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Abstract In this paper we propose a rule unifying circular and non-circular assume-
guarantee reasoning and show its interest for contract-based design and verification.
Our work was motivated by the need to combine, in the top-down methodology of
the FP7 SPEEDS project, partial tool chains for two component frameworks de-
rived from the HRC model and using different refinement relations. While the L0
framework is based on a simple trace-based representation of behaviors and uses
set operations for defining refinement, the more elaborated L1 framework offers
the possibility to build systems of components with complex interactions. Our ap-
proach in L1 is based on circular reasoning and results in a method for checking
contract dominance which does not require the explicit composition of contracts. In
order to formally relate results obtained in L0 and L1, we provide a definition of
the minimal concepts required by a consistent contract theory and propose abstract
definitions which smoothly encompass hierarchical components. Finally, using our
relaxed rule for circular reasoning, we show how to use together the L0 and L1
refinement relations and as a result their respective tool chains.
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8.1 Introduction

Contract and interface frameworks are emerging as the formalism of choice for sys-
tem designs that require large and distributed teams, or where the supply chain is
complex [24, 10, 11]. This style of specification is typically employed for top-down
design of systems of components, where the system under design is built by a se-
quence of decomposition and verification steps. In this paper we present and study
some distinctive features of contract theories for frameworks in which the inter-
action between components is “rich”, i.e., more complex than the usual input/out-
put (I/O) communication. One such component framework is BIP [3] which allows
multi-party synchronizations scheduled according to priorities. In addition, we show
how to combine results obtained using different contract refinement relations.

Our work has its practical motivation in the component framework HRC [4, 6, 10,
11] (standing for Heterogeneous Rich Components) defined in the FP7 IP project
SPEEDS [26], which has been reused in the FP7 STREP project COMBEST [9] and
the ARTEMIS project CESAR [7]. The HRC model defines component properties
in terms of extended transition systems and provides several composition models,
ranging from low-level semantic composition to composition frameworks underly-
ing the design tools used by system designers. More precisely, HRC is organized
around two abstraction levels called L0 and L1 and describing respectively the core
level and the analysis tool level of HRC [18]. That is, L0 determines the expressive
power of the entire model and there exist translations from L1 models to L0. On the
other hand, L1 extends the core model with concepts such as coordination mecha-
nisms — the rich interactions mentioned in the title. Analysis tools can then take
advantage of these additional concepts to make system descriptions more concise
and therefore verification more efficient.

Our objective is to allow combined use of synchronous tools like Simulink [27]
for L0 and synchronization-based tools like BIP for L1, which have complementary
strengths. For example, Simulink is very convenient for modeling physical dynamic
systems or streaming applications. In contrast BIP, which encompasses rich inter-
actions, is well adapted for describing the dynamic behavior of sets of components
depending on available resources for memory, energy, communication bandwidth
etc. We are interested in this paper in the relation between the L0 and L1 contract
frameworks as we want to use verification results established in L1 for further rea-
soning within L0. The presence of rich interactions in L1 makes contract composi-
tion problematic and leads us to focus instead on circular reasoning, which allows
a component and its environment to be refined concurrently — each one relying
on the abstract description of its context — and entails an interesting rule for prov-
ing dominance, i.e., refinement between contracts. In order to relate L0 and L1, we
define a generic contract framework that uses abstract composition operators and
thus encompasses a variety of interaction models, including those for L0 and L1.
Finally, we show how to use a relaxed rule for circular reasoning to combine partial
tool chains for both frameworks into a complete tool chain for our methodology.

To the best of our knowledge, this is the first time that a rule combining dif-
ferent refinement relations is proposed and used to unify two contract frameworks.
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While circular reasoning has been extensively studied, e.g. in [2, 17], existing work
focuses on finding sufficient conditions for soundness of circular reasoning while
we focus on how to use circular reasoning in a contract-based methodology. Non-
circular assume-guarantee reasoning is also a topic of intense research focused on
finding a decomposition of the system that satisfies the strong condition imposed
on at least one of its components [8]. Finally, our contract frameworks are related
to interface automata [1]. Since de Alfaro and Henzinger’s seminal paper many
contract and interface theories have been developed for numerous frameworks (see
e.g. [15, 28, 12, 21, 23, 22] to name just a few). However these theories focus on
composition of contracts while we strive to avoid that and furthermore they do
not handle rich interactions. Examples include [16, 22] based on modal I/O au-
tomata and [28] defining relational interfaces for capturing functional dependencies
between inputs and outputs of an interface. Preliminary versions of our contract
framework appeared in [20, 14] but did not address the question of combining re-
sults obtained for different refinements.

This paper is structured as follows: Section 8.2 describes our design and verifica-
tion methodology as well as generic definitions of component and contract frame-
work. It then discusses sufficient reasoning rules for establishing dominance without
composing contracts. Section 8.3 presents how the proposed approach is applied to
the L0 and L1 frameworks. In particular it shows how their different satisfaction
relations may be used together using relaxed circular reasoning and discusses prac-
tical consequences of this result. Section 8.4 concludes the paper. The proofs of all
theorems presented in this paper are presented in [13].

8.2 Design Methodology

Our methodology is based on an abstract notion of component. We characterize a
component K by its interface defined as a set P of ports which describe what can be
observed by its environment. We suppose given a global set of ports Ports, which all
sets of ports in the following are subsets of. In addition, components are also char-
acterized by their behavior . At this level of abstraction, we are not concerned with
how behaviors are represented and develop our methodology independently of the
particular formalism employed. Interactions (potentially complex) between compo-
nents are expressed using the concept of glue operator [25] . A glue defines how the
ports of different components are connected and the kind of synchronization and
data exchange that may take place. We denote the composition of two components
K1 and K2 through a glue gl as gl{K1,K2}. The glue must be defined on the union
of the ports P1 and P2 of the components.

In order to separate the implementation phase of a component from its integration
into the system under design, we use contracts [6, 5, 20] . A contract for a compo-
nent K describes the interface P of K, the interaction between K and its environ-
ment E, the expected behavior of E, called the assumption A of the contract, and the
expected behavior of K, called the guarantee G. Assumptions and guarantees are in
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turn expressed as components, defining the interface and the behavior that are con-
sidered acceptable from the environment and from the component. Thus, formally,
a contract C for an interface P is a triple (A,gl,G), where gl is a glue operator
on P ∪PA for some PA disjoint from P; the assumption A is a component with
interface PA; and the guarantee G is a component with interface P . Note that the
interface of the environment is implicitly defined by gl. Graphically, we represent
contracts as in Figure 8.1.
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Fig. 8.1: A contract (A,gl,G) for an interface P

From a macroscopic point of view, we adopt a top-down design and verification
methodology (see Figure 8.2) in which global requirements are pushed progres-
sively from the top-level system to the low-level atomic components. As usual, this
is just a convenient representation; in real life, the final picture is always obtained
in several iterations alternatively going up and down the hierarchy [19].

While the refinement relation between a specification and an implementation is
at the core of component-based design, in contract-based design refinement takes
different forms depending on whether it relates a system to a specification, two
contracts or an implementation to a contract. In this paper we use a methodology
which divides the design and verification process into three steps corresponding to
these three forms of refinement.

We assume that the system K under construction has to realize a global require-
ment ϕ together with an environment on which we may have some knowledge, ex-
pressed by a property A. Both ϕ and A are expressed w.r.t. the interface P of K. We
proceed as follows: (1) define a contract C = (A,gl,G) for P such that gl{A,G}
conforms to ϕ; (2) decompose K as subcomponents Ki connected through a glue
operator glI and provide a contract Ci for each of them; possibly iterate this step if
needed; (3) prove that whenever a set of implementations Ki satisfy their contracts
Ci, then their composition satisfies the top-level contract C (dominance) — and thus
guarantee ϕ; (4) provide such implementations.

The correctness proof for a particular system is therefore split into 3 phases:
conformance (denoted 4) of the system defined by the top-level contract C to ϕ;
dominance of C by the composition of the set of contracts {Ci} through glI ; and
satisfaction (denoted |=) of each Ci by the corresponding implementation Ki. Thus,
conformance relates closed systems, dominance relates contracts, while satisfaction
relates components to contracts.
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Fig. 8.2: Proof of gl{A,glI{K1,K2,K3}}4 ϕ

Note that the assumption of C1 is represented as one component A1 while in the
actual system K1 will be used in the context of three components, namely K2, K3 and
A. Thus, we need to relate the actual glues gl and glI to the glue gl1 of C1. In other
words, we need a glue glE1

to compose K2, K3 and A as well as an operation ◦ on
glues such that gl ◦ glI = gl1 ◦ glE1

. In most cases, ◦ cannot simply be composition
of functions and has to involve some flattening of the system.

8.2.1 Contract Framework

To summarize, we consider a component framework that smoothly supports com-
plex composition operators and hierarchical components. The elements of the com-
ponent framework are as follows:

Definition 1 (Component framework). A component framework is defined by a
tuple (K ,GL,◦,∼=) where:

• K is a set of components. Each component K ∈K has as interface a set of
ports, denoted PK and subset of our global set of ports Ports.
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• GL is a set of glues. A glue is a partial function 2K −→K transforming a set
of components into a new composite component. Each gl ∈ GL is defined on
a set of ports Sgl, called support set, and defines a new interface Pgl for the
new component, called exported interface. K = gl({K1, . . . ,Kn}) is defined if
K1, . . . ,Kn ∈K have disjoint interfaces, Sgl =

⋃n
i=1 PKi and PK = Pgl.

• ◦ is a partial operator on GL, called flattening, to compose glues. gl ◦ gl′ is
defined if Pgl′ ⊆ Sgl. Its support set is Sgl\Pgl′ ∪Sgl′ and its interface is Pgl.
• ∼=⊆K ×K is an equivalence relation between components.

We simplify our notation by writing gl{K1, . . . ,Kn} instead of gl({K1, . . . ,Kn}).
The equivalence relation∼= is typically used for relating composite components with
their semantics given as an atomic component. More importantly, ◦must be coherent
with ∼= in the sense that gl{gl′{K1},K2} ∼= (gl ◦ gl′){K1 ∪K2} for any sets of
components Ki such that all terms are defined.

After formalizing generic properties required from a component framework, we
now define the relations used in the methodology for dealing with contracts. Satis-
faction is usually considered as a derived relation and chosen as the weakest rela-
tion implying conformance and preserved by composition. We loosen the coupling
between satisfaction and conformance to obtain later stronger reasoning schemata
for dominance. Furthermore, we propose a representation of satisfaction as a set
of refinement under context relations denoted vA,gl and such that K vA,gl G iff
K |= (A,gl,G).

Definition 2 (Contract framework). A contract framework is defined by a tuple
(K ,GL,◦,∼=,4, |=) where:

• (K ,GL,◦,∼=) is a component framework.
• 4⊆K ×K is a preorder called conformance relating components having the

same interface.
• |= is a relation called satisfaction between components and contracts s.t.: the

relations vA,gl defined by K vA,gl G iff K |= (A,gl,G) are preorders; and, if
K |= (A,gl,G) then gl{A,K}4 gl{A,G}.

Our definition of satisfaction emphasizes the fact that |= can be seen as a set of
refinement relations where K vA,gl G means that K refines G in the context of A
and gl. The condition which relates satisfaction and conformance ensures that the
actual system gl{A,K} will conform to the global requirement ϕ discussed in the
methodology because 4 is transitive and gl{A,G}4 ϕ .

Example 1. Typical notions of conformance for labeled transition systems are trace
inclusion and its structural counterpart simulation. For these, satisfaction is usually
defined as the weakest relation implying conformance.

K |= (A,gl,G), gl{K,A}4 gl{G,A}

Dominance is a key notion for reasoning about contracts rather than using refine-
ment between components. Proving that a contract C dominates C ′ means showing
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that every component satisfying C also satisfies C ′.1 However, a dominance check
involves in general not just a pair of contracts: a typical situation would be the one
depicted in Figure 8.2, where a set of contracts {Ci}n

i=1 are attached to disjoint in-
terfaces {Pi}n

i=1. Besides, a glue glI is defined on P =
⋃n

i=1 Pi and a contract C is
given for P. In this context, a set of contracts {Ci}n

i=1 dominates a contract C w.r.t.
a glue glI if any set of components satisfying contracts Ci, when composed using
glI , makes a component satisfying C .

Definition 3 (Dominance). Let C be a contract on P , {Ci}n
i=1 a set of contracts on

Pi and glI a glue such that SglI =
⋃n

i=1 Pi and P = PglI . Then {Ci}n
i=1 dominates

C with respect to glI iff for all components {Ki}n
i=1:

(∀i : Ki |= Ci) =⇒ glI{K1, . . . ,Kn} |= C

Note that this formal definition of dominance does not help establishing domi-
nance in practice because looking at all possible components satisfying a contract is
not realistic. What we need is a sufficient condition that refers to assumptions and
guarantees, rather than components. One such condition is when the composition of
the low-level guarantees Gi satisfies the top-level contract C and furthermore each
low-level assumption Ai is discharged by the abstraction of its environment defined
by the guarantees of the other components. Formally:{

glI{G1, ... ,Gn} |= C
∀i : glEi

{A,G1, ... ,Gi−1,Gi+1, ... ,Gn} |= C−1
i

(8.1)

where for any contract Ci = (Ai,gli,Gi) we use the notation C−1
i to denote the

contract (Gi,gli,Ai).
In the next subsection, we provide two rules which indeed make the previous

condition sufficient for establishing dominance: one is similar to circular assume-
guarantee reasoning and the other one deals with preservation of satisfaction by
composition. This result is particularly significant because one can check dominance
while avoiding composition of contracts, which is impossible in the general case and
leads to state explosion in most concrete contract frameworks.

8.2.2 Reasoning within a Contract Framework

We use here the representation of satisfaction as a set of refinement under context
relationsvA,gl where K vA,gl G if and only if K |= (A,gl,G). The usual non-circular
assume-guarantee rule reads as follows in our context:

1 One may also need to ensure that the assumptions of the low-level contracts are indeed satisfied
in the actual system. This is achieved by strengthening the definition with:

∀E on PA, if E |= (G′,gl′,A′) then E |= (G,gl,A)
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K vA,gl G∧E v A =⇒ K vE,gl G

where E v A denotes that for any component G and gl such that vG,gl is defined
E vG,gl A. This rule relates the behavior of K, when composed with the abstract
environment A, to the behavior of K, when composed with its actual environment
E. However it is quite limited as it imposes a very strong condition on E. Hence the
following rule which is commonly referred to as circular reasoning.

K vA,gl G∧E vG,gl A =⇒ K vE,gl G

Note that E and K may symmetrically rely on each other. For a given contract frame-
work, this property can be proven by an induction based on the semantics of com-
position and refinement. Unfortunately, circular reasoning is not sound in general.
In particular it does not hold for parallel composition with synchronizations (as in
Petri nets or process algebras) or instantaneous mutual dependencies between inputs
and outputs (as in synchronous formalisms). The following example illustrates one
possible reason for the non validity of circular reasoning2.

Example 2. Consider a contract framework where components are labeled transi-
tion systems and composition is strong synchronization between corresponding la-
bels and interleaving of others denoted ‖. Define conformance as simulation and
satisfaction as the usual relation defined in Example 1. The circular reasoning rule
translates into: if K ‖A is simulated by G‖A and E ‖G is simulated by A‖G then
K ‖E is simulated by G ‖E. In the example of Figure 8.3, both G and A forbid
a synchronization between bK and bE from occurring. This allows their respective
refinements according to v4, namely K and E, to offer respectively bK and bE ,
since they can rely on respectively G and A to forbid their actual occurrence. But
obviously, the composition K ‖E now allows a synchronization between bK and bE .

aKbK
aK aE aEbE

G AK E

Fig. 8.3:K ‖A4G‖A and E ‖G4A‖G but K ‖E 64G‖E.

Note that this satisfaction relation can be strengthened to obtain a more restrictive
relation for which circular reasoning is sound. This is the approach taken for the L1
contract framework in Section 8.3.2, where we need circular reasoning to avoid
composition of contracts.

2 Note that non-determinism is another reason here for the non validity of circular reasoning.
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A second rule which is used for compositional reasoning in most frameworks is:
if I v S, then I ‖ E v S ‖ E.It states that if an implementation I refines its spec-
ification S then it refines it in any environment E. The equivalent of this rule for
satisfaction is more complex as refinement here relates closed systems.

Definition 4. Satisfaction |= is preserved by composition iff for any component E,
gl such that Sgl =PE ∪P for some P such that P ∩PE = /0 and glE , E1,E2 such
that E = glE{E1,E2}, the following holds for any components I, S on P:

I vE,gl S =⇒ gl1{I,E1} vE2,gl2 gl1{S,E1}

where gl1 and gl2 are such that gl◦glE = gl2 ◦gl1.

We now have the ingredients to formalize our sufficient condition for dominance.
This condition reduces a dominance proof to a set of satisfaction checks, one for the
refinement between the guarantees and n for discharging individual assumptions.

Theorem 1. Suppose that circular reasoning is sound and satisfaction is preserved
by composition. If ∀i ∃glEi

: gl◦glI = gli ◦glEi
then to prove that {Ci}n

i=1 dominates
C w.r.t. gl, it is sufficient to prove that condition (1) holds.

8.3 Circular Reasoning in Practice

In this section, we show how the results presented in the previous section have been
applied within the SPEEDS project: we define two contract frameworks, called L0
and L1, and show how to combine them.

8.3.1 The L0 Framework

A component K with interface PK at level L0 of HRC is defined as a set of behav-
iors in the form of traces, or runs, over PK . The behaviors correspond to the history
of values seen at the ports of the component for each particular behavior. For in-
stance, these histories could be the traces generated by a labeled transition system
(LTS). Composition is defined as a composite that retains only the matching behav-
iors of the components. If the ports of the two components have the same names,
composition at the level of trace sets boils down to a simple intersection of the sets
of behaviors. Because in our framework components must have disjoint sets of ports
under composition, we must introduce glues, or connectors, as explicit components
that establish a synchronous relation between the histories of connected ports. The
collection of these simple connectors forms the glues gl ∈ GL of our framework at
the L0 level.

We can model a glue as an extra component Kgl, whose set of ports includes all
the ports of the components involved in the composition. This component has as
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set of behaviors all the identity traces. Composition can then be taken as the inter-
section of the sets of behaviors of the components, together with the glue. To make
this work, we must also equalize the ports of all trace sets using inverse projection
proj−1

Pi,P
, which extends behaviors over P1 with the appropriate additional ports

of P . If we denote the interface of the composite as Pgl, and if K = {K1, . . . ,Kn}
is a set of components such that P1, . . . ,Pn are pairwise disjoint, then a glue gl for
K is a component Kgl defined on the ports P = Pgl∪ (

⋃n
i=1 Pi), and:

K = gl{K1, . . . ,Kn}
= projpgl,P

(
Kgl∩proj−1

P1,P
(K1)∩·· ·∩proj−1

Pn,P
(Kn)

)
The definition of ◦ is straightforward: since glues are themselves components,

their composition follows the same principle as component composition. Finally,
the ∼= relation on K is taken as equality of sets of traces.

In the L0 model there exists a unique maximal component satisfying a contract
C , namely MC = G∪¬A, where ¬ denotes the operation of complementation on
the set of all behaviors over ports PA. A contract C = (A,G) is in canonical form
when G = MC . Every contract has an equivalent contract in canonical form, which
is obtained by replacing G with MC . The operation of computing a canonical form
is well defined, since the maximal implementation is unique, and it is idempotent. It
is easy to show that K |= C if and only if K ⊆MC .

The L0 contract framework has strong compositional properties, which derive
from its simple definition and operators [5]. The theory, however, depends on the ef-
fectiveness of certain operators, complementation in particular, which are necessary
for the computation of canonical forms. While the complete theory can be formu-
lated without the use of canonical forms, complementation remains fundamental in
the definition of contract composition, which is at the basis of system construction.
Circular reasoning is not sound for contracts which are not in canonical form (Ex-
ample 2 is a counter-example in that case). This is a limitation of the L0 framework,
since working with canonical forms could prove computationally hard.

8.3.2 The L1 Framework

L1 composition is based on interactions, which involve non-empty sets of ports. An
interaction is defined by the components that synchronize when it takes place and
the ports through which these components synchronize. Interactions are structured
into connectors which are used as a mechanism for encapsulation: only these con-
nectors appear at the interface of a composite component. This enables to abstract
the behavior of a component in a black-box manner, by describing which connector
is triggered but not exactly which interaction takes place. Furthermore L1 is expres-
sive enough to encompass synchronous systems.
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Definition 5. An atomic component on a interface P is defined by an LTS K =
(Q,q0,2P ,−→), where Q is a set of states, q0 an initial state and−→ ⊆Q×2P×Q
is a transition relation.

Note that atomic components are labeled by sets of ports rather than ports be-
cause we allow several ports of a component to be triggered at the same time.

Definition 6. An interaction is a non-empty set of ports. A connector γ is defined
by a set of ports Sγ called the support set of γ , a port pγ called its exported port and
a set I (γ) of interactions in Sγ .

The notions of support set and exported port are illustrated in Figure 8.4, where
connectors relate in a composition a set of inner ports (of the subcomponents) to an
outer port (of the composite component). One should keep in mind that a connector
γ , and thus the exported port pγ , represents a set of interactions rather than a single
interaction.

Typical connectors represent rendezvous (only one interaction, equal to the sup-
port set), broadcast (all the interactions containing a specific port called trigger) and
also mutual exclusion (some interactions but not their union).

���
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γ
gl{K1,K2}

K1 K2
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Sγ ′

γ ′

Fig. 8.4: The role of connectors in a composition

We now define glues as sets of connectors which may be used together in order
to compose components.

Definition 7. A glue gl on a support set Sgl is a set of connectors with distinct ex-
ported ports and with support sets included in Sgl.

A glue gl defines as exported interface Pgl the set {pγ | γ ∈ gl}. Besides, I (gl)
denotes the set of all interactions of the connectors in gl, i.e.: I (gl) =

⋃
γ∈gl I (γ).

In Figure 8.4, gl is composed of connectors γ and γ ′ and defines a composite com-
ponent denoted gl{K1,K2}.

Definition 8. A component is either an atomic component or it is inductively de-
fined as the composition of a set of components {Ki}n

i=1 with disjoint interfaces
{Pi}n

i=1 using a glue gl on P =
⋃n

i=1 Pi. Such a composition is called a composite
component on Pgl and it is denoted gl{Ki}n

i=1.
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So far, we have defined components and glues. Glues can be composed so as to
allow flattening of components. Such a composition requires to handle hierarchical
connectors built by merging connectors defined at different levels of hierarchy. The
definition of the operator ◦ used for this purpose is omitted here and can be found
in [13]. Connectors whose exported ports and support sets are not related are called
disjoint and need not be composed. The operator ◦ is then easily extended to glues:
the composition gl◦gl′ of two glues gl and gl′ is obtained from gl∪gl′ by inductively
composing all connectors which are not disjoint.

We can now formally define the flattened form of a component. This in turn
will allow us to provide an equivalence relation between components based on
the semantics of their flattened form. A component is called flat if it is atomic or
of the form gl{K1, . . . ,Kn}, where all Ki are atomic components. A component
that is not flat is called hierarchical. A hierarchical component K is of the form
gl{K1, . . . ,Kn} such that at least one Ki is composite. Thus, such a K can be repre-
sented as gl{gl′{K 1},K 2}, where K 1 and K 2 are sets of components.

Definition 9. The flattened form of a component K is denoted flat(K) and defined
inductively as:

• if K is a flat component, then flat(K) is equal to K.
• otherwise, K is of the form gl{gl′{K 1},K 2}, and then flat(K) is the flattened

form of (gl◦gl′){K 1∪K 2}.

Definition 10. The semantics JKK of a flat component K = gl{K1, . . . ,Kn} is defined
as (Q,q0,I (gl),−→), where Q = ∏

n
i=1 Qi, q0 = (q0

1, . . . ,q
0
n) and −→ is such that:

given two states q1 = (q1
1, . . . ,q

1
n) and q2 = (q2

1, . . . ,q
2
n) in Q and an interaction α ∈

I (gl), q1 α−→ q2 if and only if ∀i,q1
i

αi−→i q2
i , where αi = α ∩Pi.

We use the convention that ∀q : q /0−→ q so components not involved in an in-
teraction do not move. Thus the semantics of a flat component is obtained as the
composition of its constituting LTS where labels are synchronized according to the
interactions of I (gl).

We then define equivalence ∼= as follows: two components are equivalent if their
flattened forms have the same semantics. Note that in practice one would prefer
to define the semantics of a hierarchical component as a function of the semantics
of its constituting components. In presence of encapsulation this requires to distin-
guish between closed and open systems and thus to provide two different semantics.
Details can be found in [13].

We now have the ingredients for defining the L1 component framework and we
focus on its contract framework.

Definition 11. K1 4L1 K2 if and only if JK1K is simulated by JK2K.

Thus L1-conformance is identical to L0-conformance for components without
non-observable non-determinism, and otherwise stronger. Note that in verification
tools, in order to check trace inclusion efficiently, one will generally check simula-
tion anyway. Satisfaction is defined as follows.
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Definition 12. A component K satisfies a contract C = (A,gl,G) for PK , denoted
K |=L1 (A,gl,G), if and only if:{

gl{K,Adet}4L1 gl{G,Adet}
(qK ,qA)R (qG,q′A)∧∃q′K : qK

α−→K q′K =⇒ ∃q′G : qG
α−→G q′G

where Adet is the determinization of A, R is the relation on states proving that
gl{K,Adet}4L1 gl{G,Adet} and α ∈ 2PK is such that ∃α ′ ∈I (gl) : α ⊆ α ′.

Thus |=L1 strengthens the satisfaction relation used in the L0 framework by: 1)
determinizing A; 2) requiring every transition of K to have a counterpart in each
related state of G — unless it is structurally forbidden by gl — but the target states
of the transition need to be related only if the environment allows this transition. As
a consequence, |=L1 allows circular reasoning.

8.3.3 Relaxed Circular Reasoning

We have presented in the previous sections two contract frameworks developed in
the SPEEDS project. We show now how we use their respective tool chains together.
Unifying the L0 and L1 component frameworks is quite straightforward. Neverthe-
less, we have introduced two different notions of satisfaction: |=L0 and |=L1 where
the second one is strictly stronger than the first one. To combine results based on
L0 and L1, we propose a rule called relaxed circular reasoning for two (possibly
different) refinement relations:

K v1
A,gl G∧E v2

G,gl A =⇒ K v1
E,gl G

This rule generalizes circular and non-circular reasoning by not restricting v2
G,gl

to refinement under context v1
G,gl or refinement in any context v1. Depending on

which relation is the most restrictive it can be used in two different ways:

1. If the first relation allows circular reasoning and is stronger than the second one
(i.e. K v1

A,gl G =⇒ K v2
A,gl G) then our new rule relaxes circular reasoning by

requiring E v2
G,gl A rather than E v1

G,gl A.
2. Symmetrically, if the first relation does not allow circular reasoning and refine-

ment in any context v1 is stronger than the second one then this rule relaxes
non circular reasoning by requiring E v2

G,gl A rather than E v1 A.

Interestingly, relaxed circular reasoning can be used both ways for L0- and L1-
satisfaction. First it leads to a relaxed sufficient condition for dominance in L1.

Theorem 2. K vL1
A,gl G∧E vL0

G,gl A implies K vL1
E,gl G.

Theorem 3. If ∀i∃glEi
: gl◦glI = gli ◦glEi

the following is sufficient to prove that C
dominates {Ci}i=1..n w.r.t. gl:
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glI{G1, . . . ,Gn} |=L1 C
∀i : glEi

{A,G1, . . . ,Gi−1,Gi+1, . . . ,Gn} |=L0 C−1
i

In that case, checking that contracts {Ci}n
i=1 L1-dominate a contract C requires

one L1-satisfaction check and n L0-satisfaction checks. This is particularly inter-
esting since checking L0-satisfaction may be achieved by using other tools or ap-
proaches (that may not need circular reasoning). Moreover, dominance can be es-
tablished more often as L1-satisfaction is stronger than L0-satisfaction. Second:

Theorem 4. K vL0
A,gl G∧E vL1

G,gl A implies K vL0
E,gl G.

This result made it possible in SPEEDS to incorporate results from tools check-
ing L0-satisfaction with results obtained through L1-dominance (implemented by a
set of L1-satisfaction checks), thus building a complete tool chain.

8.4 Conclusion and Future Work

The work presented in this paper has been motivated by the necessity of combin-
ing contract-based verification tools and corresponding results for two component
frameworks L0 and L1 defined in the context of the European SPEEDS project.
In particular, we were interested in using dominance results established in L1 —
and which cannot be obtained using the L0 refinement relation — for further rea-
soning in L0. To that purpose, we have presented an abstract notion of contract
framework for a given component framework that defines three different notions of
refinement, that is, conformance, dominance and satisfaction. We show how to de-
rive these notions from refinement of closed systems and refinement under context
and we provide a methodology for compositional and hierarchical verification of
global properties.

We have studied circular reasoning as a powerful means for proving dominance.
As circular reasoning does not always hold for usual notions of refinement, we pro-
vide proof rules for dominance relying on a relaxed notion of circular reasoning
based on two notions of refinement. We have then shown that our abstract frame-
work is general enough to represent both L0 and L1 as specific instances and proved
that the L0 and L1 refinement relations satisfy the condition for relaxed circular rea-
soning.

This approach was applied to only simple case studies in the SPEEDS project
and should therefore rather be seen as a proof of concept. The practical relevance of
such an approach is that it opens up ways of connecting tools that work at different
levels of abstraction, and relate their results to prove stronger properties. In addition,
our results relax the requirements on the tools, since circular reasoning would not
be needed at the L0 level.
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