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ABSTRACT
As the design complexity of cyber-physical systems contin-
ues to grow, modeling the system at higher abstraction levels
with formal models of computation is increasingly appeal-
ing since it enables early design verification and analysis.
One of the most important aspects in system modeling and
analysis is timing. However, it is very challenging to an-
alyze and verify timing at the early design stages, as the
design representation is quite abstract and trade-o↵s have
to be made between the performance requirements defined
in terms of system functionality and the cost of the feasible
architecture that can implement the functionality. In this
paper, we present Metronomy, a function-architecture co-
simulation framework that integrates functional modeling
from Ptolemy and architectural modeling from the MetroII
environment via a mapping interface. Metronomy exploits
contract theory for timing verification and design space ex-
ploration via co-simulation. Two case studies on an elec-
trical power system and a paper-feed sub-system for a high
speed printing press demonstrate the e↵ectiveness of our ap-
proach.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Model Validation and
Analysis; J.6 [Computer Applications]: Computer-aided
Engineering—Computer-aided design (CAD)

General Terms
Design
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1. INTRODUCTION
The design of a modern cyber-physical system (CPS) is

a multi-disciplinary practice carried on by engineers from
di↵erent domains. As the complexity of such systems con-
tinues to grow, it is highly beneficial to separate di↵erent
design concerns and capture them using formal models of
computation (MoCs) for system verification and analysis.
In the Platform-Based Design (PBD) methodology [17], two
types of models are generally used to represent di↵erent de-
sign aspects: the functional model defines what the design
does in terms of a set of services and the architectural model

describes how these services are implemented by a collec-
tion of architectural primitives. Specifically, for CPS control
design, the functional model is used to describe the con-
trol algorithm and its interaction with the physical plant.
The architectural model is used to describe the implementa-
tion platform for the control algorithm, including embedded
processors, sensors, actuators, communication primitives, as
well as the operating system, firmware and drivers. Simu-
lation of the functional model helps verify the functional
behavior of the system, while simulation of the architec-
tural model helps evaluate non-functional properties of the
implementation platform such as physical time, power con-
sumption, and monetary cost.

However, during a typical design process, trade-o↵s need
to be made between the system performance and the cost
of the implementation platform. As an example, a faster
control loop can provide better performance but also re-
quires a more expensive implementation platform; on the
other hand, a slower control implementation tends to sac-
rifice performance in order to achieve a cheaper solution.
To facilitate the exploration of such trade-o↵s, it is critical
to analyze and verify the real-time performance of a sys-
tem across the boundary between the functionality and the
architecture. In fact, timing properties, such as sampling
periods and latencies from sensing to actuation can signif-
icantly a↵ect the control performance and even the func-



tional correctness of the design. However, whether certain
sampling periods are actually allowed and what the values
of the sensor-to-actuator latencies are ultimately depend on
the implementation platform. As a result, the design pro-
cess would largely benefit from bridging functional and ar-
chitectural models with a co-simulation approach to allow
analyzing the system properties that are relevant to both
such aspects.

In this paper, we present Metronomy, a modeling and co-
simulation framework that bridges the functional and the
architectural aspects of the design. In Metronomy, the func-
tional model is captured in the Ptolemy modeling environ-
ment [16], while the architectural model is described in the
MetroII design environment [5]. Ptolemy provides a rich set
of commonly used MoCs (e.g. dataflow, state machines, dis-
crete event, discrete time) to e↵ectively model and simulate
the system functionality and its interaction with the physical
plant. MetroII provides support for architectural modeling,
in particular for models in SystemC [9], and for interfacing
functional and architectural models. Metronomy is a natu-
ral framework for multi-domain system engineering and in-
tegration. Control engineers can leverage the plethora of
MoCs made available by Ptolemy to capture the functional-
ity of their controller; software/hardware engineers can ben-
efit from the flexibility of MetroII and SystemC to design
the architectural platform; system engineers can e↵ectively
combine the two aspects in a co-simulation environment to
explore the whole design space and verify correctness and
performance of their design.

To support multi-domain system engineering and integra-
tion, we exploit contract-based design theory [18] to facili-
tate timing verification and design space exploration using
co-simulation. A timing contract can be seen as a set of
timing assumptions and guarantees that are agreed upon
by the control engineers, who develop the functional model,
and the software/hardware engineers, who design the archi-
tectural platform for implementation. We implement timing
checkers in Metronomy to monitor whether both the func-
tional and architectural timing assumptions and guarantees
are satisfied during co-simulation.

The separation between functional behavior and execution
platform is adopted by several design frameworks for soft-
ware/hardware co-design, mainly in the areas of multimedia
and signal processing. Representative frameworks include
MAPS [4], featured with a variety of mapping heuristics,
Daedalus [13], featured with multi-level design space explo-
ration, Spade [12], featured with a Y-chart based approach,
and Sesame [15], featured with trace-based design space ex-
ploration. However, most of these frameworks only support
Kahn Process Networks (KPN), Dataflow or similar MoCs.
Furthermore, all previous works are based on the assump-
tion that functional behaviors can be pre-determined, and
captured by the functional model, while the implementa-
tion platform only a↵ects the system performance. This
assumption does not necessarily hold in CPS design, where
the function is tightly intertwined with the physical plant
(or environment). Di↵erent behavioral timings may trigger
di↵erent reactions from the environment, which result in dif-
ferent further behaviors of the system.

A preliminary attempt at integrating Ptolemy and MetroII
is presented in [11]. However, the framework in [11] can only
support a simple MoC, which schedules actors periodically,
and lacks the capability of handling heterogeneous MoCs

(e.g. continuous time, discrete time). With respect to [11],
this work o↵ers a formalization of the interactions between
functional and architectural models in terms of contracts
for timing verification and system integration. The use of
contracts to analyze the complex coupling of timing and be-
haviors has been first advocated in [18]. However, while a
few rigorous contract theories have been developed over the
years (e.g. see [2, 6]), the concrete application of contracts
for timing verification in CPS has not been throughly ex-
plored. In [7] di↵erent types of timing contracts, such as the
Logical Execution Time (LET) [10, 8] and Bounded Execu-
tion Time (BET) contracts, denoted as “design contracts”,
are informally presented as a mean to facilitate the indepen-
dent refinement of functionality and architecture. In this
work, based on the theoretical foundations in [2], we pro-
pose a formalization of the timing constraints of a design
in terms of assume-guarantee contracts, expressed as asser-
tions on system traces, i.e. sequences of events. Such a for-
malization is general enough to encompass di↵erent kinds
of design contracts, and suitable for building monitors to
validate them via co-simulation.

The contribution of this paper is threefold: (a) we formal-
ize the interactions between the functional model and the
architectural model via the concept of timing contract; (b)
we propose a methodology for timing contract verification
and design space exploration through co-simulation; (c) we
implement a function-architecture co-simulation framework
that supports the methodology, based on the Ptolemy and
MetroII design environments.

The rest of this paper is organized as follows. Section 2
gives a brief introduction to Ptolemy and MetroII, and
presents the motivation for integrating them. Section 3 for-
malizes the concept of timing contract between functional
and architectural models, and describes an illustrating ex-
ample. Section 4 presents the methodology for timing verifi-
cation and design space exploration using Metronomy. Sec-
tion 5 describes several key aspects of the implementation
of Metronomy. Section 6 shows its application to the de-
sign of an aircraft electrical power system and a paper-feed
subsystem of a high-speed printing press. Finally, Section 7
presents the conclusions.

2. BACKGROUND
In CPS design, the system functionality is typically mod-

eled in one environment (e.g. Simulink, Modelica) by control
engineers, while the system architecture is modeled in a dif-
ferent one (e.g. SystemC or other programming languages)
by software and hardware engineers. Since each design envi-
ronment has its own strengths, it is not convenient to force
engineers to use a uniform design environment. On the other
hand, e�ciently integrating and analyzing functional and
architectural models from di↵erent environments are chal-
lenging tasks. The contract-based methodology in this work
aims to address these issues by formalizing the interactions
between system function and architecture, and by providing
a framework to e�ciently co-simulate and co-analyze func-
tional and architectural models. In what follows, we provide
details on the modeling environments used in our proof-of-
concept implementation.

2.1 Ptolemy
Ptolemy II is a modeling and simulation environment for

heterogeneous systems, which consists of several executable



domains of computation that can be mixed in a hierar-
chy [3, 16]. All MoCs are described operationally in terms
of a common executable interface. For each model, a “di-
rector” determines the activation order of the components
(or actors). Ptolemy has a user-friendly GUI and features
a number of commonly used MoCs, including heterogenous
modeling using continuous and discrete domains. However,
Ptolemy lacks support for the integration of high-fidelity
models of implementation platforms, which are often con-
veniently built using domain-specific tools.

In Metronomy, we bridge this gap by supporting co-
simulation with implementation platform models developed
in MetroII. To support such integration, we create a new
co-simulation director CoSimDirector and customize the
Ptolemy directors for the Descrete Event (DE), Synchronous
Dataflow (SDF) and Ptides [19] MoCs.

2.2 MetroII
Metro II [5] is the successor of the Metropolis design

framework [1], which implements the PBD design method-
ology based on a SystemC simulation engine. MetroII al-
lows designers to import models developed using external,
domain-specific tools. For example, a SystemC architectural
model can be imported with only minor changes to the orig-
inal model interface. Instrumental to such integration is
MetroII’s rigorous and general mapping semantics, which
we use to bridge the functional and architectural views of a
system. On the other hand, MetroII lacks the implementa-
tion of the most commonly used MoCs, and it has limited
support for continuous time models. Metronomy extends
the simulation core of MetroII to support co-simulation with
functional models developed in Ptolemy.

3. TIMING CONTRACTS
In our co-simulation framework, a system model includes

a higher-level functional model, a lower-level architectural

model and a mapping function. The functional and archi-
tectural models provide two di↵erent representations of the
system at di↵erent levels of abstraction, and can possibly
cover di↵erent design aspects or viewpoints. The mapping
function links how the behaviors of the functional model
are mapped into behaviors of the architecture during co-
simulation.

We define a timing contract as a tuple C = (E , T ,A,G),
where E is a set of events, T is a set of time tags, A is
a set of assumptions, and G is a set of guarantees. We
can then denote the interface between the functional model
and the architectural model by specifying a functional con-
tract C

f

= (E
f

, T ,A
f

,G
f

), an architectural contract C
a

=
(E

a

, T ,A
a

,G
a

), and a mapping function M.
E
f

is a set of events capturing the activity in the functional
model, E

a

is a set of events capturing the activity in the
architectural model, T is a set of time tags that define a
common notion of time shared by the two models. For each
event e (e 2 E

a

or e 2 E
f

), t
e

2 T is its time tag.
An event in the functional model e 2 E

f

is represented by
a tuple e = (fun.id, k), where id is the identifier of the event,
which specifies, for instance, the arrival of sensing data, the
beginning or the ending of a computation process, or the
application of a certain action; k is an integer index denoting
the k-th instance of the event. Similarly, each event e 2 E

a

is a tuple e = (arch.id, k). When there is no confusion, we
will abbreviate all the events as (id, k).

A
f

and G
f

are, respectively, the set of assumptions made
by the functional model, and the set of guarantees provided
by the model under the assumptions. Following the formu-
lation in [2], in our framework, both A

f

and G
f

are sets of
behaviors over E

f

. A behavior is defined as a trace, i.e. a se-
quence of events. Sets of traces are captured using assertions
including constraints on their event time tags. Similarly, A

a

and G
a

represent, respectively, the sets of assumptions and
guarantees related to the architectural model, and can also
be expressed as assertions on the time tags of the events in
E
a

.
More specifically, both assumptions and guarantees can be

expressed using first order logic formulas defined as follows.
A linear inequality defined on a set of event time tags t

e

and
other variables is a formula. If ↵ is a formula, then ¬↵ is a
formula. If ↵1 and ↵2 are formulas, then ↵1 ^ ↵2 (↵1 _ ↵2,
↵1 ! ↵2) is a formula. If ↵ is a formula and x is a variable,
then 8x,↵ (9x,↵) is a formula.

Finally, M maps events in the functional model into
events in the architectural model. For a pair of events
e1 2 E

f

and e2 2 E
a

, if M(e1) = e2, then t

e1 = t

e2.
Examples of assertions used to express assumptions and

guarantees are provided below:

• End-to-end path latency:

8k, t(p.e,k) � t(p.b,k)  d (1)

where (p.b, k) is the beginning event corresponding to
the k-th computation of path p, (p.e, k) is the ending
event corresponding to the k-th computation of path
p, and d is the deadline for the path latency.

• Periodic events:

8k, t(id,k+1) � t(id,k) = T (2)

where T is the period.

• Sporadic events:

8k, t(id,k+1) � t(id,k) � T

s

(3)

where T

s

is the minimum interval of two consecutive
events with the same id.

• Partial order of events:

t

e1 < t

e2 , (4)

which can be used to encode several type of constraints
such as the amount of requested computation or data
dependencies.

As an example, for a functional model, A
f

could be (1),
while G

f

could be a conjunction of assertions in (2), (3)
and (4). Since we only focus on timing assertions, we assume
that the available architecture platform can implement any
behavior (A

a

= True) at possibly di↵erent costs. On the
other hand, G

a

is a set of performance guarantees from the
services implemented on the architecture. A typical archi-
tecture guarantee on the execution of a service could be

t(id.e,k) � t(id.b,k)  w (5)

as in (1), where w is now the execution time for service id.
Note that all the parameters (e.g. w) in the assertions above
are not necessarily constant but can be dynamically changed
during the simulation.
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Figure 1: A simplified controller in a printing press paper
feed system. Controllers in the function design environment
are mapped to a single processor multi-task execution plat-
form in the architecture design environment.

3.1 Illustrating Example
To illustrate how timing contracts can be formulated on

a control system, we consider the system in Figure 1 show-
ing a simplified controller in a paper feed subsystem of a
printing press (see also Section 6.2 for further details). The
controller regulates the surface velocity of a roller by ad-
justing the drive voltage of a motor. The controller has
four inputs: tv, ev,mv, ct, and one output cv. Input tv is
the profiled target velocity, ev is a real-time adjustment on
the profiled target velocity based on the state of the other
rollers, mv is the measured velocity of the roller, ct is a signal
that turns o↵ the motor, and cv provides the drive voltage
to the motor. The controller tries to minimize the error
between the measured velocity mv and the target velocity
tv + ev. When a sporadic signal ct occurs, the controller
outputs 0. p1, p2, p3, p4 are the execution paths from ev, tv,
mv, ct to cv, respectively. By following the semantics of
Ptolemy, each component of the functional model in Fig-
ure 1 is implemented as an actor. Strictly speaking, a path
in the model consists of a cascade of a sensor actor, a series
of interconnected execution actors and an actuator actor.
In this example, we assume the delays of the sensor and the
actuator are zero for simplicity and thus the end-to-end la-
tency is the sum of delays due to the execution actors along
the path.

We denote as (p
i

.b, k) and (p
i

.e, k) the events correspond-
ing to the beginning and the ending of the k-th computation
of path p

i

. If an output is generated in the k-th computa-
tion, the output occurs at t

p

i

.e,k

. l represents the latency
between the activation of the controller and the output. Dif-
ferent l may deliver di↵erent control performances.

Events (c.b, k) and (c.e, k) correspond to the beginning
and the ending of the k-th firing of the controller, which
carries on the computation of its paths. Note that one
firing of the controller may carry on the computations of
multiple paths. The firing of the controller is triggered by
the events at the input ports. Between (c.b, k) and (c.e, k),
there are also events indicating the beginnings or the end-
ings of the firings of internal actors. For example, (c.pid.b, k)
and (c.pid.e, k) indicate the beginning and the ending of
one firing of the internal actor PID (Proportional-Integral-
Derivative).

The assumptions of the functional contract C
f

are speci-
fied by the conjunction of assertions on the end-to-end la-
tencies of paths. For example,

• End-to-end latency of path p2:

8k, t(p2.e,k) � t(p2.b,k) = l  d

8k1, k2, t(p2.b,k1) = t(c.b,k2) ! t(p2.e,k1) = t(c.e,k2)

which state that all computations must complete be-
fore the deadline d, which is typically associated with
the requirements from the plant.

The guarantees of the functional contract C
f

are also spec-
ified by a conjunction of assertions. Examples of assertions
are

• Controller activation: 8k, t(p2.b,k) = t(tv,k) guarantees
that computation of path p2 is triggered by signal tv
and 8k1, 9k2, t(p2.b,k1) = t(c.b,k2) guarantees that there
is always a firing of the controller that carries on the
computation of path p2.

• Periodic event tv: 8k, t(tv,k+1) � t(tv,k) = T

tv

guaran-
tees that tv is a periodic input.

• Sporadic event ct: 8k, t(ct,k+1) � t(ct,k) � T

ct

guaran-
tees that the minimal interval of two consecutive ct is
T

ct

.

• Amount of requested computation:

8k, 8j1, j2,
(t(c.b,k)  t(c.reg.b,j1) ^ t(c.reg.e,j1+r1)  t(c.e,k)

^(t(c.b,k)  t(c.reg2.b,j2) ^ t(c.reg2.e,j2+r2)  t(c.e,k))
! r1 + r2  r

c.reg

where r

c.reg

specifies the bound for the number of fir-
ings of the Register actors (including Register and Reg-

ister2 in Figure 1). Similarly, r
c.add

, r
c.con

, r
c.pid

and
r

c.sel

specify the bounds for the number of firings of
each type of actor during one firing of the controller.

Finally, while the architecture assumptions are always
true, the guarantees of the architectural contract C

a

are
specified by the conjunction of assertions on the execution
time of services. For example, the assertion on the compu-
tation of PID would be:

t(task2.pid.e,k) � t(task2.pid.b,k)  w

pid

where w

pid

is a variable depending on the processor speed
and possible preemptions of Task1.

4. TIMING VERIFICATION AND DESIGN
EXPLORATION METHODOLOGY

Metronomy can be used for timing verification as well as
design space exploration. We denote the functional com-
ponent (model) Func as the set of all the possible traces
{tr

f1, trf2, ...} defining its behavior, where each trace tr

fi

is
an infinite sequence of events (e

fi1 , efi2 , . . .). Similarly, the
architectural component Arch can be seen as a set of traces.
Then, the mapping function M corresponds to a set of ren-
dezvous constraints on events in the two models: t

e

f

= t

e

a

if M(e
f

) = e

a

.
Given the timing contracts C

f

and C
a

, and a system level
specification in the form of a contract C

s

, the timing verifi-

cation problem translates into checking whether C
s

and the



composition of C
f

and C
a

are satisfied by the behaviors of
the mapped model Func ⇥ Arch|M, i.e. the system model
obtained by mapping function behaviors into architecture
behaviors. Formally,

Func⇥Arch|M |= C
f

⌦ C
a

Func⇥Arch|M |= C
s

(6)

where Func⇥Arch|M is a set of traces including both func-
tion and architecture events. Each trace is, in general, an
infinite sequence of events, obtained by merging a trace in
Func and a trace in Arch that satisfy the rendezvous con-
straints specified by M. We say that a component (or a
system) satisfies a contract (denoted by |= in (6)) when its
event time tags satisfy the guarantees in the context of the
assumptions, i.e., for the functional model,

Func \A
f

✓ G
f

, (7)

where Func\A
f

represent the function behaviors that sat-
isfy the assertions of A

f

.
As in [2], the assumptions and guarantees of the composite

contract C
f

⌦ C
a

can be defined as follows:

G⌦ = G
f

\ G
a

A⌦ = A
f

\A
a

[ ¬G⌦,

where ¬ denotes the complement of a set, and all the as-
sumptions and guarantees are assumed to be extended to
the same set of variables including both function and ar-
chitecture events, via a reverse projection operation. If (6)
hold then we can also conclude that C

f

and C
a

are consis-

tent, i.e. there exists an implementation that satisfies both
contracts. In Metronomy, we check all the assertions of the
composite contracts using monitors during co-simulation of
the functional and the architectural models.

In addition to timing verification, we can use Metronomy
to perform design space exploration, by using timing checkers
in an optimization loop, where an objective function (or a set
of objectives) is optimized. As an example, if Func, Arch,
C
f

, or C
a

are expressed in parametric form, the design space
exploration problem can be formulated as follows:

min
x

f

,x

a

,x

c

J(Func(x
f

), Arch(x
a

))

s.t.

8
<

:

Func(x
f

)⇥Arch(x
a

)|M |= C
f

(x
f

, x

c

)⌦ C
a

(x
a

, x

c

)
Func(x

f

)⇥Arch(x
a

)|M |= C
s

(x
f

, x

c

)
x

f

2 X

f

, x

a

2 X

a

, x

c

2 X

c

where x

f

and x

a

are sets of parameters that encode design
choices in the functional and the architectural model, re-
spectively; x

c

are parameters of the contracts (e.g. see d,
r

c.reg

, r
c.pid

in the illustrating example) which allow relax-
ing or tightening design requirements; J is cost function.
The models obtained from the optimization process, Func

⇤

and Arch

⇤, can then be provided as specifications to be in-
dependently implemented (refined) by the control and the
embedded system engineers.

5. METRONOMY IMPLEMENTATION
As shown in Figure 2, Metronomy model includes two

components, i.e. the functional model and the architectural
model. At the top level, the two parts are composite ac-
tors governed by the co-simulation director CoSimDirector,
which extends the execution semantics of MetroII.

Executable
Model

MetroII
Model

SystemC
Lib

MetroII
Lib

Config
File

Compile

Continuous Discrete

Mapping Constraint Examples: 
(FunctionalModel.Controller.PID.FireBegin, 

Task1.PID.Begin)
(FunctionalModel.Controller.PID.FireEnd, 

Task1.PID.End)
(FunctionalModel.Controller.AddSubtract.FireBegin,

Task1.AddSubtract.Begin)
(FunctionalModel.Controller.AddSubtract..FireEnd,

Task1.AddSubtract..End)

Figure 2: A CPS model in Metronomy.

The functional model is an actor-based hierarchical model
inside a composite actor. For CPS, a customized discrete
event director CoSimDEDirector is used to govern the ex-
ecution of the functional model. Under CoSimDEDirec-

tor, the physical plant is typically modeled using direc-
tors for continuous MoCs, while the controller is typically
modeled with discrete MoCs, which are all adapted to the
co-simulation execution semantics. The architecture is a
MetroII model, which is based on a SystemC simulation en-
gine. The model is compiled with SystemC and MetroII li-
braries into an executable, which then runs in a separate pro-
cess during co-simulation. The running model is wrapped by
a composite actor using inter-process communication. The
architectural model also has a configuration file that con-
tains the its parameters.

The mapping function M is implemented as a set of map-
ping constraints used by the co-simulation director. A map-
ping constraint is a rendezvous constraint on a pair of events,
where each event is specified by its name. Figure 2 also
shows examples of mapping constraints, in which the be-
ginning and the ending of firings of PID and AddSubtract

actors in the functional model are mapped to the beginning
and the ending of the PID and AddSubtract services of
Task1 in the architecture.

5.1 Co-simulation Director
Each actor under the co-simulation director is either a

functional model or an architectural model, which is a pro-
cess that controls a set of concurrent processes. The simula-
tion progress of each model is controlled by the co-simulation
director via passing events.

An event e = (id, k) is associated to a tuple (id, t, s, V ),
where id is the event identifier, t 2 T is its time tag (t = null

for un-timed events), s 2 {proposed, waiting, notified} is
the state of the event, and V is a set of additional values that
can be used for passing messages between actors (models).
Intuitively, each event marks the beginning or the ending of
an activity (e.g. a computation process or the application of
a certain action). When the event is passed from an actor
to the co-simulation director, the state is always proposed.
When the event is passed back from the co-simulation di-
rector to the actor, the state is either notified or waiting,
indicating whether the activity associated with the event
can proceed or not. Multiple events can be proposed by one
actor to model the concurrency. An event being proposed
indicates that an activity “may happen” in the functional or



Phase 1 Phase 2
Functional Model

Architectural Model

Mapping 
Constraint 

Solver Scheduler

1. Block and Propose Events

2b. Enable Some Events

2a. Schedule, 
Resolution

Figure 3: The two-phase execution semantics.

architectural model. Then, if the proposed event is notified,
the associated activity will actually happens. If the proposed
event is instead set to waiting by the co-simulation director,
the associated activity will have to wait.

Figure 3 shows the execution semantics of the co-
simulation director, which is articulated into two phases:

• Phase 1: Base Model Execution. Each top-level ac-
tor (functional or architectural model) executes until
it blocks after proposing events. After all the top-level
actors block the simulation transitions to phase 2.

• Phase 2: Scheduling or Constraint Solving. The
states of the proposed events are updated based on
the resolution of the mapping constraints. A subset
of the proposed events are enabled and their states are
updated to notified, which simultaneously allows their
associated composite actors to resume. The rest of the
events remain suspended, i.e. their states are updated
to waiting.

Inside a composite actor, the internal actors are organized
hierarchically and each actor is seen as a separate process
which is scheduled by the governing MoC director as well
as the co-simulation director. In phase 1, an actor has a
chance to propose events only when the actor is scheduled
by the governing MoC director; an actor can proceed to the
phase 1 of the next round only when the proposed events
are notified in phase 2.

5.2 Mapping Semantics
Metronomy uses rendezvous constraints and event syn-

chronization to implement the mapping M between func-
tional architectural models, a powerful and flexible mech-
anism, which allows mapping constraints to be established
between arbitrary pairs of events.

Let e

f

and e

a

be two events in the functional and archi-
tectural models, respectively, and such that e

a

= M(e
f

).
A rendezvous constraint on e

f

and e

a

requires that both of
them be in the proposed state when the constraint is re-
solved in phase 2. Events e

f

and e

a

will then be set to
notified only when both of them are in the proposed state
in the same round; if only one of them is proposed, it will
be just set to waiting. As an example, if we assume e

a

is
proposed in each round, it will only be notified when the
mapped event e

f

is also proposed, which implies the activ-
ity in the architectural model is “driven” by the functional
model. Symmetrically, if e

f

is proposed in each round, it
will only be notified once e

a

gets proposed, meaning that
the execution of the functional model is now “driven” by the
architectural model.

Plant

Figure 4: The functional model of a simplified electrical
power system.

Voltage < 120V

End-to-end delay = 0

Figure 5: Simulation results from an ideal functional model
with zero end-to-end latency.

6. CASE STUDY
We demonstrate our methodology and the use of our co-

simulation framework on design examples of embedded con-
trollers for an aircraft electric power system and a printing
press paper feed system.

6.1 Aircraft Electric Power System
Due to the increase in electrification of modern aircraft,

the design of the electrical power distribution system has be-
come very challenging because of the safety-critical nature
of the system, subject to tight reliability constraints [14].
Figure 4 shows a simplified functional model of a power sys-
tem, including a composite GeneratorContactorLoad actor,
modeling the power system plant, and a hierarchical con-
troller, built out of two composite actors, the Supervisor

and the Controller. The power system plant consists of a
set of power sources (generators), loads and electromechan-
ical switches (contactors), all lumped into the continuous-
time actor GeneratorContactorLoad. We assume that the
Supervisor is a fixed, pre-designed finite state machine which
configures the power plant by actuating the contactors to
connect the power sources to the loads in each aircraft op-
eration mode. Our goal is to explore the trade-o↵s involved
in the design of the Controller that regulates and stabilizes
the amplitude of the voltage on the power network, which is
required to never exceed 120 V to prevent any damage in the
loads. To do so, our simulation setup includes a SingleEvent

actor modeling the insertion of a new load in the system at
time 15 s.

Figure 5 shows the result of a purely functional simulation
where the ideal controller undergoes zero end-to-end latency.
The controller outputs its drive voltage (represented in blue
in the figure) by instantly reacting to the voltage level sensed
on the power network. The requirement is always satisfied.

On the other hand, in Figure 6, we represent a more re-
alistic, composite Controller actor, where blocks Sensing-



Comm and ActuatingComm capture the e↵ects of commu-
nication between the PID controller and the plant via sen-
sors and actuators. Sensing and actuation delays are not
always available while prototyping the control algorithm at
the functional level. Therefore, instead of delving into the
implementation details and the specific delay breakdown be-
tween computation and communication, the control designer
may conveniently rely on a simpler interface, defined by a
timing contract. In such a contract, an assumption can be
made on the whole end-to-end latency between sensing and
actuation, which can be captured by the following assertion:

t(ActuatingComm.e,k) � t(SensingComm.b,k)  d, (8)

where d represents both the communication (e.g. bus) and
computation (e.g. processor) delays related to the imple-
mentation architecture. Under the assumption in (8), the
functional model guarantees that the Controller is triggered
every 1 second: 8k, t(SensingComm.b,k) = k. Moreover, the
amount of computation in each activation is bounded. For
example, PID needs to compute at most once whenever
PIDController is triggered:

8k, 8j,
(t(PIDController.b,k)  t(PIDController.PID.b,j)

^t(PIDController.PID.e,j+r)  t(PIDController.e,k)) ! (r = 0).

The functional model is then accompanied by an architec-
tural model, including a processor, a sensor, an actuator, a
bus and a simple OS layer that supports the following ser-
vices: reading values from the sensor, writing values to the
actuator, arithmetic computations and PID computation.
In its contract, the architecture guarantees that the delay of
each service is bounded.

To provide realistic worst case estimations of the end-to-
end delays, we co-simulate the composition of the functional
model with the architectural model, where firing events of
SensingComm, ActuatingComm and Controller are mapped
to “service” events in the architecture. As stated earlier,
such a mapping mechanism allows accounting for the impact
of architectural choices on the system functionality, while
keeping the details of the architecture “hidden” from the
pure functional model. We perform verification of the timing
contract by checking that for each event arriving at port2 in
Figure 6 the end-to-end timing assumption is satisfied, i.e. it
is discharged by the architecture guarantees. If this is not
the case, a timing violation exception will be thrown.

As an example, we investigate the impact of the latency
assumptions on the final controller design, a crucial parame-
ter for the development of this system. A pessimistic latency
bound dmay end up with a degraded controller performance,
while an optimistic bound at the functional level may re-
quire a fast and expensive architecture to be supported. In
Figure 7, we prototype a controller by assuming a loose as-
sumption on the end-to-end latency (d = 0.3 s). Such an
assumption is compatible with an inexpensive architecture,
with high (pessimistic) sensing and actuation delays, and a
“slow” communication bus. However, the mapped controller
violates our requirement since an overdrive voltage exceed-
ing 120 V is observed at time 24 s and 25 s. We can then
overcome this issue by either providing a “faster” bus, or
modifying the functional architecture in the first place to
accommodate any impairments related to the implementa-
tion platform.

The results obtained after implementing the former solu-

Figure 6: The controller in an electrical power system. PID-

Controller is a sampled-data feedback controller. The PID

control filter simply takes the di↵erence between the mea-
sured voltage and the desired one.

Voltage > 120V

End-to-end delay

Figure 7: Simulation of the functional model and the archi-
tecture with a slow bus.

tion are visualized in Figure 8, where the functional model is
now assuming d = 0.09 s, albeit at additional architecture-
related costs. On the other hand, Figure 9 shows how the
functional model can be modified when the latter approach
is adopted. To avoid over-voltage problems, the functional
model is equipped with an additional voltage protection
mechanism for the loads. Whenever the voltage level ex-
ceeds 119 V, the voltage protection kicks in and disconnects
the loads from the power network until the desired voltage
is restored on the line. By utilizing the additional voltage
protection, a looser bound is acceptable for the architecture
contract, which allows leveraging cheaper solutions.

Figure 10 shows the simulation result of the mapped
model with voltage protection. At time 24 s, the protection
circuit detects that the voltage exceeds 119 V and discon-
nects the loads, which will be reconnected later on, when
the voltage stabilizes. Di↵erent solutions result in di↵erent
timing contracts (d = 0.3 s or d = 0.09 s) between function
and architecture designers, which in turn restrict the further
refinement of both function and architecture.

6.2 Printing Press Paper Feed System
Figure 11 shows the paper feed system of a high-speed

printing press. The system consists of three types of rollers:
two drive rollers, a feed roller, and a reserve roller. A roll
of paper is driven by the feed roller to feed the printing
machine. When the radius of the feed roll becomes lower
than a first threshold, a signal is sent to bring up the reserve
roller and its velocity will eventually match that of the drive
roller. When the radius of the feed paper roll is lower than
a second threshold, a tape detector begins sensing the tape
on the reserve roll. When the presence of a strip of tape on
the reserve roll is detected, the contact controller computes



Voltage < 120V

End-to-end delay

Figure 8: Simulation of the functional model with acceler-
ated architecture.

Plant

Voltage Protection

Figure 9: Functional model of an electrical power system
with over-voltage protection.

when the strip of tape will be directly opposite the contact
actuator and prior to this point of time, it sends a signal
to the contact actuator, which forces contact between the
active and reserve paper so that they are attached by the
tape. Right after that, the cutter actuator cuts the paper
from the feed roller so that the reserve roll continues to feed
the printing machine. The most critical scenario for timing
requirements occurs when the contact actuator reacts after
the radius of the feed roll falls below the second threshold
and the tape is detected.

Figure 12 shows the functional model Func of the power
feed subsystem; the controller consists of nine composite
actors, numbered from 6 to 14. We assume that the
controller senses and actuates the plant with a sampling
period T

sample

2 T which is a design choice, with T =
{0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} s.
The architectural model Arch is a single processor multi-
task platform. To implement the mapping function M,
each of the actors 6-14 in Figure 12 is mapped to a task,
nine in total, which implies that all the “begin” and “end”
events of the atomic actors enclosed in the composite
actors are mapped to the “begin” and “end” events of
the corresponding services of the tasks. These tasks are
scheduled by a priority-based operating system supporting
preemption. The priorities are given from high to low in
the following order: 6,7,8,12,13,14,9,10,11. The proces-
sor is connected to sensors and actuators via Ethernet.
End-to-end latency measurements consist of the following
contributions: sensor and actuator delay, communication
delay, processor execution delay. We assume that the
sensing, actuation and communication delays are constants.
The frequency of the processor f

proc

2 F is a design choice,
with F = {3.3, 5, 10, 16.6, 20, 33.3, 50, 100, 133} MHz; faster
processors are more expensive.

A key performance metric in this system is the tracking er-

Voltage protection kicks in: 
loads are disconnected

Figure 10: Simulation of the functional model with over-
voltage protection.

Contact 
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Figure 11: The paper feed subsystem.

ror between the paper velocity of the feed (reserve) roller and
the one of the drive roller. Although the two dancers shown
in Figure 11 help compensate the di↵erence in the velocities
of the drive roller and the feed roller, a controller is still
needed to minimize the tracking error, especially when the
drive roller accelerates soon after the system starts. Since
the radius of paper roll is also changing, the drive signal to
the feed roller has to be dynamically adjusted to maintain a
proper surface velocity. We add monitors to the functional
model to measure the RMS tracking error ✏

RMS

using the
following formula:

✏

RMS

=

vuutT

mon

T

sim

T

sim

/T

monX

i=0

⇣
V

iT

mon

drive

� V

iT

mon

feed

⌘2
,

where T

mon

is the sampling period of the monitor, V

t

drive

and V

t

feed

are the velocities of the drive roller and the feed
roller at time t respectively, and T

sim

is the duration of the
simulation.

We cast the design space exploration problem as a multi-
objective optimization problem subject to timing contracts;
we aim to minimize:

min
T

sample

,f

proc

(✏
RMS

, f

proc

)

s.t.

8
>><

>>:

Func(T
sample
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proc

)|M
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f
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f

(T
sample

))⌦ (True,G
a

(f
proc

))
Func(T

sample

)⇥Arch(f
proc

)|M |= C
s

T

sample

2 T , f

proc

2 F

(9)

where both the functional and architectural contracts have
been concisely denoted as pairs of assumptions and guar-
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Figure 12: The functional model of a paper-feed subsystem.

antees, by dropping the set of events and time tags. A
f

,
G
f

(T
sample

) and G
a

(f
proc

) are obtained by composition of
the contracts of all the controllers, among which the con-
tract for the Feed Controller has been illustrated as an ex-
ample in Section 3.1. C

s

is the contract that specifies the
system level requirements (e.g. the timing requirements on
the contact actuator and the cut actuator).

The tracking error ✏
RMS

depends on the sampling period
T

sample

and the end-to-end latency l of the feedback con-
troller (l  T

sample

). As shown in Figure 13, as the sampling
period increases, the tracking error (in blue) significantly in-
creases. In addition, the velocity of the paper roll becomes
unstable when T

sample

� 0.6. Figure 14c shows the linear
velocity of the feed roller, the target velocity, and the error
between them when the sampling rate is 0.8 s, which causes
the system to fail.

In Figure 13, the curve in red shows the tracking error
✏

RMS

versus f

proc

Pareto front. Given a processor speed
f

proc

we can find the sampling period T

sample

that mini-
mizes the tracking error while satisfying all the timing con-
straints. For example, when f

proc

= 10 MHz, the optimal
✏

RMS

is 3.1 m/s, as obtained from the red curve in Fig-
ure 13. This corresponds to an optimal sampling period of
T

sample

= 0.3 s, as obtained from the blue curve in Figure 13.
Any point below the ✏

RMS

-versus-f
proc

Pareto front is an in-
feasible design due to timing violations (e.g. f

proc

= 10 MHz,
T

sample

= 0.2 s). Any point above the Pareto front is in-
stead non-optimal; e.g. T

sample

= 0.4 s is not an optimal
choice for a 10-MHz frequency since the point (10, 3.46) is
dominated by (10, 3.1), obtained for T

sample

= 0.3 s.
Given an architecture, we can also explore the design

space at the functional level. For example, Figure 14d shows
that with an economic processor (5 MHz) and a slow sam-
pling rate (0.5 s) it is still possible to satisfy our tracking er-
ror requirement, but at the cost of a smaller roll acceleration.
The compromise at the functional level enables us to use
inexpensive platforms. Once that sampling period and the
processor speed are decided, the functional and architectural
timing contracts are also defined, and can be used for the
next steps in the design process. Therefore, while the two
models are kept separated, their interaction is still captured
by the timing contract, which, together with co-simulation,
makes it easier to verify the impact of di↵erent choices and
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Figure 13: Design space exploration results, while minimiz-
ing both the tracking error and the processor speed.

explore trade-o↵s across the function/architecture bound-
ary.

7. CONCLUSIONS
We have proposed a methodology for the verification and

design space exploration of cyber-physical systems subject
to real time constraints. In our framework, co-simulation of
a high-level, functional model together with a lower-level,
architectural model is used to accurately capture the e↵ects
of the implementation platform and the physical plant on the
system functionality. Assume-guarantee contracts are used
to rigorously formalize the timing requirements at di↵erent
levels of abstractions and generate simulation monitors.

To support our methodology, we have implemented
Metronomy, a versatile co-simulation framework that en-
ables the integration of the most suitable modeling envi-
ronments to capture both the functional and architectural
aspects of a design. In Metronomy, the functional aspect is
captured by exploiting the variety of models of computation
made available by the Ptolemy environment and its intuitive
graphical user interface. The architectural aspect is cap-
tured within the MetroII environment, capable of modeling
implementation platforms to a greater level of detail. Models
in the two environments are co-simulated based on a rigor-
ous mapping semantics. The e↵ectiveness of our approach is
demonstrated on the design of embedded controllers for an



-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

Time in seconds

V
el

oc
ity

 m
/s

(a)

-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
Time in seconds

V
el

oc
ity

 m
/s

(b)

-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
Time in seconds

V
el

oc
ity

 m
/s

(c)

-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

Time in seconds

V
el

oc
ity

 m
/s

(d)

Figure 14: Simulation results for the paper feed system,
including the target velocity (green) of the feed roller, the
actual velocity (blue), and the error (red). (a) T

sample

=
0.1 s, f

proc

= 33 MHz. (b) T

sample

= 0.5 s, f
proc

= 5 MHz;
(c) T

sample

= 0.8 s, f
proc

= 3.3 MHz; the velocity oscillates
and the system does not operate correctly. (d) T

sample

=
0.5 s, f

proc

= 5 MHz, but with a slower acceleration.

aircraft electrical power system and a paper-feed sub-system
of a high-speed printing press.
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