Monitor-Based Run-Time Contract Verification of
Distributed Systems

Orlando Ferrante, Roberto Passerone, Alberto Ferrari,
Leonardo Mangeruca, Christos Sofronis, Massimiliano D’ Angelo
Advanced Laboratory on Embedded Systems S.r.l., via Barberini 50, Rome, Italy
e-mail: name.surname @ales.eu.com

Abstract—The design of large scale complex systems demands
the ability to correctly specify and verify as early as possible in
the design cycle the interaction of the different components to
ensure that the global level requirements are satisfied. We address
this issue using an approach based on the notion of contract and
simulation-based verification. In particular, we extend traditional
contract verification methods to target distributed systems, which
require an asynchronous communication paradigm. We use a
pattern-based language for requirement definition, from which we
generate a set of contract monitors implemented in the Simulink
framework to observe the underlying system execution and flag
violating behaviors. In the paper, we discuss in particular the
aspects related to handling the asynchronous interaction between
components and their relation to the contract monitors. An
automatic towing system case study demonstrates the approach.

I. INTRODUCTION

The verification of complex and large scale systems, such
as an airplane or an automobile, is becoming a primary concern
in the industry. Of particular importance when integrating this
kind of systems is the ability to correctly specify and verify
as early as possible in the design cycle the interaction of the
different components that ensure that the global level require-
ments are satisfied. The current practice is based on flowing
of requirements written in natural languages, and verification
is typically done locally with only partial information of the
other parts of the system, subject to considerable interpretation.
The integration of a system wide model is therefore very
partial and covers only few aspects with limited capability
to perform a cross-company verification. In this paper, we
address both the issue of requirement definition and their
verification in the context of a distributed system using run-
time verification and a simulation infrastructure. Because of the
distributed nature of the design, which makes use of network
services for the communication among components, as well
as the distributed nature of the organization, it is essential
to provide a precise specification of the properties that each
component should satisfy, and develop a faithful model of the
component interactions. We thus base our requirement capture
methodology on the notion of contract, which favors the
definition of a correct interaction mechanism by making both
the assumptions and the guarantees of a component explicit.
Our specific contributions extend in two directions. First, we
introduce a pattern-based contract specification mechanism
that allows the user to map, visualize and compose his/her
requirements into high level formalized concepts in an intuitive
manner. Contracts are embedded in the simulation framework
in the form of monitor components that continuously interact
with the system to verify that the history of their inputs and

outputs is consistent with the specification. In addition, we
develop the theoretical background that allows contracts to be
adapted to distributed development, such as supporting an in-
terleaving asynchronous semantics, which is more appropriate
in a distributed settings where components run at independent
speeds. At the end of the simulation, designers are able to
check for any violation of the system properties, and take
appropriate corrective actions.

Related Work. Monitor techniques, or observers, have
been used extensively in system design through simulation.
Typically, monitors are obtained by synthesis from higher level
specifications, expressed in the form of some logic or regular
expression, which includes temporal properties, conveniently
translated into a state-based intermediate format, before being
compiled to executable form. Balarin et al. make use of the
Property Specification Language (PSL) to represent the proper-
ties, which can then be translated into automata, and eventually
compiled as Verilog or C code, for both hardware and software
monitoring [1]. In Metroll, constraints and constraint solvers
are built into the modeling language to express properties that
can be directly related to the design to enforce the satisfaction
of logical and time-based conditions [2]. Kakiuki et al. [3]
apply monitors to the verification of hardware designs, while
Brunel et al. [4] apply a technique similar to the logic of
constraints to the design of embedded software, where require-
ments are in the form of contracts. Tripakis et al. [5] also
discuss how to generate a diagnoser from a timed automaton
specification. We approach this problem by focusing on the
specification of formal requirements using a pattern based
language [6]. The structured nature of the patterns allows for
efficiently synthesizing monitors, reducing the complexity of
the monitoring problem.

Damm et al. formalize a pattern-based language for the
specification of safety contracts called Contract Specification
Language (CSL) [7]. This language provides the user a number
of parameterizable concepts (patterns), which are translated
into the underlying model [8]. Several shortcomings make
this inadequate for our purposes. First, the underlying fully
synchronous semantics is too constraining for distributed sys-
tems. In addition, the notion of time (or even logical step)
is not explicitly part of the CSL language, which inherits the
implicit time defined by the underlying model. Finally, there is
no means in CSL to compose assertions, limiting its usability.

II. METHODOLOGY AND SPECIFICATION LANGUAGE

The specification of the system starts from a set of informal
requirements which are formalized as contracts, expressed



using a pattern-based language. In brief, a contract C = (4, G)
is a specification of a component that defines the properties G
that a component must be able to guarantee, and the context
A or the assumptions under which the guarantee must be
established [9], [7], [10]. The assumption on the environment
is what distinguishes a contract model from a traditional
component model. When the assumptions are not satisfied, a
component is free to behave as desired, potentially violating its
own guarantees. We are interested in verifying that components
work well in combination, i.e., that the guarantees of one are
able to meet the assumptions of the other, and vice-versa.
When this is the case, we say that the contracts (and the
underlying components) are compatible. A satisfaction check
can be used to establish that components satisfy their contract.
Establishing that components satisfy their contracts, and that
contracts are mutually compatible, is sufficient to establish the
correctness of the design with respect to the specification.

Our approach to contract formalization and verification
uses a language based on blocks which allows the user to
specify contracts using a high level abstraction mechanism.
We call this language Block-based Contract Language, or BCL.
The language consists of a set of blocks that can be seen either
as standard parameterizable elements with specific semantics
or as operators. The former are called patterns, and represent
high-level parameterizable requirements. Blocks have both a
textual representation and a graphical Simulink representation.
A pattern is a structured sentence containing free uninterpreted
expressions, to be filled out by the designer. A pattern can be
atomic (part of a predefined library), or composite, obtained
by composition of other patterns. The actual assertions that
constitute assumptions and guarantees of contracts are simply
instantiations of patterns which bind a concrete expression to
each free expression of the pattern. Patterns are built using
a layered specification. The first layer is concerned with the
definition of events. An event expression is constructed from
signals by identifying the occurrences of specific conditions.
One can turn any boolean expression C into an event, using
the operator ev(C). Signal condition blocks capture the change
of value of a signal. A rising edge condition takes as inputs
a signal v and a reference value v. The event is present if the
conditions u[k — 1] < v and wu[k] > v are verified, where
k represents time. The textual representation of this event
is re(u, v). A falling edge condition is defined dually, and
represented as fe(u, v). The second layer is used to construct
atomic patterns. Each pattern is composed of a condition and
of a temporal specification, which defines when the condition
must be true. The condition of a pattern can be either the
occurrence of an event or a boolean expression built on signal
values. The pattern [E] happens constrains the event E to
occur and the boolean expression C to be true, respectively.
Two more patterns are used as implications: Everytime [E]
then [C] and Everytime [E] then [E2] assert that whenever
event E occurs, the expression C is true or event E2 occurs,
respectively. The expressions E and C are called event and
condition expressions. A condition expression is built on top of
the model input and output signals using assertions, relations
and logical connectives. Every signal x can be evaluated at
time instant & with the expression x[k], which form the basic
terms of the expressions. Temporal constraints are used to
identify the safety or liveness nature of the specification. Each
constraint takes an assertion ¢ and defines an interval over

which ¢ must hold. The simplest patterns refer to the validity
of ¢ in the time interval that goes from the current time to
indefinitely in the future. An example of interval constraint is
the [¢] always fragment that represents a safety constraint on
¢ that imposes the formula to be true at every time instant.
Patterns may also specify a defined time interval I. Formally,
an interval is the set of time instants between a start event
and an end event, each defined using one of the event blocks
described in the previous paragraphs. Patterns make use of
temporal constraints as follows: [¢] during [I] constrains ¢
to be true during the time instants identified by the interval;
and [¢] at least once within [I] constrains ¢ to be true in
at least one time instant in I. A key element of the proposed
language is the capability to compose patterns to derive more
complex ones. The third layer provides a number of pattern
composition blocks that are used to derive a composite pattern
C out of two patterns A and B. The standard composition
patterns are available in the language: A & B is an assertion
that identifies a set of behaviors satisfying both assertion A and
B; A | B identifies the set of behaviors satisfying assertion A
or assertion B; A = B identifies the set of behaviors that do
not satisfies A or that satisfies both A and B; and ~ A is an
assertion that identifies the set of behaviors that do not satisfy
A (complement set).

The top layer is concerned with contracts, which are
simply defined as pairs of assertions (namely the assumption
and the guarantee). Composition of contracts is similar to
pattern composition, however the semantics of the composition
operators follows that of contract models, rather than that
of traditional logic models. For instance, for conjunction,
contracts take the disjunction of the assumptions and the
conjunction of the guarantees, to ensure that the refinement
relation (contract dominance) is preserved [8]. The textual as-
sertion specification language described in the previous section
is useful in formalizing the requirements using signals, patterns
and their operators. For our implementation, we have chosen
the Matlab/Simulink software!, which is the standard-de-facto
for modeling discrete and continuous time dynamic systems
and control algorithms. To support contract-based design in
BCL, we have developed a Simulink toolbox implementation
in which the different specification layers of the language have
been implemented as executable library elements.

III. IMPLEMENTING ASYNCHRONOUS CONTRACT
MONITORS

An asynchronous interaction can be obtained by adding
“dummy” self-loop transitions to every state, which are taken
whenever a stuttering behavior of the component is desired.
From the infrastructure point of view, the difference is there-
fore limited to letting components sit idle when necessary.
The scheduler, however, must be able to handle the different
situations, and activate the components whenever they share
a signal and must therefore synchronize. Components may
synchronize by either sharing signals, or by using alternate
synchronization paradigms denoted by rich connectors [11]. In
addition, data may be delayed and/or buffered along a commu-
nication channel. Whereas the difference between synchronous
and asynchronous execution is fundamental, and therefore

Thttp://www.mathworks.it/products/simulink/index.html



requires a change in the simulation strategy, different com-
munication paradigms can be handled from a behavioral point
of view, by adding specific extra components that mediate the
communication. In particular, a purely asynchronous semantics
is unable to represent delays, since components must be speed
independent. Delays must therefore be represented by explicit
quantities, that bound the unrestricted non-determinism that
results from the use of asynchronous components.

At the semantics level, the asynchronous interaction differs
from the synchronous case only for those transitions which in-
dependently generate some new events. If a component resides
in a state from which all transitions are guarded by an input
event, then the component will necessarily have to follow the
transitions that are enabled according to the presence/absence
of the input events, and will stutter (i.e., stay in the current
state) only if none of the input events is enabled. In this
situation, therefore, no interleaving is possible, and the state
machine behaves as if it had a synchronous interaction with the
rest of the system. This condition is particularly interesting in
the context of monitor-based verification. A monitor, in fact,
seen as a black box is essentially a passive element driven
by changes in the signals it observes, and has no outputs. A
monitor is therefore not capable of initiating any interaction
with the component it is attached to. As a consequence,
transitions are either not guarded at all, and do not produce
any visible effect outside the monitor, or are guarded by
some input event, leading to the above situation. For this
reason, it makes no difference whether we consider the monitor
to be synchronous or asynchronous with its corresponding
component, since transitions are in any case synchronized.
Therefore, for the purpose of this work,

monitors are always synchronous with the monitored
component.

We stress that this does not imply that contracts necessarily
interact synchronously among themselves. Instead, because
monitors interact exclusively with the component they are
attached to, and because they do so synchronously, their mutual
interaction is mediated by the interaction paradigm of the cor-
responding component. In other words, contract composition is
delegated to the composition of the corresponding component
implementations. This delegation mechanism is particularly
convenient, as changes in the interaction between components
(for instance by the addition of delays or buffering, or through
the use of a rich connector) are immediately reflected at the
level of the contracts. Thus, our implementation approach is
that of adding a minimum of extra capabilities to the simulation
infrastructure in order to support asynchronous interactions.
The other orthogonal aspects are instead handled from outside
the infrastructure using supportive components added to the
system to account for the intended synchronization behavior.

IV. AUTOMATIC TOWING SYSTEM

The Automatic Towing System (ATS)? is a complex dis-
tributed system composed of several agents that automate road
service calls. The system is composed of tow-bots, i.e., self-
driving tow trucks that provide support to user vehicles in a
predefined service area orchestrated by a command, control,

Zhttp://www.sprint-iot.eu/industrialcase.php

communications and intelligence subsystem (C4I). To illustrate
our methods, and to apply contracts and contract analysis to
the ATS case study, we restrict our analysis of the system to
the interaction between the C4I, a single damaged user vehicle
and a tow-bot. The top level view of the system, modeled
in MATLAB/Simulink, is shown in Figure 1. The ATS is

toscan
e uv_cdl
T UV_EN
n
o beoen
= i

blev_oisparch

i
AT L _DESTINATION b col

rH{Ev_PosiTION

b b

TOWBOT POSITI /_POSITION POSITION|
USERVEHICLE cal

ATS system block diagram

Fig. 1.

an asynchronous, distributed system whose communication of
messages relies on wired and wireless network infrastructures.
In order to model an asynchronous communication between
the components, we adopted an approach similar to the one
described by Miller et al. [12]. Each component is a subsystem
that exposes a functional interface (the set of signals corre-
sponding to the events exchanged with the environment) and an
additional control Boolean signal. When the additional signal
is active (TRUE), the block performs its computation as usual;
when it is inactive (FALSE), the block is disabled (stuttering).
The ATS systems should satisfy several requirements to ensure
safe user-vehicle towing under all operational circumstances.
Some of these requirements, formalized using the BCL pattern
language, are represented in Table I identifying for each of
them what is the constrained component and whether the
requirement is an assumption or a guarantee. Requirements

TABLE 1. FORMALIZED BCL REQUIREMENTS FOR THE ATS SYSTEM
ID Requirement Component | Type
RO1 Everytime [evDispatch] then [uvPosition] fol- Tow-Bot A

lows
RO2 [evDispatch] implies [atDestination] eventually Tow-Bot G
RO3 [evDispatch] implies [atDestination] eventually C41 G
RO4 [req] implies [uvPosition] follows C41 A
RO5 [evDispatch A uvPosition] always C41 G
RO6 [evReq] implies ![uvPosition] within (evReq, uv G
atDestination)
RO7 [evReq] implies [evReqConfirm] eventually uv A

RO1 and RO2 ensure that the tow-bot successfully reaches a
car when a dispatch command is sent from the C41I, assuming
that the car does not change its position in the meantime.
Requirements R03, R04 and RO5 require the C41I to properly
communicate the dispatch of a tow-bot to a requesting car and
guarantee the information are sent to the Tow-Bot. Finally, RO6
and RO7 ensure a correct behavior of the car.

The compatibility relation can be checked using run-time
verification only for closed systems (i.e., systems not contain-
ing free inputs). In this case, the contracts are incompatible
if at least one of the assumptions is violated. Incompatible
contracts cannot be safely composed and intuitively expose
logical incoherence between the requirements. On the other
hand, in order to verify compatibility of closed (and possibly



non-deterministic) systems, it is sufficient to verify that a state
of the system in which any of the assumptions is violated is
not reachable using exhaustive verification. The ATS model
is logically a closed system since all input ports are driven
by a corresponding output port. Nonetheless, the model has
free inputs corresponding to the enable signals of the sub-
systems used to model the asynchronous execution of com-
ponents in MATLAB/Simulink. In this case, the environment
is the asynchronous scheduler that is capable of enabling and
disabling the execution of the subsystems, modeling the non-
deterministic behavior of an asynchronous system. Checking
incompatibility for this scenario consists of evaluating the
presence of a system execution, i.e., a component interleaving,
leading to an assumption failure. Conversely, checking compat-
ibility amounts to verifying that all the assumptions are verified
under all admissible sub-system executions interleaving. We
use executable monitors for incompatibility verification in
a run-time context. In the synchronous case, we again use
run-time verification, but also employ a formal verification
framework [13] to deduce an appropriate schedule. In practice,
each system will require the implementation of a scheduler
that restricts the non-determinism by enforcing specific timing
constraints. Synchronous composition of components and con-
tracts can be obtained by constraining all the enable signals
of the components to always occur simultaneously. Using this
approach, we found the contracts of the ATS to be incompati-
ble under synchronous composition. To solve this problem we
must relax requirement RO5 using the following formulation:
Everytime [evDispatch] then [uvPosition] follows and the
implementation of the C4I has been modified accordingly.
For the new model, the compatibility has been successfully
verified. To verify compatibility in the case of asynchronous
composition, the enable signals of the components have been
left free. Each component maintains its state when the enable
signal is FALSE and proceeds with its execution when it
is TRUE. The formal engine returns a counter-example that
shows the incompatibility. For instance, the Tow-Bot assump-
tion can be violated by a specific execution schedule, as
depicted in Figure 2. The reason of the violation is related to

----ASSUMPTION
---ENABLE

: . o]

<
@
©

0 1 2 3 4 Time () 5 6
‘ EV-DISPATCH

1 ---EV-POSITION
08 AR / \
06
04-
02
% 1 2 3 4 Time(s) 5 6 7 8 9

Fig. 2. Incompatibility of asynchronous composition

the formalization of the Tow-Bot assumption that imposes the
position signal to be asserted exactly after the reception of the
dispatch, without taking into account the possible stuttering of
the component. In the case of the Tow-Bot, the incompatibility
can be solved relaxing the R0O2 requirement using the following
alternative formalization: [evDispatch] implies [atDestination]
eventually. This alternative representation allows the compo-
nents to be safely composed, and the formal verification engine
returns a positive result.

V. CONCLUSION

We have presented a system verification methodology that
uses contracts and run-time verification through monitors for
the validation of distributed systems. Our contribution includes
a pattern-based language, called BCL, for the specification
of the system constraints, and the foundations and an imple-
mentation of an asynchronous interaction paradigm. Our tech-
nique for contract verification uses passive monitors which are
always synchronous with the underlying components, which
are delegated for the implementation of the asynchronous
interaction. Our current work includes the development of a
distributed simulation infrastructure supporting hardware in the
loop integration and heterogeneous simulators.

ACKNOWLEDGMENT

The research leading to these results was partially funded
by the SPRINT EU project (grant agreement no. 257909)

REFERENCES

[1] FE Balarin and R. Passerone, “Functional verification methodology
based on formal interface specification and transactor generation,” in
Proceedings of the Conference on Design, Automation and Test in
Europe (DATE06), Munich, Germany, March 610, 2006.

[2] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “METROII: A design envi-
ronment for cyber-physical systems,” ACM Transactions on Embedded
Computing Systems, vol. 12, no. 1s, pp. 49:1-49:31, March 2013.

[3] Y. Kakiuchi, A. Kitajima, K. Hamaguchi, and T. Kashiwabara, “Auto-
matic monitor generation from regular expression based specifications
for module interface verification,” in Proc. of the International Sympo-
sium on Circuits and Systems (ISCAS05), May 2005.

[4] J.-Y. Brunel, M. Di Natale, A. Ferrari, P. Giusto, and L. Lavagno,
“Softcontract: an assertion-based software development process that
enables design-by-contract,” in Proc. of the conference on Design,
automation and test in Europe (DATE04), 2004.

[5] M. Krichen and S. Tripakis, “Conformance testing for real-time sys-
tems,” Formal Methods in System Design, vol. 34, no. 3, June 2009.

[6] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifi-
cations for finite-state verification,” in Proc. of the Intern. Conf. on
Software Engineering, Los Angeles, CA, May 16-22 1999.

[77 W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand,
“Using contract-based component specifications for virtual integration
testing and architecture design,” in Proc. of the Conference on Design,
Automation and Test in Europe, Grenoble, France, March 14-18 2011.

[8] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R. Passerone,
and C. Sofronis, “A contract-based formalism for the specification
of heterogeneous systems,” in Proc. of the Forum on Specification,
Verification and Design Languages, Stuttgart, Germany, September 23—
25, 2008.

[9]1 A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-based design for cyber-physical systems,”
European Journal of Control, vol. 18, no. 3, pp. 217-238, 2012.

[10] L. Mangeruca, O. Ferrante, and A. Ferrari, “Formalization and com-
pleteness of evolving requirements using contracts,” in Industrial Em-
bedded Systems (SIES), 2013 8th IEEE International Symposium on,
June 2013, pp. 120-129.

[11] S. Bliudze and J. Sifakis, “The algebra of connectors - structuring
interaction in BIP,” IEEE Trans. on Computers, vol. 57, no. 10, 2008.

[12] S. P. Miller, M. W. Whalen, M. P. Heimdahl, and A. Joshi, “A method-
ology for the design and verification of globally asynchronous/locally
synchronous architectures,” Tech. Rep. NASA/CR-2005-213912, 2005.

[13] O. Ferrante, L. Benvenuti, L. Mangeruca, C. Sofronis, and A. Ferrari,
“Parallel NuSMV: a NuSMV extension for the verification of complex
embedded systems,” in Proc. of the International Conference on Com-
puter Safety, Reliability, and Security, Magdeburg, Germany, 2012.



