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Abstract
Design of large systems on a chip would be infeasible

without the capability to flexibly adapt the system
architecture to the application and the re-use of existing
Intellectual Property (IP). This in turn requires the use of
an appropriate methodology for system specification,
architecture selection, IP integration and implementation
generation. The goals of this work are: a) verification of
the effectiveness of the POLIS HW/SW co-design
methodology for the design of embedded systems for
telecom applications; b) definition of a methodology for
integrating system level IP libraries in this HW/SW co-
design framework. Methodology evaluations have been
carried out through the development of an industrial
telecom system design, an ATM node server.

1. Introduction
Two key factors allow fast and reliable

implementation of complex embedded systems: the
availability of effective methodologies and tools for
system HW/SW co-design and a sizable library of
reusable and customizable cores, system-level Intellectual
Property (IP) modules. Co-simulation and co-synthesis
tools allow system engineers to explore different
architectures and choose the most efficient design
solutions in terms of architecture and final
implementation, while the use of customizable IP
modules leads to significant improvements of design
productivity and reliability.

This paper describes our experience in designing an
industrial test case using the POLIS HW/SW co-design
methodology for embedded systems [1] and the CSELT
VIP Library™ [2]. Our main goals have been the
assessment of the effectiveness of POLIS for the design
of embedded systems for telecom applications, and the

definition of a methodology for the integration of system
level IP libraries in the POLIS co-design framework.
Evaluations have been performed through the
development of an industrial telecom system design – an
ATM (Asynchronous Transfer Mode) node server
prototype. The server is a statistical multiplexing unit that
performs support functions needed to implement Virtual
Private Networks (VPN) in ATM switching nodes. It
includes an intelligent buffer that controls the bandwidth
of the outgoing flows using a weighted fair queuing
service discipline and implements a message selective
discarding technique to avoid node congestion.

The paper is organized as follows. First, a brief
description of the POLIS co-design methodology and
software tools is given. Then, the CSELT VIP library™ is
presented, together with details on the integration of the IP
library in the co-design framework. The following
paragraphs describe the architecture and the
implementation of the ATM server. Finally, the results of
the design exploration and the outline of the lessons
learned from this project are given.

2. The POLIS co-design methodology
POLIS is a co-design environment for synthesis and

validation of embedded systems [1]. It assists the designer
in manually partitioning the target system into a set of
interacting hardware and software modules. After a
partition and a suitable architecture are chosen, it allows
to synthesize both its hardware and software components
and the interfaces between them.

POLIS is based on a formal model of computation that
consists of a network of Co-design Finite State Machines
(CFSMs). CFSMs are extended finite state machines that
communicate asynchronously by means of events. The
asynchronous interaction between CFSMs allows to
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capture the behavior of systems that consist of hardware
and software components.

In the POLIS flow, the behavior of each CFSM is
described using ESTEREL [ 3], a synchronous reactive
language with underlying FSM semantics. Analysis at the
behavioral level can be carried out either with formal
verification tools or by co-simulation. System level co-
simulation, performed either in the Ptolemy environment
or using a VHDL simulator, allows designers to validate
the functionality of the system and evaluate design
choices, like HW-SW partitioning, architecture and
scheduling selection, at an early stage of the design flow.

Performance evaluation can be carried out by
simulating the behavior of the designed architecture with
an abstract timing model of the selected processor. In
VHDL co-simulation, POLIS produces a behavioral
VHDL model of each CFSM where the structure and
timing of the model depend on the implementation (HW
or SW) selected for the corresponding CFSM. HW models
emulate the behavior and timing of the synthesized HW
with the specified clock cycle, while SW models [4]
emulate the behavior and timing of the software –
including the real time operating system overhead – on a
specific micro-controller. SW timing is estimated using a
timing library that contains the number of clock cycles
required by different micro-controllers to execute atomic
operations (e.g. assign, test, etc.). At this point, system
simulation, taking into account the selected HW/SW
partition and scheduling policy, is carried out with a
conventional VHDL simulator.

The use of VHDL as a simulation language permits
easy integration with existing hardware IP specified in
synthesizable VHDL, as we show in the next sections.

After an architecture and a partition are chosen,
synthesis takes place. The output of POLIS is the C code
of the SW modules and a synthesizable netlist of the HW
modules in XNF, VHDL or Verilog format.

3. IP Integration
Designing complex systems with a high performance

reusable library achieves two simultaneous goals – shorter
time-to-market and lower design cost – making system
know-how available in the form of customizable and
reliable pre-designed modules.

The CSELT VIP Library™ is a library of customizable
IP soft cores, written in RTL VHDL that can be mapped
onto gate level netlists through automatic synthesis. The
library includes telecom application modules, mainly
targeted to the design of ATM components, video
application modules and general-purpose modules (Figure
1). The synthesizable VHDL source code of the VIP
modules is tailored for the Synopsys synthesis tools and

can also be used as functional model in simulation. The
use of the same input code for simulation and synthesis
guarantees design consistency.

The VIP library™ has been used in the implementation
of ICs and systems for ATM Switching and access nodes,
Optical Network Units, Switched Digital Video Broadcast
equipment [2]. The integration of the VIP modules in an
industrial system or IC design flow usually requires
minimum effort from the designer, who can focus his
attention on the implementation of specific custom
functionality. This saves time not only in the design and
simulation phases but also in system integration and
testing. Starting from functional and timing specifications,
the system architecture is designed and partitioned to use
the VIP library™ modules wherever possible. After that,
the design of custom hardware and software parts and
their integration with the chosen VIP library™ modules
take place.
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Figure 1: A subset of the VIP Library™

Integrating IP library modules and standard components
in the POLIS co-design environment has also proven to be
an easy – but not trivial – task. When pre-existing IP
blocks (as well as memories and off-the-shelf
components) do not follow the POLIS event-based
communication model, they require handwritten protocol
adapters in order to be integrated with HW/SW co-design
subsystems. In most cases these interfaces are very simple
and efficient. However, the integration of modules that are
intrinsically based on rendezvous protocols (like
memories) may result in a loss of performance: a more
sophisticated communication model between CFSMs and
external modules could help in solving this problem. An
example of protocol adapter VHDL code is shown in
Figure 2.
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Figure 2: Example of protocol adapter VHDL code

4. The target design: ATM Virtual Private
Network server

Our target system is a server that supports ATM-based
Virtual Private Networks (A-VPNs) in ATM nodes. It is a
real-life telecom system: a first release of the server that
was implemented and tested in CSELT [6] required a
design effort of approximately 3 man-years.

The A-VPN service [5] provides a user having several
sites on a geographical area the means for interconnecting
these sites via ATM. At every location, the user has access
to a Virtual Path Connection (VPC) with a reserved
bandwidth carrying several Virtual Circuit Connections
(VCCs), each of which corresponds to a destination in a
logical mesh configuration.

The A-VPN server is a network element that controls
the bandwidth assigned to the VCCs sharing the capacity
of a VPC, and implements the egress policing [6] needed
to ensure that the resource allocated to a VPC is not
exceeded. The functional model of the server is shown in
Figure 3.
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Figure 3 - Functional description of the ATM server

The input of the server is a stream of ATM cells that
belong to different VCCs. Incoming cells are either
discarded (that occurs when the server is congested) or
accepted. A message selective discarding technique
(MSD) avoids node congestion while preserving the flow
integrity at the message level. If accepted, cells are stored
in an internal buffer that is shared by several queues, one
for each output VPC. The cell output process is based on a
scheduling mechanism that is a variation of the Virtual
Spacing Algorithm [8]; it shapes the output traffic by
assigning to each incoming cell the timestamp at which it
must be emitted.

5. Design Implementation
The architectural design of the A-VPN server has been

driven by two goals: high design performance and low
design time. The tight timing constraints of the server (for
a 155 Mbit/s application one input cell and one output cell
must be processed every 2.7 µs, also leaving some spare
time for management), together with the availability of
most of the required functions in the VIP library™, have
led to the choice to implement the cell data path in
hardware. The design of the server control part and its
integration with the VIP library™ based cell data path has
taken place within the POLIS framework.  The internal
architecture of the system is shown in Figure 4. It is
composed of two parts: a fast datapath and a control unit.
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Figure 4 - Internal architecture of the ATM server
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The datapath is implemented with seven VIP modules
and two commercial memories, plus a small amount of
custom logic (designed as RT-level VHDL) which
translates the IP modules I/O signals into the event based
communication formalism of the CFSM model of POLIS.

The datapath operation can be summarized as follows.
Input cells arriving through the UTOPIA_Rx interface [7]
are eventually stored in the Shared Buffer Memory. For
each incoming cell, the Address Lookup module computes
a compressed form (CID) of the VC identifier in the
header. Using the CID, the Algorithm module can
efficiently access the internal tables that store status
information of the VCCs. The Logic Queue Manager
handles the shared buffer so that it can be seen as a set of
logic queues with FIFO access. At each cell time, a cell is
extracted from the Shared Buffer and emitted through the
UTOPIA_Tx [7] module, which adapts the internal data
format to the UTOPIA standard.

The control unit, which implements the server custom
functionality and is logically divided into the algorithm
and supervisor blocks, has been designed as a network of
25 CFSMs in POLIS. The algorithm module decides
which input cells must be accepted or discarded to avoid
node congestion, and implements the shaping and
bandwidth partition functions among ATM VPCs. The
supervisor acts as an interface between the other modules
and the external world: it interprets a set of configuration
commands (e.g. add/remove VCCs/VPCs) and updates the
internal tables and memories, translating the command
protocol into the event based formalism required by the
design methodology.

Figure 5 provides a functional description of algorithm.
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Figure 5 - Internal architecture of the algorithm module

Upon arrival of a new cell, algorithm receives the cell
CID from the address lookup module. If the cell is
accepted, msd_technique sends instructions to the Logic
Queue Manager (LQM) about where (i.e. in which queue)
to store the cell in the shared buffer. Communication
between the algorithm module and the LQM is handled by

the lqm_interface block, which performs the required
protocol adaptations.

When a cell is inserted in the buffer, the part of
algorithm that performs the egress policing function is
activated. This function is centered on the rt_sorter block
that, upon request, returns a pointer to the cell with the
smallest timestamp [9]. The virtual_clock_scheduler
block computes the output timestamp value of the cell and
inserts this value in the rt_sorter. When a cell is to be
emitted, the extract_cell module queries the rt_sorter and
gives instructions to the LQM Manager to output the cell
with the smallest timestamp. A set of three arbiters, not
shown in Figure 5, coordinates the access of the modules
to shared resources (internal tables, virtual clock
scheduler, rt_sorter).

6. Results
6.1. Design exploration

Starting from an informal specification of the system
given in natural language, we have described the control
unit using ESTEREL [ 3], for a total of about 1000 lines
of code, and run simulations in the POLIS environment.
This has allowed us not only to check the functional
correctness of the design but also to explore several
functional partitions of the control unit into modules and
make design choices that minimize the custom hardware
size and the communication among modules. For instance,
in this phase we have decided to reduce the number of
modules of the real-time sorter at the expense of a more
complex control mechanism.

Its tight real-time constraints make the ATM Server an
ideal design to explore limits and capabilities of the co-
design methodology. Most system functions must fit
within a cell time-slot (2.7 µs for an input rate of 155
Mbit/s). Therefore, timing constraints have been the
driving factor of the partitioning evaluation process. We
have run co-simulation experiments where some or all the
larger modules in the control unit (extract_cell, msd, and
virtual_clock_scheduler) are implemented in software.
The target processor family chosen to estimate the
performance of the SW tasks is the MIPS R3000 RISC
processor family. Our experiments have shown that, in
order to implement a reasonable number of CFSMs in
SW, the CPU speed must reach at least 200 MHz, that
corresponds to 544 CPU cycles for each cell time-slot.
However, the faster processors in the R3000 family run at
50 MHz. So, for the prototype implementation we are
using another RISC family with similar characteristics but
running at a higher frequency, the Motorola PowerPC™
family. Table I presents the results of the partitioning
evaluation: in particular it shows only the two partitions
that meet the 544 CPU cycles requirement and implement
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in SW at least one of the three largest modules. One
arbiter and the supervisor, that is a natural candidate for
SW implementation because of its low priority
functionality, are also implemented in software. Partitions
that stay within the limit of the cell time-slot but
implement in SW only modules of small size are not
considered.

Modules   (lines of code)  Partitions  (200Mhz)
       I                 II

Msd_technique (180)     SW     HW
Extract_cell (85)     HW     SW
Virtual_clock_sched (95)     HW     HW
Arbiter_1 (33)     HW     HW
Arbiter_2 (34)     SW     HW
Arbiter_3 (37)     HW     SW
Rt_sorter (300)     HW     HW
Lqm_Interface (75)     HW     HW
Supervisor (120)     SW     SW

Table I: HW/SW partitioning evaluation results

6.2. Design validation
VHDL co-simulation has been used to validate the

whole system including the IP modules. Here we used the
POLIS VHDL model generator [4] which was developed
during the design of the ATM server. The VHDL code for
the ATM server is composed of about 14000 lines, of
which about 7000 are RTL-level IP modules, about 6700
lines have been automatically generated within POLIS
from 1000 lines of source code, and the remaining 300 are
hand-written code (mainly protocol adapters).

Processor selection and HW/SW partitioning are done
by modifying the parameters that select the timing
estimates and regenerating the VHDL models. Since the
main difference between the HW and the SW VHDL
behavioral models of a CFSM is its timing
characterizations, the code size and the simulation
performance [4] are almost independent of the chosen
HW/SW partition. Moreover, since the VHDL entity is the
same for both HW and SW implementations, no changes
are needed in the VHDL test bench code when a different
partition is tried.

The test bench that we used for functional validation is
composed of about 2000 VHDL code lines (excluding two
memory models from a commercial library, for which the
source code was not available). About 1800 lines belong
to the ATM test bench (for cell flow generation and
analysis) included in the VIP library, while a small
amount of hand-written code describes a simple
behavioral process reading the external server
management commands. The availability of a pre-existing

ATM test bench allowed a fast but very accurate
functional validation of the whole design.

6.3. Design complexity and mapping results
After design exploration and validation, we have

evaluated the implementation cost of the design. The
hardware datapath including the IP modules has been
mapped onto an ALTERA 10K70 device using
commercial synthesis and P&R tools. It required about
25K equivalent gates, 1Kbyte of embedded memory
(which can be mapped directly on the FPGA) and 1.5
Mbytes of external memory, implemented on commercial
DPRAMs.

The hardware complexity of the control unit in the
different HW/SW partition explored is shown in table II.
The 25 Kbytes of memory required to store the internal
tables are not included in the literals and registers count.

Partition Literals (sop) Registers

I 16145 1535
II 18699 1742

Table II: Control Unit HW complexity

On the basis of the reported results, we have selected
partition I for the design implementation. Moreover,
partition I implements in software the functionality of the
MSD algorithm that is more likely to be modified in
future upgrades of the system. For this partition, the
software part of the control unit requires about 4500 code
bytes, while the hardware part fits on a Xilinx XC4062XL
device. The target clocks are 200 MHz for the
microprocessor, and 25 MHz for the custom hardware.
Since the standard HW-SW interfaces available in POLIS
assume that the SW clock is slower than or equal to the
HW clock, we had to define a new set of those interfaces.
A gate-level simulation of the HW part of the design has
been performed by using the same VHDL test bench we
used for functional validation. A prototype is now under
implementation, using the CSELT fast prototyping
environment based on a commercial emulation
bread-board (APTIX-MP3) with field programmable
interconnect devices realizing the interconnections among
the components placed on the board (FPGA and
memories). The APTIX board is also connected to a
microcontroller board, test instruments (logic analyzer,
pattern generator) and a control workstation.

7. Lessons learned and future work
7.1. Interfacing memories

Memory access is a critical bottleneck of this design,
since information about the connection status and
parameters has to be retrieved from memory for every
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incoming cell. At first, each memory was represented as a
CFSM awaiting data and address (write) and emitting data
(read) upon request. This mechanism is clearly inefficient
because in the write operation data and address are
handled as separate events without relative timing
guarantee. Moreover, in the read operation the data is
awaited by the reader and, in case the latter is
implemented as software, it arrives after an unnecessary
delay that degrades the performances. Hence, we modified
the specification model for memories using C functions to
access the locations directly from the reading and writing
modules. This allows a more realistic estimation of the
performance during the co-simulation step. Currently, we
are developing tools for the automatic generation of the
interface when the memory sits at the border of hardware
and software partitions (reader is HW and writer is SW or
vice versa). Note that this is a typical situation in the
design of telecom systems.

7.2. Scheduling policy
POLIS offers two kinds of scheduling policies: Round

Robin (RR) and Static Priority (SP). In RR tasks are
checked for readiness in a cyclic pre-determined order and
those that are found to be ready are immediately executed.
In SP tasks are checked for readiness based on a statically
defined priority order. For applications like the ATM
Server, where the interaction with the environment is
mostly periodic and has little influence on the time when
tasks become enabled, it would be more efficient to adopt
a quasi-static scheduling policy where the topological
dependency among CFSMs is computed at compile time
and tasks are checked for readiness at run-time based on
this pre-computed portion of the schedule. By checking
for readiness first the blocks that are most likely to be
active, run-time overhead can be significantly reduced.
Current work is going on in this direction [10].

8. Conclusions
In this paper we presented our experience in applying a

design methodology based on design reuse and HW/SW
co-design of embedded systems on an industrial test case
in the Telecom domain. Our goals were the evaluation of
the effectiveness of co-design tools and methodology on
telecom designs, on one hand, and the definition and
assessment of a methodology for integrating IP libraries in
the co-design flow, on the other. The results of our
evaluation can be summarized as follows.

The POLIS co-design environment is an efficient tool
for fast evaluation and simulation of HW/SW partition
choices. However, some limitations of the current version
of the synthesis software make it unfit to the design of
industrial telecom applications. It has to be pointed out
that POLIS was originally targeted to the design of

automotive applications, whose specifications
(particularly in terms of event frequency and
synchronicity) are quite different from those in telecom
designs. One of the main problems highlighted by this
study is that every inter-module event definition in the
ESTEREL specification is translated into an inter-module
communication primitive. However, not all the events that
are defined in a specification are actually needed in its
implementation (e.g. if event A directly causes event B
and the delay between A and B has a computable upper
bound, then event B is not necessary). Optimizing away
useless events would lead to a huge embedded software
performance improvement.

As far as the design time is concerned, the whole
project required about 8 man months (to be compared
against the 3 man years taken by the original design).
CAD debug and extension time is not included in this
figure.

The presented case study has also led to debugging and
extensions of the POLIS tools (new processor
characterizations and HW/SW interface models have been
added to the POLIS library), and to the development of a
new VHDL co-simulation methodology allowing easy
integration of IP modules in the design framework.
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