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Abstract. This article presents PAPRICA-3, a VLSI-oriented architecture for real-time processing of images and
its implementation on HACRE, a high-speed, cascadable, 32-processors VLSI slice. The architecture is based on
an array of programmable processing elements with the instruction set tailored to image processing, mathematical
morphology, and neural networks emulation. Dedicated hardware features allow simultaneous image acquisition,
processing, neural network emulation, and a straightforward interface with a hosting PC.

HACRE has been fabricated and successfully tested at a clock frequency of 50 MHz. A board hosting up to four
chips and providing a 33 MHz PCI interface has been manufactured and used to build BEATRIX, a system for the
recognition of handwritten check amounts, by integrating image processing and neural network algorithms (on the
board) with context analysis techniques (on the hosting PC).
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implementations

1. Introduction

Handwriting recognition [1–3] is a major issue in a
wide range of application areas, including mailing ad-
dress interpretation, document analysis, signature ver-
ification and, in particular, bank check processing.
Handwritten text recognition has to deal with many
problems such as the apparent similarity of some char-
acters with each other, the unlimited variety of writing
styles and habits of different writers, and also the high
variability of character shapes issued by the same writer
over time. Furthermore, the relatively low quality of the
text image, the unavoidable presence of background
noise and various kinds of distortions (for instance,
poorly written, degraded, or overlapping characters)
can make the recognition process even more difficult.

The amount of computations required for a reliable
recognition of handwritten text is therefore very high,
and real-time constraint can only be satisfied either by
using very powerful and expensive processors, or by
developing ad-hoc VLSI devices.

To cope with the tight cost and size constraints we
had, we decided to develop HACRE, a massively par-
allel VLSI image processor with the instruction set
dedicated to execute both traditional image processing
(such as filtering and image enhancement) and mathe-
matical morphology [4] (such as opening, closing,
skeletonization) and several types of neuro-fuzzy net-
works [5] (such as perceptrons, self-organizing maps,
cellular networks, fuzzy systems). We have tailored the
recognition algorithms to the architecture capabilities.

HACRE is based on PAPRICA-3, a dedicated archi-
tecture deriving from enhancement of previous works
[6–8]. It is designed to be used both in a minimum-size
configuration (consisting of 1 chip, 1 external RAM,
plus some glue logic for microprocessor interfacing)
and in larger-size configurations (consisting of as many
cascaded chips as required, as many external RAMs,
some additional global interconnection logic and a host
interface, typically a PCI).

A configurable PCI board hosting up to four HACRE
chips, together with the required RAM chips (for image
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and program memories), camera and monitor inter-
faces, controllers, PCI interface and all the required
logic, has been designed, manufactured and success-
fully tested.

One such board, populated with two HACRE chips,
plugged into a hosting PC, has been used to build
and test BEATRIX, a complete system for high-speed
recognition of the amount on banking checks, which
mixes image processing algorithms, neural networks
and a context analysis subsystem [3].

The VLSI device and the overall system (board and
PC interface) have been designed in parallel with the
development of the algorithms (BEATRIX), so that
the hardware and software designs have influenced
each other very much. That resulted into an efficient
though flexible implementation for a wide class of
applications.

Section 2 describes the driving application, while
Sections 3 and 4 describe the PAPRICA-3 architec-
ture and the HACRE chip, respectively. Section 5 de-
scribes the PCI board, while Section 6 briefly describes
the BEATRIX check recognizer. At the end, Section 7
gives the measured performance of the system and
compares them with those of a commercial PC.

2. Driving Application

The aim of our work was to recognize real-world
checks, where handwriting is assumed to be unboxed
and usually unsegmented, so that characters in a word
may touch or even overlap. The amount is written twice:
the legal amount (namely, the literal one), and the cour-
tesy amount (namely, the numerical one).

The two fields are placed in well-known areas of
the check, and an approximate localization of these
two areas can be obtained from the information con-
tained in the code-line printed at the bottom of the
check.

2.1. Application Requirements

Our aim was to cope with the tight cost and performance
requirements which might make our system commer-
cially relevant. From a preliminary system analysis we
pointed out the following requirements: average pro-
cessing speed of at least 3 checks per second (5 per
second, peak), with a rejection rate significantly lower
than 5% and an error rate approaching zero. This cor-
responds to a sustained recognition speed of about 500

characters per second (both digits and alphanumeric)
and a character accuracy rate in excess of 99%.

Cost requirements imposed a higher bound of 50
US$ per chip with a power dissipation of at most 1 W
per chip. In addition, one particular application in a
low-speed but low-cost system was claiming at a single-
chip embedded solution.

As far as the host processor is concerned, we se-
lected a commercial PC with a standard PCI bus. The
operating system could either be Microsoft Windows
or Linux.

The choice of such a general-purpose hybrid archi-
tecture (a PAPRICA-3 system tightly interconnected to
a host PC) was driven by the observation that in many
image processing systems the first processing steps (at
the bitmap level) mostly require simple operations on a
large amount of data, whereas, as processing proceeds,
less and less data requires more and more complex
operations. In our approach, PAPRICA-3 is tailored to
a fast and repetitive processing of elementary pixels
of an image while the PC is best used for more com-
plex and more symbolic-based operations on a much
reduced amount of data. We feel that such a cooper-
ation between the two systems can provide the best
cost-performance ratio.

2.2. Chip Requirements

The HACRE chip has been designed bearing in
mind the following application-dependent constraints/
requirements:

– cascadability: HACRE implements a slice of 32
Processing Elements (PE’s) (all that could fit in
100 mm2), but additional chips can be cascaded and
connected to as many RAM chips;

– neural networks mapping: one PE per each neuron,
to have the highest efficiency;

– a simple 1-bit Processor Element; operations with
higher resolution can be computed by means of a
bit-serial approach; this provided the best complex-
ity/flexibility/performance trade-off among all the
architectures which were analyzed;

– provisions for both image processing, mathemati-
cal morphology [4], neural networks [5] emulations,
image acquisition, etc.;

– easy interface with a host processor (possibly a PC),
to improve overall functionality;

– the highest degree of programmability, while keep-
ing the hardware complexity at a low level; this
has been achieved by letting the host PC (instead
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of HACRE) perform a number of operations which
normally occur at a lower rate;

– both “local” and “global” instructions; the former
are used to implement a sort of pixel neighbor-
hood, while the latter are available to compute global
operators, such as summations, maxima, minima,
winner-takes-all, etc.;

– provisions for simple handling of external look-up
tables (external RAM’s or ROM’s);

– a set of external “status registers” where HACRE
can accumulate neuron outputs and which can be
read (or written into) in parallel by the host PC;

– a set of direct binary I/O channels (6 + 6) through
which HACRE can either interrupt the host PC or
activate stepper motors, CCD cameras, etc.

3. Architecture Description

PAPRICA-3 is the latest component of a family of mas-
sively parallel processor architectures [6–8] designed

Figure 1. General architecture of the processor array.

at the Politecnico di Torino. As shown in Fig. 1, the
kernel of PAPRICA-3 is composed of a linear array
of identical Processing Elements (PEs) connected to a
memory via a bidirectional bus.

The memory stores the image and the intermedi-
ate results of the computation and is organized in
words (each one associated to an address) whose length
matches that of the array of processors. Each word in
the memory contains information relative to one binary
pixel plane (also called layer) of one line of an image.
Because the width of the bus that connects the array
and the memory is the same as the number of process-
ing elements (and therefore it is the same as the word
length), a single memory cycle is required to load or
store an entire line of the image to/from the PE’s inter-
nal registers.

A Control Unit executes the program stored in the in-
struction memory (called the Writable Control Store)
and generates the signals that control the operations
of the processing elements, the image memory, and
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of the other architectural elements that will be de-
scribed below. The typical flow of operation consists
of first transferring one line of the image from the
memory to the array, then processing the data, and fi-
nally storing back the results into memory according
to a LOAD–EXECUTE–STORE processing paradigm
typical of RISC processors. The same cycle is re-
peated for each line until the entire image has been
processed.

When executing a program, the correspondence be-
tween the line number, the pixel plane of a given im-
age, and the absolute memory address is computed by
means of data structures called Image Descriptors. An
Image Descriptor is a memory pointer that consists of
two parts: a base address that usually represents the
first line of the image, and two line counters which can
be reset or increased by a specified amount during the
execution of the program, which are used as indices to
scan different portions of the image.

The instruction set includes several ways to modify
the sequential flow of control. Branches can be taken
unconditionally or on the basis of conditions drawn
over the control unit internal registers. In addition,
any instruction can be prefixed by an enabling con-
dition. One register in the control unit is dedicated to
the implementation of hardware loops: given the it-
erative nature of the algorithms employed in image
processing, this features greatly enhances the perfor-
mance of the architecture. Two additional conventional
counters can be used as indices in the outer loops; in-
structions are provided to preset, increase and test their
value.

3.1. Processing Elements

Each PE is composed of a Register File and a 1-bit Ex-
ecution Unit, and processes one pixel of each line. The
core of the instruction set is based on morphological
operators [4]: the result of an operation depends, for
each processor, on the value assumed by the pixels of a
given neighborhood, which in the case of PAPRICA-3
is a reduced 5 × 5 box, as sketched by the grey squares
in Fig. 1. The morphological function can be selected
by changing the value of a template which encodes for
each pixel of the neighborhood the kind of required
boolean combination.

The instruction set includes also logical and
algebraic operations (AND, OR, NOT, EXOR, etc.),
which can be used either to match input patterns against
predefined templates, or to compute algebraic opera-

tions such as sums, differences, multiplications, etc. As
PE’s are 1-bit computing elements, all algebraic oper-
ations have to be computed using a bit-serial approach.

For each Processor Element, the value of the pixels
located in the East and West directions (either 1 or
2 pixels away) is obtained by a direct connection to
the neighboring PE’s, while the value of the pixels in
the North and South directions corresponds to that of
previously or to be processed lines.

To obtain the outlined neighborhood in the chip
implementation, a number of internal registers (16 per
each PE, at present), called Morphological Registers
(MOR), have a structure which is more complex than
that of a simple memory cell, and are actually com-
posed of five 1-bit cells with a S→N shift register con-
nection. When a load operation from memory is per-
formed, all data are shifted northwards by one position
and the south-most position is taken by the new line
from memory. In this way, data from a 5 × 5 neighbor-
hood are available inside the array for each PE, at the
expense of a two-line latency. A second set of registers
(48 per each PE, at present), called Logical Registers
(LOR), is only 1-bit wide and is used for logical and
algebraic operations only.

3.2. Video Interface

An important characteristic of the system is the inte-
gration of a serial-to-parallel I/O device, called Video
InterFace (VIF), which can be connected to a linear
CCD array for direct image input (and optionally to
a monitor, for direct image output). The interface is
composed of two 8-bit shift registers which serially
and asynchronously load/store a new line of the in-
put/output image during the processing of the previ-
ous/next line. Two instructions activate the bidirec-
tional transfer between the PE’s internal registers and
the VIF, ensuring also proper synchronization with the
CCD and the monitor.

3.3. Inter-Processor Communication

Two inter-processor communication mechanisms are
available to exchange information among PE’s which
are not directly connected.

The first mechanism consists of a network (called
Status Evaluation Network), shown in Fig. 2(a) which
spans the extent of the array; each processor sends
the 1-bit content of one of its registers and the global
network provides a Status Word which summarizes the
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Figure 2. Inter-processor communication mechanisms: a) status evaluation network b) inter-processor communication network.

status of the array. The word is divided into two fields:
the first field is composed of two global flags, named
SET and RESET, which are true when the contents of
the specified registers are all ‘1’s or all ‘0’s, respec-
tively; the second field is the COUNT field which is set
equal to the number of processing elements in which
the content of the specified register is ‘1’. This inter-
processor communication mechanism can be used to
compute global functions such as maxima, minima
(e.g., for emulation of fuzzy systems), logical OR and
AND of boolean neurons, neighborhood communi-
cations, neuron summations in perceptrons, external
look-up tables, winner-takes-all, seed propagation al-
gorithms, and many others.

This global information may also be accumulated
and stored in an external Status Register File and used
for further processing, or to conditionally modify pro-
gram flow using the mechanism of prefix conditions.
Status Registers can also be read by the host proces-
sor. For instance, Status Registers have been used in
the example of Section 2 to implement a neural net-
work by computing the degree of matching between
an image and a set of templates (weight and center
matrices).

The second communication mechanism is an
Inter-processor Communication Network, shown in
Fig. 2(b), which allows global and multiple commu-
nications among clusters of PE’s. The topology of the
communication network may be varied at run-time:
each PE controls a switch that enables or disables the
connection with one of its adjacent processors. The
PE’s may thus be dynamically grouped into clusters,

and each PE can broadcast a register value to the whole
cluster with a single instruction. This feature can be
very useful in algorithms involving seed-propagation
techniques, in the emulation of pyramidal (hierarchi-
cal) processing and for cellular neural networks or for
local communication (short range neighborhood).

3.4. Host Interface

A Host Interface allows the host processor to access the
WCS and a few internal configuration registers when
HACRE is in STOP mode. The access is through a con-
ventional 32-bit data bus with associated address and
control lines. The same lines are controlled by HACRE
in RUN mode and used to access the private external
Image Memory.

Some additional control and status bits are used to
exchange information with the host processor: these
include a START input line and a RUNNING output
line, plus another six input and six output lines called
Host Communication Channels (HCC’s). HCC input
lines can be tested during program execution to modify
program flow, while HCC output lines can be used as
flags to signal certain conditions to the host processor
(for instance, interrupts).

4. Chip Description

The kernel of the hardware implementation of the
PAPRICA-3 system is the HACRE integrated circuit
whose block diagram is shown in Fig. 3.
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Figure 3. Block diagram of the chip.

The main components are:

– The Processor Array (PA) which is composed of 32
processing elements; the internal architecture and
the main features of the PA and of the PE’s are de-
scribed in detail in Section 4.1.

– The PA has a direct and fast parallel communication
channel towards the Image Memory (IM) which in
the current implementation is external to the chip.
The decision to keep the IM outside of the chip has
been a very critical issue. The direct and fast access
to a large internal memory would have allowed to
execute at each clock cycle a LOAD or STORE op-
eration with the same timing as other instructions and
with a high processing throughput but, on the other
hand, the cost of implementing a large memory with
a standard CMOS technology would have been too
high. In fact architectures such as the IMAP system
[9], which have large on chip data memories, employ
dedicated, memory oriented fabrication processes.
Therefore we decided to implement the IM external
to the chip and to reduce the processing overhead by
a heavy pipeline of internal operations which may
allow the partial overlap of a memory access with
the execution of subsequent instructions.

– The Control Unit (CU) which executes the instruc-
tions by dispatching to the PA the appropriate control
signals. The choice of implementing the CU on the
same chip as the PA is a key characteristic of
the PAPRICA-3 architecture with respect to other
mono- and bi-dimensional SIMD machines [9–13]
in which the controller is a unit which is physically
distinct form the array. In this case the maximum

clock speed is limited to a few tens of MHz by the
propagation delay of the control signal from the con-
troller to the different processing units. This may be
a non critical limit in systems with a large number
of PE’s, but, since our application was aimed at real
time embedded systems, we preferred to push to the
limit the performances even of single-chip systems
by integrating the CU with the array. This means that
with multiple-chip systems the CU is replicated in
each chip with an obvious loss in silicon area, but in
our case it has been considered a little price to pay,
with respect to the possible increase in performance
since our design goal was an operating frequency of
100 MHz. Section 4.2 will analyze in detail the de-
sign choices of the CU and its internal architecture.

– The Writable Control Store (WCS, 1K words ×
32 bits), in which a block of instructions is stored and
from which the CU fetches instructions. The choice
of a WCS is a compromise between different con-
straints. First the goal of executing one instruction
per cycle required the Instruction Memory to reside
on the same integrated circuit as the CU. Since the
amount of memory which may be placed on a chip
with a standard CMOS technology is limited the op-
timal solution would have been a fast associative
cache. A preliminary feasibility study showed that
the cache approach would have been too expensive
in terms of silicon area and too slow to match the
target 10 ns cycle time. Considering that most im-
age processing algorithms consist of sequences of
low level steps, such as filters, convolutions, etc., to
be performed line by line over the whole image this
means that the same block of instructions has to be
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repeated many times. Hence we chose to pre-load
each block of instructions into the WCS, a fast static
memory, and to fetch instructions from there. After
the instructions of one block have been executed for
all the lines of an image, a new block of instructions
is loaded in the WCS. If the ratio between the load-
ing time and the processing time is small then the
performance of a fast cache with a hit ratio close
to 1 can be obtained, at a fraction of the cost and
complexity.

– The ICN and SEN communication networks. The
former is fully distributed in the PE’s; the latter is
composed of two parts: the first part is distributed
and is the collection of EVAL units (see Section 4.1)
integrated in the PE’s, while the second one is cen-
tralized and is composed of one Count Ones unit and
two 32-AND units for the evaluation of the SET and
RESET flags.

– The Host interface which allows a host processor
to access the WCS, and a few internal configuration
registers. The access is through a conventional 32-bit
data bus with associated address and control lines.
In addition the interface handles the external proto-
col for the communication between the PA and the
external Image Memory.

A microphotograph of the complete chip is shown
in Fig. 4. The chip has been implemented in a 0.8 µm,
single poly, dual metal CMOS technology and has a
total area of 99 mm2. Multiple chips may be cascaded

Figure 4. Microphotograph of the chip.

to build systems with a larger number of processing
elements, as explained in detail in Section 5.

4.1. Processing Array

The Processing Array has been implemented using a
full custom design style in order to take advantage of
its regular structure and optimize its area. In fact each
Processing Element is a layout slice and, since all PE’s
operate according to a SIMD paradigm, the control sig-
nals are common to all of them and may be broadcast
by simple abutment of PE cells. Unlike the block di-
agram of Fig. 3 where the 32 PE array is shown as a
single entity, in the implementation the array is divided
into two 16-PE sub-blocks which are clearly visible at
the top and at the bottom of the photograph of Fig. 4.
In this way the capacitive load and the peak current on
the control lines is reduced and the delay is optimized;
in addition, the 16 PE’s block has a better aspect ra-
tio and is more easily routed by automatic tools. The
block diagram of a PE is shown in Fig. 5. Its main com-
ponents are the Register File (RF) and the Execution
Unit (EU).

The RF, introduced in Section 3.1, is composed of
two sections, corresponding to the 48 LOR registers
and to the 16 MOR registers. Address decoding is cen-
tralized for each 16 PE block in order to optimize its
area and the decoded selection lines are run over the
whole block. LOR’s are implemented as 3-port static
RAM cells, allowing the simultaneous execution of 3
operations (2 read and 1 write) on the RF at any given
time.

Each MOR register is composed of five 1-bit RAM
cells, as shown in Fig. 6. The central cell is similar to
a LOR cell with 3 ports, while the other four are static
RAM cells with a single read port. In addition all cells
have an input port (SH) which allows data to be shifted
from each cell to its right neighbor in a single clock
cycle.

When executing a LOAD operation between the Im-
age Memory or the VIF and a LOR register, the value
of the 1-bit pixel is simply transferred in the register
through one of the ports. When the same operation is
performed on a MOR, the value from the memory (or
the VIF) is loaded by the SH port into the leftmost cell
and the contents of all the others is shifted one posi-
tion to the right. In this way the central cell contains
the current pixel of the image, the right cells the north
neighbors with distance 1 and 2 and the left cells the
south neighbors. When a read operation is executed on
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Figure 5. Block diagram of the processing element.

Figure 6. Structure of a MOR register.

port 1 of a MOR, the values of all cells are sent to
the EU for the execution of neighborhood based op-
erations. The execution time of a read/write operation
from the RF is in the worst case lower than 10 ns and the
data is latched at the output by the global system clock.

The register file of each PE integrates also one stage
of the VIF. From a global point of view the VIF is a shift
register with a number of stages equal to the number
of PE’s and with a 16 bit word width. It is divided in
an Input and an Output section, each 8-bit wide, which
are connected respectively to a pixel serial input and
output device and may be clocked independently.

The operations of the VIF and of the Processor Array
are independent and may proceed in parallel, overlap-
ping I/O and processing. However they synchronize
with each other when one of the two following events
takes place:

– A full line of input data has been shifted in the Input
section and the CU has fetched a Load From Camera
instruction. In this case in each PE the 8 bits of the
Input section of the local VIF stage are transferred to
the southmost position of the first 8 MOR registers.

– A full line of data has been shifted out of the output
section of the VIF and a Store To Video instruction
has been fetched by the CU. When it happens the
value of the first 8 LOR registers are transferred in
parallel into the output section of the local stage of
the VIF.

In order to minimize the transfer time and the intercon-
nection area required, the Input and Output sections of
the local VIF stage have been implemented directly in-
side the RF, close to the corresponding LOR and MOR
registers.
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Figure 7. Layout of a processing element.

The EU performs the operations corresponding to
the instructions of the program on the data from the
RF, under the control of the CU. It is composed of 4
blocks:

– The LOP unit which is responsible for logical and
arithmetic operations. It has been synthesized using
a standard cell approach and the final layout has been
routed manually to optimize the area.

– The MATCH unit which is responsible for MATCH
operations, the base of all morphological and low
level image processing operation. Its basic function
is a comparison between a given neighborhood of
the pixel and a vector of 3-valued templates (0, 1 and
don’t care) provided by the CU. The neighborhood
of the pixel is obtained from the contents of a MOR
register of the PE and from the four neighboring
PE’s. In order to reduce the silicon area and execute
the operation in a single clock cycle the unit has been
implemented with custom dynamic logic.

– The COMM unit which implements in standard cell
one section of the ICN communication network de-
picted in Fig. 2(b).

– The EVAL unit which, when the corresponding in-
struction is executed, takes the contents of one reg-
ister of the PE, masks it with the contents of another
register and sends the results to the centralized part
of the SEN for the evaluation of the different fields
of the Status Word.

As explained in the next section, the Control Unit is
able to concurrently execute more than one instruction
which may in turn activate different functional units in
the PE’s. Hence, in order to obtain a correct execution,
a data pipeline that reflects that of the CU had to be put
in place to separate the units in the data path.

Figure 7 shows the layout of one PE which occupies
approximately 1 mm2 of silicon area. As clearly visible,
all functional units have the same vertical dimension

(horizontal in Fig. 6). Control signals run in the vertical
direction across the PE which may be connected by
abutment to its neighbors. The layout also shows how
tightly the register file and the VIF I/O structure are
integrated in order to obtain a high throughput in I/O
operations.

4.2. The Control Unit

As already mentioned, PAPRICA-3 exploits both spa-
tial parallelism due to its massively parallel archi-
tecture, and instruction level parallelism due to the
pipelined design of the control unit. Because of the
very different nature of the instructions executed by
the array and those executed directly by the control
unit, the pipeline had to be designed with particular
care both in its architecture and its implementation in
order to obtain the best trade-off between complexity
and performance.

In HACRE the Control Unit is located on each
chip of a multi-chip implementation together with the
WCS, thus decentralizing the issue of control signals.
The WCS is loaded only once every algorithm while
each instruction is usually executed many times (often
thousands of times) per image. In most cases the over-
head is thus reduced by orders of magnitude. The draw-
back of a similar implementation is the waste of chip
area required for the duplicated logic: while this is still
significant in the technology used for the design (0.8
µm), we anticipate a lower impact in deep sub-micron
technologies where the interconnections, and not the
logic, play the major role.

The main drive in the design of the pipeline is to
obtain the highest performance for those sequences
of instructions that are most used in image process-
ing algorithms; these include, among others, sequences
of morphological operations, loops on the entire im-
age, and bit-serial computations. Although the relative
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frequency of global and scalar instructions is far less
than that of array instructions, their sometimes long
latency due to their global nature may impose severe
constraints to the execution of other instruction, neg-
atively impacting the overall performance; neglecting
their execution would therefore certainly lead to a sub-
optimal design.

For these reasons the pipeline has been logically
divided into two sections which have been partially
collapsed in the implementation to better exploit the
hardware resources. The first section deals with scalar
and global operations and has been designed as a con-
ventional mono-functional queue; the second section
controls the execution of array operations and employs
a more complex multi-functional pipeline (which in-
creases instruction level parallelism) and a more so-
phisticated conflict resolution mechanism. Despite the
implementation as a single continuous structure, the
two sections are designed to operate independently and
they synchronize by means of mutual exclusion on
shared resources during the execution of instructions
that involve both array and global or scalar operations.

4.2.1. Pipeline Implementation. Figure 8 shows the
first section of the pipeline together with the supporting
registers. Dotted lines represent data flow, while block
lines represent the flow of the instruction codes.

The first stage of the pipeline (IF) is responsible for
loading the instructions from the program memory. In

Figure 8. First section of the pipeline.

order to achieve a high clock rate in spite of a relatively
slow memory, instructions are fetched two at a time
(technique known as double fetch). The entire mech-
anism is handled by this stage, so that to the rest of
the pipeline it appears as if the memory were able to
deliver one instruction per clock cycle.

The drawback of this technique is an increased
penalty due to control conflicts that require to invali-
date the initial stages of the pipeline, for example when
a branch is taken (this problem is typical of super-
pipelined architectures where the queue is very deep).
If the loop control in bit-serial and morphological com-
putations were subject to this problem, the benefits
obtained by the higher clock rate achievable by the
double fetch technique would certainly be offset by
the increased penalty. For this reason, the stage J of
the pipeline is dedicated to the support of a hardware
loop mechanism that controls the program counter and
minimizes the negative effects. When the number of
instructions in the loop is even (or if there is only one in-
struction), the pipeline is able to deliver one instruction
per clock cycle with no control overhead. In all other
cases the penalty is just one clock cycle per iteration.
In the ID stage the scalar instructions get executed and
leave the pipeline, while the array instructions are dis-
patched to the AR queue that computes the effective ad-
dresses for the internal registers and the image memory.

Figure 9 shows the second section of the pipeline.
The stage CD is dedicated to the conflict resolution
as will be explained later. The rest of the pipeline is
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Figure 9. Second section of the pipeline.

a multi-functional queue, where each branch of the
queue is dedicated to a particular feature of the array.
In particular SE controls the Status Evaluation; CO
the inter-processor communication mechanism; the se-
quence OR-BP-EX-OW executes the array operations
by first reading the internal registers, then propagat-
ing the data to the neighborhood, then computing the
result of the operation and finally writing back the re-
sult in the internal registers; MU handles the access to
the image memory; and finally SL-LV and SS-SV is
the path followed by the instructions that control the
VIF.

Because of the multi-functional nature of the pipe-
line and the presence of different execution stages (in-
cluding ID for the scalar instructions), it is possible
that instructions be executed out of order (although
the architecture still issues no more than one instruc-
tion per clock cycle). This feature enhances temporal
parallelism and therefore performance. In addition, as
mentioned earlier, the first and the second sections of
the pipeline are decoupled, so that a stall in the second
doesn’t halt the execution of scalar instructions in the
first. By doing this, the impact of the sequential part of
the algorithm is minimized.

4.2.2. Conflict Resolution. The concurrent execution
of instructions gives rise to conflicts in the pipeline
that must be resolved in the most efficient way. In this
section we will present the mechanism employed to
resolve conflicts involving the internal registers. In a

multi-functional queue there are essentially two ways
to detect a conflict condition:

Scoreboard method: In the scoreboard method, all
conflicts are resolved in a single pipeline stage. A
table, called the scoreboard, contains an entry for
each resource in the architecture (e.g. registers). Ev-
ery instruction, before entering the execution stages,
verifies the availability of the source and destina-
tion operands, and once the permission is obtained,
it gets possession of them by registering with the
scoreboard. The resources are released only after the
execution is complete.

Tomasulo algorithm: In the Tomasulo algorithm the
conflict resolution is distributed in the pipeline.
For example, the stage responsible for reading the
operands checks their availability, as does the stage
that writes them. Since the resolution is distributed,
resources are reserved only when they are actually
needed, so that an instruction is allowed to proceed
even if only part of the required operands are avail-
able.

The advantage of the scoreboard method is a much
simpler implementation, which is traded-off with
the higher throughput achievable with the Tomasulo
algorithm. HACRE adopts a combination of the two
approaches. In a traditional implementation the score-
board is basically a map where a set of flags signals the
availability of a particular register for reading or for
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writing. Given the number of registers in our architec-
ture, the distributed access to this map that would be
used in the Tomasulo algorithm results in a big and slow
implementation. Our solution is to build a map that does
not represent the registers, but rather the interaction
among the instructions in the different stages of the
pipeline.

Once in the CD stage, each instruction compares
the effective addresses of its operands to those of the
instructions in the following stages of the pipeline (in
the picture, those to the right); in doing so, the instruc-
tion builds a map where each stage of the pipeline is
marked with a flag: an active flag in the map means
that there is a potential conflict between the instruction
which owns the map and the instruction in the stage
of the pipeline corresponding to the flag. The conflict
is only potential because the instruction that builds
the map has yet to be routed to the stages where the
operands are needed: at that later time, the instruction
that gives rise to the conflict might have already left the
pipeline.

When our instruction leaves the CD stage, it brings
the map with it; in addition, at each cycle, the flags in
the map are updated to reflect the change in state of the
pipeline, i.e. each flag is routed in the map to the stage
where the corresponding instruction ends up. When an
instruction corresponding to a flag leaves the pipeline,
the flag is cleared in the maps. Note that each instruction
has its very own different copy of the map, reflecting the
fact that the conflicts are the expression of a precedence
relation which involves two instructions at a time.

Figure 10. System block diagram.

The data collected by each instruction in the map
can then be used to establish whether a certain operand
is available at a certain time, thus implementing the
Tomasulo technique. Note however that by optimizing
this approach not only is the collective size of the maps
much smaller than that of a register map (approximately
one third in our case), but the update of the flags is much
simpler to implement than a multiple indexed access to
the scoreboard in all stages.

Assuming a 2 clock cycle access time to the image
memory, the pipeline has been measured to perform
at about 2 clock cycles per instruction on real appli-
cations. Under these conditions, the speed-up obtained
with respect to a conventional, non-pipelined controller
running at a similar clock speed is close to 6. The use of
more aggressive optimization techniques for the soft-
ware may further improve these numbers.

5. The PCI Board

We designed a PCI board hosting up to four HACRE
chips, a large image memory, a program memory, a
system controller, the Status Register File and the PCI
interface. A piggy-back connector provides a direct
interface to an input imaging device, such as a lin-
ear scanner or a video camera and to an output device,
such as a video monitor. Some bus drivers and the clock
generation and synchronization logic are also part of
the board. A block diagram of the board is depicted in
Fig. 10.
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The Image Memory is a fast static RAM (15 ns ac-
cess time), 256K ×32×n bits, where n is the number of
HACRE chips installed. One 32-bit memory module is
associated to each of the chips. The memory is of exclu-
sive use of the array during program execution, while it
is memory mapped on the PC through the PCI interface
when it is in STOP mode. Isolation is by means of bidi-
rectional drivers.

The External Program Memory is a static memory
module analogous to those used for the Image Memory
and is used to store the complete HACRE program. It
is mapped on the PC address space while in STOP
mode. The System Controller autonomously transfers
to the internal Writable Control Store the correct in-
struction block during program execution, so that a
continuously repeated program, even if very long, can
be down-loaded from the PC only once. The array out-
puts a completion word to the System Controller every
time it completes the execution of the active program
block. The completion word contains a code that di-
rects the system controller to load a new block at a
specific address or to signal program completion or an
anomaly to the PC.

The System Controller provides several functions. It
contains a set of registers, memory mapped on the PC
address space, always accessible, that enable system
management. It is also responsible of the control of the
piggy-back board dedicated to image acquisition and
display. When debugging an application it is sometimes
desirable to test an algorithm on a well-defined set of
images. To be able to do so without having to modify
the HACRE program, the System Controller provides
means of excluding the piggy-back I/O board and give
the PC an access to the VIF. The PC writes data to a
register and the System Controller shifts them into the
VIF. The VIF output can also be redirected to a PC
memory location for test purposes.

Different types of Video I/O Boards can be connected
through the piggy-back video connector. This connec-
tor makes available to the interface board all video sig-
nals from the VIF structure, the Host Communication
Channels and several control lines from the System
Controller. We defined a simple interface both for dig-
ital video input from a camera or a scanner and digital
video output to a monitor. Input data are shifted into
HACRE asynchronously, using a pixel clock provided
by the video source. At each end of line a handshake
protocol insures that no data are missed or overwrit-
ten. Another handshake protocol allows the interface
to read from the array the output video lines as soon as

they are available. A frame buffer memory, a DAC and
a simple scan logic are needed to provide an analog
video signal for an output monitor.

The Status Register File (SRF) is used to accumu-
late and broadcast the global information collected by
the Status Evaluation Network described in Section 3.
When executing the EVAL instruction, every HACRE
chip, using the Status Evaluation Network, calculates
its Status Word, asserts a dedicated output line and sus-
pends program execution. The EVAL line of the first
chip is connected to the System Controller. The System
Controller, using a 16 bit Status Bus, reads the Status
Word from every chip. The COUNT field is accumu-
lated, while the SET and RESET fields are ANDed
to detect all-ones and all-zeros condition. The address
field of the EVAL instruction is then retrieved from the
first chip and used to store the result in the correspond-
ing Status Register. The result is also propagated to the
chips, which resume program execution and can test
the result in conditional instructions. The same basic
mechanism is used to reset, accumulate and normal-
ize or read the contents of a specific register. A special
SRF operation interrupts the PC in correspondence of
a Status Register Write, thus allowing for non-linear
or custom functions, implemented in software on the
PC, to be used when accumulating values in a Status
Register. The SRF is very useful in object classification
algorithms. Every register stores the degree of match-
ing of the image with a different template. By analyzing
the SRF, the PC can interpret the image contents ac-
cordingly.

We designed the PCI board to cope with both the
available chips, limited in frequency to 45–50 MHz,
and the future ones running at 100 MHz. The clock
is obtained from the system PCI clock. This was
done to avoid synchronization problems between the
PCI interface and the rest of the system, which have
to interact. The array clock is derived from the PCI
clock by a PLL multiplier. The PLL can generate 33,
50, 66 or 99 MHz frequencies (jumper configurable)
from the 33 MHz PCI clock, with known phase rela-
tionship. This high frequency signal feeds the differ-
ent HACRE chips. To be able to compensate for the
different PCB line lengths of the clock signals and
to comply with the stringent requirements on clock
loading and delay on PCI specifications, we found
very useful the adoption of skew buffers to control
the clock signal feeding the different devices. These
are PLL devices with four outputs at the same fre-
quency as the input one, but with delays presettable via
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Figure 11. The PCI board.

jumpers. In this way it is possible to compensate for
PCB transmission delays. All clock signals are one-
to-one connections to avoid multiple reflections. All
lines longer than few centimeters are series terminated
at the source to match PCB line impedance. All high
frequency signals run on internal layers of the PCB,
shielded by ground or power supply planes, to limit
EMI.

The PCI interface has PCI target capabilities and
conforms to PCI 2.1 specifications. All of the board
registers and memories are mapped on the PCI mem-
ory address space, to form a contiguous 8 MB mem-
ory block. The board can interrupt the PC to signal
error conditions, end of run and to permit non-standard
SRF operations. The PCI interface, the System Con-
troller and the SRF were all implemented using a sin-
gle FPGA (Altera 10K30), providing internal memory
blocks and the availability of a large number of gates.
This solution was adopted for both cost reasons and
flexibility. A photograph of the PCI board is shown in
Fig. 11.

6. Application Implementation

This section describes BEATRIX, that is an implemen-
tation of the proposed handwriting recognizer on the
PCI board populated with: two HACRE chips (namely,
64 PE’s); 2 high-speed SRAM chips (for a total of 2 MB
of image memory); 256 KWord of program memory;
256 Status Registers; 6 + 6 direct I/O channels; a di-
rect interface to an image scanner; PCI interface to a
hosting 100 MHz Pentium PC.

The system has been tested and Section 7 shows its
performance. See also [3] for additional details on the
complete recognizer algorithm and performance.

6.1. System Description

BEATRIX integrates four logical subsystems which
are in cascade [3] a mechanical and optical scanner,
to acquire a bit-map image of the check; an image
preprocessor for preliminary image filtering, scaling,
and thresholding; a neural subsystem, based on an en-
semble of morphological feature extractors and neuro-
fuzzy networks, which detects character centers and
provide hypotheses of recognition for each detected
character; a context analysis subsystem based on a lex-
ical and syntactic analyzer.

The neural subsystem carries out a pre-recognition
of the individual characters, based on an integrated seg-
mentation and recognition technique [14].

Legal and courtesy amounts are preprocessed and
recognized independently (at the character level) and
then the two streams of information are sent to the
common context analysis subsystem, which exploits
all the mutual redundancy.

The context analysis subsystem combines the candi-
date characters and, guided by the mutual redundancy
present in the legal and courtesy amounts, produces hy-
potheses about the amount so as to correct errors made
by the neural subsystem alone.

The image preprocessor and the neural subsystem
are executed on the PAPRICA-3 system (namely, the
PCI board), while the context analysis subsystem is
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Figure 12. Preprocessing steps of handwritten image (an “easy”
example): a) original image, 200 dpi, 16 gray levels; b) low-pass
filtered image; c) compensated for brightness; d) thresholded; e) spot
noise removal; f) thinned, after 6 steps; g) finding baseline (at the
left side of the image); h) features detection (features are tagged by
small crosses); i) compressed.

executed by an external Pentium processor, which
can implement these types of algorithms more
efficiently.

6.2. Image Preprocessor

The first preprocessing subsystem is the image prepro-
cessor which consists of the blocks described below.

– A WINDOW EXTRACTOR acquires the input image
from the SCANNER, at a resolution of approximately
200 dpi, 16 gray levels. The scanner is an 876-pixel
CCD line camera scanned mechanically over the im-
age, from right to left (due to practical reasons), at
a speed of 2 m/s (which is equivalent to about 700
characters/s); Fig. 12(a).
Image acquisition is performed by the VIF, in par-
allel with processing, and a whole image line is ac-
quired in just one clock cycle.

– A FILTER block computes a simple low-pass filter
with a 3 × 3 pixel kernel (Fig. 12(b)), while
a BRIGHTNESS block compensates for the non-
uniform detector sensitivity and paper color
(Fig. 12(c)).

– A THRESHOLD block converts the gray-scale image
into a B/W image by a comparison with an adaptive
threshold (Fig. 12(d)).

– A THINNING block reduces the width of all the
strokes to 1 pixel (Fig. 12(f)). Thinning is a mor-

phological operator [4] which reduces the width of
lines, while preserving stroke connectivity.

– A BASELINE block detects the baseline of the hand-
written text, which is a horizontal stripe intersecting
the text in a known position (Fig. 12(g)).

– A FEATURES block detects and extracts from the im-
age a set of 12 stroke features, which are helpful for
further character recognition. As shown in Fig. 12(h)
(crosses), this block detects the four left, right, top
and bottom concavities, and the terminal strokes in
the eight main directions.

– A FEATURE REDUCTION, a ZOOM and a COMPRESS
blocks reduce, respectively, the number of features
(by removing both redundant and useless ones), the
vertical size of the manuscript (to approximately 25–
30 pixels), and the overall size of the manuscript (by
a linear factor of 2), by means of ad-hoc topolog-
ical transformations which do not preserve image
shape, although they do preserve its connectivity.
(Fig. 12(i))

After all the preprocessing steps, the B/W image is
ready for the following neural recognition steps (see
Section 6.3). The image is reduced both in size (down
to 14 × 18( = 252) or 12 × 21(=252) pixels for the
courtesy and the legal amounts, respectively), in num-
ber of gray levels (2), and in stroke thickness (1 pixel),
and noise is removed. Table 7 lists execution times of
individual blocks.

6.3. Neural Subsystem

The neural subsystem is made of two cascaded subsys-
tems, namely a CENTERING DETECTOR and a CHAR-
ACTER RECOGNIZER. See [3] for further details on
the algorithms and the implementation of each block.
Table 1 lists execution times of individual blocks.

– The CENTERING DETECTOR scans the preprocessed
and compressed image from right to left (for me-
chanical reasons) and extracts a sliding window of
fixed size. It then tries to locate the characters, by
detecting the position of their center, based on the
type, quantity and mutual positions of the detected
features.

Note that windows without strokes are immedi-
ately skipped, as they contain no useful information.
Lines can be skipped in as low as one clock cycle.

– The CHARACTER RECOGNIZER recognizes each in-
dividual character, using a hybrid approach, which
mixes feature-based [2] and neural [1] recognizers.
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Table 1. Average execution times of the various processing steps, while processing the courtesy amount.

PAPRICA-3, 64PE’s, 33 MHz Pentium 100 MHz Sparc 10

Worst case case morphol. ad-hoc morphol.
Image preprocessor (µs/line) (ms/check) (µs/line) (µs/line) (µs/line)

WINDOW EXTRACTOR + FILTER 2.76 5.52 1,700 705 1,370

BRIGHTNESS 5.90 11.8 1,970 320 1,660

THRESHOLD 1.82 3.64 830 255 570

THINNING 16.7 33.4 7,390 – 7,850

BASELINE 8.48 16.6 4,320 – 3,890

FEATURES 6.10 12.2 9,490 – 10,430

ZOOM 4.48 8.96 820 160 760

COMPRESSa 61.6 123.2 21,350 – 24,950

OTHER (VARIOUS) 6.50 13.0 3,330 – 5,020

TOTAL PREPROCESSING 114.4 228 51,200 – 56,500

PAPRICA-3 Pentium 100 MHz

case case morphol. ad-hoc
Neural subsystem (ms/char) (ms/check) (ms/check) (ms/check)

CENTERING (FEATURES) 0.80 38.4 1,440 –

RECOGNIZER (FEATURES)b 7.20 345.6 12,960 –

RECOGNIZER (NEURAL)b 3.36 61.4 – 13,440

Total Recognizer 11.4 545.4 27,840

aCOMPRESS acts on an image zoomed by an average factor 3.2, therefore processing times are scaled accordingly.
bCHARACTER RECOGNIZER acts a few times per each character, namely once every 15 lines on average.

Worst

Worst Worst

First of all, features extracted by the FEATURES
block are used to identify all easy-to-recognize char-
acters. For instance, most “0”, “6”, “9” digits (but not
only these) are written well enough that a straightfor-
ward and fast analysis of the main features and strokes
is sufficient to recognize those characters with high
accuracy.

Other characters are more difficult to recognize us-
ing only features; for instance, digits “4”, “7” and some
types of “1” can be recognized more easily using neural
techniques. All characters which have not been recog-
nized using features are isolated and passed to a neural
network (an ad-hoc 2-layers WRBF [15]) trained by an
appropriate training set.

Therefore the CHARACTER RECOGNIZER is made of
two blocks, namely a feature-based recognizer and a
neural recognizer, each one optimized to recognize a
particular subset of the whole alphabet.

The CHARACTER RECOGNIZER is “triggered” for
each character center detected by the CENTERING
DETECTOR. As shown in Table 1, the CHARACTER

RECOGNIZER is the slowest piece of code. Fortunately
it is run at a relatively low rate, namely every 15 lines,
in the average, therefore its effects on computing time
are limited.

7. Performance

Table 1 lists the execution times of the various pro-
cessing blocks for the example presented in Section 2;
figures are given for a system with 64 PE’s (namely, 2
chips), running at 33 MHz. All the programs were also
tested on both a Pentium at 100 MHz and a Sparc Sta-
tion 10, using the same algorithms based on mathemat-
ical morphology, which are well suited to the specific
problems of bitmap processing and character recogni-
tion.

Some programs (FILTER, BRIGHTNESS, THRESH-
OLD, ZOOM, CENTERING DETECTOR, CHARACTER RE-
COGNIZER) could be implemented more efficiently on
a sequential computer using more traditional methods
(ad-hoc programs). These were also implemented on
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Table 2. Performance of the BEATRIX system, measured on 80 checks.

Module Parameter Courtesy Legal

CENTERING DETECTOR RMS centering error (distance between detected center 2.5 pels 3.0 pels
co-ordinate xk and actual (geometrical) of character)

CHARACTER RECOGNIZER Average accuracy rate (correct, if the character is in 74% 52%

the first five positions in the list L̂(xk))

Clustering subsystem Ratio between number of correct clusters and number 87% 74%
of hypothesized clusters

CHARACTER RECONGNIZER Average accuracy rate (on all centers of the correct clusters) 88% 65%

Context analysis subsystem Average accuracy rate (correct, if the correct amount is in 53%
the first 4 positions of the list of final amounts)

Table 3. Performance of the BEATRIX system, in single-chip configuration (namely,
32 PE’s), running at 100 MHz, with either internal weights (max. 60 bits/neuron) or external
weights (no size limitation).

Internal weights External weights

Neural Network Paradigm MCPS MCUPS MCPS MCUPS

MLP, 32 × n inputs, 1 bit/input, 130 60 90 50
8 bits/weight

MLP, 32 × n inputs, 4 bit/input, 33 19 30 16
16 bits/weight, adaptive learning rate

Kohonen 1 × 30 neurons, 8 inputs, 110 60
8 bits/input, 1 × 5 neighborhood

Kohonen, 30 × 30 neurons, 8 inputs, 90 49
8 bits/input, 5 × 5 neighborhood

MCPS and MCUPS stand for, respectively, mega connections per second and mega connection
updates per second.

the Pentium and their performance listed in Table 1 for
comparison.

It can be seen that the performance of PAPRICA-3 is
100 to 1000 times faster than that of Pentium 100 MHz
and Sparc Station, for nearly all the programs consid-
ered. This improvement factor reduces by at most five
folds when a Pentium 500 MHz is used.

Table 2 lists the recognition performance of
the major processing blocks. Performance is given
in terms of accuracy rates, for the CHARACTER
RECOGNIZER and the context analysis subsystem, and
in terms of RMS centering error, for the CENTERING
DETECTOR.

Figure 13 shows the percentage of checks correctly
recognized (in the first 4 positions) versus the position
of the correct amount in the list of hypothetical courtesy
amounts. Figure 13. Accuracy rate versus the position k in which the correct

courtesy amount is found.
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The CENTERING and the RECOGNIZER average ex-
ecution times per character are calculated as the ratio
between the average execution time of the amount and
the average number of characters of the amount. As the
average numbers of characters are 6.9 and 27.4, for the
courtesy and the legal amounts, respectively, we obtain
the data in Table 1.

Note that the recognition performance of BEATRIX
is comparable with other existing handwriting recog-
nition systems [16] but its speed is about 100 times
faster than that of Pentium and Sparc implementation.
A recognition speed comparable with our system, with
the same recognition accuracy, can only be achieved
with much more expensive array of processors (e.g.,
CNAPS [17], Transputers, DSP’s).

For further comparison,Table 3 lists the execution
times of a single-chip PAPRICA-3 system running
at 100 MHz, for other well-known neural algorithms
such as Perceptrons (MLP) and Kohonen maps [5]. As
all mathematical operations are implemented in a bit-
serial fashion, system performance depends heavily on
input and weight resolution. Furthermore, the best per-
formance can be obtained when the number of either
neurons or inputs matches the number of PE’s.

8. Conclusion

From the hardware implementation point of view not
all the original goals have been reached. In particular all
the main full custom blocks (memory, PA) have been
designed and verified by simulation to operate within a
10 ns clock cycle in the worst case, but the whole chip
is fully functional up to a maximum frequency of 50
MHz. This is due to strict deadlines on the availability
of funds for chip fabrication which have reduced the
time available for the optimization of the CU layout on
the basis of back-annotated simulation.

Moreover, as clearly visible in the microphotograph
of Fig. 4, a large area of approximately 10 mm2 is
wasted. This is mainly due to the limitations of the tools
employed in the placing and routing phase of the CU
which has been synthesized into a standard cell library
form a HDL description, This has led to a large increase
of the ratio between the CU area and the PA area and
Preliminary tests with new tools have shown that the
current layout size could be reduced by approximately
15%. This would allow to place on board of a single
chip system an integrated version of the Status Register
File [18] which has been designed in order to minimize
the components of a single chip system.

With the current technological evolution of VLSI
circuits preliminary evaluations made with a 0.35µm
technology have shown that a single chip system could
integrate 64 PE’s, the SRF and 64Kbit of image mem-
ory, making it possible a really fully integrated system
for handwritten character recognition.

For what system performance concerns, the perfor-
mance of the BEATRIX system have shown that the
proposed PAPRICA-3 architecture, even in a medium-
size configuration, outperforms the Pentium processor
by much more than a factor ten. In addition, the recog-
nition accuracy of BEATRIX is comparable with other
much more expensive systems [16].

In addition the development environment and the
image processing language (not described here), which
have been developed explicitly for PAPRICA-3 allow a
straightforward design of new mathematical morphol-
ogy and image processing algorithms, reducing the de-
sign time of new algorithms.
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Set Implementation of a Parallel Cellular Architecture,” Micro-
processing and Microprogramming, vol. 35, Amsterdam (NL):
North-Holland, 1992, pp. 417–425.

7. A. Broggi, G. Conte, F. Gregoretti, C. Sansoé, and L.M.
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