict-driven learning routines
that can be domain-specific. Current support for iterative
schemes focuses on reliability analysis and the MILP modulo
reliability algorithm [3,11] for the exploration of reliability-
driven CPS architectures.

Patterns. A pattern has a name that reflects the associated
requirement and a list of arguments including the component
types to which it applies. Each pattern is used to automat-
ically generate MILP constraints over the input arguments,
operating on corresponding subsets of decision variables.
The access to the actual problem variables and the inter-
nal data structures is transparent to the user, which makes
it easier to formulate and solve exploration problems. A
system developer can then leverage these higher-level primi-
tives to encode a problem, rather than manually generating
the underlying optimization constraints, which is a tedious,
error-prone task, often requiring the touch of an optimiza-
tion expert. In this way, patterns can also contribute to
reducing the chances of errors, and therefore the debugging
effort, by virtue of their abstract nature.

Table 1 shows a representative list of patterns currently
supported by ArchEx. Each pattern is an intuitive abbrevi-
ation of a requirement, which is close to a natural-language
expression but still preserves a formal semantics. For exam-
ple, to express that “there must be at least one connection
between components of type A and components of type B”,
one can use the pattern at_least_n_connections(A,B,1),
which is later translated into a constraint as in (2a). Simi-
larly, in_conn_implies_out_conn is used to encode balance
constraints on the component connections (edges): if there
is a certain type of incoming edge then a certain type of
outgoing edge must be present. As further exemplified in
Sec. 4, the patterns in Table 1 cover the categories of con-
straints in Sec. 2 and can be reused across domains of appli-
cations, which is an indication of their power to capture the
essence of the problems of interest. Finally, the list can be
incrementally extended to create more expressive, domain-
specific languages based on simpler primitives.

4. NUMERICAL EVALUATION
ArchEx 2.0 is offered as a Matlab toolbox [2] and

currently uses Cplex [1] to solve MILP problems and
Yalmip [9] to facilitate their formulation. We demonstrate

Table 1: Representative List of Supported Patterns.

General
at_least_n_components(T, S′, N)

at_least_n_paths(T1, T2, N)

Connection

at_least_n_connections(T1, T2, N)

in_conn_implies_out_conn(Tin, T, Tout)

bidirectional_connection(T1, T2)

no_self_loops(T)

cannot_connect(T1, S′1, T2, S
′
2)

Flow
flow_balance(T, S′)

no_overloads(T, S′)

Timing
max_cycle_time(T, N)

max_total_idle_rate(T, N)

Reliability
min_redundant_components(T, N)

max_failprob_of_connection(T1, T2, N)

T is a component type, S is a subtype, N is a numerical parameter.
Primed parameters (e.g., S′) are optional.

the effectiveness of our approach on two applications. Nu-
merical experiments were performed on an Intel Xeon 3.6-
GHz 4-core processor with 24 GB of memory.

4.1 Aircraft Power Distribution Network
We first apply our approach to the avionics case study

from [3,11]. The number of electronic components installed
on modern aircrafts has increased over the past years, which
makes the design of safety-critical subsystems challenging.
An aircraft Electrical Power distribution Network (EPN),
such as the one in Figure 2a, is one example. Power is deliv-
ered from a set of sources to a set of loads (sinks) via AC and
DC buses. The system is divided into left and right parts,
but the corresponding generators (L/R-GEN) and auxiliary
power units (APUs) can power both parts. Components can
be further classified as high voltage (HV) and low voltage
(LV). Rectifier units (RU) are used to convert AC power to
DC power, while HV levels can be converted into LV levels
using a transformer-rectifier unit (TRU). Sensors monitor
the health state of generators and buses and inform the con-
troller, which actuates a set of switches (contactors) to keep
critical loads powered even if the components fail.

As a first step, we create a library L with components
of the following types: generators (G), AC buses (A), rec-
tifiers (R), DC buses (D), and loads (L). Each component
is labeled with cost c, subtype s, and failure probability p.
Common subtypes are HV and LV , while generators and
rectifiers have extra subtypes, APU and TRU , respectively.
Generators, buses, and loads are labeled with power ratings
g, power capacities b, and power requirements l, respectively.
Contactors are modeled with edges. We further assume that
contactors and loads have no failures, the other components
fail with probability 2 × 10−4, and contactors have a fixed
cost. Finally, some loads are sheddable, while others are
non-sheddable (critical) and have a tighter failure probabil-
ity requirement, 10−9 versus 10−5.

Next, we create a problem description file. We set the
functional flow to F = (G,B,R,D,L) and specify tags to
group components based on their location, i.e., left (LE),
right (RI), and middle (MI). The latter is reserved for
APUs, which can be connected to both parts. We define the
template T by declaring the maximum number of compo-
nents for each type and tag, as summarized in Table 2.

Table 2: Template and library for the EPN example.

Type Max # in T Cost g,b,l (kW)

(Left,Right) HV LV

Generator 2,2 + 2 APU g/10 60,80,150 20,30

AC bus 4,4 2000 150 30

Rectifier 5,5 2000 - -

DC bus 4,4 2000 30 5

Load 8,8 0 {7,8,...,20} 1,2,3,4,5

We then specify the requirements using patterns. For in-
stance, requirements like “each load must be connected to
exactly one DC bus” or “a rectifier connected to a DC bus
must also be connected to an AC bus” are specified using
connectivity patterns. Similarly, we restrict the connections
between left and right components, except for AC and DC
buses, which can be used to connect both sides. The pattern
cannot_connect is used to restrict direct connections be-
tween HV and LV components (which is possible only with
a TRU). A domain-specific pattern, has_sufficient_power,
is used to require that left and right generators are able
to power all the corresponding loads. Finally, the pattern
max_failprob_of_connection specifies the failure probabil-
ity for each functional link using the encoding proposed
in [3]. Patterns hide the details of the MILP formulation
that can be massive. Our specification file only consists of
46 patterns, and a total of 90 lines of code, including variable
declarations and composition rules, while the automatically
generated MILP formulation in standard form amounts to
more than 100, 000 lines and 20, 000 variables. This shows
the advantage of raising the level of abstraction of design
capture using patterns.

By using the monolithic optimization approach, ArchEx
generates an EPN topology of complexity comparable with
the one in Fig. 2a in about 5 h, of which 2.5 h are used
to encode the problem. The resulting failure probability is
0.5 × 10−9 for every functional link and the overall cost is
106, 000. Green and yellow nodes in Figure 2b represent
HV and LV components, respectively. Red components are
TRUs connecting the HV and LV portions of the system.
Horizontal connections between DC buses increase the sys-
tem reliability, by creating redundant paths from loads on
one side of the system to sources on the other side or APUs.

By using the iterative approach, the same problem is
solved in three iterations, as summarized in Fig. 3a-3c. Af-
ter the first iteration (Fig. 3a) every load has only one path
to a generator, which is not enough to satisfy the reliabil-
ity requirements. Then, ArchEx connects existing DC and
AC buses together (Fig. 3b) and, finally, two extra AC and
DC buses are added, one of subtype HV and one of sub-
type LV (Fig. 3c). The resulting failure probabilities are
(0.38, 0.19) × 10−9 for the (HV ,LV) functional links. The
cost is 108, 000, slightly higher than the one obtained with
monolithic optimization, for a total execution time of 56 s, of
which 98% are used for the problem formulation. The MILP
encoding has around 5, 000 constraints and 1, 500 variables.

Finally, we tested the performance of ArchEx 2.0 on the
benchmarks used in [3]. We achieve problems with up to
one half of the constraints reported in [3] and 2-4x faster
execution speeds, which shows the effectiveness of the newly
proposed encoding for architecture selection and mapping.
With respect to its predecessor, ArchEx 2.0 can efficiently
generate more complex architectures, e.g., including HV and

L1

GEN

HVAC Bus 1

RU

L

APU

HVAC Bus 2

R

APU

HVAC Bus 3

R1

GEN

HVAC Bus 4

RU RU RU

HVDC Bus 1 HVDC Bus 2

ACT

LVAC Bus 1

LVAC ESS Bus 3

LVAC Bus 2

LVAC ESS Bus 4

L2

GEN

R2

GEN

RU RU

LVDC ESS Bus 1

LVDC Bus 3

LVDC ESS Bus 2

LVDC Bus 4

TRU TRU

ACT

Batt Batt

(a)

LG1 LG2 MG1 RG1 RG2

LA1 LA3 LA4 RA1 RA2 RA4

LR1 LR3 LR4 RR1 RR3 RR5

LD1 LD2 LD4 RD1 RD2 RD3

LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8 RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

(b)

Figure 2: (a) Simplified diagram of an EPN adapted from
a Honeywell patent [11]; (b) EPN architecture generated by
ArchEx using monolithic optimization.

LG1 LG2 MG1 RG1 RG2

LA2 LA3 RA1 RA4

LR1 LR3 RR1 RR3

LD1 LD3 RD1 RD4

LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8 RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

(a)

LG1 LG2 MG1 RG1 RG2

LA2 LA3 RA1 RA4

LR1 LR3 RR1 RR3

LD1 LD3 RD1 RD4

LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8 RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

(b)

LG1 LG2 MG1 RG1 RG2

LA2 LA3 LA4 RA1 RA2 RA4

LR1 LR3 LR5 RR1 RR2 RR3

LD1 LD2 LD3 RD1 RD3 RD4

LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8 RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

(c)

Figure 3: EPN architectures and reliabilities (HV ,LV)
generated by ArchEx using the iterative approach: (a)
r = (0.6, 0.8) × 10−3; (b) r = (0.2, 0.32) × 10−6; (c)
r = (0.38, 0.19)× 10−9.

LV power distributions, and supports a richer set of require-
ments, including timing and flow constraints.

4.2 Reconfigurable Production Line
The recent concept of “Industry 4.0” advocates the usage

of CPSs in factory automation as a major goal [7]. In par-
ticular, Reconfigurable Production Lines (RPL) provide a
great value as they are able to adjust according to the com-
pany’s and customers’ needs. An RPL consists of a source
that provides parts to be processed (assembled, packaged)
on the line, a set of machines connected by conveyors, and a
sink that collects the final product. A typical shop floor can
have several RPLs for different product types. Reconfigu-
ration is, in particular, related to having different operation
modes. For instance, at some time, manufacturing of the
product on line 1 is not required, while there is an increased
demand for another product, processed by line 2. Instead
of installing a fully parallel line, which can be costly, it is
possible to reuse (reconfigure) line 1 to increase the process-
ing rate. Junction conveyors can be used to connect existing
lines together.

We use ArchEx to generate cost-effective RPL architec-
tures that are subject to flow, workload, and timing con-
straints as well as operation requirements. Our library L
consists of 4 component types: Source (SRC), Machine (M),
Conveyor (C), and Sink (SNK), all of them labeled with a
cost c and a subtype s. Sources and machines are also char-
acterized by a flow rate λ and a throughput µ, respectively.
In our example, two product types, with tags A and B, are
assembled on two separate production lines, each of them
having two machines along the path. We can then set FA
= FB = (SRC,C1,M1,C2,M2,C3,SNK), while T and L are

Table 3: Template and library for the RPL example.

Type Max # in T Cost, λ, µ (parts/min)

(A,B) ×103 A B AB

Source 1,1 0 12 10 -

Machine 3,2 {2,3,...,15} 3,6,20 3,5,13 10

Conveyor 3,2 0.5,1 - - -

Sink 1,1 0 0 0 -

shown in Table 3. As there is only one component type in L
to implement a machine, we use the subtypes A,B, and AB
to, respectively, categorize the machines that can be used
only for product A, B, or both. The RPL must support two
operation modes. In mode Ω1, both A and B must be simul-
taneously produced with rates λA and λB . In mode Ω2, A is
produced with a double rate, 2λA, while line B is stalled.We
assume that λA and λB are fixed and that conveyors can
automatically adjust to any input rate.

In addition to the connectivity constraints, specified as
in Sec. 4.2, the pattern has_operation_mode(Ω) creates the
flow rate matrices Λk,x with k ∈ {Ω1,Ω2} and x ∈ {A,B},
where λk,xij is a decision variable representing the flow rate
of product type x in operating mode k along the edge eij .
ΛΩ1,A and ΛΩ1,B set to zero all the flow rates between com-
ponents associated with different product types, as no line
can be borrowed for another product. This is not the case
for ΛΩ2,A, since the line associated with product B may be
reused for product A in mode Ω2. Finally, ΛΩ2,B is a ma-
trix of zeros. We then use pattern no_overloads to require
that all machines be able to handle the input rate in ev-
ery mode, and flow_balance to guarantee that the input
flow is correctly split between conveyors and machines. Our
specification consists of 63 instances of 12 patterns.

The monolithic MILP formulation has approximately
5, 000 constraints and 3, 000 variables. The MILP solver
terminates in 0.4 s, while the overall execution time is 28 s.
The resulting configuration, shown in Fig. 4a, uses only one
machine of type 1 and one machine of type 2 for each prod-
uct line. To support Ω2, part of the flow of product A is
redirected to line B (C1A2 → C1B1), where reconfigurable
machines, marked by a red color, are installed. Processed
parts of product A are then sent back to Sink A (C3B2
→ C3A1 → SnkA). For the given template T and library
L, reusing line B is more cost-effective than installing addi-
tional conveyors and machines on line A.

As a second example, we introduce the additional require-
ment that the sum of the idle rates of all the machines
should be at most 10 parts/min, which can be done using
the max_total_idle_rate pattern. We then obtain the ar-
chitecture in Fig. 4b, synthesized in 31 s, which still reuses
line B in mode Ω2. However, it is now more convenient to
implement M1 and M2 in line A by inserting two additional
machines in parallel. Each machine is slower than in the pre-
vious design, but we achieve a total idle rate of 8 parts/min
instead of 28 parts/min.

5. CONCLUSIONS
ArchEx 2.0 is a framework for CPS architecture explo-

ration based on a high-level pattern-based specification lan-
guage and MILP-based architecture selection algorithms.
We demonstrated its effectiveness on two industrial case
studies. As a future work, we will investigate extensions
of our approach to other design problems, such as topology

SrcA SrcB

C1A2 C1B1

M1A2 M1B2

C2A2 C2B1

M2A2 M2B1

C3A1 C3B2

SnkA SnkB

Product A Product B

(a)

SrcA SrcB

C1A1 C1A2 C1A3 C1B1

M1A1 M1A2 M1A3 M1B2

C2A1 C2A2 C2A3 C2B2

M2A1 M2A2 M2A3 M2B1

C3A1 C3A2

C3A3

C3B1

SnkA SnkB

Product BProduct A

(b)

Figure 4: Generated RPL architectures: (a) line B is reused
for product A in one of the operation modes; (b) machines
are added in parallel to achieve 3.5× idle rate reduction.

synthesis and node placement in wireless networks.

Acknowledgments. The authors wish to acknowledge
Nikunj Bajaj and Michele Lora for contributions to the im-
plementation of an earlier prototype of the toolbox, and the
support of Terraswarm, one of six centers of STARnet, a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

6. REFERENCES
[1] (2016, Nov.) IBM ILOG CPLEX Optimizer. [Online].

www.ibm.com/software/commerce/optimization/cplex-
optimizer/.

[2] (2017, Apr.) ArchEx 2.0: CPS Architecture Exploration
Framework. [Online]. https://bitbucket.org/regkirov/archex.

[3] N. Bajaj, P. Nuzzo, M. Masin, and A. Sangiovanni-Vincentelli.
Optimized selection of reliable and cost-effective cyber-physical
system architectures. In Proc. Design, Automation and Test
in Europe, pages 561–566, 2015.

[4] A. Canedo and J. H. Richter. Architectural design space
exploration of cyber-physical systems using the functional
modeling compiler. Procedia CIRP, 21:46–51, 2014.

[5] A. Davare et al. metroII: A design environment for
cyber-physical systems. ACM Transactions on Embedded
Computing Systems, 12(1s), March 2013.

[6] J. Finn, P. Nuzzo, and A. Sangiovanni-Vincentelli. A mixed
discrete-continuous optimization scheme for cyber-physical
system architecture exploration. In Proc. IEEE/ACM Int.
Conf. Computer-Aided Design, pages 216–223, 2015.

[7] M. Hermann, T. Pentek, and B. Otto. Design Principles for
Industrie 4.0 Scenarios. In Proc. Hawaii International
Conference on System Sciences, pages 3928–3937, 2016.

[8] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and
M. Chechik. Symbolic optimization with SMT solvers. In ACM
SIGPLAN Notices, volume 49, 2014.

[9] J. Löfberg. YALMIP : A Toolbox for Modeling and
Optimization in MATLAB. In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

[10] H. Neema, Z. Lattmann, et al. Design space exploration and
manipulation for cyber physical systems. In Proc. Workshop
Design Space Exploration of Cyber-Physical Systems, 2014.

[11] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L.
Sangiovanni-Vincentelli, R. M. Murray, A. Donzé, and S. A.
Seshia. A contract-based methodology for aircraft electric
power system design. IEEE Access, 2:1–25, 2014.

[12] S. Peter and T. Givargis. Component-Based Synthesis of
Embedded Systems Using Satisfiability Modulo Theories. ACM
Trans. on Des. Automation of Electr. Systems, 20(4), 2015.

[13] A. Pinto, M. D’Angelo, C. Fischione, E. Scholte, and
A. Sangiovanni-Vincentelli. Synthesis of embedded networks for
building automation and control. In Proc. American Control
Conference, pages 920–925, 2008.

[14] A. Puggelli, M. M. R. Mozumdar, L. Lavagno, and A. L.
Sangiovanni-Vincentelli. Routing-aware design of indoor
wireless sensor networks using an interactive tool. IEEE
Systems Journal, 9(3):714–727, 2015.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

