
Design and Implementation of the Control Structure of the
PAPRICA-3 Processor

F. Gregoretti, F. Intini, L. Lavagno, R. Passerone, L. M. Reyneri

Dipartimento di Elettronica
Politecnico di Torino
Torino, ITALY, 10129

Abstract
This paper describes the pipeline architecture de-

signed t o control the execution of ins t ruc t ions o n the
l inear array processor PAPRICA-3, which is being de-
veloped a t t he Politecnico d i Tor ino . T h e m a i n appli-
cations of t he array processor lay in the area of im-
age processing, image recognition, embedded sys t ems
f o r guidance assistance and the like. Explo i ta t ion of
this architecture is currently investigated in the area of
real-t ime image processing, a very demanding task in
t e r m s of overall performance. O u r design is aimed a t
improving the algorithmic e f i c i ency by taking advan-
tage of a mul t i -pa th queue structure which allows dif-
f e ren t ins t ruc t ions t o run simultaneously, and by opti-
miz ing particular pat terns of ins t ruc t ions which o f t en
appear in envisaged application programs.

1 Introduction
Real-time systems for image processing may ben-

efit from Application-Specific Instruction Processors
(ASIPs [SI). Such processors play an intermediate
role between general-purpose programmable proces-
sors, which may not have enough processing power
or memory access bandwidth for the application, and
Application Specific Integrated Circuits, which may be
too expensive and too rigid for rapidly evolving appli-
cation needs. In this scenario, a processor is designed
for a class of applications, and its instruction set and
architecture are specifically tuned for that class. This
allows to simultaneously achieve the required perfor-
mance, as well as the required degree of programma-
bility. The PAPRICA-3 system [2, 31 is a SIMD mas-
sively parallel processor designed for real time image
processing applications. The system is composed of
multiple instances of the same basic Processor Ele-
ment (PE) which execute in parallel the same instruc-
tions on different pixels. This approach exploits the
parallelism intrinsic to the data structure to boost the
overall performance. The paper describes the imple-
mentation of the control of the processing array and is
organized as follows. Section 2 provides a condensed
description of the general architecture and Section 3
describes the instruction set. Section 4 and 5 present
in detail the pipeline structure and section 6 analyzes
its performance. Finally section 7 presents some con-
clusions.

1066-6192196 $5.00 0 1996 IEEE
Proceedings of PDP’96

2 General description
As shown in figure 1, the kernel of the PAPRICA-3

system is based on a linear array of Q identical 1-bit
PES connected to an image memory via a bidirectional
Q-bit wise bus. The image memory is organized in

n-bit saial N / A

moiitor 7

Figure 1: Block diagram of the processor Array

addressable words whose length matches that of the
processor array; each word contains data relative to
one binary pixel plane (also called layer) of one line
of an image, and a single operation is needed to load
an entire line of data into the PE’s internal registers.
The rationale behind this system is that the size of
the PE array equals (or is larger than) the height (or
width) of the input image. This solution reduces the
PE virtualization mechanism problem, which has been
proven to be a critical design issue in bi-dimensional
arrays [2].

Data are transferred into internal registers of each
PE, processed and explicitly stored back into memory
according to a RISC-like processing paradigm. The
external memory can therefore be seen as a set of in-
dividually addressable Q bit wide lines. We will refer
to the address of each line as an absolute l ine address.

Each PE processes one pixel of each line and is com-
posed of a Register File and a 1-bit Execution Unit.
The instruction set core is based on morphological op-
erators [l]. The result of an operation depends, for
each processor, on the values of pixels in a given neigh-

290

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

borhood (reduced 5 x 5, as shown in figure 1). Data
from EAST and WEST directions may be obtained by di-
rect connection with neighboring PES while all other
directions correspond to data of lines which have been
previously processed (N, NE, NW or which will be
processed in the future (S, SE, SW 1 . For this reason a
number of processor registers have a structure which is
more complex than that of a simple memory cell, and
are actually composed of five 1-bit cells with a S-N
shift register connection. When a load operation is
performed, all data are shifted north by one position
and the south-most position is taken by the new line
from memory. In this way, data from a 5 x 5 neighbor-
hood are available inside the array for each PE. This
type of registers will be referred to in the following as
Morphological Registers (MOR). A second part of the
instruction set comprises logical and algebraic oper-
ations which may be performed between the central
pixels of MOR registers of the same PE, or between
a number of single bit Logical Registers (LOR) which
may be used for intermediate storage. The Execution
Unit is responsible for applying morphological opera-
tors and for all the logical and algebraic operations.
An Accumulator Register is used when a ternary al-
gebraic operation, such as addition or subtraction, is
executed to hold the value of the carry.

Two logical inter-processor communication mech-
anisms are available to exchange information among
PES which are not directly connected. The first one is
the Status Evaluation Network (SEN) to which each
processor sends the content of one of its registers un-
der program control. The SEN provides two global
flags, named SET and RESET, which are true when
the specified register content is either all Is or all Os,
and a status word which is set to the number of 1s in
the specified register. This global information may be
used to conditionally modify the program flow.

The second one is the Inter-processor Communica-
tion Network which allows global and multiple com-
munication among components of different subsets of
the PA (clusters of PES The topology of the commu-
nication network may 6 e varied during program exe-
cution. In fact, each PE drives a switch that enables
or disables the connection between it and the adjacent
one. The PES may thus be dynamically grouped into
clusters, in which each PE can broadcast a register bit
value to the whole cluster within a single instruction.
This feature can be extremely useful in algorithms in-
volving seed-propagation techniques, and in the emu-
lation of pyramidal (hierarchical) processing.

An important characteristic of the system is the
integration of a Serial-to-Parallel 1/0 Device, called
Video Interface (VIF), which can be connected to
a conventional imaging device (camera, linear CCD,

While a line is processed, the VIF automati-
cal y loads the following image line from the camera.
At the end of this processing, the PA stores the re-
sults back into the VIF (on different bit-planes) and
loads in parallel the following image line. During the
data acquisition process, the VIF behaves like a shift-
register, loading raw data serially from a camera, and
outputting processed data serially to a display.

The system is designed to fit into a single integrated

.

circuit, hence the control of all the processing elements
is centralized at the chip level. Its design has been
driven by two main considerations.

First many image analysis algorithms consist of se-
quences of low level steps, such as filters, convolutions,
etc., to be performed over the whole image. Instruc-
tion fetching from an external memory is an important
source of overhead. Hence we chose to pre-load each
block of instructions (to be repeated for the whole im-
age) into an internal memory, named Writable Control
Store (WCS), and to fetch the instructions from there.
In such a way it is possible to obtain the performance
of a fast cache with a hit ratio close to 1, a t a fraction
of the cost and complexity.

The second consideration has been to avoid per-
formance bottlenecks by matching the performance of
the control section to that of the processing elements.
To achieve this result, a sophisticated pipeline scheme
has been developed which is expected to sustain an
instruction execution flow of 100 Mops/s.

3 Instruction set
PAPRICA’s instruction set has been designed to

efficiently implement image processing algorithms. A
dedicated hardware structure, named Image Descrip-
tor, stores the base memory address of the image, the
index of the line being processed a t any time, and some
other information regarding the way in which the im-
age should be processed. This allows, for example,
indirect memory access. To increase the flexibility of
the processor, memory references may also be indexed
using the contents of some special purpose counter reg-
isters, which are used as indices in loops. In addition
to that, two instructions provide full synchronization
and transfer capability to directly acquire data from
a camera and send it after processing to a display.
The instruction set fully supports the Mathematical
Morphology approach to image processing, exploiting
matching operations and logical operations. Bit-serial
addition and subtraction with carry are also imple-
mented. A branch instruction allows the programmer
to take decisions on the flow of operations: considering
the SIMD architecture, conditions must be set up on
the base of global information, for which specific eval-
uation and accumulation instructions are provided.

PAPRICA’s assembly language comprises the fol-
lowing classes of instructions:

General and Initialization Instructions:

NOP performs no operation.
STOP performs soft and hard program stops.
CONFIG configures neighborhood connection

BASE, SKIP, RESET initialize image

Memory Transfer Instructions:

LD loads data from memory into an internal reg-

ST stores data from an internal register to mem-

for sidemost processors.

descriptor contents.

ister.

ory.

291

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

LDC loads data from the camera interface into

STV stores data from internal registers to the

ADD updates the memory address information

COMMOUT transfers internal register data

internal registers.

camera interface.

of a specified image descriptor.

among processor elements.

0 Morphological Instructions:

LOP performs a logical or algebraic operation
between two internal registers. Stores the
result into an internal register.

MOP performs a match operation between an
internal register (and its neighborhood) and
the last set template. The result is then
treated as the first operand of a logical or
algebraic operation.

TEMPLATE sets the match template.

0 Status Evaluation and Flow Control Instruc-
tions:

INIT initializes the status evaluation hardware.
EVAL performs status evaluation.
ACCUM accumulates status data on the dedi-

cated status registers.
SET, INC initializes and increment counter

register contents.
FOR repeats a block of instructions for a pre-

specified number of times. Enables indexed
addressing.

ON sets up and evaluates a condition that influ-
ences the execution of the following instruc-
tion.

BRC unconditionally branches to a specified
program memory address.

4 Pipeline description
In order to devise an efficient pipeline structure,

instructions must be first divided into classes shar-
ing the same kind of operations. For this purpose,
only a coarse division of the instruction execution pro-
cess is necessary. In our case the classical five phase
pipeline [5] may be used:

IF Instruction fetch

ID Instruction decode

OR Operand read

EX Execution

OW Operand write back

Instructions
-mop

STOP
CONFIG

BASE
SKIP

RESET
ADD

TEMPLATE
INIT

ACCUM
FOR
BRC
ST
LD

LDC
STV

COMMOUT
MOP
LOP

EVAL

IF- -
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X -

ID- -
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X -

OR

X
mem
vif
X
X
X
X
X

Ex-- -
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X -

-ow- -

mem
X
X

vif
X
X
X
X -

Table 1: Instruction phase requirements

Only the IF, ID and EX phases must be present in
all instructions. We can thus partition the instruction
set on the basis of the required phases, as shown in
table 4. The simplest pipeline structure would then
comprise five stages corresponding to the five basic
phases. This scheme, known in the literature as mono-
fibnctional ([5]), forces even unrelated instructions to
wait if the preceding ones stall due to conflicts, thus
degrading the overall performance. To avoid this ef-
fect, a multi-functional pipeline has been designed,
which allows multiple instructions to be routed on dif-
ferent paths and execute simultaneously. The design
objective was to reach peak performance for those pat-
terns of instructions that most often are exploited in
image processing: these comprise sequences of mor-
phological instructions, loops, load-process-store, bit-
serial computations. A particular attention has been
dedicated to allowing potentially long instructions to
run in parallel with shorter ones, by providing differ-
ent paths for some of them, For example, flag evalu-
ation, inter-processor communication, memory access
and synchronization all share a wait mechanism that
lets them “run in the background”.

A comprehensive block-diagram of the proposed ar-
chitecture is depicted in figure 2. A brief description
of the functionality associated with each block follows:

IF Instruction Fetch. Updates the program counter
content. Checks for active loops and handles their
data management.

ID Instruction Decode. Decodes and routes instruc-
tions. Those which need operand read or write
are routed to the conflict detection stage, after
effective address calculation has been performed.
The others are immediately executed. Branch

292

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

instructions are executed at this stage, and re-
quire that IF be flushed to discard unwanted data.
Flow control conflict detection and address eval-
uation are performed by this block. Due to the
complexity associated to this stage, ID may be
replicated many times in the implementation to
meet the timing constraint.

CD Conflict Detection. Checks for data conflicts and
handles the booking table for internal registers.
Routes instructions to the proper block for ex-
ecution.

Reads operands from internal
registers. Checks for operand availability be-
fore execution. Routes instructions to the proper
block for execution.

BP Bit Propagation. Delays MOP instruction exe-
cution for one cycle, to allow data propagation
between neighboring processors.

EX Execution. Executes matching, logical and alge-
braic operators.

FE Flag Evaluation. Performs status evaluation and
waits for completion. Stores the result in the sta-
tus register.

CO Communication Out. Sends data to the commu-
nication network and waits for completion. Stores
the result in the dedicated internal register.

MU Memory Unit. Manages all accesses to the im-
age memory and waits for completion. Redirects
instructions to the correct stage for operand write
back OW2 for logical registers, SM for morpho-

SY Synchronize. Waits for synchronization with the
external camera and display.

OW1 Operand Write 1. Stores results back into in-
ternal registers. Checks for availability of the re-
source.

OW2 Operand Write 2. Stores results back into in-
ternal registers. Releases register occupancy flags
and notifies the CD stage.

SM Shi€t MOR. Stores incoming data from image
memory into internal morphological registers and
shifts their content one line up. Releases the reg-
ister’s occupancy and notifies the CD stage.

SV Shift VIF. For LDC: load data from the camera
interface into the internal morphological registers
and shifts their content one line up. For STV:
stores data from internal registers to the camera
interface. Releases the register’s occupancy and
notifies the CD stage.

OR Operand Read.

logica I registers to perform the shift operation).

Instructions stall either when the desired operation
cannot be executed because of resource contention, or
when the block where the instruction must be issued

I I

Figure 2: Pipeline block-diagram

is already occupied. The latter circumstance is mini-
mized when different instructions are allowed to take
different paths. This condition can be accomplished,
as in our design, by multiple instances of the execu-
tion stage. On the other hand, this approach requires
a more complex design of the conflict detection mech-
anism.

5 Conflict management
The concurrent execution of instructions in a

pipeline structure causes contention conditions which
must be detected and resolved in the most effective
way. These conflicts between instructions may be clas-
sified as follows: structural conflicts which arise from
the request of the same resource by two different in-
structions at the same time, data conflicts which arise
because a pipeline structure allows the sequence of
data accesses to be altered, and control conflicts which
occur when the normal flow of operation is changed 151.
5.1 Structural conflicts

Given the structure of the pipeline, these conflicts
are regarded as potential conflicts, since they occur
only for particular sequences of instructions. Differ-
ent structures are present in PAPRICA’s hardware to
perform different tasks:

0 Register File read ports.

0 Register File write port.

0 Morphological Register shift.

0 Video InterFace load/store.

0 Execution unit (match, logical and algebraic).

0 Flag Evaluation unit.

0 Inter-processor Communication Network.

0 Memory read/write access.

Each of these functional units corresponds to a differ-
ent block in the pipeline block diagram, thus struc-
tural conflicts related to simultaneous requests of the
same resource by two different blocks cannot occur.
A conflict arises only when two instructions originat-
ing in the ezeeution and memory units request for an

293

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

operand write back. As seen in figure 2, block OW
has been duplicated into two instances named OW1
and OW2. OW1 executes the write operation only
when OW2 is empty, otherwise it behaves as a buffer
booking OW2 for the following cycle and trasferring
to it its content. In this way, while memory instruc-
tions may stall until a MOP/LOP sequence ends, only
the latency of morphological instructions is increased
without losing steady-state performance.

A conflict arises when a pipeline block may be ac-
cessed by different stages. This problem is caused by
the MU and EX blocks:

0 The MU stage may be accessed both by an LD in
CD and by an ST in OR: in this case, the LD is
stalled and the ST proceeds first, as in the natural
order.

0 The EX stage may be accessed by both a MOP in
BP and a LOP in OR. Instead of stalling the LOP
instruction in the operand read stage, the LOP is
issued to the BP stage, which does nothing but
delays it for one cycle. As for the OW stage, only
latency is increased with no performance loss (in
this case stalling is completely avoided).

5.2 Data conflicts
These conflicts occur when two instructions refer

to the same data. The most common problem arises
when the second instruction tries to read the data be-
fore the first one has changed it. To avoid this error,
the second instruction must be stalled until the first
has completed.

Different policies are implemented to avoid data
conflicts for the different hardware structures.

0 Image Memory data. This conflict never occurs
because memory references are always performed
by the same block (MU) in order.

0 Status Registers data. This conflict occurs when
an accumulation instruction is issued before the
status evaluation from the previous one has com-
pleted. A dedicated flag in the pipeline informs
the ID stage that an evaluation is in progress,
stopping the accumulation until the evaluation
completes.

0 Internal Register data. This conflict originates
from instructions which refer to the internal reg-
isters. They are: LD, ST, LDC, STV, MOP, LOP,
COMMOUT, EVAL. Complexity arises from the
different possible paths that these instructions
may take, forcing the use of a sophisticated mech-
anism to detect contention. For each register in
the Register File, a busy bit indicates whether
a write operation for that register is in progress.
The CD, OR and write back stages are in charge
of handling such bits through the following pro-
cedure:

1. For any instruction willing to write into an
internal register, the register availability is
checked in the CD stage against the state

of the corresponding busy bit. If the busy
bit is already set, the instruction waits in
the CD stage until the register is released
by one of the write back stages. Otherwise,
if the busy bit is not set, the register is oc-
cupied by the instruction and control passes
to one of the following stages. Only in the
case of an STV, registers are booked as for a
write operation, even though only a read op-
eration will take place. This is necessary to
avoid data being changed by other instruc-
tions during the VIF synchronization phase,
which may take an unpredictable number of
cycles.

2. In the OR stage the source operands’ busy
bit is checked and the instruction is stalled
if a write operation on such registers is in
progress. Instructions referring to the same
register as both the source and the destina-
tion operand do not execute the check phase
(which had already been performed in the
CD stage) to avoid deadlock.

3. The write phases (O w l , OW2, SM, SV) in-
form the CD stage of the completion of their
operation, and release the occupation of the
internal register, making it available to the
following instructions.

Correct operation is ensured by the CD stage,
through which every instruction referring to in-
ternal registers must pass.
The CD stage handles such conflicts as Write af-
ter Write and Write after Read, while the Read
after Write is managed by the OR stage. The
bypass technique is often used in many pipeline
structures to avoid stalling an instruction for a
Read after Write conflict. This technique basi-
cally feeds the result of the execution stage back
to the operand read stage, to make it immediately
available. This technique is not applicable to our
case, because:

- results are produced by both the EX and the
MU stage, so a decision must be taken to get
the data from the proper place.

- source operands come from different PES, so
a bit propagation delay must be taken into
account before data are available to the OR
stage.

- logical and morphological instructions may
accumulate their result in AND or OR with
the previous value stored in the destination
register, so that the new value may not cor-
respond to that computed by the execution
stage.

However, this technique is applicable to the ac-
cumulator used for bit-serial computations, since
its value is immediately available for the following
instructions which need not be stalled.

294

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

Note that data stored in the image descriptors may
be changed before an LD or ST completes: this does
not matter because address calculation is performed
immediately in the ID stage and the effective address
in then delivered to the MU stage. On the other hand,
the register which holds the template value must be
preserved until every morphological instruction has
terminated: for this reason, a TEMPLATE instruc-
tion waits in the ID stage if a MOP is still running in
the pipeline.
5.3 Control conflicts

The program flow may be changed by the com-
pound statements ON-BRC, which are executed in
the ID stage. The first instruction is used to evaluate
the condition, and the second to decide whether the
jump must be taken or not. Since the ID stage is not
released by the ON-BRC, only one other instruction
is fetched before any decision is taken. Hence only
the first stage of the pipeline need be flushed. More-
over, at least two more cycles are lost in the condition
evaluation and branch execution. To avoid this loss of
performance, a dedicated instruction has been intro-
duced to handle fixed loops, which are a very common
occurrence in the sort of application programs that we
are targeting. The FOR instruction is executed in the
ID stage, and simply sets some registers used by the
IF stage to determine the value of the next program
address. Since the number of instructions within the
loop and the number of iterations are known a-priori,
the IF stage always fetches the correct instruction and
no cycles are lost for evaluating the end of the loop.
Thanks to the indexed addressing mode, this mecha-
nism highly increases performance and saves precious
space in the program memory cache (WCS).

6 Performance evaluation
In this section, a few examples are examined based

on the simulation of a behavioral model written in the
Verilog Hardware Description Language [7]. A state
diagram shows the instruction queue in the pipeline
for a sequence of clock cycles.

The first example is shown in figure 3 and con-
sists of a two-instruction loop (one morphological and
one logical) without data dependency, and repeated 3
times. One instruction is issued for each cycle with
no delay. Note how LOPS are routed to the BP stage
to wait for a MOP bit propagation and leave space
to the following instruction. Not considering the first
(FOR) and the last (STOP) instruction, and assum-
ing an infinite number of iterations, the performance
gain over a non-pipelined solution is 5.5 (in real cases
it is expected to be between 3.5 and 4.5).

The second example is shown in figure 4, and con-
sists of a sequence of a MOP and a LOP instructions
with data dependency. The second instruction waits
in the OR stage for the MOP completion, and is then
directly issued to the EX stage with no bit propaga-
tion. Note that the CD stage is free to manage other
instructions to be delivered to different blocks. Peak
speed up is 1.57 (in real cases it is expected to be
between 1.3 and 1.45).

The last example is shown in figure 5 and consists
of an LD and a MOP without data dependency. In this

FOR cycle : body of 2 instructions without data dependencies repeated 3 times
FOR 0 TO 2 DO 2
MOP
LOP
STOP

cycle no. IF ID CD OR BP EX OW1
0 FOR
1 MOPO FOR
2 LOPO MOP0
3 MOPl LOP0 MOPO
4 LOPl MOPl LOPO MOP0
5 MOP2 LOPl MOPl LOP0 MOPO
6 LOP2 MOP2 LOPl MOPl LOPO MOP0
7 STOP LOP2 MOP2 LOPl MOPl LOPO MOPO
8 STOP@) LOP2 MOP2 LOPl MOPl LOPO
9 STOP (s) LOP2 MOP2 LOPl MOPl
10 STOP (s) LOP2 MOP2 LOPl
11 STOP(s) LOP2 MOP2
12 STOP@) LOP2
13 STOP

Legend
(s) - stall cycle

Figure 3: For cycle: 2 instructions, 3 times, no
data dependency

LOP instruction waits for operand release by a previous MOP
Note that BP Stage free lets to bypass it by a LOP instruction
R4 = MOP R1 LOP R2;
R12 = R4 LOP R3; //this LOP needs R4 as read operand
STOP

/I this MOP locks R4

cycle no.
0

1
2
3
4
5
6
I
8

9
10

IF ID CD
MOP
LOP MOP
STOP LOP MOP

STOP(s) LOP
STOP (s)
STOP (s)
STOP(s)
STOP (s)
STOP (s)
STOP(s)

STOP

OR BP EX OW1

MOP
LOP(s) MOP
LOP (s) MOP
LOP (s) MOP

LOP
LOP

LOP

Legend
(s) - stall cycle

Figure 4: MOP - LOP sequence with data depen-
dency

295

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

MOP instruction bypasss LD instruction waiting for memory sad campletion
No data dependencies
LD
MOP
STOP

mem. cycle
lOOns mem.
lOns mem.

lOOns mem.

cycle no. IF ID CD MU SM OR BP EX OW1
o m
1 MOP LD
2 STOP MOP LD
3 STOP($ MOP LD(w)
4 STOP (s) LD (4 MOP
5 STOP (s) LD (4 MOP
6 STOP (s) LD (w) MOP
7 STOP (s) LD (w) MOP
8 STOP (s) LD
9 STOP

no pipe pipe speed up
554 241 2.3
410 97 4.2

554 131 4.2
imp. sch. speed up

Legend:
(s) - stall cycle
(w) - wait cycle

Figure 5: MOP overtakes a waiting LD

case, a slow memory access time is assumed, so that
the LD waits for 5 cycles in the MU stage. The MOP
is free to overtake the waiting LD, and to complete its
execution.

Obviously, it is not possible to evaluate exactly
the speed up which may be obtained by a pipeline
structure in the general case, because it essentially de-
pends on the application program. Effective instruc-
tion scheduling by the programmer or by the com-
piler, aimed at avoiding data dependencies and at tak-
ing advantage of instruction concurrency may, in the
best case, allow an overall speedup of 6 over the non-
pipelined case. However, in the worst case only IF,
ID and CD overlap giving a total speedup of 1.2. It
has therefore been our goal to design a structure that
would easily be exploited by image processing algo-
rithms. An estimation of the number of lOns cycles
needed to filter one line of an 8-bit grey level image
using a loons external memory and a 1Ons internal
memory is shown in the following table:

The no p i p e column refers to the number of cycles
needed by a conventional sequential controller, while
the pipe column refers to the pipelined case. The speed
up colums reports the speed up achieved. The imp.
sch. column refers to the case in which many cycles
may be saved because part of the operation on the old
line can be executed while loading the new data. Obvi-
ously, this possibility depends on the implementation
of the algorithm.

7 Conclusions
A pipelined controller has been designed to execute

instructions on a massively parallel processor. The
main design objective was to boost performance for
image analysis algorithms in order to be able to use

the system in hard real time applications. Simulation
shows that for a system comprising an internal fast
image memory, the achieved speed up may reach a
factor of 4-5 when little data dependency is involved.
When using an external memory whose access time
dominates the total processing time, intelligent in-
struction scheduling and concurrency exploitation are
effective tools to gain further advantages. The design
is currently being implemented using a mixed Macro
module-based and Standard Cell-based methodology
which relies on synthesis tools.
Acknowledgements

This work has been partially supported by Pro-
getto Finalizzato Trasporti under contract number
94.01376.PF74, Progetto Speciale on VLSI Architec-
ture for HDTV, and by MURST 40% on VLSI Archi-
tectures.

References
J. Serra, ”Image Analysis and Mathematical Mor-
phology,” Academic Press, London, 1982.

F. Gregoretti, L. M. Reyneri, C. Sansok,
A. Broggi, and G. Conte, ”The PAPRICA SIMD
Array: Critical Reviews and Perspectives,” Pro-
ceedings ASAP’93 - IEEE Computer Society In-
ternational Conference on Application Specific
Array Processors, Venezia, Italy, October 25 - 27
1993. IEEE Computer Society.

A. Broggi, G. Conte, F. Gregoretti,
L. Lavagno, L.M. Reyneri, C. Sansok, G. Burzio,
”PAPRICA-3 A Real Time Morphological Image
Processor,” Proceedings of the 1st IEEE Interna-
tional Conference on Image Processing, Austin,
USA, November 1994.

Yamashita et al, ”A 3.84 GIPS Integrated Mem-
ory Array Processor with 64 Processing Elements
and a 2-Mb SRAM,” IEEE Journal of Solid-state
Circuits, Vol. 29, No. 11, pp. 1336-1343, Novem-
ber 1994.

D. A. Patterson, J. L. Hennessy, ”Computer Ar-
chitecture: a Quantitative Approach,” San Ma-
teo: kaufmann, 1990.

P.G. Paulin, C. Liem, T.C. May, S. Sutarwala,
”DSP Design Tool Requirements for Embedded
Systems: a Telecommunications Industrial Per-
spective,” Journal of VLSI Signal Processing,
Vol. 9, No. 1-2, pp. 23-47, January 1995.

D. E. Thomas, P. Moorby, ”The Verilog Hard-
ware Description Language,” Kluwer Academic
Publishers, 199 1.

296

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

