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Abstract 
This paper describes the  pipeline architecture de- 

signed t o  control the  execution of ins t ruc t ions  o n  the  
l inear array processor PAPRICA-3, which  is being de- 
veloped a t  t he  Politecnico d i  Tor ino .  T h e  m a i n  appli- 
cations of t he  array processor lay in the  area of im- 
age processing, image  recognition, embedded sys t ems  
f o r  guidance assistance and the  like. Explo i ta t ion  of 
this architecture is currently investigated in the  area of 
real-t ime image  processing, a very  demanding  task  in 
t e r m s  of overall performance. O u r  design is aimed a t  
improving  the  algorithmic e f i c i ency  by taking advan- 
tage of a mul t i -pa th  queue structure which  allows dif- 
f e ren t  ins t ruc t ions  t o  run simultaneously,  and by opti- 
miz ing  particular pat terns  of ins t ruc t ions  which  o f t en  
appear in envisaged application programs. 

1 Introduction 
Real-time systems for image processing may ben- 

efit from Application-Specific Instruction Processors 
(ASIPs [SI). Such processors play an intermediate 
role between general-purpose programmable proces- 
sors, which may not have enough processing power 
or memory access bandwidth for the application, and 
Application Specific Integrated Circuits, which may be 
too expensive and too rigid for rapidly evolving appli- 
cation needs. In this scenario, a processor is designed 
for a class of applications, and its instruction set and 
architecture are specifically tuned for that class. This 
allows to simultaneously achieve the required perfor- 
mance, as well as the required degree of programma- 
bility. The PAPRICA-3 system [2, 31 is a SIMD mas- 
sively parallel processor designed for real time image 
processing applications. The system is composed of 
multiple instances of the same basic Processor Ele- 
ment (PE) which execute in parallel the same instruc- 
tions on different pixels. This approach exploits the 
parallelism intrinsic to the data structure to boost the 
overall performance. The paper describes the imple- 
mentation of the control of the processing array and is 
organized as follows. Section 2 provides a condensed 
description of the general architecture and Section 3 
describes the instruction set. Section 4 and 5 present 
in detail the pipeline structure and section 6 analyzes 
its performance. Finally section 7 presents some con- 
clusions. 
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2 General description 
As shown in figure 1, the kernel of the PAPRICA-3 

system is based on a linear array of Q identical 1-bit 
PES connected to an image memory via a bidirectional 
Q-bit wise bus. The image memory is organized in 

n-bit saial N / A  

moiitor 7 

Figure 1: Block diagram of the processor Array 

addressable words whose length matches that of the 
processor array; each word contains data relative to 
one binary pixel plane (also called layer) of one line 
of an image, and a single operation is needed to load 
an entire line of data into the PE’s internal registers. 
The rationale behind this system is that the size of 
the PE array equals (or is larger than) the height (or 
width) of the input image. This solution reduces the 
PE virtualization mechanism problem, which has been 
proven to be a critical design issue in bi-dimensional 
arrays [2]. 

Data are transferred into internal registers of each 
PE, processed and explicitly stored back into memory 
according to a RISC-like processing paradigm. The 
external memory can therefore be seen as a set of in- 
dividually addressable Q bit wide lines. We will refer 
to the address of each line as an absolute l ine address. 

Each PE processes one pixel of each line and is com- 
posed of a Register File and a 1-bit Execution Unit. 
The instruction set core is based on morphological op- 
erators [l]. The result of an operation depends, for 
each processor, on the values of pixels in a given neigh- 
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borhood (reduced 5 x 5, as shown in figure 1). Data 
from EAST and WEST directions may be obtained by di- 
rect connection with neighboring PES while all other 
directions correspond to data of lines which have been 
previously processed (N, NE, NW or which will be 
processed in the future (S, SE, SW 1 . For this reason a 
number of processor registers have a structure which is 
more complex than that of a simple memory cell, and 
are actually composed of five 1-bit cells with a S-N 
shift register connection. When a load operation is 
performed, all data are shifted north by one position 
and the south-most position is taken by the new line 
from memory. In this way, data from a 5 x 5 neighbor- 
hood are available inside the array for each PE. This 
type of registers will be referred to in the following as 
Morphological Registers (MOR). A second part of the 
instruction set comprises logical and algebraic oper- 
ations which may be performed between the central 
pixels of MOR registers of the same PE, or between 
a number of single bit Logical Registers (LOR) which 
may be used for intermediate storage. The Execution 
Unit is responsible for applying morphological opera- 
tors and for all the logical and algebraic operations. 
An Accumulator Register is used when a ternary al- 
gebraic operation, such as addition or subtraction, is 
executed to hold the value of the carry. 

Two logical inter-processor communication mech- 
anisms are available to exchange information among 
PES which are not directly connected. The first one is 
the Status Evaluation Network (SEN) to which each 
processor sends the content of one of its registers un- 
der program control. The SEN provides two global 
flags, named SET and RESET, which are true when 
the specified register content is either all Is or all Os, 
and a status word which is set to the number of 1s in 
the specified register. This global information may be 
used to conditionally modify the program flow. 

The second one is the Inter-processor Communica- 
tion Network which allows global and multiple com- 
munication among components of different subsets of 
the PA (clusters of PES The topology of the commu- 
nication network may 6 e varied during program exe- 
cution. In fact, each PE drives a switch that enables 
or disables the connection between it and the adjacent 
one. The PES may thus be dynamically grouped into 
clusters, in which each PE can broadcast a register bit 
value to the whole cluster within a single instruction. 
This feature can be extremely useful in algorithms in- 
volving seed-propagation techniques, and in the emu- 
lation of pyramidal (hierarchical) processing. 

An important characteristic of the system is the 
integration of a Serial-to-Parallel 1/0 Device, called 
Video Interface (VIF), which can be connected to 
a conventional imaging device (camera, linear CCD, 

While a line is processed, the VIF automati- 
cal y loads the following image line from the camera. 
At the end of this processing, the PA stores the re- 
sults back into the VIF (on different bit-planes) and 
loads in parallel the following image line. During the 
data acquisition process, the VIF behaves like a shift- 
register, loading raw data serially from a camera, and 
outputting processed data serially to a display. 

The system is designed to fit into a single integrated 

. 

circuit, hence the control of all the processing elements 
is centralized at the chip level. Its design has been 
driven by two main considerations. 

First many image analysis algorithms consist of se- 
quences of low level steps, such as filters, convolutions, 
etc., to be performed over the whole image. Instruc- 
tion fetching from an external memory is an important 
source of overhead. Hence we chose to pre-load each 
block of instructions (to be repeated for the whole im- 
age) into an internal memory, named Writable Control 
Store (WCS), and to fetch the instructions from there. 
In such a way it is possible to obtain the performance 
of a fast cache with a hit ratio close to 1, a t  a fraction 
of the cost and complexity. 

The second consideration has been to avoid per- 
formance bottlenecks by matching the performance of 
the control section to that of the processing elements. 
To achieve this result, a sophisticated pipeline scheme 
has been developed which is expected to sustain an 
instruction execution flow of 100 Mops/s. 

3 Instruction set 
PAPRICA’s instruction set has been designed to 

efficiently implement image processing algorithms. A 
dedicated hardware structure, named Image Descrip- 
tor, stores the base memory address of the image, the 
index of the line being processed a t  any time, and some 
other information regarding the way in which the im- 
age should be processed. This allows, for example, 
indirect memory access. To increase the flexibility of 
the processor, memory references may also be indexed 
using the contents of some special purpose counter reg- 
isters, which are used as indices in loops. In addition 
to that, two instructions provide full synchronization 
and transfer capability to  directly acquire data from 
a camera and send it after processing to a display. 
The instruction set fully supports the Mathematical 
Morphology approach to image processing, exploiting 
matching operations and logical operations. Bit-serial 
addition and subtraction with carry are also imple- 
mented. A branch instruction allows the programmer 
to take decisions on the flow of operations: considering 
the SIMD architecture, conditions must be set up on 
the base of global information, for which specific eval- 
uation and accumulation instructions are provided. 

PAPRICA’s assembly language comprises the fol- 
lowing classes of instructions: 

General and Initialization Instructions: 

NOP performs no operation. 
STOP performs soft and hard program stops. 
CONFIG configures neighborhood connection 

BASE, SKIP, RESET initialize image 

Memory Transfer Instructions: 

LD loads data from memory into an internal reg- 

ST stores data from an internal register to mem- 

for sidemost processors. 

descriptor contents. 

ister. 

ory. 
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LDC loads data from the camera interface into 

STV stores data from internal registers to  the 

ADD updates the memory address information 

COMMOUT transfers internal register data 

internal registers. 

camera interface. 

of a specified image descriptor. 

among processor elements. 

0 Morphological Instructions: 

LOP performs a logical or algebraic operation 
between two internal registers. Stores the 
result into an internal register. 

MOP performs a match operation between an 
internal register (and its neighborhood) and 
the last set template. The result is then 
treated as the first operand of a logical or 
algebraic operation. 

TEMPLATE sets the match template. 

0 Status Evaluation and Flow Control Instruc- 
tions: 

INIT initializes the status evaluation hardware. 
EVAL performs status evaluation. 
ACCUM accumulates status data on the dedi- 

cated status registers. 
SET,  INC initializes and increment counter 

register contents. 
FOR repeats a block of instructions for a pre- 

specified number of times. Enables indexed 
addressing. 

ON sets up and evaluates a condition that influ- 
ences the execution of the following instruc- 
tion. 

BRC unconditionally branches to a specified 
program memory address. 

4 Pipeline description 
In order to devise an efficient pipeline structure, 

instructions must be first divided into classes shar- 
ing the same kind of operations. For this purpose, 
only a coarse division of the instruction execution pro- 
cess is necessary. In our case the classical five phase 
pipeline [5] may be used: 

IF Instruction fetch 

ID Instruction decode 

OR Operand read 

EX Execution 

OW Operand write back 

Instructions 
-mop 

STOP 
CONFIG 

BASE 
SKIP 

RESET 
ADD 

TEMPLATE 
INIT 

ACCUM 
FOR 
BRC 
ST 
LD 

LDC 
STV 

COMMOUT 
MOP 
LOP 

EVAL 

IF- - 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X - 

ID- - 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X - 

OR 

X 
mem 
vif 
X 
X 
X 
X 
X 

Ex-- - 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X - 

-ow- - 

mem 
X 
X 

vif 
X 
X 
X 
X - 

Table 1: Instruction phase requirements 

Only the IF, ID and EX phases must be present in 
all instructions. We can thus partition the instruction 
set on the basis of the required phases, as shown in 
table 4. The simplest pipeline structure would then 
comprise five stages corresponding to the five basic 
phases. This scheme, known in the literature as mono- 
fibnctional ([5]), forces even unrelated instructions to 
wait if the preceding ones stall due to conflicts, thus 
degrading the overall performance. To avoid this ef- 
fect, a multi-functional pipeline has been designed, 
which allows multiple instructions to be routed on dif- 
ferent paths and execute simultaneously. The design 
objective was to reach peak performance for those pat- 
terns of instructions that most often are exploited in 
image processing: these comprise sequences of mor- 
phological instructions, loops, load-process-store, bit- 
serial computations. A particular attention has been 
dedicated to allowing potentially long instructions to 
run in parallel with shorter ones, by providing differ- 
ent paths for some of them, For example, flag evalu- 
ation, inter-processor communication, memory access 
and synchronization all share a wait mechanism that 
lets them “run in the background”. 

A comprehensive block-diagram of the proposed ar- 
chitecture is depicted in figure 2. A brief description 
of the functionality associated with each block follows: 

IF Instruction Fetch. Updates the program counter 
content. Checks for active loops and handles their 
data management. 

ID Instruction Decode. Decodes and routes instruc- 
tions. Those which need operand read or write 
are routed to the conflict detection stage, after 
effective address calculation has been performed. 
The others are immediately executed. Branch 
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instructions are executed at  this stage, and re- 
quire that IF be flushed to discard unwanted data. 
Flow control conflict detection and address eval- 
uation are performed by this block. Due to the 
complexity associated to this stage, ID may be 
replicated many times in the implementation to 
meet the timing constraint. 

CD Conflict Detection. Checks for data conflicts and 
handles the booking table for internal registers. 
Routes instructions to the proper block for ex- 
ecution. 

Reads operands from internal 
registers. Checks for operand availability be- 
fore execution. Routes instructions to the proper 
block for execution. 

BP Bit Propagation. Delays MOP instruction exe- 
cution for one cycle, to allow data propagation 
between neighboring processors. 

EX Execution. Executes matching, logical and alge- 
braic operators. 

FE Flag Evaluation. Performs status evaluation and 
waits for completion. Stores the result in the sta- 
tus register. 

CO Communication Out. Sends data to the commu- 
nication network and waits for completion. Stores 
the result in the dedicated internal register. 

MU Memory Unit. Manages all accesses to the im- 
age memory and waits for completion. Redirects 
instructions to the correct stage for operand write 
back OW2 for logical registers, SM for morpho- 

SY Synchronize. Waits for synchronization with the 
external camera and display. 

OW1 Operand Write 1. Stores results back into in- 
ternal registers. Checks for availability of the re- 
source. 

OW2 Operand Write 2. Stores results back into in- 
ternal registers. Releases register occupancy flags 
and notifies the CD stage. 

SM Shi€t MOR. Stores incoming data from image 
memory into internal morphological registers and 
shifts their content one line up. Releases the reg- 
ister’s occupancy and notifies the CD stage. 

SV Shift VIF. For LDC: load data from the camera 
interface into the internal morphological registers 
and shifts their content one line up. For STV: 
stores data from internal registers to the camera 
interface. Releases the register’s occupancy and 
notifies the CD stage. 

OR Operand Read. 

logica I registers to perform the shift operation). 

Instructions stall either when the desired operation 
cannot be executed because of resource contention, or 
when the block where the instruction must be issued 

I I 

Figure 2: Pipeline block-diagram 

is already occupied. The latter circumstance is mini- 
mized when different instructions are allowed to take 
different paths. This condition can be accomplished, 
as in our design, by multiple instances of the execu- 
tion stage. On the other hand, this approach requires 
a more complex design of the conflict detection mech- 
anism. 

5 Conflict management 
The concurrent execution of instructions in a 

pipeline structure causes contention conditions which 
must be detected and resolved in the most effective 
way. These conflicts between instructions may be clas- 
sified as follows: structural conflicts which arise from 
the request of the same resource by two different in- 
structions at the same time, data conflicts which arise 
because a pipeline structure allows the sequence of 
data accesses to be altered, and control conflicts which 
occur when the normal flow of operation is changed 151. 
5.1 Structural conflicts 

Given the structure of the pipeline, these conflicts 
are regarded as potential conflicts, since they occur 
only for particular sequences of instructions. Differ- 
ent structures are present in PAPRICA’s hardware to 
perform different tasks: 

0 Register File read ports. 

0 Register File write port. 

0 Morphological Register shift. 

0 Video InterFace load/store. 

0 Execution unit (match, logical and algebraic). 

0 Flag Evaluation unit. 

0 Inter-processor Communication Network. 

0 Memory read/write access. 

Each of these functional units corresponds to a differ- 
ent block in the pipeline block diagram, thus struc- 
tural conflicts related to simultaneous requests of the 
same resource by two different blocks cannot occur. 
A conflict arises only when two instructions originat- 
ing in the ezeeution and memory units request for an 
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operand write back. As seen in figure 2, block OW 
has been duplicated into two instances named OW1 
and OW2. OW1 executes the write operation only 
when OW2 is empty, otherwise it behaves as a buffer 
booking OW2 for the following cycle and trasferring 
to  it its content. In this way, while memory instruc- 
tions may stall until a MOP/LOP sequence ends, only 
the latency of morphological instructions is increased 
without losing steady-state performance. 

A conflict arises when a pipeline block may be ac- 
cessed by different stages. This problem is caused by 
the MU and EX blocks: 

0 The MU stage may be accessed both by an LD in 
CD and by an ST in OR: in this case, the LD is 
stalled and the ST proceeds first, as in the natural 
order. 

0 The EX stage may be accessed by both a MOP in 
BP and a LOP in OR. Instead of stalling the LOP 
instruction in the operand read stage, the LOP is 
issued to the BP stage, which does nothing but 
delays it for one cycle. As for the OW stage, only 
latency is increased with no performance loss (in 
this case stalling is completely avoided). 

5.2 Data conflicts 
These conflicts occur when two instructions refer 

to  the same data. The most common problem arises 
when the second instruction tries to  read the data be- 
fore the first one has changed it. To avoid this error, 
the second instruction must be stalled until the first 
has completed. 

Different policies are implemented to  avoid data 
conflicts for the different hardware structures. 

0 Image Memory data. This conflict never occurs 
because memory references are always performed 
by the same block (MU) in order. 

0 Status Registers data. This conflict occurs when 
an accumulation instruction is issued before the 
status evaluation from the previous one has com- 
pleted. A dedicated flag in the pipeline informs 
the ID stage that an evaluation is in progress, 
stopping the accumulation until the evaluation 
completes. 

0 Internal Register data. This conflict originates 
from instructions which refer to  the internal reg- 
isters. They are: LD, ST, LDC, STV, MOP, LOP, 
COMMOUT, EVAL. Complexity arises from the 
different possible paths that these instructions 
may take, forcing the use of a sophisticated mech- 
anism to detect contention. For each register in 
the Register File, a busy bit indicates whether 
a write operation for that register is in progress. 
The CD, OR and write back stages are in charge 
of handling such bits through the following pro- 
cedure: 

1. For any instruction willing to write into an 
internal register, the register availability is 
checked in the CD stage against the state 

of the corresponding busy bit. If the busy 
bit is already set, the instruction waits in 
the CD stage until the register is released 
by one of the write back stages. Otherwise, 
if the busy bit is not set, the register is oc- 
cupied by the instruction and control passes 
to  one of the following stages. Only in the 
case of an STV, registers are booked as for a 
write operation, even though only a read op- 
eration will take place. This is necessary to  
avoid data being changed by other instruc- 
tions during the VIF synchronization phase, 
which may take an unpredictable number of 
cycles. 

2. In the OR stage the source operands’ busy 
bit is checked and the instruction is stalled 
if a write operation on such registers is in 
progress. Instructions referring to the same 
register as both the source and the destina- 
tion operand do not execute the check phase 
(which had already been performed in the 
CD stage) to  avoid deadlock. 

3. The write phases ( O w l ,  OW2, SM, SV) in- 
form the CD stage of the completion of their 
operation, and release the occupation of the 
internal register, making it available to  the 
following instructions. 

Correct operation is ensured by the CD stage, 
through which every instruction referring to  in- 
ternal registers must pass. 
The CD stage handles such conflicts as Write af- 
ter Write and Write after Read, while the Read 
after Write is managed by the OR stage. The 
bypass technique is often used in many pipeline 
structures to  avoid stalling an instruction for a 
Read after Write conflict. This technique basi- 
cally feeds the result of the execution stage back 
to the operand read stage, to make it immediately 
available. This technique is not applicable to our 
case, because: 

- results are produced by both the EX and the 
MU stage, so a decision must be taken to get 
the data from the proper place. 

- source operands come from different PES, so 
a bit propagation delay must be taken into 
account before data are available to  the OR 
stage. 

- logical and morphological instructions may 
accumulate their result in AND or OR with 
the previous value stored in the destination 
register, so that the new value may not cor- 
respond to  that computed by the execution 
stage. 

However, this technique is applicable to the ac- 
cumulator used for bit-serial computations, since 
its value is immediately available for the following 
instructions which need not be stalled. 
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Note that data stored in the image descriptors may 
be changed before an LD or ST completes: this does 
not matter because address calculation is performed 
immediately in the ID stage and the effective address 
in then delivered to the MU stage. On the other hand, 
the register which holds the template value must be 
preserved until every morphological instruction has 
terminated: for this reason, a TEMPLATE instruc- 
tion waits in the ID stage if a MOP is still running in 
the pipeline. 
5.3 Control conflicts 

The program flow may be changed by the com- 
pound statements ON-BRC, which are executed in 
the ID stage. The first instruction is used to evaluate 
the condition, and the second to decide whether the 
jump must be taken or not. Since the ID stage is not 
released by the ON-BRC, only one other instruction 
is fetched before any decision is taken. Hence only 
the first stage of the pipeline need be flushed. More- 
over, at least two more cycles are lost in the condition 
evaluation and branch execution. To avoid this loss of 
performance, a dedicated instruction has been intro- 
duced to handle fixed loops, which are a very common 
occurrence in the sort of application programs that we 
are targeting. The FOR instruction is executed in the 
ID stage, and simply sets some registers used by the 
IF stage to determine the value of the next program 
address. Since the number of instructions within the 
loop and the number of iterations are known a-priori, 
the IF stage always fetches the correct instruction and 
no cycles are lost for evaluating the end of the loop. 
Thanks to the indexed addressing mode, this mecha- 
nism highly increases performance and saves precious 
space in the program memory cache (WCS). 

6 Performance evaluation 
In this section, a few examples are examined based 

on the simulation of a behavioral model written in the 
Verilog Hardware Description Language [7]. A state 
diagram shows the instruction queue in the pipeline 
for a sequence of clock cycles. 

The first example is shown in figure 3 and con- 
sists of a two-instruction loop (one morphological and 
one logical) without data dependency, and repeated 3 
times. One instruction is issued for each cycle with 
no delay. Note how LOPS are routed to the BP stage 
to wait for a MOP bit propagation and leave space 
to the following instruction. Not considering the first 
(FOR) and the last (STOP) instruction, and assum- 
ing an infinite number of iterations, the performance 
gain over a non-pipelined solution is 5.5 (in real cases 
it is expected to be between 3.5 and 4.5). 

The second example is shown in figure 4, and con- 
sists of a sequence of a MOP and a LOP instructions 
with data dependency. The second instruction waits 
in the OR stage for the MOP completion, and is then 
directly issued to the EX stage with no bit propaga- 
tion. Note that the CD stage is free to manage other 
instructions to be delivered to different blocks. Peak 
speed up is 1.57 (in real cases it is expected to be 
between 1.3 and 1.45). 

The last example is shown in figure 5 and consists 
of an LD and a MOP without data dependency. In this 

FOR cycle : body of 2 instructions without data dependencies repeated 3 times 
FOR 0 TO 2 DO 2 
MOP 
LOP 
STOP 

cycle no. IF ID CD OR BP EX OW1 
0 FOR 
1 MOPO FOR 
2 LOPO MOP0 
3 MOPl LOP0 MOPO 
4 LOPl MOPl LOPO MOP0 
5 MOP2 LOPl MOPl LOP0 MOPO 
6 LOP2 MOP2 LOPl MOPl LOPO MOP0 
7 STOP LOP2 MOP2 LOPl MOPl LOPO MOPO 
8 STOP@) LOP2 MOP2 LOPl MOPl LOPO 
9 STOP (s) LOP2 MOP2 LOPl MOPl 
10 STOP (s) LOP2 MOP2 LOPl 
11 STOP(s) LOP2 MOP2 
12 STOP@) LOP2 
13 STOP 

Legend 
(s) - stall cycle 

Figure 3: For cycle: 2 instructions, 3 times, no 
data dependency 

LOP instruction waits for operand release by a previous MOP 
Note that BP Stage free lets to bypass it by a LOP instruction 
R4 = MOP R1 LOP R2; 
R12 = R4 LOP R3; //this LOP needs R4 as read operand 
STOP 

/I this MOP locks R4 

cycle no. 
0 

1 
2 
3 
4 
5 
6 
I 
8 

9 
10 

IF ID CD 
MOP 
LOP MOP 
STOP LOP MOP 

STOP(s) LOP 
STOP (s) 
STOP (s) 
STOP(s) 
STOP (s) 
STOP (s) 
STOP(s) 

STOP 

OR BP EX OW1 

MOP 
LOP(s) MOP 
LOP (s) MOP 
LOP (s) MOP 

LOP 
LOP 

LOP 

Legend 
(s) - stall cycle 

Figure 4: MOP - LOP sequence with data depen- 
dency 
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MOP instruction bypasss LD instruction waiting for memory sad campletion 
No data dependencies 
LD 
MOP 
STOP 

mem. cycle 
lOOns mem. 
lOns mem. 

lOOns mem. 

cycle no. IF ID CD MU SM OR BP EX OW1 
o m  
1 MOP LD 
2 STOP MOP LD 
3 STOP($ MOP LD(w) 
4 STOP (s) LD ( 4  MOP 
5 STOP (s) LD ( 4  MOP 
6 STOP (s) LD (w) MOP 
7 STOP (s) LD (w) MOP 
8 STOP (s) LD 
9 STOP 

no pipe pipe speed up 
554 241 2.3 
410 97 4.2 

554 131 4.2 
imp. sch. speed up 

Legend: 
(s) - stall cycle 
(w) - wait cycle 

Figure 5: MOP overtakes a waiting LD 

case, a slow memory access time is assumed, so that 
the LD waits for 5 cycles in the MU stage. The MOP 
is free to overtake the waiting LD, and to  complete its 
execution. 

Obviously, it is not possible to evaluate exactly 
the speed up which may be obtained by a pipeline 
structure in the general case, because it essentially de- 
pends on the application program. Effective instruc- 
tion scheduling by the programmer or by the com- 
piler, aimed at avoiding data dependencies and at tak- 
ing advantage of instruction concurrency may, in the 
best case, allow an overall speedup of 6 over the non- 
pipelined case. However, in the worst case only IF, 
ID and CD overlap giving a total speedup of 1.2. It 
has therefore been our goal to design a structure that 
would easily be exploited by image processing algo- 
rithms. An estimation of the number of lOns cycles 
needed to filter one line of an 8-bit grey level image 
using a loons external memory and a 1Ons internal 
memory is shown in the following table: 

The no p i p e  column refers to the number of cycles 
needed by a conventional sequential controller, while 
the pipe  column refers to the pipelined case. The speed 
up colums reports the speed up achieved. The imp. 
sch. column refers to the case in which many cycles 
may be saved because part of the operation on the old 
line can be executed while loading the new data. Obvi- 
ously, this possibility depends on the implementation 
of the algorithm. 

7 Conclusions 
A pipelined controller has been designed to execute 

instructions on a massively parallel processor. The 
main design objective was to boost performance for 
image analysis algorithms in order to be able to use 

the system in hard real time applications. Simulation 
shows that for a system comprising an internal fast 
image memory, the achieved speed up may reach a 
factor of 4-5 when little data dependency is involved. 
When using an external memory whose access time 
dominates the total processing time, intelligent in- 
struction scheduling and concurrency exploitation are 
effective tools to gain further advantages. The design 
is currently being implemented using a mixed Macro 
module-based and Standard Cell-based methodology 
which relies on synthesis tools. 
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